Publications

You can also access our individual websites (via the Members page) for further information about our research and lists of our publications.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Luff CE, Peach R, Mallas E-J, Rhodes E, Laumann F, Boyden ES, Sharp DJ, Barahona M, Grossman Net al., 2024,

    The neuron mixer and its impact on human brain dynamics

    , Cell Reports, Vol: 43, ISSN: 2211-1247

    A signal mixer facilitates rich computation, which has been the building block of modern telecommunication. This frequency mixing produces new signals at the sum and difference frequencies of input signals, enabling powerful operations such as heterodyning and multiplexing. Here, we report that a neuron is a signal mixer. We found through ex vivo and in vivo whole-cell measurements that neurons mix exogenous (controlled) and endogenous (spontaneous) subthreshold membrane potential oscillations, producing new oscillation frequencies, and that neural mixing originates in voltage-gated ion channels. Furthermore, we demonstrate that mixing is evident in human brain activity and is associated with cognitive functions. We found that the human electroencephalogram displays distinct clusters of local and inter-region mixing and that conversion of the salient posterior alpha-beta oscillations into gamma-band oscillations regulates visual attention. Signal mixing may enable individual neurons to sculpt the spectrum of neural circuit oscillations and utilize them for computational operations.

  • Journal article
    Beaney T, Clarke J, Salman D, Woodcock T, Majeed F, Aylin P, Barahona Met al., 2024,

    Identifying multi-resolution clusters of diseases in ten million patients with multimorbidity in primary care in England

    , Communications Medicine, Vol: 4, ISSN: 2730-664X

    BackgroundIdentifying clusters of diseases may aid understanding of shared aetiology, management of co-morbidities, and the discovery of new disease associations. Our study aims to identify disease clusters using a large set of long-term conditions and comparing methods that use the co-occurrence of diseases versus methods that use the sequence of disease development in a person over time.MethodsWe use electronic health records from over ten million people with multimorbidity registered to primary care in England. First, we extract data-driven representations of 212 diseases from patient records employing (i) co-occurrence-based methods and (ii) sequence-based natural language processing methods. Second, we apply the graph-based Markov Multiscale Community Detection (MMCD) to identify clusters based on disease similarity at multiple resolutions. We evaluate the representations and clusters using a clinically curated set of 253 known disease association pairs, and qualitatively assess the interpretability of the clusters.ResultsBoth co-occurrence and sequence-based algorithms generate interpretable disease representations, with the best performance from the skip-gram algorithm. MMCD outperforms k-means and hierarchical clustering in explaining known disease associations. We find that diseases display an almost-hierarchical structure across resolutions from closely to more loosely similar co-occurrence patterns and identify interpretable clusters corresponding to both established and novel patterns.ConclusionsOur method provides a tool for clustering diseases at different levels of resolution from co-occurrence patterns in high-dimensional electronic health records, which could be used to facilitate discovery of associations between diseases in the future.

  • Journal article
    Wu N, Yaliraki SN, Barahona M, 2022,

    Prediction of Protein Allosteric Signalling Pathways and Functional Residues Through Paths of Optimised Propensity

    , Journal of Molecular Biology, Vol: 434, Pages: 167749-167749, ISSN: 0022-2836
  • Journal article
    Qian Y, Expert P, Rieu T, Panzarasa P, Barahona Met al., 2022,

    Quantifying the alignment of graph and features in deep learning

    , IEEE Transactions on Neural Networks and Learning Systems, Vol: 33, Pages: 1663-1672, ISSN: 1045-9227

    We show that the classification performance of graph convolutional networks (GCNs) is related to the alignment between features, graph, and ground truth, which we quantify using a subspace alignment measure (SAM) corresponding to the Frobenius norm of the matrix of pairwise chordal distances between three subspaces associated with features, graph, and ground truth. The proposed measure is based on the principal angles between subspaces and has both spectral and geometrical interpretations. We showcase the relationship between the SAM and the classification performance through the study of limiting cases of GCNs and systematic randomizations of both features and graph structure applied to a constructive example and several examples of citation networks of different origins. The analysis also reveals the relative importance of the graph and features for classification purposes.

  • Journal article
    Beaney T, Clarke J, Woodcock T, McCarthy R, Saravanakumar K, Barahona M, Blair M, Hargreaves Det al., 2021,

    Patterns of healthcare utilisation in children and young people: a retrospective cohort study using routinely collected healthcare data in Northwest London

    , BMJ Open, Vol: 11, Pages: 1-14, ISSN: 2044-6055

    ObjectivesWith a growing role for health services in managing population health, there is a need for early identification of populations with high need. Segmentation approaches partition the population based on demographics, long-term conditions (LTCs) or healthcare utilisation but have mostly been applied to adults. Our study uses segmentation methods to distinguish patterns of healthcare utilisation in children and young people (CYP) and to explore predictors of segment membership.DesignRetrospective cohort study.SettingRoutinely collected primary and secondary healthcare data in Northwest London from the Discover database.Participants378,309 CYP aged 0-15 years registered to a general practice in Northwest London with one full year of follow-up.Primary and secondary outcome measuresAssignment of each participant to a segment defined by seven healthcare variables representing primary and secondary care attendances, and description of utilisation patterns by segment. Predictors of segment membership described by age, sex, ethnicity, deprivation and LTCs.ResultsParticipants were grouped into six segments based on healthcare utilisation. Three segments predominantly used primary care; two moderate utilisation segments differed in use of emergency or elective care, and a high utilisation segment, representing 16,632 (4.4%) children accounted for the highest mean presentations across all service types. The two smallest segments, representing 13.3% of the population, accounted for 62.5% of total costs. Younger age, residence in areas of higher deprivation, and presence of one or more LTCs were associated with membership of higher utilisation segments, but 75.0% of those in the highest utilisation segment had no LTC.ConclusionsThis article identifies six segments of healthcare utilisation in CYP and predictors of segment membership. Demographics and LTCs may not explain utilisation patterns as strongly as in adults which may limit the use of routine data in predicting ut

  • Journal article
    Liu Z, Peach R, Lawrance E, Noble A, Ungless M, Barahona Met al., 2021,

    Listening to mental health crisis needs at scale: using Natural Language Processing to understand and evaluate a mental health crisis text messaging service

    , Frontiers in Digital Health, Vol: 3, Pages: 1-14, ISSN: 2673-253X

    The current mental health crisis is a growing public health issue requiring a large-scale response that cannot be met with traditional services alone. Digital support tools are proliferating, yet most are not systematically evaluated, and we know little about their users and their needs. Shout is a free mental health text messaging service run by the charity Mental Health Innovations, which provides support for individuals in the UK experiencing mental or emotional distress and seeking help. Here we study a large data set of anonymised text message conversations and post-conversation surveys compiled through Shout. This data provides an opportunity to hear at scale from those experiencing distress; to better understand mental health needs for people not using traditional mental health services; and to evaluate the impact of a novel form of crisis support. We use natural language processing (NLP) to assess the adherence of volunteers to conversation techniques and formats, and to gain insight into demographic user groups and their behavioural expressions of distress. Our textual analyses achieve accurate classification of conversation stages (weighted accuracy = 88%), behaviours (1-hamming loss = 95%) and texter demographics (weighted accuracy = 96%), exemplifying how the application of NLP to frontline mental health data sets can aid with post-hoc analysis and evaluation of quality of service provision in digital mental health services.

  • Conference paper
    Liu Z, Barahona M, 2021,

    Similarity measure for sparse time course data based on Gaussian processes

    , Uncertainty in Artificial Intelligence 2021, Publisher: PMLR, Pages: 1332-1341

    We propose a similarity measure for sparsely sampled time course data in the form of a log-likelihood ratio of Gaussian processes (GP). The proposed GP similarity is similar to a Bayes factor and provides enhanced robustness to noise in sparse time series, such as those found in various biological settings, e.g., gene transcriptomics. We show that the GP measure is equivalent to the Euclidean distance when the noise variance in the GP is negligible compared to the noise variance of the signal. Our numerical experiments on both synthetic and real data show improved performance of the GP similarity when used in conjunction with two distance-based clustering methods.

  • Journal article
    Ming DK, Myall AC, Hernandez B, Weiße AY, Peach RL, Barahona M, Rawson TM, Holmes AHet al., 2021,

    Informing antimicrobial management in the context of COVID-19: understanding the longitudinal dynamics of C-reactive protein and procalcitonin

    , BMC Infectious Diseases, Vol: 21

    Background: To characterise the longitudinal dynamics of C-reactive protein (CRP) and Procalcitonin (PCT) in a cohort of hospitalised patients with COVID-19 and support antimicrobial decision-making. Methods: Longitudinal CRP and PCT concentrations and trajectories of 237 hospitalised patients with COVID-19 were modelled. The dataset comprised of 2,021 data points for CRP and 284 points for PCT. Pairwise comparisons were performed between: (i) those with or without significant bacterial growth from cultures, and (ii) those who survived or died in hospital. Results: CRP concentrations were higher over time in COVID-19 patients with positive microbiology (day 9: 236 vs 123 mg/L, p < 0.0001) and in those who died (day 8: 226 vs 152 mg/L, p < 0.0001) but only after day 7 of COVID-related symptom onset. Failure for CRP to reduce in the first week of hospital admission was associated with significantly higher odds of death. PCT concentrations were higher in patients with COVID-19 and positive microbiology or in those who died, although these differences were not statistically significant. Conclusions: Both the absolute CRP concentration and the trajectory during the first week of hospital admission are important factors predicting microbiology culture positivity and outcome in patients hospitalised with COVID-19. Further work is needed to describe the role of PCT for co-infection. Understanding relationships of these biomarkers can support development of risk models and inform optimal antimicrobial strategies.

  • Journal article
    Mersmann S, Stromich L, Song F, Wu N, Vianello F, Barahona M, Yaliraki Set al., 2021,

    ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules

    , Nucleic Acids Research, Vol: 49, Pages: W551-W558, ISSN: 0305-1048

    The investigation of allosteric effects in biomolecular structures is of great current interest in diverse areas, from fundamental biological enquiry to drug discovery. Here we present ProteinLens, a user-friendly and interactive web application for the investigation of allosteric signalling based on atomistic graph-theoretical methods. Starting from the PDB file of a biomolecule (or a biomolecular complex) ProteinLens obtains an atomistic, energy-weighted graph description of the structure of the biomolecule, and subsequently provides a systematic analysis of allosteric signalling and communication across the structure using two computationally efficient methods: Markov Transients and bond-to-bond propensities. ProteinLens scores and ranks every bond and residue according to the speed and magnitude of the propagation of fluctuations emanating from any site of choice (e.g. the active site). The results are presented through statistical quantile scores visualised with interactive plots and adjustable 3D structure viewers, which can also be downloaded. ProteinLens thus allows the investigation of signalling in biomolecular structures of interest to aid the detection of allosteric sites and pathways. ProteinLens is implemented in Python/SQL and freely available to use at: www.proteinlens.io.

  • Journal article
    Chrysostomou S, Roy R, Prischi F, Thamlikitkul L, Chapman KL, Mufti U, Peach R, Ding L, Hancock D, Moore C, Molina-Arcas M, Mauri F, Pinato DJ, Abrahams JM, Ottaviani S, Castellano L, Giamas G, Pascoe J, Moonamale D, Pirrie S, Gaunt C, Billingham L, Steven NM, Cullen M, Hrouda D, Winkler M, Post J, Cohen P, Salpeter SJ, Bar V, Zundelevich A, Golan S, Leibovici D, Lara R, Klug DR, Yaliraki SN, Barahona M, Wang Y, Downward J, Skehel JM, Ali MMU, Seckl MJ, Pardo OEet al., 2021,

    Repurposed floxacins targeting RSK4 prevent chemoresistance and metastasis in lung and bladder cancer.

    , Science translational medicine, Vol: 13, ISSN: 1946-6234

    Lung and bladder cancers are mostly incurable because of the early development of drug resistance and metastatic dissemination. Hence, improved therapies that tackle these two processes are urgently needed to improve clinical outcome. We have identified RSK4 as a promoter of drug resistance and metastasis in lung and bladder cancer cells. Silencing this kinase, through either RNA interference or CRISPR, sensitized tumor cells to chemotherapy and hindered metastasis in vitro and in vivo in a tail vein injection model. Drug screening revealed several floxacin antibiotics as potent RSK4 activation inhibitors, and trovafloxacin reproduced all effects of RSK4 silencing in vitro and in/ex vivo using lung cancer xenograft and genetically engineered mouse models and bladder tumor explants. Through x-ray structure determination and Markov transient and Deuterium exchange analyses, we identified the allosteric binding site and revealed how this compound blocks RSK4 kinase activation through binding to an allosteric site and mimicking a kinase autoinhibitory mechanism involving the RSK4's hydrophobic motif. Last, we show that patients undergoing chemotherapy and adhering to prophylactic levofloxacin in the large placebo-controlled randomized phase 3 SIGNIFICANT trial had significantly increased (<i>P</i> = 0.048) long-term overall survival times. Hence, we suggest that RSK4 inhibition may represent an effective therapeutic strategy for treating lung and bladder cancer.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=219&limit=10&respub-action=search.html Current Millis: 1732180252042 Current Time: Thu Nov 21 09:10:52 GMT 2024

Useful Links