Animal cell technology is an area of rapid expansion and one that produces a wide range of high-value products, including vaccines, recombinant proteins, drugs for cardiovascular, respiratory and immune diseases, and monoclonal antibodies. commercial synthesis of monoclonal antibodies (MAB) represents one of the most important products in the biopharmaceutical industry because of their diagnostic and clinical applications. However, the production of industrial scale quantities of MAB is an expensive and challenging task.
There are a number of complications that make it a difficult process to ensure that the culture is growing under optimal conditions at all times. Furthermore, the process control and optimisation in the hybridoma culture industry lags far behind the developments in other process industries; as a result, the current industrial control of hybridoma cell culture is still fundamentally manual. Complications arising in these systems include the requirement to grow cultures in complex media, the lack of on-line measurements for many of the key substrates, metabolites, and products, the limited and noisy nature of much of the available experimental data and the extremely complex underlying reaction system. Models of animal cell culture systems have a wide range of potential applications, such as analysis and prediction of experimental results, optimisation of culture conditions for prolonged viability, and perhaps most importantly, the investigation of fundamental metabolic processes and their subsequent elucidation.
Our research programme sets out to integrate modelling, experiment design and validation, and control and optimisation into a single framework that would lead to increased productivity, regulated product quality, and reduced costs for mammalian cell culture systems. The integration of these three research tools represents a unique, novel, and interdisciplinary approach to addressing the complicated research and industrial problem of model-based control and optimisation of mammalian cell culture processes.
Current projects
- Systematic Development of a Coupled Population-Balance-Single-Cell Model for Mammalian Cell Cultures
- Effects of varying osmotic pressure on the GS-NS0 antibody production process
- The Effect of Osmotic Pressure on GS-NS0 Antibody Production Cell Line
- Towards the optimisation of the production of monoclonal antibodies
- Modelling Cellular Regulations of Mammalian Cell Cultures
Contact details
Professor Sakis Mantalaris
Head of BSEL Group
Chemical Engineering Department
Tel: +44 (0)20 7594 5601
Email:
a.mantalaris@imperial.ac.uk