The research activities of the Livingston Group involve the development and application of molecular separation processes, with a strong focus on membrane technology in aqueous and non-aqueous solutions. Our researchers have in-depth knowledge of a range of separation techniques and processes including reverse osmosis, nanofiltration and ultrafiltration. The Group's particular expertise lies in organic solvent nanofitration used for separating molecules present in organic solvents. Our innovative research in this field has resulted in the creation of membranes with exceptional stability in organic solvents, coupled to high flux and excellent rejection performance.
Latest research
In a paper published in June 2016 in Nature Materials, Dr Maria Jimenez Solomon et al report on their research into ultrathin polyarylate nanofilms, with thickness down to 20 nm, by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers.Such highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations, although it has proved challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents.
A copy of the paper can be downloaded here. Nature Materials paper May 2016, Jimenez Solomon
Research Collaborations
The Group has extensive experience of collaborating with academic and industrial partners within different process industries and in membrane manufacturing in order to pioneer novel technologies which offer cost-efficient methods to develop membrane modules and process applications. Several of our industrial partners seek to collaborate with us to develop new materials and processes to address specific separation challenges, which cannot easily be met by commercially available membranes. Combining its strengths and working closely with research partners, the Group has successfully developed innovative membrane separation techniques and membrane applications in the energy, chemicals and pharmaceuticals industries.
We have a number of exciting collaborations and are always keen to explore new interactions, participate in new academic collaborations and develop new commercial opportunities with industry. Please contact us if you wish to discuss any research opportunity.
Our research is organised into thematic areas. Please click on the tabs below to find out more about our research including our current research projects.
Group Research Themes
- Continuous Processing with Organic Solvent Nanofiltration
- Desalination
- Iterative Synthesis with Organic Solvent Nanofiltration
- Membrane Formation
Science publication on ultrapermeable nanofilms
In a paper published in Science by Santanu Karan, Zhiwei Jiang and Andrew Livingston, we demonstrated the development of an ultrathin synthetic membrane that is both extremely permable yet very strong. The possible applications of these membranes include purifying organic mixtures in industries such as pharmaceuticals, manufacturing and oil refining. Read the paper, the associate Perspective article, the press release, and the news coverage.
Currently, over 15 per cent of world energy is used in separation systems, covering everything from processing sewage to creating microscopic nanoparticles. Although this could be improved, users are reluctant to try new technologies if their reliability is not proven, so there has been little innovation in the sector. Many widely used membranes are still made from traditional materials and systems which are often short-lived, require regular cleaning and are costly and energy intensive.
Also involved are industry partners including Johnson Matthey, Evonik, GSK, BP, Pervatech, Bluestone Global Tech, Anglian Water, Severn Trent Water, Thames Water and Scottish Water.
For more information about SynFabFun, please visit the project website here.