Completed Project (2010-2014)

Research Team: Yan Liu, Song Luan, Sivylla Paraskevopoulou, Deren Barsakcioglu, Amir Eftekhar, Timothy Constandinou
Collaborators: Andrew Jackson (Newcastle), Rodrigo Quian Quiroga (Leicester) 
Funding: Engineering and Physical Sciences Research Council (EPSRC) EP/I000569/1


For over half a century scientists have recorded the tiny electrical potentials generated by neurons in the brains of awake animals performing specific behaviours, using large racks of power-hungry equipment. These experiments have yielded profound insights into how sensory information is represented and transformed by the brain into the signals that control purposeful movements, as well as revealing how this complex system is affected by neurological injuries and disease. However, until recently the therapeutic avenues available to neurologists have been limited to gross interventions such as systemic drug applications and neurosurgical lesions.

In recent years, small electronic devices have been developed that deliver specific patterns of stimulation via small electrodes implanted in the nervous system. Devices such as Deep Brain Stimulators and Cochlear Implants have helped many thousands of patients worldwide. The next generation of neural implants will use similar electrodes to detect the activity of neurons, paving the way for new treatments for conditions that currently weigh a heavy clinical burden. For example, by using the activity of neurons in motor areas of the brain to control electrical stimulation of muscles, it is possible that voluntary movements could be restored to patients paralysed by spinal cord injuries. However, despite considerable advances in electrode technologies, our ability to interface digital microelectronics with the brain at the level of individual neurons is at present severely limited. Each electrode detects the signal from multiple cells in its vicinity, and the small, brief 'spike' events they generate can be hard to distinguish beneath the background noise.

To address this problem we assembled a cross-disciplinary team with expertise in three key areas: the computational algorithms required to detect and sort spike events, low power integrated electronics to perform real-time, reliable spike identification, and the techniques to record long-term activity from the brain using neural implants in order to evaluate real-world performance. The project successfully delivered a platform technology for converting the raw signal from electrodes into a stream of identified spike events suitable for subsequent processing by conventional digital microelectronics.

Publications