Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Conference paper
    Jiang J, Rago A, Toni F, 2022,

    Should counterfactual explanations always be data instances?

    , XLoKR 2022: The Third Workshop on Explainable Logic-Based Knowledge Representation

    Counterfactual explanations (CEs) are an increasingly popular way of explaining machine learning classifiers. Predominantly, they amount to data instances pointing to potential changes to the inputs that would lead to alternative outputs. In this position paper we question the widespread assumption that CEs should always be data instances, and argue instead that in some cases they may be better understood in terms of special types of relations between input features and classification variables. We illustrate how a special type of these relations, amounting to critical influences, can characterise and guide the search for data instances deemed suitable as CEs. These relations also provide compact indications of which input features - rather than their specific values in data instances - have counterfactual value.

  • Conference paper
    Rago A, Baroni P, Toni F, 2022,

    Explaining causal models with argumentation: the case of bi-variate reinforcement

    , 19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022), Publisher: IJCAI Organisation, Pages: 505-509, ISSN: 2334-1033

    Causal models are playing an increasingly important role inmachine learning, particularly in the realm of explainable AI.We introduce a conceptualisation for generating argumenta-tion frameworks (AFs) from causal models for the purposeof forging explanations for the models’ outputs. The concep-tualisation is based on reinterpreting desirable properties ofsemantics of AFs as explanation moulds, which are meansfor characterising the relations in the causal model argumen-tatively. We demonstrate our methodology by reinterpretingthe property of bi-variate reinforcement as an explanationmould to forge bipolar AFs as explanations for the outputs ofcausal models. We perform a theoretical evaluation of theseargumentative explanations, examining whether they satisfy arange of desirable explanatory and argumentative propertie

  • Conference paper
    Rago A, Russo F, Albini E, Baroni P, Toni Fet al., 2022,

    Forging argumentative explanations from causal models

    , Proceedings of the 5th Workshop on Advances in Argumentation in Artificial Intelligence 2021 co-located with the 20th International Conference of the Italian Association for Artificial Intelligence (AIxIA 2021), Publisher: CEUR Workshop Proceedings, Pages: 1-15, ISSN: 1613-0073

    We introduce a conceptualisation for generating argumentation frameworks (AFs) from causal models for the purpose of forging explanations for models' outputs. The conceptualisation is based on reinterpreting properties of semantics of AFs as explanation moulds, which are means for characterising argumentative relations. We demonstrate our methodology by reinterpreting the property of bi-variate reinforcement in bipolar AFs, showing how the extracted bipolar AFs may be used as relation-based explanations for the outputs of causal models.

  • Conference paper
    Sukpanichnant P, Rago A, Lertvittayakumjorn P, Toni Fet al., 2021,

    LRP-based argumentative explanations for neural networks

    , XAI.it 2021 - Italian Workshop on Explainable Artificial Intelligence, Pages: 71-84, ISSN: 1613-0073

    In recent years, there have been many attempts to combine XAI with the field of symbolic AI in order to generate explanations for neural networks that are more interpretable and better align with human reasoning, with one prominent candidate for this synergy being the sub-field of computational argumentation. One method is to represent neural networks with quantitative bipolar argumentation frameworks (QBAFs) equipped with a particular semantics. The resulting QBAF can then be viewed as an explanation for the associated neural network. In this paper, we explore a novel LRP-based semantics under a new QBAF variant, namely neural QBAFs (nQBAFs). Since an nQBAF of a neural network is typically large, the nQBAF must be simplified before being used as an explanation. Our empirical evaluation indicates that the manner of this simplification is all important for the quality of the resulting explanation.

  • Journal article
    Rago A, Cocarascu O, Bechlivanidis C, Lagnado D, Toni Fet al., 2021,

    Argumentative explanations for interactive recommendations

    , Artificial Intelligence, Vol: 296, Pages: 1-22, ISSN: 0004-3702

    A significant challenge for recommender systems (RSs), and in fact for AI systems in general, is the systematic definition of explanations for outputs in such a way that both the explanations and the systems themselves are able to adapt to their human users' needs. In this paper we propose an RS hosting a vast repertoire of explanations, which are customisable to users in their content and format, and thus able to adapt to users' explanatory requirements, while being reasonably effective (proven empirically). Our RS is built on a graphical chassis, allowing the extraction of argumentation scaffolding, from which diverse and varied argumentative explanations for recommendations can be obtained. These recommendations are interactive because they can be questioned by users and they support adaptive feedback mechanisms designed to allow the RS to self-improve (proven theoretically). Finally, we undertake user studies in which we vary the characteristics of the argumentative explanations, showing users' general preferences for more information, but also that their tastes are diverse, thus highlighting the need for our adaptable RS.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1259&limit=20&page=3&respub-action=search.html Current Millis: 1723014985594 Current Time: Wed Aug 07 08:16:25 BST 2024