Notable Recent Publications

These are some recent publications which give a flavour of the research from the Barclay lab. For a complete list of publications, please see below.


Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature (2016).
Jason S. Long, Efstathios S. Giotis, Olivier Moncorgé, Rebecca Frise, Bhakti Mistry, Joe James, Mireille Morisson, Munir Iqbal, Alain Vignal, Michael A. Skinner & Wendy S. Barclay

This paper identified a key factor that explained why the polymerases from avian influenza viruses are restricted in humans.  For more, please see the associated New and Views.

See our latest ANP32 papers here: eLIFE, Journal of Virology, Journal of Virology.


The mechanism of resistance to favipiravir in influenza. PNAS (2018).
Daniel H. GoldhillAartjan J. W. te VelthuisRobert A. FletcherPinky LangatMaria ZambonAngie Lackenby & Wendy S. Barclay

This paper showed how influenza could evolve resistance to favipiravir, an antiviral that may be used to treat influenza. The residue that mutated to give resistance was highly conserved suggesting that the mechanism of resistance may be applicable to other RNA viruses.


Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. Plos Path. (2018).
Hui Li*, Konrad C. Bradley*, Jason S. Long, Rebecca Frise, Jonathan W. Ashcroft, Lorian C. Hartgroves, Holly Shelton, Spyridon Makris, Cecilia Johansson, Bin Cao & Wendy S. Barclay

Why do avian influenza viruses like H5N1 cause such severe disease in humans? This paper demonstrated that H5N1 viruses replicate better than human viruses in myeloid cells from mice leading to a cytokine storm and more severe disease.


Citation

BibTex format

@article{Ahmetaj-Shala:2020:10.1101/2020.11.08.372581,
author = {Ahmetaj-Shala, B and Peacock, TP and Baillon, L and Swann, OC and Gashaw, H and Barclay, WS and Mitchell, JA},
doi = {10.1101/2020.11.08.372581},
title = {Resistance of endothelial cells to SARS-CoV-2 infection<i>in vitro</i>},
url = {http://dx.doi.org/10.1101/2020.11.08.372581},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - <jats:title>Abstract</jats:title><jats:sec><jats:title>Rationale</jats:title><jats:p>The secondary thrombotic/vascular clinical syndrome of COVID-19 suggests that SARS-CoV-2 infects not only respiratory epithelium but also the endothelium activating thrombotic pathways, disrupting barrier function and allowing access of the virus to other organs of the body. However, a direct test of susceptibility to SARS-CoV-2 of authentic endothelial cell lines has not been performed.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>To determine infectibility of primary endothelial cell lines with live SARS-CoV-2 and pseudoviruses expressing SARS-CoV-2 spike protein.</jats:p></jats:sec><jats:sec><jats:title>Methods and Results</jats:title><jats:p>Expression of ACE2 and BSG pathways genes was determined in three types of endothelial cells; blood outgrowth, lung microvascular and aortic endothelial cells. For comparison nasal epithelial cells, Vero E6 cells (primate kidney fibroblast cell line) and HEK 293T cells (human embryonic kidney cells) transfected with either ACE2 or BSG were used as controls. Endothelial and Vero E6 cells were treated with live SARS-CoV-2 virus for 1 hour and imaged at 24 and 72 hours post infection. Pseudoviruses containing SARS-CoV-2, Ebola and Vesicular Stomatis Virus glycoproteins were generated and added to endothelial cells and HEK 239Ts for 2 hours and infection measured using luminescence at 48 hours post infection. Compared to nasal epithelial cells, endothelial cells expressed low or undetectable levels of ACE2 and TMPRSS2 but comparable levels of BSG, PPIA and PPIB. Endothelial cells showed no susceptibility to live SARS-CoV-2 or SARS-CoV-2 pseudovirus (but showed susceptibility to Ebola and Vesicular Stomatitis Virus). Overexpression of ACE2 but not BSG in HEK 239T cells conferred SARS-CoV-2 pseudovirus entry. Endoth
AU - Ahmetaj-Shala,B
AU - Peacock,TP
AU - Baillon,L
AU - Swann,OC
AU - Gashaw,H
AU - Barclay,WS
AU - Mitchell,JA
DO - 10.1101/2020.11.08.372581
PY - 2020///
TI - Resistance of endothelial cells to SARS-CoV-2 infection<i>in vitro</i>
UR - http://dx.doi.org/10.1101/2020.11.08.372581
UR - https://doi.org/10.1101/2020.11.08.372581
ER -

Contact us


For any enquiries related to this group, please contact:

Professor Wendy Barclay
Chair in Influenza Virology 
+44 (020) 7594 5035
w.barclay@imperial.ac.uk