BibTex format
@article{Ho:2021:10.1021/acs.organomet.1c00487,
author = {Ho, SKY and Lam, FYT and de, Aguirre A and Maseras, F and White, AJP and Britovsek, GJP},
doi = {10.1021/acs.organomet.1c00487},
journal = {Organometallics},
pages = {4077--4091},
title = {Photolytic activation of late-transition-metal-carbon bonds and their reactivity toward oxygen},
url = {http://dx.doi.org/10.1021/acs.organomet.1c00487},
volume = {40},
year = {2021}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - The photolytic activation of palladium(II) and platinum(II) complexes [M(BPI)(R)] (R = alkyl, aryl) featuring the 1,3-bis(2-pyridylimino)isoindole (BPI) ligand has been investigated in various solvents. In the absence of oxygen, the formation of chloro complexes [M(BPI)Cl] is observed in chlorinated solvents, most likely due to the photolytic degradation of the solvent and formation of HCl. The reactivity of the complexes toward oxygen has been studied both experimentally and computationally. Excitation by UV irradiation (365 nm) of the metal complexes [Pt(BPI)Me] and [Pd(BPI)Me] leads to distortion of the square-planar coordination geometry in the excited triplet state and a change in the electronic structure of the complexes that allows the interaction with oxygen. TD-DFT computational studies suggest that, in the case of palladium, the Pd(III) superoxide intermediate [Pd(BPI)(κ1-O2)Me] is formed and, in the case of platinum, the Pt(IV) peroxide intermediate [Pt(BPI)(κ2-O2)Me]. For alkyl complexes where metal–carbon bonds are sufficiently weak, the photoactivation leads to the insertion of oxygen into the metal–carbon bond to generate alkylperoxo complexes: for example [Pd(BPI)OOMe], which has been isolated and structurally characterized. For stronger M–C(aryl) bonds, the reaction of [Pt(BPI)Ph] with O2 and light results in a Pt(IV) complex, tentatively assigned as the peroxo complex [Pt(BPI)(κ2-O2)Ph], which in chlorinated solvents reacts further to give [Pt(BPI)Cl2Ph], which has been isolated and characterized by scXRD. In addition to the facilitation of oxygen insertion reactions, UV irradiation can also affect the reactivity of other components in the reaction mixture, such as the solvent or other reaction products, which can result in further reactions. Labeling studies using [Pt(BPI)(CD3)] in chloroform have shown that photolytic reactions with oxygen involve degradation of the solvent.
AU - Ho,SKY
AU - Lam,FYT
AU - de,Aguirre A
AU - Maseras,F
AU - White,AJP
AU - Britovsek,GJP
DO - 10.1021/acs.organomet.1c00487
EP - 4091
PY - 2021///
SN - 0276-7333
SP - 4077
TI - Photolytic activation of late-transition-metal-carbon bonds and their reactivity toward oxygen
T2 - Organometallics
UR - http://dx.doi.org/10.1021/acs.organomet.1c00487
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000730301800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=a2bf6146997ec60c407a63945d4e92bb
UR - https://pubs.acs.org/doi/10.1021/acs.organomet.1c00487
UR - http://hdl.handle.net/10044/1/101268
VL - 40
ER -