Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Fuqua C, Filloux A, Ghigo J-M, Visick KLet al., 2019,

    Biofilms 2018: a diversity of microbes and mechanisms

    , Journal of Bacteriology, Vol: 201, Pages: e00118-e00119, ISSN: 0021-9193

    The 8th ASM Conference on Biofilms was held in Washington D.C. on October 7-11, 2018. This very highly subscribed meeting represented a wide breadth of current research in biofilms, and included over 500 attendees, 12 sessions with 64 oral presentations, and four poster sessions with about 400 posters.

  • Journal article
    Ciges-Tomas JR, Alite C, Humphrey S, Donderisl J, Bowring J, Salvatella X, Penades JR, Marina Aet al., 2019,

    The structure of a polygamous repressor reveals how phage-inducible chromosomal islands spread in nature

    , Nature Communications, Vol: 10, ISSN: 2041-1723

    Stl is a master repressor encoded by Staphylococcus aureus pathogenicity islands (SaPIs) that maintains integration of these elements in the bacterial chromosome. After infection or induction of a resident helper phage, SaPIs are de-repressed by specific interactions of phage proteins with Stl. SaPIs have evolved a fascinating mechanism to ensure their promiscuous transfer by targeting structurally unrelated proteins performing identically conserved functions for the phage. Here we decipher the molecular mechanism of this elegant strategy by determining the structure of SaPIbov1 Stl alone and in complex with two structurally unrelated dUTPases from different S. aureus phages. Remarkably, SaPIbov1 Stl has evolved different domains implicated in DNA and partner recognition specificity. This work presents the solved structure of a SaPI repressor protein and the discovery of a modular repressor that acquires multispecificity through domain recruiting. Our results establish the mechanism that allows widespread dissemination of SaPIs in nature.

  • Journal article
    Rismondo J, Halbedel S, Grundling A, 2019,

    Cell shape and antibiotic resistance is maintained by the activity of multiple FtsW and RodA enzymes in Listeria monocytogenes

    , mBio, Vol: 10, Pages: 1-17, ISSN: 2150-7511

    Rod-shaped bacteria have two modes of peptidoglycan synthesis: lateral synthesis and synthesis at the cell division site. These two processes are controlled by two macromolecular protein complexes, the elongasome and divisome. Recently, it has been shown that the Bacillus subtilis RodA protein, which forms part of the elongasome, has peptidoglycan glycosyltransferase activity. The cell division specific RodA homolog FtsW fulfils a similar role at the divisome. The human pathogen Listeria monocytogenes encodes up to six FtsW/RodA homologs, however their functions have not yet been investigated. Analysis of deletion and depletion strains led to the identification of the essential cell division-specific FtsW protein, FtsW1. Interestingly, L. monocytogenes encodes a second FtsW protein, FtsW2, which can compensate for the lack of FtsW1, when expressed from an inducible promoter. L. monocytogenes also possesses three RodA homologs, RodA1, RodA2 and RodA3 and their combined absence is lethal. Cells of a rodA1/rodA3 double mutant are shorter and have increased antibiotic and lysozyme sensitivity, probably due to a weakened cell wall. Results from promoter activity assays revealed that expression of rodA3 and ftsW2 is induced in the presence of antibiotics targeting penicillin binding proteins. Consistent with this, a rodA3 mutant was more susceptible to the β-lactam antibiotic cefuroxime. Interestingly, overexpression of RodA3 also led to increased cefuroxime sensitivity. Our study highlights that L. monocytogenes encodes a multitude of functional FtsW and RodA enzymes to produce its rigid cell wall and that their expression needs to be tightly regulated to maintain growth, cell division and antibiotic resistance.

  • Journal article
    Wood TE, Howard SA, Wettstadt S, Filloux Aet al., 2019,

    PAAR proteins act as the ‘sorting hat’ of the type VI secretion system

    , Microbiology, Vol: 165, Pages: 1203-1218, ISSN: 1350-0872

    Bacteria exist in polymicrobial environments and compete to prevail in a niche. The type VI secretion system (T6SS) is a nanomachine employed by Gram-negative bacteria to deliver effector proteins into target cells. Consequently, T6SS-positive bacteria produce a wealth of antibacterial effector proteins to promote their survival among a prokaryotic community. These toxins are loaded onto the VgrG–PAAR spike and Hcp tube of the T6SS apparatus and recent work has started to document the specificity of effectors for certain spike components. Pseudomonas aeruginosa encodes several PAAR proteins, whose roles have been poorly investigated. Here we describe a phospholipase family antibacterial effector immunity pair from Pseudomonas aeruginosa and demonstrate that a specific PAAR protein is necessary for the delivery of the effector and its cognate VgrG. Furthermore, the PAAR protein appears to restrict the delivery of other phospholipase effectors that utilise distinct VgrG proteins. We provide further evidence for competition for PAAR protein recruitment to the T6SS apparatus, which determines the identities of the delivered effectors.

  • Journal article
    Chiang YN, Penades JR, Chen J, 2019,

    Genetic transduction by phages and chromosomal islands: The new and noncanonical

    , PLoS Pathogens, Vol: 15, Pages: 1-7, ISSN: 1553-7366
  • Journal article
    McIlvride S, Nikolova V, Fan HM, McDonald JAK, Wahlström A, Bellafante E, Jansen E, Adorini L, Shapiro D, Jones P, Marchesi JR, Marschall H-U, Williamson Cet al., 2019,

    Obeticholic acid ameliorates dyslipidemia but not glucose tolerance in mouse model of gestational diabetes.

    , Am J Physiol Endocrinol Metab, Vol: 317, Pages: E399-E410

    Metabolism alters markedly with advancing gestation, characterized by progressive insulin resistance, dyslipidemia, and raised serum bile acids. The nuclear receptor farnesoid X receptor (FXR) has an integral role in bile acid homeostasis and modulates glucose and lipid metabolism. FXR is known to be functionally suppressed in pregnancy. The FXR agonist, obeticholic acid (OCA), improves insulin sensitivity in patients with type 2 diabetes with nonalcoholic fatty liver disease. We therefore hypothesized that OCA treatment during pregnancy could improve disease severity in a mouse model of gestational diabetes mellitus (GDM). C57BL/6J mice were fed a high-fat diet (HFD; 60% kcal from fat) for 4 wk before and throughout pregnancy to induce GDM. The impact of the diet supplemented with 0.03% OCA throughout pregnancy was studied. Pregnant HFD-fed mice displayed insulin resistance and dyslipidemia. OCA significantly reduced plasma cholesterol concentrations in nonpregnant and pregnant HFD-fed mice (by 22.4%, P < 0.05 and 36.4%, P < 0.001, respectively) and reduced the impact of pregnancy on insulin resistance but did not change glucose tolerance. In nonpregnant HFD-fed mice, OCA ameliorated weight gain, reduced mRNA expression of inflammatory markers in white adipose tissue, and reduced plasma glucagon-like peptide 1 concentrations (by 62.7%, P < 0.01). However, these effects were not evident in pregnant mice. OCA administration can normalize plasma cholesterol levels in a mouse model of GDM. However, the absence of several of the effects of OCA in pregnant mice indicates that the agonistic action of OCA is not sufficient to overcome many metabolic consequences of the pregnancy-associated reduction in FXR activity.

  • Conference paper
    Riaz Z, Wright M, Atkinson S, Mullish B, McDonald JAKet al., 2019,

    Malignant and cirrhotic ascites demonstrate a similar microbiome profile

    , British Association for the Study of the Liver (BASL) Annual Meeting
  • Journal article
    McCarthy RR, Yu M, Eilers K, Wang Y-C, Lai E-M, Filloux Aet al., 2019,

    Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens

    , Molecular Microbiology, Vol: 112, Pages: 632-648, ISSN: 0950-382X

    The Type VI secretion system (T6SS) is a bacterial nanomachine that delivers effector proteins into prokaryotic and eukaryotic preys. This secretion system has emerged as a key player in regulating the microbial diversity in a population. In the plant pathogen Agrobacterium tumefaciens, the signalling cascades regulating the activity of this secretion system are poorly understood. Here, we outline how the universal eubacterial second messenger cyclic di-GMP impacts the production of T6SS toxins and T6SS structural components. We demonstrate that this has a significant impact on the ability of the phytopathogen to compete with other bacterial species in vitro and in planta. Our results suggest that, as opposed to other bacteria, c-di-GMP turns down the T6SS in A. tumefaciens thus impacting its ability to compete with other bacterial species within the rhizosphere. We also demonstrate that elevated levels of c-di-GMP within the cell decrease the activity of the Type IV secretion system (T4SS) and subsequently the capacity of A. tumefaciens to transform plant cells. We propose that such peculiar control reflects on c-di-GMP being a key second messenger that silences energy-costing systems during early colonization phase and biofilm formation, while low c-di-GMP levels unleash T6SS and T4SS to advance plant colonization.

  • Journal article
    Ruano-Gallego D, Yara DA, Di Ianni L, Frankel G, Schuller S, Angel Fernandez Let al., 2019,

    A nanobody targeting the translocated intimin receptor inhibits the attachment of enterohemorrhagic <i>E</i>. <i>coli</i> to human colonic mucosa

    , PLOS PATHOGENS, Vol: 15, ISSN: 1553-7366
  • Journal article
    Wettstadt S, Wood TE, Fecht S, Filloux Aet al., 2019,

    Delivery of the Pseudomonas aeruginosa phospholipase effectors PldA and PldB in a VgrG- and H2-T6SS-dependent manner

    , Frontiers in Microbiology, Vol: 10, Pages: 1-18, ISSN: 1664-302X

    The bacterial pathogen Pseudomonas aeruginosa uses three type VI secretion systems (T6SSs) to drive a multitude of effector proteins into eukaryotic or prokaryotic target cells. The T6SS is a supramolecular nanomachine, involving a set of 13 core proteins, which resembles the contractile tail of bacteriophages and whose tip is considered as a puncturing device helping to cross membranes. Effectors can attach directly to the T6SS spike which is composed of a VgrG (valine-glycine-rich proteins) trimer, of which P. aeruginosa produces several. We have previously shown that the master regulator RsmA controls the expression of all three T6SS gene clusters (H1-, H2- and H3-T6SS) and a range of remote vgrG and effector genes. We also demonstrated that specific interactions between VgrGs and various T6SS effectors are prerequisite for effector delivery in a process we called “à la carte delivery”. Here, we provide an in-depth description on how the two H2-T6SS-dependent effectors PldA and PldB are delivered via their cognate VgrGs, VgrG4b and VgrG5, respectively. We show that specific recognition of the VgrG C terminus is required and effector specificity can be swapped by exchanging these C-terminal domains. Importantly, we established that effector recognition by a cognate VgrG is not always sufficient to achieve successful secretion, but it is crucial to provide effector stability. This study highlights the complexity of effector adaptation to the T6SS nanomachine and shows how the VgrG tip can possibly be manipulated to achieve effector delivery.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=288&limit=10&page=35&respub-action=search.html Current Millis: 1721324018535 Current Time: Thu Jul 18 18:33:38 BST 2024