Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Mulvenna N, Hantke I, Burchell L, Nicod S, Bell D, Turgay K, Wigneshweraraj Set al., 2019,

    Xenogeneic modulation of the ClpCP protease of Bacillus subtilis by a phage-encoded adaptor-like protein.

    , Journal of Biological Chemistry, Vol: 294, Pages: 17501-17511, ISSN: 0021-9258

    Like eukaryotic and archaeal viruses, which coopt the host's cellular pathways for their replication, bacteriophages have evolved strategies to alter the metabolism of their bacterial host. SPO1 bacteriophage infection of Bacillus subtilis results in a comprehensive remodelling of cellular processes leading to conversion of the bacterial cell into a factory for phage progeny production. A cluster of 26 genes in the SPO1 genome, called the host takeover module, encodes for potentially cytotoxic proteins that specifically shut down various processes in the bacterial host, including transcription, DNA synthesis, and cell division. However, the properties and bacterial targets of many genes of the SPO1 host takeover module remain elusive. Through a systematic analysis of gene products encoded by the SPO1 host takeover module, here we identified eight gene products that attenuated B. subtilis growth. Of the eight phage gene products that attenuated bacterial growth, a 25 kDa protein, called Gp53, was shown to interact with the AAA+ chaperone protein ClpC of the ClpCP protease of B. subtilis. Our results further reveal that Gp53 is a phage encoded adaptor-like protein, which modulates the activity of the ClpCP protease to enable efficient SPO1 phage progeny development. In summary, our findings indicate that the bacterial ClpCP protease is the target of xenogeneic (dys)regulation by a SPO1 phage-derived factor and add Gp53 to the list of antibacterial products that target bacterial protein degradation, which therefore may have utility for the development of novel antibacterial agents.

  • Journal article
    Lacoma A, Edwards AM, Young BC, Dominguez J, Prat C, Laabei Met al., 2019,

    Cigarette smoke exposure redirects Staphylococcus aureus to a virulence profile associated with persistent infection

    , Scientific Reports, Vol: 9, Pages: 1-15, ISSN: 2045-2322

    Tobacco smoking represents the leading preventable cause of death worldwide. Smoking is a recognised risk factor for several pathologies and is detrimental to host immune surveillance and defence. However, the impact of smoking on microbial residents of the nasopharyngeal cavity, in contact with cigarette smoke (CS), is lacking. Staphylococcus aureus is a major human pathogen that colonises the human nasopharynx and causes a wide range of infections. We investigated the impact of CS on specific virulence phenotypes important in S aureus pathogenesis. We observed strain-dependent differences following exposure to CS, namely growth inhibition, augmented biofilm formation, increased invasion of, and persistence within, bronchial alveolar epithelial cells. Additionally, we confirm the critical role of a functional accessory gene regulator (Agr) system in mediating increased biofilm development and host cell invasion and persistence following CS exposure. Furthermore, CS exposure resulted in reduced toxin production. Importantly, exposure of S aureus to CS accelerated the frequency of mutations and resulted in a significant increase in gentamicin-resistant small colony variant (SCV) formation. Mutational analysis revealed that CS induced SCVs emerge via the SOS response DNA mutagenic repair system. Taken together, our results suggest that CS redirects certain S aureus strains to a virulence profile associated with persistence.

  • Journal article
    Williams AH, Redzej A, Rolhion N, Costa TRD, Rifflet A, Waksman G, Cossart Pet al., 2019,

    The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation

    , Nature Communications, Vol: 10, ISSN: 2041-1723

    How the stressosome, the epicenter of the stress response in bacteria, transmits stress signals from the environment has remained elusive. The stressosome consists of multiple copies of three proteins RsbR, RsbS and RsbT, a kinase that is important for its activation. Using cryo-electron microscopy, we determined the atomic organization of the Listeria monocytogenes stressosome at 3.38 Å resolution. RsbR and RsbS are organized in a 60-protomers truncated icosahedron. A key phosphorylation site on RsbR (T209) is partially hidden by an RsbR flexible loop, whose "open" or "closed" position could modulate stressosome activity. Interaction between three glutamic acids in the N-terminal domain of RsbR and the membrane-bound mini-protein Prli42 is essential for Listeria survival to stress. Together, our data provide the atomic model of the stressosome core and highlight a loop important for stressosome activation, paving the way towards elucidating the mechanism of signal transduction by the stressosome in bacteria.

  • Journal article
    Chambers E, Byrne C, Morrison D, Murphy K, Preston T, Tedford MC, Garcia Perez I, Fountana S, Serrano Contreras J, Holmes E, Roberts J, Reynolds C, Boyton R, Altmann D, McDonald J, Marchesi J, Akbar A, Riddell N, Wallis G, Frost Get al., 2019,

    Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial

    , Gut, Vol: 68, Pages: 1430-1438, ISSN: 0017-5749

    Objective: To investigate the underlying mechanisms behind changes in glucose homeostasis with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, plasma metabolome and immune responses.Design: Twelve non-diabetic adults with overweight and obesity received 20g/day of inulin-propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, placebo controlled, crossover design. Outcome measurements of metabolic responses, inflammatory markers and gut bacterial composition were analysed at the end of each 42-day supplementation period.Results: Both IPE and inulin supplementation improved insulin resistance compared to cellulose supplementation, measured by homeostatic model assessment (HOMA) 2 (Mean±SEM 1.23±0.17 IPE vs. 1.59±0.17 cellulose, P=0.001; 1.17±0.15 inulin vs. 1.59±0.17 cellulose, P=0.009), with no differences between IPE and inulin (P=0.272). Fasting insulin was only associated positively with plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE supplementation decreased pro-inflammatory IL-8 levels compared to cellulose, whilst inulin had no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial populations at the class level (increased Actinobacteria and decreased Clostridia) and order level (decreased Clostridales) compared to cellulose, with small differences at the species level observed between IPE and cellulose. Conclusion: These data demonstrate a distinctive physiological impact of raising colonic propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin were accompanied with different effects on the plasma metabolome, gut bacterial populations and markers of systemic inflammation.

  • Journal article
    Fillol-Salom A, Alsaadi A, de Sousa JAM, Zhong L, Foster KR, Rocha EPC, Penades JR, Ingmer H, Haaber Jet al., 2019,

    Bacteriophages benefit from generalized transduction

    , PLoS Pathogens, Vol: 15, ISSN: 1553-7366

    Temperate phages are bacterial viruses that as part of their life cycle reside in the bacterial genome as prophages. They are found in many species including most clinical strains of the human pathogens, Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Previously, temperate phages were considered as only bacterial predators, but mounting evidence point to both antagonistic and mutualistic interactions with for example some temperate phages contributing to virulence by encoding virulence factors. Here we show that generalized transduction, one type of bacterial DNA transfer by phages, can create conditions where not only the recipient host but also the transducing phage benefit. With antibiotic resistance as a model trait we used individual-based models and experimental approaches to show that antibiotic susceptible cells become resistant to both antibiotics and phage by i) integrating the generalized transducing temperate phages and ii) acquiring transducing phage particles carrying antibiotic resistance genes obtained from resistant cells in the environment. This is not observed for non-generalized transducing temperate phages, which are unable to package bacterial DNA, nor for generalized transducing virulent phages that do not form lysogens. Once established, the lysogenic host and the prophage benefit from the existence of transducing particles that can shuffle bacterial genes between lysogens and for example disseminate resistance to antibiotics, a trait not encoded by the phage. This facilitates bacterial survival and leads to phage population growth. We propose that generalized transduction can function as a mutualistic trait where temperate phages cooperate with their hosts to survive in rapidly-changing environments. This implies that generalized transduction is not just an error in DNA packaging but is selected for by phages to ensure their survival.

  • Journal article
    Schuster CF, Wiedemann DM, Kirsebom FCM, Santiago M, Walker S, Gründling Aet al., 2019,

    High-throughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant<i>Staphylococcus aureus</i>and underlines a tailored response to different osmotic stressors

    <jats:title>Summary</jats:title><jats:p><jats:italic>Staphylococcus aureus</jats:italic>is an opportunistic pathogen that can cause soft tissue infections but is also a frequent cause of foodborne illnesses. One contributing factor for this food association is its high salt tolerance allowing this organism to survive commonly used food preservation methods. How this resistance is mediated is poorly understood, particularly during long-term exposure. In this study, we used TN-seq to understand how the responses to osmotic stressors differ. Our results revealed distinctly different long-term responses to NaCl, KCl and sucrose stresses. In addition, we identified the DUF2538 domain containing gene<jats:italic>SAUSA300_0957</jats:italic>(gene<jats:italic>957</jats:italic>) as essential under salt stress. Interestingly, a<jats:italic>957</jats:italic>mutant was less susceptible to oxacillin and showed increased peptidoglycan crosslinking. The salt sensitivity phenotype could be suppressed by amino acid substitutions in the transglycosylase domain of the penicillin binding protein Pbp2, and these changes restored the peptidoglycan crosslinking to WT levels. These results indicate that increased crosslinking of the peptidoglycan polymer can be detrimental and highlight a critical role of the bacterial cell wall for osmotic stress resistance. This study will serve as a starting point for future research on osmotic stress response and help develop better strategies to tackle foodborne staphylococcal infections.</jats:p>

  • Journal article
    Fisch D, Bando H, Clough B, Hornung V, Yamamoto M, Shenoy AR, Frickel E-Met al., 2019,

    Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis

    , EMBO Journal, Vol: 38, ISSN: 0261-4189

    The guanylate binding protein (GBP) family of interferon-inducible GTPases promotes antimicrobial immunity and cell death. During bacterial infection, multiple mouse Gbps, human GBP2, and GBP5 support the activation of caspase-1-containing inflammasome complexes or caspase-4 which trigger pyroptosis. Whether GBPs regulate other forms of cell death is not known. The apicomplexan parasite Toxoplasma gondii causes macrophage death through unidentified mechanisms. Here we report that Toxoplasma-induced death of human macrophages requires GBP1 and its ability to target Toxoplasma parasitophorous vacuoles through its GTPase activity and prenylation. Mechanistically, GBP1 promoted Toxoplasma detection by AIM2, which induced GSDMD-independent, ASC-, and caspase-8-dependent apoptosis. Identical molecular determinants targeted GBP1 to Salmonella-containing vacuoles. GBP1 facilitated caspase-4 recruitment to Salmonella leading to its enhanced activation and pyroptosis. Notably, GBP1 could be bypassed by the delivery of Toxoplasma DNA or bacterial LPS into the cytosol, pointing to its role in liberating microbial molecules. GBP1 thus acts as a gatekeeper of cell death pathways, which respond specifically to infecting microbes. Our findings expand the immune roles of human GBPs in regulating not only pyroptosis, but also apoptosis.

  • Journal article
    Edwards AM, 2019,

    Silence is golden for <i>Staphylococcus</i>

    , NATURE MICROBIOLOGY, Vol: 4, Pages: 1073-1074, ISSN: 2058-5276
  • Journal article
    Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo J-M, Hardt W-D, Harms A, Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan M-W, Tenson T, Van Melderen L, Zinkernagel Aet al., 2019,

    Definitions and guidelines for research on antibiotic persistence

    , Nature Reviews Microbiology, Vol: 17, Pages: 441-448, ISSN: 1740-1526

    Increasing concerns about the rising rates of antibiotic therapy failure and advances in single-cell analyses have inspired a surge of research into antibiotic persistence. Bacterial persister cells represent a subpopulation of cells that can survive intensive antibiotic treatment without being resistant. Several approaches have emerged to define and measure persistence, and it is now time to agree on the basic definition of persistence and its relation to the other mechanisms by which bacteria survive exposure to bactericidal antibiotic treatments, such as antibiotic resistance, heteroresistance or tolerance. In this Consensus Statement, we provide definitions of persistence phenomena, distinguish between triggered and spontaneous persistence and provide a guide to measuring persistence. Antibiotic persistence is not only an interesting example of non-genetic single-cell heterogeneity, it may also have a role in the failure of antibiotic treatments. Therefore, it is our hope that the guidelines outlined in this article will pave the way for better characterization of antibiotic persistence and for understanding its relevance to clinical outcomes.

  • Journal article
    Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo J-M, Hardt W-D, Harms A, Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan M-W, Tenson T, Van Melderen L, Zinkernagel Aet al., 2019,

    Definitions and guidelines for research on antibiotic persistence (vol 17, pg 441, 2019)

    , NATURE REVIEWS MICROBIOLOGY, Vol: 17, Pages: 460-460, ISSN: 1740-1526

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=288&limit=10&page=36&respub-action=search.html Current Millis: 1721324273829 Current Time: Thu Jul 18 18:37:53 BST 2024