Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Filloux A, Davies JC, 2019,

    Chronic infection by controlling inflammation

    , NATURE MICROBIOLOGY, Vol: 4, Pages: 378-379, ISSN: 2058-5276
  • Journal article
    Yu L-S, Rodriguez-Manzano J, Malpartida-Cardenas K, Sewell T, Bader O, Armstrong-James D, Fisher MC, Georgiou Pet al., 2019,

    Rapid and sensitive detection of azole-resistant Aspergillus fumigatus by tandem-repeat loop-mediated isothermal amplification

    , Journal of Molecular Diagnostics, Vol: 21, Pages: 286-295, ISSN: 1525-1578

    Invasive human fungal infections caused by multi-azole resistant Aspergillus fumigatus are associated with increasing rates of mortality in susceptible patients. Current methods of diagnosing infections caused by multi-azole resistant A. fumigatus are, however, not well suited for use in clinical point-of-care testing or in the field. Loop-mediated isothermal amplification (LAMP) is a widely used method of nucleic acid amplification with rapid and easy-to-use features, making it suitable for use in different resource settings. Here, we developed a LAMP assay to detect a 34 bp tandem repeat, named TR34-LAMP. TR34 is a high-prevalence allele that, in conjunction with the L98H single nucleotide polymorphism, is associated with the occurrence of multi-azole resistance in A. fumigatus in the environment and in patients. This process was validated with both synthetic double stranded DNA and genomic DNA prepared from azole-resistant isolates of A. fumigatus. Use of our assay resulted in rapid and specific identification of the TR34 allele with high sensitivity, detecting down to 10 genomic copies per reaction within 25 minutes. Fluorescent and colorimetric detections were used for the analysis of 11 clinical isolates as cross validation. These results show that the TR34-LAMP assay has the potential to accelerate the screening of clinical and environmental A. fumigatus to provide a rapid and accurate diagnosis of azole resistance, which current methods struggle to achieve.

  • Journal article
    Lorenz A, Preusse M, Bruchmann S, Pawar V, Grahl N, Pils MC, Nolan LM, Filloux A, Weiss S, Haeussler Set al., 2019,

    Importance of flagella in acute and chronic Pseudomonas aeruginosa infections

    , Environmental Microbiology, Vol: 21, Pages: 883-897, ISSN: 1462-2912

    Pseudomonas aeruginosa is an environmental microorganism and a causative agent of diverse acute and chronic, biofilm‐associated infections. Advancing research‐based knowledge on its adaptation to conditions within the human host is bound to reveal novel strategies and targets for therapeutic intervention. Here, we investigated the traits that P. aeruginosa PA14 as well as a virulence attenuated ΔlasR mutant need to survive in selected murine infection models. Experimentally, the genetic programs that the bacteria use to adapt to biofilm‐associated versus acute infections were dissected by passaging transposon mutant libraries through mouse lungs (acute) or mouse tumours (biofilm‐infection). Adaptive metabolic changes of P. aeruginosa were generally required during both infection processes. Counter‐selection against flagella expression was observed during acute lung infections. Obviously, avoidance of flagella‐mediated activation of host immunity is advantageous for the wildtype bacteria. For the ΔlasR mutant, loss of flagella did not confer a selective advantage. Apparently, other pathogenesis mechanisms are active in this virulence attenuated strain. In contrast, the infective process of P. aeruginosa in the chronic biofilm model apparently required expression of flagellin. Together, our findings imply that the host immune reactions against the infectious agent are very decisive for acuteness and duration of the infectious disease. They direct disease outcome.

  • Conference paper
    Ovadia C, Perdones-Montero A, Mullish B, McDonald J, Wahlstrom A, Dixon P, Walters J, Marschall H-U, Marchesi J, Williamson Cet al., 2019,

    Ursodeoxycholic acid treatment of cholestatic pregnancy can alter the gut microbiota to enhance bile acid modification and production of metabolically-active secondary bile acids - an explanation for 'responders' and 'non-responders'?

    , Publisher: WILEY, Pages: 17-17, ISSN: 1470-0328
  • Journal article
    Tenland E, Pochert A, Krishnan N, Rao KU, Kalsum S, Braun K, Glegola-Madejska I, Lerm M, Robertson BD, Lindén M, Godaly Get al., 2019,

    Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles

    , PLoS ONE, Vol: 14, ISSN: 1932-6203

    BackgroundIntracellular delivery of antimicrobial agents by nanoparticles, such as mesoporous silica particles (MSPs), offers an interesting strategy to treat intracellular infections. In tuberculosis (TB), Mycobacterium tuberculosis avoids components of the immune system by residing primarily inside alveolar macrophages, which are the desired target for TB therapy.Methods and findingsWe have previously identified a peptide, called NZX, capable of inhibiting both clinical and multi-drug resistant strains of M. tuberculosis at therapeutic concentrations. In this study we analysed the potential of MSPs containing NZX for the treatment of tuberculosis. The MSPs released functional NZX gradually into simulated lung fluid and the peptide filled MSPs were easily taken up by primary macrophages. In an intracellular infection model, the peptide containing particles showed increased mycobacterial killing compared to free peptide. The therapeutic potential of peptide containing MSPs was investigated in a murine infection model, showing that MSPs preserved the effect to eliminate M. tuberculosis in vivo.ConclusionsIn this study we found that loading the antimicrobial peptide NZX into MSPs increased the inhibition of intracellular mycobacteria in primary macrophages and preserved the ability to eliminate M. tuberculosis in vivo in a murine model. Our studies provide evidence for the feasibility of using MSPs for treatment of tuberculosis.

  • Journal article
    Levanova N, Mattheis C, Carson D, To K-N, Jank T, Frankel G, Aktories K, Schroeder GNet al., 2019,

    The Legionella effector LtpM is a new type of phosphoinositide-activated glucosyltransferase

    , JOURNAL OF BIOLOGICAL CHEMISTRY, Vol: 294, Pages: 2862-2879
  • Journal article
    Gomez-Valero L, Rusniok C, Carson D, Mondino S, Perez-Cobas AE, Rolando M, Pasricha S, Reuter S, Demirtas J, Crumbach J, Descorps-Declere S, Hartland EL, Jarraud S, Dougan G, Schroeder GN, Frankel G, Buchrieser Cet al., 2019,

    More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells

    , PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Vol: 116, Pages: 2265-2273, ISSN: 0027-8424
  • Journal article
    Pee CJE, Pader V, Ledger EVK, Edwards AMet al., 2019,

    A FASII inhibitor prevents staphylococcal evasion of daptomycin by inhibiting phospholipid decoy production

    , Antimicrobial Agents and Chemotherapy, Vol: 63, Pages: 1-18, ISSN: 0066-4804

    Daptomycin is a treatment of last resort for serious infections caused by drug-resistant Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. We have shown recently that S. aureus can evade daptomycin by releasing phospholipid decoys that sequester and inactivate the antibiotic, leading to treatment failure. Since phospholipid release occurs via an active process, we hypothesised that it could be inhibited, thereby increasing daptomycin efficacy. To identify opportunities for therapeutic interventions that block phospholipid release, we first determined how the host environment influenced the release of phospholipids and inactivation of daptomycin by S. aureus The addition of certain host-associated fatty acids to the growth medium enhanced phospholipid release. However, in serum, the sequestration of fatty acids by albumin restricted their availability to S. aureus sufficiently to prevent their use in the generation of released phospholipids. This finding implied that in host tissues S. aureus may be completely dependent upon endogenous phospholipid biosynthesis to generate lipids for release, providing a target for therapeutic intervention. To test this, we exposed S. aureus to AFN-1252, an inhibitor of the staphylococcal FASII fatty acid biosynthetic pathway, together with daptomycin. AFN-1252 efficiently blocked daptomycin-induced phospholipid decoy production, even in the case of isolates resistant to AFN-1252, which prevented the inactivation of daptomycin and resulted in sustained bacterial killing. In turn, daptomycin prevented the fatty acid-dependent emergence of AFN-1252-resistant isolates in vitro In summary, AFN-1252 significantly enhances daptomycin activity against S. aureusin vitro by blocking the production of phospholipid decoys, whilst daptomycin blocks the emergence of resistance to AFN-1252.

  • Journal article
    Ballinger E, Mosior J, Hartman T, Burns-Huang K, Gold B, Morris R, Goullieux L, Blanc I, Vaubourgeix J, Lagrange S, Fraisse L, Sans S, Couturier C, Bacque E, Rhee K, Scarry SM, Aube J, Yang G, Ouerfelli O, Schnappinger D, Ioerger TR, Engelhart CA, McConnell JA, McAulay K, Fay A, Roubert C, Sacchettini J, Nathan Cet al., 2019,

    Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition

    , Science, Vol: 363, ISSN: 0036-8075

    INTRODUCTIONMycobacterium tuberculosis (Mtb) is the leading global cause of lethal infection in humans and accounts for the largest number of drug-resistant infections by a single bacterial pathogen. Resistance is particularly high against the most widely prescribed tuberculosis (TB) drug, isoniazid. Isoniazid blocks synthesis of mycolates, ultralong-chain fatty acids that provide structure to the waxy coat that surrounds Mtb cells and are incorporated into some of its virulence lipids. There is currently no known method to block the synthesis of both mycolates and nonmycolate-containing virulence lipids of Mtb at a single point of control. One such control point is phosphopantetheinyl transferase (PptT). PptT transfers 4′-phosphopantetheine (Ppt) from coenzyme A (CoA) to acyl carrier proteins (ACPs) that synthesize the lipids critical to Mtb structural integrity and virulence.RATIONALETB drug discovery often begins with whole-cell, high-throughput screens that yield compounds that kill Mtb by unknown means. Selection of Mtb mutants resistant to these compounds can indicate candidate targets of the active compound, but experimental validation is required to confirm the functionally relevant target, which is often an enzyme. A suitable target must be essential in vivo, such that its inhibition precludes development of TB in animal models, but also “vulnerable,” meaning that a pharmacologically attainable level of inhibition should be lethal to Mtb within a patient. The inhibitor should act only on Mtb, and resistance should be rare.RESULTSScreening a chemical library revealed an amidino-urea compound called “8918” that kills Mtb, including drug-resistant clinical isolates. 8918 inhibits Mtb in mice and spares other bacteria, yeast, and mammalian cells.Rare Mtb mutants resistant to 8918 bore a point mutation in the PptT gene rv2794c, altering an amino acid residue overlying the Ppt-binding pocket of PptT. When Mtb carried the mutant allel

  • Journal article
    Ahmad L, Mashbat B, Leung C, Brookes C, Hamad S, Krokowski S, Shenoy A, Lorenzo L, Levin M, O'Hare P, Zhang S-Y, Casanova J-L, Mostowy S, Sancho Shimizu MVet al., 2019,

    Human TANK-binding kinase 1 is required for early autophagy induction upon herpes simplex virus 1 infection

    , Journal of Allergy and Clinical Immunology, Vol: 143, Pages: 765-769.e7, ISSN: 0091-6749

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=288&limit=10&page=40&respub-action=search.html Current Millis: 1721326820961 Current Time: Thu Jul 18 19:20:20 BST 2024