Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Benjamin S, Williams F, Kerry L, Matthews Set al., 2015,

    NMR assignment of the immune mapped protein 1 (IMP1) homologue from Plasmodium falciparum

    , Biomolecular NMR Assignments, Vol: 9, Pages: 393-395, ISSN: 1874-2718
  • Journal article
    Hunter PJ, Shaw RK, Berger CN, Frankel G, Pink D, Hand Pet al., 2015,

    Older leaves of lettuce (Lactuca spp.) support higher levels of Salmonella enterica ser. Senftenberg attachment and show greater variation between plant accessions than do younger leaves

    , FEMS Microbiology Letters, Vol: 362, ISSN: 0378-1097

    Salmonella can bind to the leaves of salad crops including lettuce and survive for commercially relevant periods. Previous studies have shown that younger leaves are more susceptible to colonization than older leaves and that colonization levels are dependent on both the bacterial serovar and the lettuce cultivar. In this study, we investigated the ability of two Lactuca sativa cultivars (Saladin and Iceberg) and an accession of wild lettuce (L. serriola) to support attachment of Salmonella enterica serovar Senftenberg, to the first and fifth to sixth true leaves and the associations between cultivar-dependent variation in plant leaf surface characteristics and bacterial attachment. Attachment levels were higher on older leaves than on the younger ones and these differences were associated with leaf vein and stomatal densities, leaf surface hydrophobicity and leaf surface soluble protein concentrations. Vein density and leaf surface hydrophobicity were also associated with cultivar-specific differences in Salmonella attachment, although the latter was only observed in the older leaves and was also associated with level of epicuticular wax.

  • Journal article
    Willing SE, Candela T, Shaw HA, Seager Z, Mesnage S, Fagan RP, Fairweather NFet al., 2015,

    Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII

    , MOLECULAR MICROBIOLOGY, Vol: 96, Pages: 596-608, ISSN: 0950-382X
  • Journal article
    Aragon IM, Pérez-Mendoza D, Moscoso JA, Faure E, Guery B, Gallegos M-T, Filloux A, Ramos Cet al., 2015,

    Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections

    , Environmental Microbiology, Vol: 17, Pages: 4332-4351, ISSN: 1462-2920

    The second messenger cyclic di-GMP (c-di-GMP) controls the transition between different lifestyles in bacterial pathogens. Here, we report the identification of DgcP (diguanylate cyclase conserved in Pseudomonads), whose activity in the olive tree pathogen Pseudomonas savastanoi pv. savastanoi is dependent on the integrity of its GGDEF domain. Furthermore, deletion of the dgcP gene revealed that DgcP negatively regulates motility and positively controls biofilm formation in both the olive tree pathogen P. savastanoi pv. savastanoi and the human opportunistic pathogen Pseudomonas aeruginosa. Overexpression of the dgcP gene in P. aeruginosa PAK led to increased exopolysaccharide production and upregulation of the type VI secretion system; in turn, it repressed the type III secretion system, which is a hallmark of chronic infections and persistence for P. aeruginosa. Deletion of the dgcP gene in P. savastanoi pv. savastanoi NCPPB 3335 and P. aeruginosa PAK reduced their virulence in olive plants and in a mouse acute lung injury model respectively. Our results show that diguanylate cyclase DgcP is a conserved Pseudomonas protein with a role in virulence, and confirm the existence of common c-di-GMP signalling pathways that are capable of regulating plant and human Pseudomonas spp. infections.

  • Journal article
    Taylor JD, Matthews SJ, 2015,

    New insight into the molecular control of bacterial functional amyloids.

    , Frontiers in Cellular and Infection Microbiology, Vol: 5, ISSN: 2235-2988

    Amyloid protein structure has been discovered in a variety of functional or pathogenic contexts. What distinguishes the former from the latter is that functional amyloid systems possess dedicated molecular control systems that determine the timing, location, and structure of the fibers. Failure to guide this process can result in cytotoxicity, as observed in several pathologies like Alzheimer's and Parkinson's Disease. Many gram-negative bacteria produce an extracellular amyloid fiber known as curli via a multi-component secretion system. During this process, aggregation-prone, semi-folded curli subunits have to cross the periplasm and outer-membrane and self-assemble into surface-attached fibers. Two recent breakthroughs have provided molecular details regarding periplasmic chaperoning and subunit secretion. This review offers a combined perspective on these first mechanistic insights into the curli system.

  • Journal article
    Gross CA, Gruendling A, 2015,

    Editorial overview: Cell regulation: When you think you know it all, there is another layer to be discovered

    , CURRENT OPINION IN MICROBIOLOGY, Vol: 24, Pages: V-VII, ISSN: 1369-5274
  • Journal article
    Liu B, Zhu F, Wu H, Matthews Set al., 2015,

    NMR assignment of the amylase-binding protein A from <i>Streptococcus parasanguinis</i>

    , BIOMOLECULAR NMR ASSIGNMENTS, Vol: 9, Pages: 173-175, ISSN: 1874-2718
  • Journal article
    Almeida MT, Mesquita FS, Cruz R, Osorio H, Custodio R, Brito C, Vingadassalom D, Martins M, Leong JM, Holden DW, Cabanes D, Sousa Set al., 2015,

    Src-dependent Tyrosine Phosphorylation of Non-muscle Myosin Heavy Chain-IIA Restricts <i>Listeria monocytogenes</i> Cellular Infection

    , JOURNAL OF BIOLOGICAL CHEMISTRY, Vol: 290, Pages: 8383-8395
  • Journal article
    Joyce G, Robertson BD, Williams KJ, 2015,

    A modified agar pad method for mycobacterial live-cell imaging.

    , BMC Research Notes, Vol: 4, ISSN: 1756-0500

    BACKGROUND: Two general approaches to prokaryotic live-cell imaging have been employed to date, growing bacteria on thin agar pads or growing bacteria in micro-channels. The methods using agar pads 'sandwich' the cells between the agar pad on the bottom and a glass cover slip on top, before sealing the cover slip. The advantages of this technique are that it is simple and relatively inexpensive to set up. However, once the cover slip is sealed, the environmental conditions cannot be manipulated. Furthermore, desiccation of the agar pad, and the growth of cells in a sealed environment where the oxygen concentration will be in gradual decline, may not permit longer term studies such as those required for the slower growing mycobacteria. FINDINGS: We report here a modified agar pad method where the cells are sandwiched between a cover slip on the bottom and an agar pad on top of the cover slip (rather than the reverse) and the cells viewed from below using an inverted microscope. This critical modification overcomes some of the current limitations with agar pad methods and was used to produce time-lapse images and movies of cell growth for Mycobacterium smegmatis and Mycobacterium bovis BCG. CONCLUSIONS: This method offers improvement on the current agar pad methods in that long term live cell imaging studies can be performed and modification of the media during the experiment is permitted.

  • Journal article
    Berg S, Schelling E, Hailu E, Firdessa R, Gumi B, Erenso G, Gadisa E, Mengistu A, Habtamu M, Hussein J, Kiros T, Bekele S, Mekonnen W, Derese Y, Zinsstag J, Ameni G, Gagneux S, Robertson BD, Tschopp R, Hewinson G, Yamuah L, Gordon SV, Aseffa Aet al., 2015,

    Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection

    , BMC Infectious Diseases, Vol: 15, ISSN: 1471-2334

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=288&limit=10&page=59&respub-action=search.html Current Millis: 1721276909592 Current Time: Thu Jul 18 05:28:29 BST 2024