Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Feeney C, Scott GP, Cole JH, Sastre M, Goldstone AP, Leech Ret al., 2016,

    Seeds of neuroendocrine doubt

    , Nature, Vol: 535, Pages: E1-E2, ISSN: 0028-0836
  • Journal article
    Fagerholm ED, Scott G, Shew WL, Song C, Leech R, Knöpfel T, Sharp DJet al., 2016,

    Cortical Entropy, Mutual Information and Scale-Free Dynamics in Waking Mice

    , Cerebral Cortex, Vol: 26, Pages: 3945-3952, ISSN: 1460-2199

    Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators). In contrast, cortical neuronal networks often exhibit richer activity patterns in which all spatiotemporal scales are represented. Such "scale-free" cortical dynamics manifest as cascades of activity with cascade sizes that are distributed according to a power-law. Theory and in vitro experiments suggest that information transmission among cortical circuits is optimized by scale-free dynamics. In vivo tests of this hypothesis have been limited by experimental techniques with insufficient spatial coverage and resolution, i.e., restricted access to a wide range of scales. We overcame these limitations by using genetically encoded voltage imaging to track neural activity in layer 2/3 pyramidal cells across the cortex in mice. As mice recovered from anesthesia, we observed three changes: (a) cortical information capacity increased, (b) information transmission among cortical regions increased and (c) neural activity became scale-free. Our results demonstrate that both information capacity and information transmission are maximized in the awake state in cortical regions with scale-free network dynamics.

  • Journal article
    Feeney C, Scott G, Raffel J, Roberts S, Coello C, Jolly A, Searle G, Goldstone AP, Brooks DJ, Nicholas RS, Trigg W, Gunn RN, Sharp DJet al., 2016,

    Kinetic analysis of the translocator protein positron emission tomography ligand [18F]GE-180 in the human brain

    , European Journal of Nuclear Medicine and Molecular Imaging, Vol: 43, Pages: 2201-2210, ISSN: 1619-7089

    PURPOSE: PET can image neuroinflammation by targeting the translocator protein (TSPO), which is upregulated in activated microglia. The high nonspecific binding of the first-generation TSPO radioligand [(11)C]PK-11195 limits accurate quantification. [(18)F]GE-180, a novel TSPO ligand, displays superior binding to [(11)C]PK-11195 in vitro. Our objectives were to: (1) evaluate tracer characteristics of [(18)F]GE-180 in the brains of healthy human subjects; and (2) investigate whether the TSPO Ala147Thr polymorphism influences outcome measures. METHODS: Ten volunteers (five high-affinity binders, HABs, and five mixed-affinity binders, MABs) underwent a dynamic PET scan with arterial sampling after injection of [(18)F]GE-180. Kinetic modelling of time-activity curves with one-tissue and two-tissue compartment models and Logan graphical analysis was applied to the data. The primary outcome measure was the total volume of distribution (V T) across various regions of interest (ROIs). Secondary outcome measures were the standardized uptake values (SUV), the distribution volume and SUV ratios estimated using a pseudoreference region. RESULTS: The two-tissue compartment model was the best model. The average regional delivery rate constant (K 1) was 0.01 mL cm(-3) min(-1) indicating low extraction across the blood-brain barrier (1 %). The estimated median V T across all ROIs was also low, ranging from 0.16 mL cm(-3) in the striatum to 0.38 mL cm(-3) in the thalamus. There were no significant differences in V T between HABs and MABs across all ROIs. CONCLUSION: A reversible two-tissue compartment model fitted the data well and determined that the tracer has a low first-pass extraction (approximately 1 %) and low V T estimates in healthy individuals. There was no observable dependency on the rs6971 polymorphism as compared to other second-generation TSPO PET tracers. Investigation of [(18)F]GE-180 in populations with neuroinflammatory disease is nee

  • Journal article
    Cawley P, Few K, Greenwood R, Malcolm P, Johnson G, Lally P, Thayyil S, Clarke Pet al., 2016,

    Does magnetic resonance brain scanning at 3.0 Tesla pose a hyperthermic challenge to term neonates?

    , The Journal of Pediatrics, Vol: 175, Pages: 228-230.e1, ISSN: 0022-3476

    Next-generation 3-Tesla magnetic resonance (MR) scanners offer improved neonatal neuroimaging, but the greater associated radiofrequency radiation may increase the risk of hyperthermia. Safety data for neonatal 3-T MR scanning are lacking. We measured rectal temperatures continuously in 25 neonates undergoing 3-T brain MR imaging and observed no significant hyperthermic threat.

  • Journal article
    Jenkins PO, Mehta MA, Sharp DJ, 2016,

    Catecholamines and cognition after traumatic brain injury

    , Brain, Vol: 139, Pages: 2345-2371, ISSN: 1935-2875

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.

  • Journal article
    Iacovazzo D, Caswell R, Bunce B, Jose S, Yuan B, Hernández-Ramírez LC, Kapur S, Caimari F, Evanson J, Ferraù F, Dang MN, Gabrovska P, Larkin SJ, Ansorge O, Rodd C, Vance ML, Ramírez-Renteria C, Mercado M, Goldstone AP, Buchfelder M, Burren CP, Gurlek A, Dutta P, Choong CS, Cheetham T, Trivellin G, Stratakis CA, Lopes MB, Grossman AB, Trouillas J, Lupski JR, Ellard S, Sampson JR, Roncaroli F, Korbonits Met al., 2016,

    Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study

    , Acta Neuropathologica Communications, Vol: 4, ISSN: 2051-5960

    Non-syndromic pituitary gigantism can result from AIP mutations or the recently identified Xq26.3 microduplication causing X-linked acrogigantism (XLAG). Within Xq26.3, GPR101 is believed to be the causative gene, and the c.924G > C (p.E308D) variant in this orphan G protein-coupled receptor has been suggested to play a role in the pathogenesis of acromegaly.We studied 153 patients (58 females and 95 males) with pituitary gigantism. AIP mutation-negative cases were screened for GPR101 duplication through copy number variation droplet digital PCR and high-density aCGH. The genetic, clinical and histopathological features of XLAG patients were studied in detail. 395 peripheral blood and 193 pituitary tumor DNA samples from acromegaly patients were tested for GPR101 variants.We identified 12 patients (10 females and 2 males; 7.8 %) with XLAG. In one subject, the duplicated region only contained GPR101, but not the other three genes in found to be duplicated in the previously reported patients, defining a new smallest region of overlap of duplications. While females presented with germline mutations, the two male patients harbored the mutation in a mosaic state. Nine patients had pituitary adenomas, while three had hyperplasia. The comparison of the features of XLAG, AIP-positive and GPR101&AIP-negative patients revealed significant differences in sex distribution, age at onset, height, prolactin co-secretion and histological features. The pathological features of XLAG-related adenomas were remarkably similar. These tumors had a sinusoidal and lobular architecture. Sparsely and densely granulated somatotrophs were admixed with lactotrophs; follicle-like structures and calcifications were commonly observed. Patients with sporadic of familial acromegaly did not have an increased prevalence of the c.924G > C (p.E308D) GPR101 variant compared to public databases.In conclusion, XLAG can result from germline or somatic duplicati

  • Conference paper
    Whittington A, Iturria-Medina Y, Evans A, Sharp DJ, Gunn RNet al., 2016,

    MODEL TO DESCRIBE THE SPATIOTEMPORAL DISTRIBUTION OF MISFOLDED PROTEINS IN ALZHEIMER'S DISEASE

    , 27th International Symposium on Cerebral Blood Flow, Metabolism and Function / 12th International Conference on Quantification of Brain Function with PET, Publisher: SAGE PUBLICATIONS INC, Pages: 79-80, ISSN: 0271-678X
  • Journal article
    Fallon SJ, Hampshire A, Barker RA, Owen AMet al., 2016,

    Learning to be inflexible: Enhanced attentional biases in Parkinson's disease.

    , Cortex, Vol: 82, Pages: 24-34

    Impaired attentional flexibility is considered to be one of the core cognitive deficits in Parkinson's disease (PD). However, the mechanisms that underlie this impairment are contested. Progress in resolving this dispute has also been hindered by the fact that cognitive deficits in PD are heterogeneous; therefore, it is unclear whether attentional impairments are only present in a subgroup of patients. Here, we demonstrate that what differentiates PD patients from age-matched controls is an inability to shift attention away from previously relevant information (perseveration) and an inability to shift attention towards previously irrelevant information (learned irrelevance). In contrast, there was no evidence that PD patients, compared to controls, were impaired in being able to appropriately attend to, or ignore, novel information. Furthermore, when patients were stratified according to their level of executive impairment, the executively impaired group showed a selective deficit in set formation compared to the unimpaired group, a behavioural pattern reminiscent of cortical dopamine depletion. Cumulatively, these results suggest that cognitive inflexibility in PD relates to a specific form of attentional dysfunction, in which learned attentional biases cannot be overcome.

  • Conference paper
    Sharp D, Hellyer P, Ghanjari M, 2016,

    The distribution of neuropathology seen in chronic traumatic encephalopathy can be predicted by finite element modelling of impact biomechanics and can be observed in human neuroimaging data

    , International Brain Injury Association’s Eleventh World Congress on Brain Injury, Publisher: Taylor & Francis, Pages: 662-662, ISSN: 1362-301X
  • Conference paper
    Mirzaei N, de Burgh R, Sharp D, Sastre Met al., 2016,

    Evaluation of [3H]PBR28 as a marker of microglial activation in the rat controlled cortical impact model of traumatic brain injury

    , International Brain Injury Association’s Eleventh World Congress on Brain Injury, Publisher: Taylor & Francis, Pages: 608-608, ISSN: 1362-301X

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1053&limit=10&page=16&respub-action=search.html Current Millis: 1723043830399 Current Time: Wed Aug 07 16:17:10 BST 2024