Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Belcher RN, Murray KA, Reeves JP, Fecht Det al., 2024,

    Socioeconomic deprivation modifies green space and mental health associations: a within-person study

    , Environment International, Vol: 192, ISSN: 0160-4120

    Living in an area with good availability and accessibility of residential green spaces such as parks, woodlands, and residential gardens can improve mental health and reduce the global disease burden. Unlike for physical health, it is not well understood if mental health and green space associations might be modified by local area deprivation. Existing evidence for this association comes from cross-sectional studies, widely considered vulnerable to confounding and bias. Individual time-invariant mental health status, personality, and other factors may result in positive effect modification on green space and mental health associations in more deprived areas. We use fixed-effects models that remove time-invariant confounding by calculating differences within-persons to eliminate this bias and add to the existing evidence. We modelled changes in mental health status, green space, and deprivation (relative to the within-person mean) within 54,666 individuals with a combined total of 300,710 mental health scores from one of the world’s largest panel surveys: “Understanding Society” in the UK. We found a positive effect of increasing residential green space on mental health and this was positively modified and intensified by area deprivation before and after adjusting for confounding. Our results support providing green space to protect against the negative impact of socioeconomic deprivation on health, particularly for those moving from a less deprived to a more deprived area.

  • Journal article
    Fargette N, Eastwood JP, Waters CL, Øieroset M, Phan TD, Newman DL, Stawarz JE, Goldman MV, Lapenta Get al., 2024,

    Statistical study of energy transport and conversion in electron diffusion regions at earth's dayside magnetopause

    , Journal of Geophysical Research: Space Physics, Vol: 129, ISSN: 2169-9380

    The electron diffusion region (EDR) is a key region for magnetic reconnection, but the typical energy transport and conversion in EDRs is still not well understood. In this work, we perform a statistical study of 80 previously published near X-line events identified at the dayside magnetopause in Magnetospheric Multiscale data. We find 44 events that clearly present all commonly accepted EDR signatures and use this database to investigate energy flux partition and energy conversion. We find that energy partition is changed inside EDRs, with a 71%–29% allocation of particle energy flux density between electrons and ions respectively. The electron enthalpy flux density is found to dominate locally at all EDRs and is predominantly oriented in the out-of-plane direction, perpendicular to the reconnecting magnetic field. We also examine the transition from electron- to ion-dominated energy flux partition further from the EDR, finding this typically occurs at scales of the order of the ion inertial length, larger than the typical EDR size. We then investigate energy conversion and transport and highlight complex processes, with potential non-steady-state energy accumulation and release near the EDR. We discuss the implications of our results for reconnection energy conversion, and for magnetopause dynamics in general.

  • Journal article
    Romanello M, Beggs PJ, Cai W, Gordon-Strachan G, Hartinger S, Murray K, Tonne Cet al., 2024,

    The Lancet Countdown on health and climate change: representation matters – Authors' reply

    , The Lancet, Vol: 404, Pages: 1195-1196, ISSN: 0140-6736
  • Journal article
    Liu J, Ryu Y, Luo X, Dechant B, Stocker BD, Keenan TF, Gentine P, Li X, Li B, Harrison SP, Prentice ICet al., 2024,

    Evidence for widespread thermal acclimation of canopy photosynthesis

    , Nature Plants, ISSN: 2055-026X

    Plants acclimate to temperature by adjusting their photosynthetic capacity over weeks to months. However, most evidence for photosynthetic acclimation derives from leaf-scale experiments. Here, we address the scarcity of evidence for canopy-scale photosynthetic acclimation by examining the correlation between maximum photosynthetic rates (Amax,2000) and growth temperature ((T_air ) ̅) across a range of concurrent temperatures and canopy foliage quantity, using data from over 200 eddy covariance sites. We detect widespread thermal acclimation of canopy-scale photosynthesis, demonstrated by enhanced Amax,2000 under higher (T_air ) ̅, across flux sites with adequate water availability. A 14-day period is identified as the most relevant time scale for acclimation across all sites, with a range of 12–25 days for different plant functional types. The mean apparent thermal acclimation rate across all ecosystems is 0.41 (-0.38–1.04 for 5th–95th percentile range) µmol m-2 s-1 C-1, with croplands showing the largest and grasslands the lowest acclimation rates. Incorporating an optimality-based prediction of leaf photosynthetic capacities into a biochemical photosynthesis model is shown to improve the representation of thermal acclimation. Our results underscore the critical need for enhanced understanding and modelling of canopy-scale photosynthetic capacity to accurately predict plant responses to warmer growing seasons.

  • Journal article
    Nathwani C, Blundy J, Large S, Wilkinson J, Buret Y, Loader M, Tavazzani L, Chelle-Michou Cet al., 2024,

    A zircon case for super-wet arc magmas

    , Nature Communications, ISSN: 2041-1723
  • Journal article
    Prentice IC, Balzarolo M, Bloomfield KJ, Chen JM, Dechant B, Ghent D, Janssens IA, Luo X, Morfopoulos C, Ryu Y, Vicca S, van Hoolst Ret al., 2024,

    Principles for satellite monitoring of vegetation carbon uptake

    , Nature Reviews Earth & Environment, ISSN: 2662-138X

    Remote sensing-based numerical models harness satellite-borne measurements of light absorption by vegetation to estimate global patterns and trends in gross primary production (GPP)—the basis of the terrestrial carbon cycle. In this Perspective, we discuss the challenges in estimating GPP using these models and explore ways to improve their reliability. Current models vary substantially in their structure and produce differing results, especially as regards temporal trends in GPP. Many models invoke the light use efficiency (LUE) principle, which links light absorption to photosynthesis and plant biomass production, to estimate GPP. But these models vary in their assumptions about the controls of LUE and typically depend on many, poorly known parameters. Eco-evolutionary optimality principles can greatly reduce parameter requirements, and can improve the accuracy and consistency of GPP estimates and interpretations of their relationships with environmental drivers. Integrating data across different satellites and sensors, and utilising auxiliary optical band retrievals, could enhance spatiotemporal resolution and improve models' ability to detect aspects of vegetation physiology, including drought stress. Extending and harmonizing the eddy-covariance flux tower network will support systematic evaluation of GPP models. Enhancing the reliability of GPP and biomass production estimates will better characterise temporal variation and improve understanding of the terrestrial carbon cycle’s response to environmental change.

  • Journal article
    Borella A, Boucher O, Shine KP, Stettler M, Tanaka K, Teoh R, Bellouin Net al., 2024,

    The importance of an informed choice of CO<inf>2</inf>-equivalence metrics for contrail avoidance

    , Atmospheric Chemistry and Physics, Vol: 24, Pages: 9401-9417, ISSN: 1680-7316

    One of the proposed ways to reduce the climate impact of civil aviation is rerouting aircraft to minimise the formation of warming contrails. As this strategy may increase fuel consumption, it would only be beneficial if the climate impact reduction from the avoided contrails exceeds the negative impact of any additional carbon dioxide (CO2) emitted by the rerouted flight. In this study, we calculate the surface temperature response of almost half a million flights that crossed the North Atlantic sector in 2019 and compare it to the temperature response of hypothetical rerouted flights. The climate impacts of contrails and CO2 are assessed through the perspective of CO2-equivalence metrics, represented here as nine combinations of different definitions and time horizons. We estimate that the total emitted CO2 and the persistent contrails formed will have warmed the climate by 17.2 μK in 2039, 13.7 μK in 2069, and 14.1 μK in 2119. Under an idealised scenario where 1 % additional carbon dioxide is enough to reroute all contrail-forming flights and avoid contrail formation completely, total warming would decrease by 4.9 (-28 %), 2.6 (-19 %), and 1.9 (-13 %) μK in 2039, 2069, and 2119, respectively. In most rerouting cases, the results based on the nine different CO2-equivalence metrics agree that rerouting leads to a climate benefit, assuming that contrails are avoided as predicted. But the size of that benefit is very dependent on the choice of CO2-equivalence metrics, contrail efficacy and CO2 penalty. Sources of uncertainty not considered here could also heavily influence the perceived benefit. In about 10 % of rerouting cases, the climate damage resulting from contrail avoidance indicated by CO2-equivalence metrics integrated over a 100-year time horizon is not predicted by metrics integrated over a 20-year time horizon. This study highlights, using North Atlantic flights as a case study, the implications of the choice of CO2-equivalence metrics for con

  • Journal article
    Li J, Prentice IC, 2024,

    Global patterns of plant functional traits and their relationships to climate

    , Communications Biology, Vol: 7, ISSN: 2399-3642

    Plant functional traits (FTs) determine growth, reproduction and survival strategies of plants adapted to their growth environment. Exploring global geographic patterns of FTs, their covariation and their relationships to climate are necessary steps towards better-founded predictions of how global environmental change will affect ecosystem composition. We compile an extensive global dataset for 16 FTs and characterise trait-trait and trait-climate relationships separately within non-woody, woody deciduous and woody evergreen plant groups, using multivariate analysis and generalised additive models (GAMs). Among the six major FTs considered, two dominant trait dimensions—representing plant size and the leaf economics spectrum (LES) respectively—are identified within all three groups. Size traits (plant height, diaspore mass) however are generally higher in warmer climates, while LES traits (leaf mass and nitrogen per area) are higher in drier climates. Larger leaves are associated principally with warmer winters in woody evergreens, but with wetter climates in non-woody plants. GAM-simulated global patterns for all 16 FTs explain up to three-quarters of global trait variation. Global maps obtained by upscaling GAMs are broadly in agreement with iNaturalist citizen-science FT data. This analysis contributes to the foundations for global trait-based ecosystem modelling by demonstrating universal relationships between FTs and climate.

  • Journal article
    Cao R, Callaghan A, 2024,

    Identification of the free surface for unidirectional non-breaking water waves from side-view digital images

    , IEEE Journal of Oceanic Engineering
  • Journal article
    Cavan EL, Mackay N, Hill SL, Atkinson A, Belcher A, Visser Aet al., 2024,

    Antarctic krill sequester similar amounts of carbon to key coastal blue carbon habitats

    , Nature Communications, Vol: 15, ISSN: 2041-1723

    The carbon sequestration potential of open-ocean pelagic ecosystems is vastly under-reported compared to coastal vegetation ‘blue carbon’ systems. Here we show that just a single pelagic harvested species, Antarctic krill, sequesters a similar amount of carbon through its sinking faecal pellets as marshes, mangroves and seagrass. Due to their massive population biomass, fast-sinking faecal pellets and the modest depths that pellets need to reach to achieve sequestration (mean is 381 m), Antarctic krill faecal pellets sequester 20 MtC per productive season (spring to early Autumn). This is equates USD$ 4 − 46 billion depending on the price of carbon, with krill pellet carbon stored for at least 100 years and with some reaching as far as the North Pacific. Antarctic krill are being impacted by rapid polar climate change and an expanding fishery, thus krill populations and their habitat warrant protection to preserve this valuable carbon sink.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1154&limit=10&resgrpMemberPubs=true&page=2&respub-action=search.html Current Millis: 1729345758396 Current Time: Sat Oct 19 14:49:18 BST 2024

Join the network

If you’d like to join the network, just email us here.