Imperial College London

Abdel-Muiz Nidal Shawar

Department of Civil and Environmental Engineering Imperial College London

Introduction

The Kingdom of Jordan relies almost entirely on imported foreign energy. Syria and Egypt were major suppliers of crude oil products and natural gas respectively. Due to recent the turmoil the Kingdom has therefore had to consider other ways of sourcing energy to meet its energy needs. In recent years with the occurrence of the Arab Spring, and inner turmoil in Syria and Iraq, there has been a large inflow of refugees and foreign nationals, into the Kingdom. As a whole Jordan is now 70% Jordanian and 30% foreign nationals. The consequence of a fast growing population means the Kingdom will have to deal with the everincreasing production of waste. The focus of the research was to investigate the potential to divert this increased waste to provide a stable local energy source for the Kingdom.

Methodology and Approach

The research involved a three-phased approach to gathering information about waste management in developing countries, and in particular Jordan, technologies for energy and resource recovery: (i) a detailed literature review; (ii) a field study investigation in Jordan focusing on waste management practice in two selected cities, Amman, the Kingdom's capital and Aqaba, the only coastal city in Jordan; (iii) discussions with key representatives from the waste and energy sectors in the UK. Use is made of (i) the Wasteaware Indicator methodology developed by Wilson et al (2015) (a qualitative analysis) to assess the waste management in Jordan and (ii) a methodology developed by Grimes and Tanpoonkiat (2013) to aid planning decisions on the optimum technology mix to deliver an integrated solid waste management system that treats waste as a resource to deliver energy for the Kingdom.

Medite £
-32
Gaza
Strip*
11
7
1
T "
30
EGYF

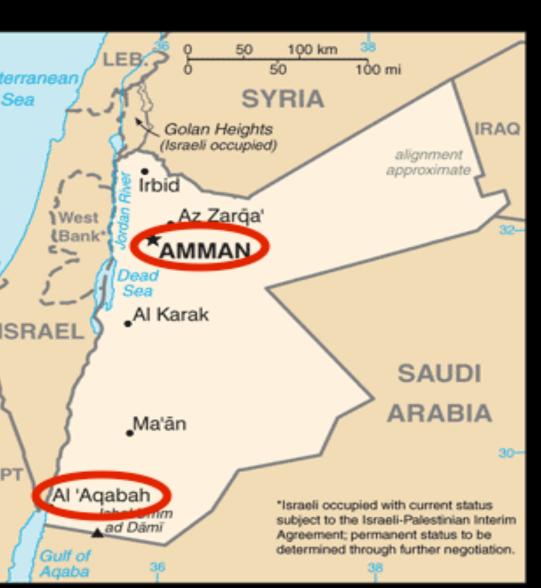
Technology Mix Analysis

Assumptions of Analysis	
Growth Scenario	Growth Rate
Low Growth	2.5%
Normal Growth	3.1%
High Growth	5.3%

		Technology Mix Results Amman							
Ratio	% Growth	2025 (50)	MW Scenario) Number of	Plants	•	II Diversion Sce of Plants	nario)	
		l or	G	AD	% Diverted	l or	G	AD	
1:0	2.5	2	13	0	58	8	50	0	
1:0	3.1	2	13	0	54	10	66	0	
1:0	5.3	2	13	0	43	26	173	0	
80:20	2.5	2	10	4	58	6	40	14	
80:20	3.1	2	10	4	54	8	53	18	
80:20	5.3	2	10	4	43	21	138	46	
50:50	2.5	1	6	9	58	4	25	34	
50:50	3.1	1	6	9	54	5	33	44	
50:50	5.3	1	6	9	43	13	87	115	
20:80	2.5	1	3	13	58	2	10	54	
20:80	3.1	1	3	13	54	2	13	70	
20:80	5.3	1	3	13	43	6	35	184	

Technology Capacities and Costs									
Technology	Plant Capacity (tonnes per annum)	Cost (GBP/tonne)							
Incineration	400,000	1000							
Gasification		1100 (+ 500 for pretreatment)							
AD	45,000	500							

Technology Mix Results Aqaba


Ratio	Ratio % Growth		Diversion Number of	2060 (Full Diversion Scenario) Number of Plants			
					AD		
1:0	2.5	2	0	3	0		
1:0	3.1	2	0	4	0		
1:0	5.3	2	0	10	0		
0:1	2.5	0	2	0	4		
0:1	3.1	0	2	0	5		
0:1	5.3	0	2	0	13		
50:50	2.5	1	1	2	2		
50:50	3.1	1	1	2	3		
50:50	5.3	1	1	5	7		

References

Abu Salah, S. & Abu Safa, A. (2011) *Municipal Solid Waste Composition Analysis Study*. Greater Amman Municipality: Royal Scientific Society.

Intharathirat, R. & Abdul Salam, P. (2015) "Valorization Of MSW-To-Energy In Thailand: Status, Challenges And Prospects". Waste Biomass Valor. 7 (1), 31-57.

Steps Towards Energy Recovery in the Hashemite Kingdom of Jordan

		Background information on the city						Background information on the city							
City Amman						City Aqaba									
Country			Jordan	Jordan				Country		Jordan					
Da	te since previous app	lication of indicators:		N/.	A		Da	ate since previous app							
	Country income category Category		Gross Na	Gross National Income (GNI) per capita				Country income	World Bank incom	e Gross Nat	ional Inco	me (GNI) p	oer capita		
B1							B1	category	category		\$5160				
	outegory	Upper Middle		\$5160					Total population of	he					
B2	Population of city	Total population of the		4,007	,526		B2	Population of city	city		188,160				
В3	Waste generation	city Total municipal solid waste generation		967265					В3	Waste generation	Total municipal sol waste generation (tonnes/year)		500)79	
No	Category	(tonnes/year) Data/ Benchmark Indicator	Results	Results Code		Progress		Category	Data/ Benchmar Indicator	Results	С	Code			
Kovl	aste-related data	Data		_		-	Key V	Vaste-related data	Data		-	-	-		
		MSW per kg per yea	r 241.36	-	-	-			MSW per kg pe		-	-			
W1	Waste per capita	capita kg per da	_		-		W1	Waste per capita	canita yea	-	ļ	ļ	_		
W2	Waste composition:	Summary composition of MSW for 3 key fractions – all as % wt. of total waste generated	f	-	-	-	W2	Waste composition:	Summary composit of MSW for 3 key fractions – all as % of total waste genera	on wt.	-	-	-		
N2.1	Organic	Organics (food and green wastes) %	49.7	-	-	-	W2.1	Organic	Organics (food an green wastes) %	d 55	-	-	-		
N2.2	Paper	Paper %	14.7	-	-	-	W2.2	Paper	Paper %	15	-	-	-		
N2.3	Plastics	Plastics %	15.7	-	-	-	W2.3	Plastics	Plastics %	16	-	-	-		
V2.4	Metals	Metals %	1.4	-	-	-	W2.4	Metals	Metals %	8	-	-	-		
V2.5	Solid waste density	Solid waste density	-	-	-	-	W2.5	Solid waste	Solid waste densit	y 0	-	-	-		
V2.6	Moisture content	Moisture content	40.03	-	-	-	W2.6	density Moisture content	Moisture content	0	<u> </u>				
Phys	ical Components	Benchmark Indicator	-	-	-	-		ical Components	Benchmark Indica		_				
1		1.1 Waste collection coverage	95						1.1 Waste collectio coverage						
	Public health – waste collection	1.2 Waste Captured by the System	93					Public health – waste collection	1.2 Waste Captured the System	^{by} 100					
1C		Quality of waste collection service	38				1C		Quality of waste collection service						
2	Environmental control – waste	Controlled treatment an disposal Quality of environmenta	100				2	Environmental control – waste treatment and disposal	Controlled treatme and disposal	100					
2E	treatment and disposal	protection of waste treatment and disposal	55				2E		Quality of environme protection of wast treatment and dispo	e 25					
3	Resource Management –	Recycling rate					3	Resource	Recycling rate	30					
3R	Reduce, Reuse, Recycle	Quality of 3Rs – Reduce reuse, recycle	13				3R	Management – Reduce, Reuse, Recycle	Quality of 3Rs – Reduce, reuse, recy	cle 33					
	ernance Factors	Benchmark Indicator		-	-	-	Gov	ernance Factors	Benchmark Indica	tor -	-	-	-		
4U	Inclusivity	User inclusivity	38				4U		User inclusivity	42					
4P	_	Provider inclusivity	30				4P	Inclusivity	Provider inclusivit						
5F	Financial sustainability	Financial sustainability	75				5F	Financial sustainability	Financial sustainabi	lity 58					
6N	Sound institutions, proactive policies	Adequacy of national solid waste managemer framework	t 17				6N	Sound institutions,	Adequacy of natior solid waste management framev	0					
6L		Local institutional coherence	50				6L	proactive policies	Local institutiona coherence	50					

E8

Summary

•The Kingdom of Jordan has relied on foreign supplies of energy. In recent years these supplies have decreased while the population has increased and security of supply of energy to the country is threatened. •An in-field investigation of two key cities in the Kingdom, Amman and Aqaba, has shown the scope for improvement in enforcement at the local and national level and, in management of waste as a resource for material and energy recovery

•Analysis of the cities' scope to convert waste to energy has shown that in Amman, in particular, waste can be exploited to provide steady and secure supply of energy locally •A technology mix analysis has shown that in Amman, incineration can be used to treat waste and produce 50MW of electricity by 2025, and in Aqaba, gasification, which can be operated at a smaller scale can be used to treat waste producing energy to meet needs of the city by 2025.

Acknowledgements

I would like to thank: Professor Sue Grimes, Professor Wilson, Stuart Hayward-Higham, Ms. Hilary Stone, Dr. Yahya Al-Majali, Engineer Zaidoun Nsour, Dr. Mohammed Al-Khashashneh, Engineer Ziad Jibril,

Intharathirat, R. & Abdul Salam, P. (2015) "Valorization Of MSW-To-Energy In Thailand: Status, Challenges And Prospects". Waste Biomass Valor. 7 (1), 31-57.

Wilson, D. et al. (2012) "Comparative Analysis Of Solid Waste Management In 20 Cities". Waste Management & Research. 30 (3), 237-254.