London

Imperial College Resource Implications of Reducing Edible Food Waste

In-chan Kim

Skempton Building, Department of Civil and Environmental Engineering, Imperial College London

Introduction

Food production consumes a significant share of global resources. With increasing global population, food and water scarcity and climate change, there is a need to be efficient with resources. The amount of resources that could be saved by reducing the edible food waste was explored.

CO₂

Embodied CO₂e footprint: 12,150 MtCO₂e 32.1% of global CO₂e

Embodied Water Footprint: 1,846km³ (trillion L) 70% of global water use

To produce: \$2,758bn 3.8% of global GDP

The resources in the 5,883Mt of produced food

Modelling Tool

A modelling tool was developed to calculate the reductions in greenhouse gas emissions, water footprint, and economic cost depending on the scale of reducing edible food waste disposal according to food type in different regions.

	Industrialized	S&SE	N America &	Europa	Sub-Saharan	N Af,W&C	Latin	Clobal
Edible waste reduction	Asia	ASId	Oceania	Europe	Amca	Asia	America	Global
factor								
Cereals	70%	30%	70%	60%	10%	50%	20%	
Starchy Roots	40%	10%	40%	60%	70%	10%	30%	
Oilcrops & pulses	10%	50%	70%	30%	60%	30%	40%	
Fruits	30%	30%	50%	50%	30%	40%	70%	
Meat	50%	10%	80%	70%	10%	20%	70%	
Fish & Seafood	60%	30%	50%	40%	20%	10%	30%	
Milk & Eggs	20%	40%	80%	70%	20%	50%	70%	
Vegetables	50%	20%	60%	60%	30%	40%	40%	
Edible Waste per capit	a [kg/cap]							
Cereals	62.39	42.64	61.73	54.27	20.16	55.49	33.85	46.9
Starchy Roots	37.76	14.90	36.99	67.66	87.45	8.66	30.56	36.
Oilcrops & pulses	2.59	9.20	12.46	4.44	7.58	4.29	5.70	6.
Fruits	21.03	19.27	40.46	42.54	21.87	33.66	68.41	28.9
Meat	10.34	2.56	27.27	14.46	3.22	5.48	14.17	8.3
Fish & Seafood	2.81	1.01	2.01	1.51	0.71	0.40	1.29	1.4
Milk & Eggs	5.62	12.41	49.64	30.54	5.48	19.93	26.46	15.8
Vegetables	86.06	20.42	46.46	47.06	10.65	68.98	27.02	42.
Total	234.75	122.00	271.46	259.84	153.48	197.89	205.75	187.

Example scenario of reduction and savings based on edible waste per capita.

ACKNOWLEDGEMENTS

To Professor Smith for his supervision, enthusiasm and passion. To friends for enriching the experience. To my family for their unrelenting and unconditional support.

Professor Smith

Food ty

Resources and Waste

Significant amounts of edible food is wasted. This represents a waste of resources used to produce, process and transport food to the point of consumption. Edible food wastes for each Cereals food type by region were calculated.

Edible food	Embodied CO ₂ e Footprint:		Starchy Roots	244.9	3
21% 1.243Mt	 2,567 MtCO₂e 6.8% of global 	N S	Oilcrops & Pulses	41.6	6
Non-edible	Embodied Water		Fruits	194.1	2
food waste:	Footprint: • 390.1 trillion L		Meat	55.5	8
343Mt	14.8% of global water use		Fish & Seafood	9.2	1
Consumed: 73%	Cost to produce: • \$582.8bn		Milk & Eggs	106.3	1
4296Mt	 0.8% of global GDP 		Vegetables	281.9	4

ре	Edible Waste [Mt]	Edible Waste per capita [kg/cap]	Food type
	309.6	47.0	Industrialized Asia
	244.9	36.6	South & South-east Asia
\$ &	41.6	6.5	North America & Oceania
	194.1	29	Europe
	55.5	8.3	Sub-Saharar Africa
1	9.2	1.5	North Africa, West & Central Asia
	106.3	15.9	Latin America
les	281.9	42.9	Global

CO2e reduced by food type and region

Reduce Edible Waste

The model indicated that a 50% reduction in global edible food waste would reduce the resources consumed for food production by 11.22%.

REFERENCES

FAO, 2013. Food Wastage Footprint: Impacts on natural resources summary report. : FAO Gunders, D., 2012. Wasted: How America is Losing up to 40 Percent of its Food from Farm to Fork to

Landfill, : NRDC

WRI, 2013. Reducing Food Loss and Waste, Washington: WRI

Wasted calories proportion of RDA 2000kcal/day

[↑] 1,284MtCO₂e 3.4% of global CO_2e

- 195.1trillion L of water 17.9% of global
- water use \$291.4bn
- 1 0.42% of 10 € global GDP

Conclusion

The significance of the resource savings possible in the global context highlights the need to reduce edible food waste. This can aid sustainable development, resource scarcity and mitigate climate change.

