
Imperial College London
Department of Computing

BEng Computing Final Year Individual Project Report

Can you Poison a Machine Learning
Algorithm?

Author:
Vasin Wongrassamee

Supervisor:
Dr. Luis Muñoz-González

June 19, 2017

Acknowledgements

I would like to thank my supervisor, Dr. Luis Muñoz-González, for his expert advice
and wholehearted support throughout this project. His passion for machine learning
has inspired me more times than I can count.

1

Contents

1 Introduction 5
1.1 The Problem . 5
1.2 Contributions . 6
1.3 Report Structure . 6

2 Background 7
2.1 Machine Learning . 7

2.1.1 Machine Learning Tasks . 7
2.1.2 Supervised Learning Model Representation 7
2.1.3 Deriving the Hypothesis Function 8
2.1.4 Cost Function . 8
2.1.5 Gradient Descent . 9
2.1.6 Over-Fitting . 10

2.2 Solving the Classification Problem . 10
2.2.1 Linear Classifiers . 11
2.2.2 Neural Networks as Non-Linear Classifiers 12

2.3 Adversarial Machine Learning Case Study 13
2.3.1 Classification . 13
2.3.2 Attacks . 13

2.4 Studies of Adversaries in Machine Learning 14
2.4.1 Taxonomy . 14
2.4.2 Attacker’s Capabilities in Causative Attack 15
2.4.3 Attacker’s Knowledge . 16

2.5 The Poisoning Attack . 17
2.5.1 Attacker’s Goal as an Objective Function 17
2.5.2 Solving the Optimisation Problem 18
2.5.3 Determining the target model for Machine Teaching 18
2.5.4 Standard Method from Biggio et al. 18
2.5.5 Counter Measures . 21

3 Project Setup 23
3.1 Learning Algorithms . 23
3.2 Datasets . 23

3.2.1 The Synthetic Dataset . 23
3.2.2 The Real Datasets . 24
3.2.3 Spambase . 24
3.2.4 Ransomware . 24
3.2.5 MNIST . 24

2

CONTENTS 3

3.2.6 IRIS . 24
3.3 Evaluating the Classifier . 25

3.3.1 Confusion Matrix . 25
3.3.2 Classification Rate and Classification Error 25
3.3.3 False Positive Rate and False Negative Rate 25

3.4 Specific Problems . 25
3.4.1 Value of Sample Labels . 25
3.4.2 Finding Reasonable Parameters Values 26
3.4.3 Initialisation of Poisoning Point 26

4 Optimal Poisoning Point & the Direct Method 28
4.1 Optimal Poisoning attacks . 28

4.1.1 Bi-Level Optimisation problem Difficulty 29
4.1.2 Attacker’s Capability . 29
4.1.3 Black-Box Characteristic . 29

4.2 The Standard Method . 30
4.2.1 ADALINE Classifier . 30
4.2.2 Logistic Regression Classifier 32
4.2.3 Method’s Limitation . 33

5 Poisoning with Conjugate Gradient Method 34
5.1 Conjugate Gradient Optimisation . 34

5.1.1 Conjugate Gradient Algorithm 34
5.1.2 Improved Method . 35

5.2 Experiments and Evaluation . 37
5.2.1 Overall Algorithm . 37
5.2.2 Correctness Evaluation . 37
5.2.3 Classifier Error Experiment 38

6 Poisoning with Back-Gradient Method 43
6.1 Back-Gradient Optimisation . 43

6.1.1 Algorithm . 43
6.2 Experiments and Evaluation . 44

6.2.1 Time Experiment . 44
6.2.2 Classification Error . 46

7 The Coordinated Attack 49
7.1 The Algorithm . 49
7.2 Theory behind the algorithm . 50
7.3 Experiments and Evaluation . 50

7.3.1 Results - Spambase . 50
7.3.2 Results - Ransomware . 51
7.3.3 Results - MNIST . 51
7.3.4 Result Discussion . 51

8 Poisoning Multi-Class Classifier 55
8.1 Multi-class Classifier Poisoning . 55
8.2 Experiments and Evaluation . 56

8.2.1 Classification Error . 57

CONTENTS 4

8.2.2 Confusion Matrices . 58

9 Transferability 65
9.1 Transferability of Attacks . 65
9.2 Experiments and Evaluation . 65

9.2.1 Poisoning Matlab’s Logistic Regression Classifier 66
9.2.2 Poisoning Matlab’s SVM classifier 66
9.2.3 Effect of Different Sets of Poison 66

10 Conclusion and Future Work 69
10.1 Work Summary . 69
10.2 Future Work . 70

11 Appendix 72
11.1 Parameters for Conjugate-Gradient Method Experiments 72

11.1.1 Classification Rate Experiment on Spambase dataset 72
11.2 Parameters for Back-Gradient Method Experiments 72

11.2.1 Classification Rate Experiment on Spambase dataset 72
11.2.2 Classification Rate Experiment on Ransomware dataset 73
11.2.3 Classification Rate Experiment on MNIST dataset 73

11.3 Time Experiment . 73
11.3.1 Conjugate-Gradient Method on Ransomware dataset 73
11.3.2 Conjugate-Gradient Method on Ransomware dataset 73
11.3.3 Classification Rate Experiment on MNIST dataset 73
11.3.4 Back-Gradient Method . 74
11.3.5 Multi-Layered Perceptron Poisoning Experiment 74

11.4 Parameters for Experiments on Coordinated Attack Strategy 74
11.4.1 Classification Rate Experiment on Spambase Dataset 74
11.4.2 Classification Rate Experiment on Ransomware Dataset . . . 74
11.4.3 Classification Rate Experiment on MNIST Dataset 75

11.5 Parameters for Experiments on Multi-Class Logistic Regression Clas-
sifier . 75
11.5.1 Targeted Strategy . 75
11.5.2 Indiscriminate Strategy . 75

Chapter 1

Introduction

1.1 The Problem
With the advancement in computing capabilities, statistical machine learning has
become a practical and effective solution for many large-scale decision problems in
recent years. Coupled with the rise of internet-based services, online statistical ma-
chine learning has never been more widely used than today. To demonstrate how
much impact this new technique has made to a person’s life, here is a list of some
online services that uses the machine learning algorithm: email spam filters [29],
Google search engine ranking by relevance, Google drive’s anti-viruses and malware
filters, recommendation systems such as Amazon or Netflix suggestions [32]. There
are many more applications of the machine learning algorithms in various fields
such as computational biology [3], computational finance [38], and many others [44].
Having the machine learning system at the core of many applications gives malicious
users (attackers) opportunities to compromise the systems by attacking their ma-
chine learning component, in turn, gaining various advantages and possibly profits.
A new research field called Adversarial Machine Learning has emerged to study the
vulnerabilities of machine learning systems in adversarial settings. However, since
using machine learning in products or services is relatively new, its vulnerabilities in
the real-world settings have not been fully explored. Attacks on the learning algo-
rithm have already been reported in the wild [14],[12],[16], emphasising the relevance
of this problem.

As long as the safety of the machine learning system remains questioned, the ap-
plications of machine learning in real-life systems will be limited. The fact that most
machine learning systems require re-training on new real-world data periodically has
allowed them to be adaptive when solving different problems, making them more
superior than ordinary programs. However, it also means that users are essentially
the ones who create the input to the dataset used to re-train the system, making the
poisoning attack – an attack where malicious samples are injected into the learning
system’s training data – one of the most relevant attacks in practice. This work
will explore this particular type of attack and shed light on the learning systems’
vulnerabilities, allowing further studies to carry out in the hope of arriving at safe
machine learning systems.

5

CHAPTER 1. INTRODUCTION 6

1.2 Contributions
In this work, I have contributed to the literature as follow:

1. I have explained in detail (with proof) the method an attacker can use to
craft an optimal malicious training sample to inject into the training dataset
in order to carry out the poisoning attack.

2. I have shown that the standard way [29] [28], as used in the literature, of
crafting the poisoning sample is inefficient and unstable, and have proposed a
new method of computing the poisoning points that is more stable and more
efficient, inspired by the work of Andrew Ng et al. [9]

3. I have explored the novel back-gradient method to compute the poisoning
points without having to assume a KKT condition assumption like in the
other methods. This allows the poisoning attack to be carried out on a neural-
network learning system. With this, I have investigated the effect of the poi-
soning attack on a Multi-Layered Perceptrons (neural network) classifier.

4. As the back-gradient method is now believed to be the most efficient way to
solve the problem, I have examined and carried out experiments on the time-
complexity of this method. I have also provided experimental comparisons of
this method with the method I have proposed earlier, experimenting with 3
different real datasets – simulating 3 real-world applications.

5. I have introduced 2 attack strategies – greedy and non-greedy [2] –, and have
provided the results of experiments to compare the effectiveness the two at-
tacks on both linear and non-linear machine learning classifier systems, using
3 different real datasets – simulating 3 real-world applications.

6. I have extended the literature by applying the optimal poisoning attacks on a
multi-class classifier – a work that has not been done before. I have explored
both targeted and indiscriminate attack on the multi-class classifier and show
the differences in the effect each of them has on the classifier. I have provided
the results of this experiment in this work, and have used the 3 different real
dataset which simulate the different real-world applications.

1.3 Report Structure
This report will explain, in detail, how attackers could use different methods to
carry out the optimal poisoning attack on different well-known machine learning
classifiers. It will also evaluate whether the attacks are effective, or in other word,
harmful. The background chapter will describe the knowledge that is helpful to the
understanding of this report, and the project-setup chapter will describe how the
project and experiments are set up. After that, the report will follow the format of
‘method discussion followed by relevant experiments and results’. The parameters
used in each experiment will be included in the Appendix section so that the results
can be re-created in the future if needed.

Chapter 2

Background

2.1 Machine Learning
A machine learning system is system that is able to learn from its experience. Learn-
ing in this context means finding the ‘right’ parameters. Therefore with this auto-
matically adjustable parameters, the learning system is adaptive to changes in the
real world - provided that it is re-train regularly with real-world data. Such systems
are useful for two main tasks: solving regression and classification problems. In the
training phase a machine learns from the labeled training samples i.e. sample input
with a given answer. A trained machine would be able to derive a reasonable output
answer from any future inputs. This stage is called the inference phase.

2.1.1 Machine Learning Tasks

The problems that the machine learning systems are designed to solve are divided
into two classes: regression and classification problems. Both problems take in a set
of input features values. An estimation problem produces a continuous output, and
a decision produces a discrete output from a set of finite alternatives. An example
of the regression problem would be predicting a housing price given the land area of
the property. An example of the classification problem would be predicting whether
a tumor is malignant or benign given the size of the tumor. The features in these
cases are the area of land and the size of tumor [30].

2.1.2 Supervised Learning Model Representation

There are three types of machine learning systems: supervised learning, unsupervised
learning, and reinforcement learning [26]. In this project, I have focused on the
supervised learning, as it is perhaps the most popular approach in machine learning
design. This section will describe the basic intuition behind the machine learning
algorithm. A learning algorithm of a system takes in a set of training data and
obtain a hypothesis function (h). This function is used in the inference phase to
map the input features values to the answer of either a classification or regression
problem.

In order to visualise it, the optimal hypothesis function for a regression task is the
best fit line for the data points(both training and inference data), and the hypothesis

7

CHAPTER 2. BACKGROUND 8

function of a classification task would be the best line that separate between the
different classes of data points.

Figure 2.1: This figure illustrates the model of supervised learning, where the vertical
direction is the training phase, and the horizontal direction is the inference phase

2.1.3 Deriving the Hypothesis Function

In cases such as in figure 2.2, it could be easy for human to estimate the hypothesis
function i.e. the best fit line. However, this is only true for data points with 1
or 2 feature dimension. In figure 2.2 the feature spaces of the data points only
have two dimensions. This means that the input data only has two features, or
more specifically, only two features from the input data are used in the learning
algorithm. In reality, machine learning algorithms use many more features than
that. This makes it impossible for human to derive the hypothesis function by eye.

Most learning systems learn the ‘optimal’ hypothesis function in a different way
from what a human would do. Instead of looking at all training data points at once
to estimate the ‘best fit’ or ‘best class separation’ line, they take in one training
input sample at a time and adjust the parameters of their hypothesis functions
accordingly using the cost function.

2.1.4 Cost Function

Cost function or Loss function is the measurement of how far away from the correct
answer the machine’s answer - output of the hypothesis function - is. A typical
example of a cost function would be the squared loss:

J(θ) =
1

2m

m∑
i=1

(hΘ(x(i))− y(i))2 (2.1)

where vector θ is the current parameters of the hypothesis function; hθ is hypoth-
esis function with its parameters equal to θ; m is the number of training samples;
x(i) is the feature values of the ith training point; and y(i) is the label i.e. the correct
answer of the ith training data point.

CHAPTER 2. BACKGROUND 9

It is obvious that the higher cost means worse performance, and lower cost means
better performance. In the training phase, cost function is calculated for a set of
parameter values θ, then the gradient descent will calculate the adjustments in θ
which would minimise the cost function.

In the extreme case, when the cost is zero, it means that the machine has pre-
dicted the answer for all of the training data points correctly. One might think
that the machine’s hypothesis function is most correct in this case. However, it is
almost impossible for the such hypothesis function to be the optimal one, as for a
function to give zero cost it would mean that all the training data points lie perfectly
on the hypothesis function (for a regression problem) or separated perfectly by the
hypothesis function (for a classification problem). With the random nature of the
real-world data, it would be naive to conclude that the optimal hypothesis function
is found when its calculated cost is zero. The zero cost hypothesis function instead
suggests that over-fitting happens. This problem of over-fitting will be explained
later in section 2.1.6.

2.1.5 Gradient Descent

Gradient descent is a well-known algorithm that many learning machines use to find
the optimal parameter values. As suggested by its name, the algorithm looks at the
gradient of the cost function against each feature xj of the input; i.e. the rate (or
direction) of change of the cost value with respect to the change (increase) in the
value of the feature, which is the derivative of the cost function with respect to an
input feature ∂J(θ)

∂xj
.

repeat until convergence: {

θj := θj − α
1

m

m∑
i=1

(hθ(x
(i))− y(i)) · x(i)

j for j := 0...n

}

The algorithm above [30] shows how gradient descent is performed in the system
discussed in the previous section where the cost function is the equation 2.1. Here, n
is the total number of features and α is the learning rate - a user-controlled variable
that is used to control the rate of learning.

The gradient ∂J(θ)
∂xj

of the equation 2.1 is 1
m

m∑
i=1

(hθ(x
(i)) − y(i)) · x(i)

j . To move

closer to the minimal point, this gradient is used to update the parameter values
θj corresponded to each feature j as seen in the algorithm above. Eventually, the
algorithm will converge as near the minimal point the gradient will converge to zero.
At this point, if the cost function is convex we can conclude that we have reached
the optimal solution. It is worth noting if the learning rate α is chosen to be too
large the algorithm might step pass the minimal point and not converge. For the
non-convex cost function, the gradient descent might converge to a local minima.
Increasing the value of the learning rate, as well as using more advanced techniques
such as using momentum [37], may help avoid this problem.

CHAPTER 2. BACKGROUND 10

2.1.6 Over-Fitting

The problem of over-fitting may arise when the system tries too hard to make sure
that the cost of the hypothesis function is zero; i.e. generating a hypothesis function
that is too complex and unrealistic in order to perfectly pass through or separate
all the training data points. By having such complex function, the system loses the
knowledge about the generality of its data, i.e. the best fit line would not be smooth.
This knowledge about the data generality is essential for a realistic interpolation of
the of the training data points, and therefore an over-fitted system would not be
able to solve its tasks correctly.

Over-fitting could be avoid by discarding irrelevant features; letting the machine
learn only the useful features. This process of choosing the right features i.e. feature
selection is not easy, and it is an area that is being of research [21] [17]. In the case
where all features are slightly useful, regularisation can be used to smoothen the
hypothesis function by reducing magnitude of all parameters.

Figure 2.2: This figure illustrates an example of the problem of over-fitting in the
classification problem, where the black line is the desire hypothesis function and the
green line is the hypothesis function we might have when we experience over-fitting

2.2 Solving the Classification Problem
This project focuses on classification problems, because many researches in Adver-
sarial Machine Learning involve the learning machine whose task is to classify an
input; for example, email spam filter and malware detection. However, the knowl-
edge gain from this project can be apply to the regression algorithm interchangeably.
Here are some important machine learning classifier that I have come across in my
research for this project.

CHAPTER 2. BACKGROUND 11

2.2.1 Linear Classifiers

Perceptron and ADALINE

ADALINE [1] is a single layer neural network developed at Standford University in
1960. It is a single layer neural network where all of the features has a weight -
similar to the parameter θ discussed before - and the output, 0 or 1, comes from the
following formula:

y = sign(wT · x+ b) (2.2)

where vector w is the weights of each feature, vector x is the values of each feature,
b represents the bias constant, and the sign function represents the quantizer.

The perceptron [42] works the same way as ADALINE, the difference is that
ADALINE learns from the output value wT ·x – the pre-quantized value–, whereas
the perceptron learns from the output value y – the post-quantized value. By learn-
ing from y the perceptron might encounter a convergence problem with its gradient
descent algorithm since the discrete property of y causes the cost function to also
be non-continuous.

Logistic Regression

Logistic regression is one of the most widely used learning algorithms today. One
way to solve a classification problem is to turn it into a regression problem by adding
an extra dimension z to the data point (i.e. the y-axis of figure 2.3). This z variable
represents the classes of the data point: 1 being a positive class and 0 being a
negative class. After we solve the regression problem, we could use the hypothesis
function to predict the value z from the input data. By the nature of a regression
problem, z would be a continuous value, and we would turn it into a discrete value
by comparing it with a threshold value which we defined. If the value z is greater
than the threshold it would be classified as positive, otherwise as negative. This
discrete value, 0 and 1, is represented by y.

Figure 2.3: This figure illustrates a graph used to visualise the classification problem
as a regression problem - a technique used in logistic regression classification.

As seen in figure 2.3, it is not suitable for the hypothesis to be a straight line.
Therefore, the simple linear regression model would not work for a classification
problem. The sigmoid function in logistic regression allows us to better capture the
hypothesis function of a classification problem. Therefore logistic regression can be
used as a classifier.

hθ(x) = g(θTx) (2.3)

CHAPTER 2. BACKGROUND 12

Figure 2.4: This figure illustrates examples of sigmoid functions

where x is the vector of feature values, θ is the vector of parameters, and g is
the sigmoid function defined as:

g(z) =
1

1 + e−z
(2.4)

Logistic regression classifier uses gradient descent to learn the optimal parameter.

2.2.2 Neural Networks as Non-Linear Classifiers

Non-linear classifiers offer more sophisticated algorithms to classify data that are
not linearly separable. An example of this is the famous XOR classification problem
[20], which could be solved with a multi-layer neural network classifier [20] [30]. Here
are some important and well-known multilayer neural networks.

Multi-Layered Perceptron

Many single-layered perceptrons can be combined to form layers of multiple-layered
perceptron [15]. This allows it to perform a much more complex tasks of classification
or regression. The model is trained using back propagation - a way to train the feed-
forward neural network [11] by propagating the errors from the layers closest to the
output back to the layer closest to the input, using those propagated errors to update
the weights of each layer.

CNN

The Convolutional Neural Nets (CNN) are a feed-forward neural network that works
well for tasks such as image or speech processing. The system uses filters which slide
over all parts of the input and process the outputs for each section that it has passed
through. The parameters that this system learn are the weight of each filter element.
With this design, the weights are shared among the filtered sections of the input

CHAPTER 2. BACKGROUND 13

space, which is helpful when processing data that has similar features such as edges
in images pixels [23].

Auto-Enconders

Auto-Enconders are used for unsupervised learning. The design is similar having
a multi-layered perceptron connected to its reversed self at the output layer. This
design allows the machine to perform unsupervised learning by setting the input as
a target, and train the reversed part with back propagation. So the system is trained
to approximate the identity function. When the training is done, the reversed half
of the system can be removed, and the feed-forward half could be used to solve the
classification problem. [41]

2.3 Adversarial Machine Learning Case Study
Before going into detail about Adversarial Machine Learning, this section will give
a case study of the SpamBayes email spam filter [19] to demonstrate how a ma-
chine learning system is vulnerable to adversaries, and how an attacker might take
advantages of the nature the machine learning algorithm in SpamBayes.

2.3.1 Classification

SpamBayes filter classifies emails using Bayesian Classifier. It extracts the email
content and use the presence of each word (token) to determine the class - spam,
or ham i.e. legitimate, or unsure - of the email [35]. Each word (token) has a
spam score which is used to calculate the overall message score. An email with high
message score will be classified as a spam, i.e. when an email contains many words
that have high spam score, the email is likely to be classified as spam. Nelson et al.
and Tsai explain in more detail the SpamBayes classification mechanism [29] [39].

In the training phase, when SpamBayes sees an email of spam class, it will
increase the spam score for all of the tokens present in the email. Similarly, when
the system sees a ham (legitimate) email, all of the token present will have its score
reduced.

2.3.2 Attacks

SpamBayes retrains itself periodically with the new data that it has collected. This
has created a way for an attacker to place his malicious data (email) into the training
data set of the SpamBayes filter. Simply by sending the malicious email into the
target user’s inbox would cause the user to label it as a spam and, later, when the
machine retrains itself the malicious email can become part of the training dataset
that it would train from.

Knowing the classification mechanism and the training algorithm of SpamBayes,
attackers can craft some malicious emails to attack the classifier; making the over-
all classification performance so poor that the whole classification system becomes
useless with the dictionary attack, or making it unable to classify a certain email
properly i.e. causing a wrong classification of a particular email with the targeted
attack.

CHAPTER 2. BACKGROUND 14

Dictionary Attack

The dictionary attack aims to render the SpamBayes filter useless by causing it to
classify all emails - spam or not - as spam emails. The attack is done simply by
including every word in a dictionary into an email. Such email will be recognised
by the user as a spam, and if, later, the SpamBayes filter retrains itself with this
malicious email, every word in the dictionary will have a higher spam score. Enough
proportion of such dictionary email in the training set would break the SpamBayes
filter.

Targeted Attack

The motivation of this attack is to prevent the target user from receiving a particular
email i.e. target email. An assumption is made that the attacker have a good
knowledge about the target email. This can be achieved by crafting a spam email
that has all of the words that appear in the target email. When the system is trained
with this data point, it would increase the score of all the tokens presented in the
target email. In the future when the user receive the target email SpamBayes would
classify it as a spam. This attack is also effective even if the attacker knows partially
tge targeted email.

2.4 Studies of Adversaries in Machine Learning

2.4.1 Taxonomy

It is important for a research purpose to know how adversaries are classified and
described by the researchers in the field. This taxonomy, proposed in [4], is used as
the formal classification of adversaries in the field of computer security. Its usage is
extended into the field of adversarial machine learning [19]. The taxonomy consists
of three axes: influence, security violation, and specificity, which can be used to
classify any form of attacks against a machine learning system.

Influence

This axis of the taxonomy measures the degree which an attack can influence the
learning algorithm. An attack can be categorised into two types – causative and
exploratory – depending on its capability to influence the targeted learning system.

• Causative : This type of attack will modify the learnt model of the targeted
system to cause it to behave differently i.e. will break the system or service, for
example this kind of attack can cause an email spam filter software to classify
a spam email as non-spam email or vice-versa.

• Exploratory : This type of attack cannot alter the learning system’s be-
haviour. Hence the aim of such attacks is, usually, to explore the targeted
system to gain information and understanding on the system’s vulnerabilities.
With good understanding of the systems weaknesses, attackers can then carry
out evasion attacks. For example, attackers could craft malwares that are able
to avoid detection from the targeted malware detection system.

CHAPTER 2. BACKGROUND 15

Security Violation

This axis of the taxonomy categorises the type of security violations that an attack
can cause to the system.

• Integrity : These attacks focuses on causing the system to produce incorrect
results. When targeting a classifier system, this attack would try to increase
false-negative classifications. For example, it would allow malwares to pass
through the targeted malware filters.

• Availability : These attacks aim to causes the targeted system to produce in-
correct results in any possible ways i.e. both false-negatives and false-positives.
The objective of this type of attack is different from the integrity case, as avail-
ability attacks aim to make the system unusable for the users.

• Privacy : These types of attacks aim to obtain confidential information of the
users of the targeted services. These attacks are not yet the main concerns to
the machine learning systems.

Specificity

This axis of the taxonomy categorises the intention of the attackers when attacking
the targeted system.

• Targeted : These attacks aim to degrade a specific point of a system. For
example, it would cause a spam filter to classify a particular legitimate email
as a spam email. This type of attacks often require more knowledge on the
training data and training algorithm, as the attack has to be very specially
crafted in order to target a specific point or sample.

• Indiscriminate : These attacks aim to degrade the overall performance of a
system. This type of attacks usually require less data on the training data and
training algorithm.

In theory, attacks from any categories in each axis in the taxonomy is possible,
however, the two most relevant attacks in practice are exploratory integrity attacks
i.e. the evasion attack, and causative availability or integrity attacks i.e. the poi-
soning attack. In this work, we will focus on the poisoning attack.

2.4.2 Attacker’s Capabilities in Causative Attack

Having a formal model to measure the capability of a causative attack can be useful
when it comes to evaluation or comparison of attacks.

Corruption Model

Corruption models [19] are used to evaluate the capability of adversaries by analysing
their restrictions. Below describes the two corruption models and when to use each
one.

CHAPTER 2. BACKGROUND 16

• Insertion Model : This model measures the capability of an attack by the
amount of attacking data points (number of the poisoning data) needed in
order for the attack to be effective. This model is effective when measuring
the capability of an attack from an attacker who is only allowed to modify a
limited amount of training data points. The content or features of the data
points, however, can be modified arbitrarily. An example of such attacks is
the email spammer attack, where the attacker can craft the malicious emails
in any ways he likes, but only able to send a limited number of those emails
to the training algorithm of the spam filter.

• Alteration Model : This model measures the capability of an attack by how
much a data point is altered. It assumes that there is a limited amount of
alteration that can be done on each data, but the number of data points being
modified can be arbitrary.

Class Limitation

We can look at the class limitation [19] of an attack to analyse its capability, i.e.
looking at which class data – negative, or positive, or both – an attacker is allowed
to create or poison. In the spam filter example, the attacker can manipulate both
classes in order to create an effective attack. Positive (malicious) class is done to
bring the score of some words down so that legitimate emails with those word will
later be classified as a spam. Negative (legitimate) class is done to bring the score
of some words up so that the spam email with those words can be classified as
legitimate later, however, this case is unlikely to happen in practice. It is worth
noting that not all systems allow the attackers to alter both positive and negative
classes of the training data. In fact, it is usually the case that the attackers are
limited to manipulate only the positive (malicious) class of the data. For example,
in spam filtering applications, it is reasonable to assume that the malicious emails
are labeled as spam.

2.4.3 Attacker’s Knowledge

The attackers will have a certain degree of knowledge about the learning system.
Three main types of knowledge that are critical to attacking a machine learning
system are the knowledge of the learning algorithm, knowledge of the feature space,
and the knowledge of data. One might be tempted to keep all of these information
secrets, as that would result attacker having no knowledge of the system. However,
like any security system, Kerckhoff’s Principle suggests against over relying on se-
crecy; as secrets can, one way or another, be exposed and when that happens all
other components that depend on it can be compromised. Therefore, secrets are
kept only when necessary.

Analysing how much of the three types of knowledge the attacker knows can
give a better understanding of how an attack can be done and how to stop it. In
more cases than not, the attackers will have a good knowledge about the learning
algorithm, some knowledge about the data, and little knowledge about the feature
space [19]. Although it is very unlikely for an attacker to have a Perfect Knowledge
about the targeted system, it is a common practise to use the perfect knowledge
attack to analise the upper bound damage or the worst case of an attack [40].

CHAPTER 2. BACKGROUND 17

2.5 The Poisoning Attack
In this project, we will focus on the poisoning attacks, where attackers craft a mali-
cious data and give it to a learning system - trying to make the system learn a wrong
model. Every system that trains its classifier with external data are prone to this
kind of attack. As concrete examples, these systems include a learning spam filter,
a learning malware detector, and probably future wareable devices and driver-less
cars. The poisoning attack is therefore a topic that is increasingly important and
very much worth exploring. This section will summarise some interesting informa-
tion about the poisoning attacks that I found during my research.

2.5.1 Attacker’s Goal as an Objective Function

A work has been done by Mei and Zhu [28] to formalise the training set attack.
They have modeled the objective of an attacker OA in terms of risk RA and effort
EA. As such, the formula for an attacker’s objective is the following:

OA(D, θ̂D) = RA(θ̂D) + EA(D,D0) (2.5)

where D is the (poisoned) training data, D0 is the original training data.

Risk

The attacker’s risk function RA is defined as a norm function:

RA(θ̂D) =
∥∥∥θ̂D − θ∗∥∥∥ (2.6)

in other words, how far away from the target theta, θ∗, is the trained theta, θ̂D.
Target theta is the set of parameter the attacker wants the machine to learn. Trained
theta is the set of parameter the machine actually learn. Therefore the attacker
would want the risk value to be as small as possible.

Effort

The attacker’s effort function EA is defined as a norm function:

EA(D,D0) = ‖X −X0‖ (2.7)

where X is the design matrix of a training data set D; i.e. matrix that contains
all features of all data points in the training set, and X0 is the design matrix of
the original training data set D0. It describes how much alteration the attacker has
made to the training data. In many cases, the attacker is restricted to altering a
limited portion of the training data. In other cases, altering the training data comes
with a cost. Therefore, a successful attack that require less effort is considered a
more optimal one. To think about this at a higher level, for two attacks that cause
equal damage to the targeted system, it only make sense that the one that require
less alteration in the data is more superior. In addition, poisoning points that require
less effort would be less likely to be caught by anomaly detectors.

CHAPTER 2. BACKGROUND 18

Attacker’s Optimisation Problem

With this objective function, the goal of the attacker can be formulate as follow:

minimise
D∈D,θ̂D

OA(D, θ̂D)

subject to θ̂D ∈ argmin
θ∈Θ

OL(D,θ)
(2.8)

where OL an objective function of the learner, and again θ̂D is the parameter
learned from the data set D. D here represent the space of D i.e. set of all possible
alteration of D0 that the attacker can make.

In the equation 2.8 shown above where OA essentially measures the difference
between θ∗ and θ̂D, we can see that given a target model θ∗, one can formulate and
solve for the optimal attacking data set D which can be used to teach the learning
machine a target model θ∗ he wants. This concept of attack proposed by Mei and
Zhu is called Machine Teaching.

2.5.2 Solving the Optimisation Problem

To solve for the optimal attack points is to solve a very difficult problem [31], and
this can be expected from the optimisation problem in the equation 2.8 we had
above. In order to solve the minimisation problem for the attacker’s objective OA

we have to first solve another optimisation for the learner’s objective OL. This
property makes this problem a bi-level optimisation problem which is known to be
NP-hard.

By making these assumptions: attack space is differentiable, and learner has a
convex and regular objective OL, Mei and Zhu have proposed a way to simplify
and solve the bi-level optimisation problem using the gradient descent method with
the Karush-Khun-Tucker (KTT) conditions [7]. This method of using the KTT
condition to solve the bi-level optimisation will be explored further in this project.

2.5.3 Determining the target model for Machine Teaching

The formula 2.8 requires us to know the target model (parameter) θ∗ that we want
the system to learn first. However, this could be difficult to obtain. Take an example
of an attacker who want to get the learning machine to learn to maximise the mis-
classification of its inputs, the values of the target model θ∗ is not obvious. Work
of Biggio et al. demonstrate how to carry out effective an poisoning attack without
knowing the target parameter in advance [45]. This work uses the similar method of
assuming the KTT condition and using gradient descent to find the optimal attack
point.

2.5.4 Standard Method from Biggio et al.

The work of Biggio et al. [45] shows a way to solve the bi-level optimisation problem
in the context of finding the optimal poisoning point. In his work he solved for the
poisoning point targeting machine learning feature selection algorithms; LASSO,
ridge regression, and elastic net. The following steps cover parts of Biggio’s work
that describe how to formulate the algorithm to find the optimal poisoning point.

CHAPTER 2. BACKGROUND 19

Learner’s and Attacker’s Objective Function

The equation below shows the feature selection systems that were targeted in the
work of Biggio et al.

minimise
w,b

L =
1

n

n∑
i=1

l(yi, f(xi)) + λΩ(w) (2.9)

where
f(x) = wTx + b

and
l(y, f(x)) =

1

2
(f(x)− y)2

where w and b are the weights (for input and bias respectively) of the optimal
system, x and y are training sample and its label respectively.

It was pointed out that all three systems – LASSO, ridge-regression, and elastic
net – use quadratic loss function, hence the quadratic formula for l(y, f(x)). The
term Ω(w) is the regularisation term. They are different for each feature selection
system. For example, LASSO uses l-1 regularisation, therefore Ω(w) =

∑n
i=1 |wi|

Further details on how this works do not play a part in the solving for the optimal
attack point.

The attackers’ goal can now be formulated as follow:

maximise
xc

W =
1

m

m∑
j=1

l(ŷj, f(x̂j)) + λΩ(w)

subject to w, b = argmin
w,b

L(D̄ ∪ {xc})
(2.10)

where x̂ and ŷ are a sample from the validation set and its label, and D̄ is the
training dataset that the attacker assumes the learning system has.

The formula shows an optimisation problem to find the poisoning point xc that
maximises the cost for the learning systems. Notice the weights w and b in Equation
2.10 are the outputs of the inner optimisation problem L. As discussed in Section
4.1.1, modifying xc will cause w and b to change. In Biggio’s work, he has assumed
that the attacker does not know the full training dataset that the targeted system
will use when it trains for optimal w and b, so he has used D̄ to represent the training
data that the attackers have acquired (and assumed that the targeted machine will
use). In my work, D̄ = D since attackers are allowed full knowledge about the
training dataset.

Finding Gradient

In order to avoid searching blindly for the optimal point, attackers could use the
gradient descent method to estimate it. To do this, they would have to compute
the gradient of their objective function, in this case, W against the value of the
poisoning point xc i.e. the value δW

δxc
. In practice, they would have to formulate δW

δxc

as a formula of xc. The following steps show how the term is formulated.

CHAPTER 2. BACKGROUND 20

From Equation 2.10:

W =
1

m

m∑
j=1

l(ŷj, f(x̂j)) + λΩ(w)

=
1

m

m∑
j=1

1

2
(f(x̂j)− ŷj)2 + λΩ(w)

(2.11)

Using Chain Rule, δW
δxc

= δW
δw ·

δw
δxc

:

δW

δxc
=

1

m

m∑
j=1

1

2

δ

δxc
(f(x̂j)− ŷj)2 + λ

δ

δxc
Ω(w)

=
1

m

m∑
j=1

(f(x̂j)− ŷj)
δ

δxc
(f(x̂j)− ŷj) + λ

δΩ

δw
δw
δxc

=
1

m

m∑
j=1

(f(x̂j)− ŷj)
δ

δxc
(wT x̂j + b− ŷj) + λ

δΩ

δw
δw
δxc

=
1

m

m∑
j=1

(f(x̂j)− ŷj)(x̂Tj
δw
δxc

+
δb

δxc
) + λ

δΩ

δw
δw
δxc

(2.12)

This formula presented two main problems. First, we do not know δW
δxc

and δb
δxc

.
Second, the term δΩ

δw is not unique. The reason for this came from the regularisation
term Ω in each feature selection system. In my work, the regularisation term is not
considered in the cost function and therefore this second problem will not arise. To
overcome the first problem, Biggio et al. made use of the KKT condition of the
inner-optimisation problem.

Solving the Problem Using the KKT Conditions

KKT stability conditions for the learning system L states that at the optimal xc the
objective function L is stable i.e. the gradient of Ctr with respect to w and b is zero,
i.e. δL

δw = 0, and δL
δb

= 0.

(
δL

δw
)T =

1

n

n∑
i=1

(f(x̂i)− ŷi)x̂i + λ(
δΩ

δw
)T = 0 (2.13)

δL

δb
=

1

n

n∑
i=1

(f(x̂i)− ŷi) = 0 (2.14)

He then made the assumption that “the KKT conditions under pertubation of
the attack point xc remains satisfied ”. Since the learning system try to optimise L
for any input value of xc, it is sensible to assume that δL

δw and δL
δb

remain equals to
zero after a small alteration in the value of xc. Having made that assumption, the
followings are true:

δ

δxc
(
δL

δw
)T = 0

CHAPTER 2. BACKGROUND 21

δ

δxc
(
δL

δb
) = 0

By differentiating δL
δw and δL

δb
with respect to the vector xc, and letting it equals

to zero – following the assumption about the KKT condition. The following linear
system can be formed. [

Σ + λv µ
µT 1

][δw
δxc

δb
δxc

T

]
=

[
M
wT

]
(2.15)

where

Σ =
1

n

n∑
i=1

x̂ix̂Ti

µ =
1

n

n∑
i=1

x̂i

M = xcwT + (f(xc)− yc)I

where I is the Identity Matrix.

Solving the linear system, one could obtain δw
δxc

and δb
δxc

, and by putting them into
the equation 2.11, he would be able to perform gradient descent on the optimisation
problemW . Note that this linear system has dimensions of A(d+1)×(d+1)∗B(d+1)×d =
C(d+1)×d where d the number of features in a data point i.e. the dimension of vector
w and xc.

2.5.5 Counter Measures

This section summarises some state-of-the-art defenses against the causative attacks.
For this project, it is important to study them because if we can derive an attack
that is able evade these defense mechanisms, or improving the defense strategies, we
would likely be contributing to the state-of-the-art.

RONI Defenes

The Reject On Negative Impact defense [19] is a data sanitization technique. As
the name suggests, this defense will measure an effect of training with each training
sample on a classifier and reject training samples that cause a negative impact to
the classifier. To execute this defense, the classifier is trained first with a base
training set Db. The trained classifier’s performance would be tested with a quiz
data set. Then upon each new training sample Q, the classifier would be retrain
with the training set Db ∪ {Q}. The performance of this newly trained classifier
will be measured with the same quiz, and if the performance declined over a certain
threshold, this new sample Q will be removed from the training data set.

Dynamic Threshold Defense

This defense [29] is used against the attack that shifts (translate) the entire hypoth-
esis function of a classifier to a certain direction; for example, the dictionary attack
for the SpamBayes spam filter where the attacker brings up the spam score of all

CHAPTER 2. BACKGROUND 22

emails. This defense adjust the threshold value used in classification to an appro-
priate value that can be used with the shifted hypothesis function. To execute this,
we would divide the entire training set in half: first half F for training, and second
half V for validation. We train the classifier with F , and use the trained classifier
to classify V . The result of the classification of V can be compared with the actual
label of V to calculate the appropriate new threshold value of our classifier.

Chapter 3

Project Setup

3.1 Learning Algorithms
In the work I have mainly experimented with three widely-used machine learning
classifiers: ADALINE, Logistic Regression, and Multi-Layered Perceptron. The
ADALINE and Logistic Regression classifiers are linear classifiers, and the Multi-
Layered Perceptron is a non-linear neural network classifier. All three systems are
made in Matlab exclusively for this project to ensure full understanding of the
classifiers and their implementations – making sure that we have the full-knowledge
of the classifiers in order to carry out an optimal poisoning attack.

3.2 Datasets
This section describes the different datasets used for evaluation of the experiments
carried out in this project. It is a common practise to split a dataset into 3 sets:

• Training Set: the samples used for training the learning systems.

• Validation Set: the samples used for adjusting the parameters. In our case,
they are the samples used to adjust values in the poisoning point.

• Test set: the samples used to evaluate the final performance of the learning
system.

All this is done to provide the test performance result that is as fair and realistic
as possible. For example, if I had tested the final state of a learning system with
the validation set or the training set, the performance will be better than in reality
because, during training the learning system have already seen them and used them
to optimised its model. Therefore, in practice, we use the test set, which is not
seen by the learning system before, to model the real-world data and test for the
performance of the learning system.

3.2.1 The Synthetic Dataset

This is a dataset that is created by Gaussian Distribution [27] in the beginning of
this project with the aim to use it to do quick checks whether my code was working
correctly. The dataset consists of 40 training samples and 400 validation samples.
Each sample has 2 features and corresponds to a binary-class label.

23

CHAPTER 3. PROJECT SETUP 24

3.2.2 The Real Datasets

The three real datasets I experimented with are Spambase, Ransomware, and MNIST
datasets [8] [10] [25]. Each datasets are split into 10 sets, each with 100 training
samples and 400 validation samples selected randomly from the whole dataset. The
rest of the samples in the dataset are used as the test set in each split.

The experiments were performed in 10 repetitions, each time with a different
dataset split. By taking the average of the results of these 10 splits, we reduce
possible biases in the results induced by the partition of the data.

3.2.3 Spambase

Spambase [8] is a dataset of features extracted from emails, where each sample can
belong in one of the two classes: the positive class (1) being the Spam emails, or
the negative class (0) being the legitimate Ham emails. In this project, this dataset
is considered the simplest ‘real’ dataset, as it has the least number of features – 54
binary features. The total number of the dataset is 4601 samples, giving us the test
dataset in each of the 10 splits of 4101 samples.

3.2.4 Ransomware

Ransomware dataset is a dataset of ransomwares collected in the work of Daniele
Sgandurra et al. [10]. It has 400 binary features, and each sample has a binary label
where positive class being a ransomware class. The total number of samples in the
dataset is 1079 and therefore each of the 10 splits would have 579 test samples.

3.2.5 MNIST

MNIST [25] is a dataset where each sample is an 28x28 pixel image of a hand-
written number digit. It has 784 continuous features ranging from 0 to 1 inclusively,
each one representing the intensity value of each pixel. With 784 features, it is the
highest-featured dataset I have experimented with in this project.

This dataset has a multi-class label of 10 classes representing each digit. In
most experiments in this work, we would have to compare the performance of a
poisoning attack method across all datasets. In such situations, to make the dataset
comparable to the binary-class datasets, I would modify the label of the MNIST
dataset by only filter out digit 1 and 7 from then dataset, creating a binary-class
dataset with positive class being digit 7 and negative class being digit 1. The total
number of samples of class 1 and 7 in the dataset are 2197, and thus each split of
the MNIST binary-class dataset has 1697 test samples.

3.2.6 IRIS

The IRIS dataset [34] is a small dataset of 150 samples each with 4 features and 3
target classes i.e. 3 different labels, representing 3 different classes of iris plants. I
have used it to run quick test on the correctness of multi-class code implementations.

CHAPTER 3. PROJECT SETUP 25

3.3 Evaluating the Classifier

3.3.1 Confusion Matrix

To evaluate the performance of a classifier, the confusion matrix is often used as it
provides sufficient useful information to evaluate the performance of the classifier.
The value in each cell is the true positive, true negative, false positive, and false
negative count of all the testing samples classified by a classifier. Later when we
examine the results of a multi-class classifier, we would see that the confusion matrix
is extended by dividing each value of the cell with the total number of samples in
its actual class so that each cell represents the classification (for the diagonal cells)
or mis-classification rates (for the non-diagonal cells) of each class.

actual class 1 actual class 0
predicted class 1 True Positive (TP) False Positive (FP)
predicted class 0 False Negative (FN) True Negative (TN)

Table 3.1: Binary-class confusion matrix, where class 1 is the positive class and class
0 is the negative class

3.3.2 Classification Rate and Classification Error

Classification Rate =
TP

TP + TN + FP + FN

and
Classification Error = 1− Classification Rate

These two values are used to summarise the performance of a classifier on its clas-
sification task.

3.3.3 False Positive Rate and False Negative Rate

False Positive Rate =
FP

FP + TN

False Negative Rate =
FN

FN + TP

The False Positive and False Negative rates are the probabilities that the classifier
mis-classify a sample from the negative and positive class respectively. These values
are useful for the targeted attack analysis.

3.4 Specific Problems

3.4.1 Value of Sample Labels

In our dataset, the default label for the positive and negative classes are the value 1
and 0 respectively. When training a binary-class ADALINE classifier, using the label
as 1 and −1 for the positive and negative class will result in a better classification
performance of the classifier. This is because the output function of the ADALINE

CHAPTER 3. PROJECT SETUP 26

i.e. o = wTx could produce negative output. The classifier would then be able
to separate the two class easier when the label is allowed to be negative. This is
different for the case of the Logistic Regression classifier where the output function is
a sigmoid function o = σ(wTx). The output would strictly be in the range of 0 and
1, and thus making the class labels of 0 and 1 suitable for the Logistic Regression
Classifier.

3.4.2 Finding Reasonable Parameters Values

One of the problems this project faces is the fact that each of my proposed methods
are based on the gradient descent which requires the user to input a suitable set
of parameters; specifically, the learning rates and the number of training iterations.
By inputing different values of the parameters, the overall performance of a clas-
sifier could be drastically affected. In the example of training a machine learning
classifier with two different datasets, finding the optimal values of the parameters
means finding the parameters which results in a system that produce minimal clas-
sification error. This is problem is similar to the problem of finding the optimal
hyper-parameters, which is a difficult problem [6] [5]. Furthermore, the optimal
parameter values of a classifier when solving one dataset problem is also very likely
to be different from when solving another dataset problem.

It is worth pointing out that for a simple convex problem, we could use any
small value of learning rates and high number of iterations to train the system as
it will never get stuck in the local minima. In this work, however, I will be solving
a bi-level optimisation problem. Such problems is not convex and thus finding the
optimal parameters remains a difficult problem.

To get a working solution, in most cases, we are not required to find ‘the optimal ’
parameters i.e. a good estimation would suffice. In this project, I looked for those
parameters values by trial-and-error, using the cost against iteration graph to guide
my estimation. A working solution is one with smooth increasing or decreasing cost
graph such as in figures 3.1 and 3.2.

3.4.3 Initialisation of Poisoning Point

The problem of non-convexity of our problem also poses difficulty in choosing an
initial point for our gradient descent based method. Different initial points could
result in different overall performance as the point could lead to different local
minima.

CHAPTER 3. PROJECT SETUP 27

Figure 3.1: Graph of cost against number of update iterations for
outer-optimisation (maximisation) problem. The updating algo-
rithm was stopped after about 1200 iterations by the early-stopping
mechanism to avoid unnecessary computation

Figure 3.2: Graph of cost against number of update iterations for
the inner-optimisation (minimisation) problem.

Chapter 4

Optimal Poisoning Point & the
Direct Method

4.1 Optimal Poisoning attacks
This work focuses on the Poisoning Attack on Machine Learning Algorithms. In
this type of attack, attackers have control over a portion of the targeted system’s
training data. They would also have a certain amount of knowledge about the
training algorithm of the targeted system. In this work, in order to examine the
robustness of the learning algorithm against such attack, I have analysed the extreme
cases – ones where the attackers have full knowledge about the training data as well
as the training algorithm. With this knowledge, a crucial task still remains for the
attackers to find the most effective training samples which, when injected into the
training dataset, would cause most damage to the targeted system – causing highest
rise in the error rate.

This work solved a slightly different optimisation problem from what Mei and
Zhu [28] have proposed i.e. equation 2.5. The problem described in the Background
Section tries to look for a ‘working’ poisoning data point, that requires least tamper-
ing of the legitimate training dataset. However, for this project, it would be more
useful to find the ‘most damaging’ point and observe how different machine learning
algorithms are affected by it as shown in the work of Biggio et al. [45]. Thus, we
optimise on the poisoning point according to the following equation.

maximise
xc∈D

Cval(w, b)

subject to w, b = argmin
w,b

Ctr(D,w, b)
(4.1)

These two problems are both bi-level optimisation problems, therefore the same
techniques that I have used in this work could also be used with the problem pro-
posed by Mei and Zhu.

The following sections will explain how to solve the optimisation problem using
gradient descent. Specifically, how to find the gradient to use for the gradient descent
δCval

δxc
. This chapter will discuss the standard (direct) way of computing that gradient,

and will show and discuss why it is not the most efficient and stable method.

28

CHAPTER 4. OPTIMAL POISONING POINT & THE DIRECT METHOD 29

4.1.1 Bi-Level Optimisation problem Difficulty

I would like to emphasise on the difficulty of solving a bi-level optimisation problem.
It is already difficult to solve a single-level optimisation problem when the problem
has many constraints i.e. have high dimension, as we cannot perform a search
algorithm to find the optimal solution as we could with a simple, low-dimensional
optimisation problem. In our case, the solution for the inner-optimisation problem
can be found if the training system’s cost against weights graph for that problem is
convex, which is only the case for the linear classifiers. If a optimisation problem is
convex, we can solve it well with gradient descent. However, if it is non-convex, the
best we can do is to estimate the optimal solution with gradient descent.

Solving bi-level optimisation problem is therefore exponentially more difficult
than solving a single-level optimisation problem, as when searching for the optimal
solution xc for the outer-problem, the optimal solution for the inner-problem, in our
case w and b, has to be re-computed each time the value of xc changes. Later in
this report, we will see how to solve this bi-level optimisation problem efficiently.

4.1.2 Attacker’s Capability

Throughout this work, with an exception of the indiscriminate multi-class classifier
attack, I have made the assumption that the attacker can only generate poisoning
points in a positive class i.e. all poisoning points that the attacker can generate has to
be labeled as positive-class points. This is a very reasonable assumption for problems
like spam email classification in a machine learning spam-filtering application [29].
This reason for this is that the spam-filtering application user decides whether an
email is of a positive(spam) class or not, therefore it is very unlikely that the attacker
will be able to generate enough malicious-legitimate emails to create a substantial
impact with the poisoning attack. The attacker, on the other hand, can send as much
spam emails as he likes, and these positive-class samples will eventually get into the
training dataset when the spam-filtering application retrains its classification system.

To be consistent in all problems, I have made this restriction for both ransomware
and MNIST problem as well. The same argument about the attacker’s capability
could be applied to a ransomware detection system as the spam-filtering application.
It is also worth noting that by restricting the attacker’s capability as such, the
experiments in this work would be also consistent with the literature.

4.1.3 Black-Box Characteristic

Normally, to craft a poisoning sample, an attacker has to study the dataset that he
is trying to poison. For example, in the MNIST problem, he would have to know
that the digit 1 looks similar to digit 7, and try to create a poisoning sample with
such knowledge of the dataset.

By simply solving the attacker’s bi-level optimisation without doing a deeper
analysis for each dataset, I have created another layer of abstraction for the attackers.
The methods described in this project report will be able to estimate the optimal
poisoning sample from any dataset. This means that the attacker no longer have to
study the dataset in order to craft a poisoning sample.

CHAPTER 4. OPTIMAL POISONING POINT & THE DIRECT METHOD 30

4.2 The Standard Method
This section explains how Biggio’s method [45], as described in section 2.5.4, is
adapted to work for the optimisation problem proposed in this project. This project
first look at the two machine learning classifier system – ADALINE and Logistic
Regression – and examine how sensitive to the poisoning attack they are. This
standard method adapted from Biggio’s work [45] can be used to craft the optimal
poisoning points for both classifiers.

In this work, I will describe the attacker’s goal as:

maximise
xc

Cval =
1

n

n∑
i=1

l(ŷi, f(x̂i,w)) (4.2)

where Cval is the cost (output of the cost function) calculated using the validation
dataset, x̂ and ŷ are the validation set data points and their labels, f(x,w) is the
hypothesis function, which depended on weightsw and b – the results of the learner’s
optimisation problem, equation 4.3.

minimise
w,b

Ctr =
1

n

n∑
i=1

l(yi, f(xi,w)) (4.3)

4.2.1 ADALINE Classifier

For ADALINE, the calculations for finding the gradient δCval

δxc
are almost identical

to the methods shown in Biggio’s work. This is because the loss function l and the
hypothesis function f(x,w) are the same. Therefore, we would have the equations
4.2, and 4.3, with

f(x,w) = wTx + b

and
l(y, f(x,w)) =

1

2
(f(x,w)− y)2

The equation for finding the gradient for the poisoning point gradient descent
would then be:

δCval
δxc

=
1

m

m∑
j=1

(f(x̂j)− ŷj)(x̂Tj
δw
δxc

+
δb

δxc
) (4.4)

With the assumption that KKT conditions of the targeted system (inner op-
timisation problem) remain satisfied after small perturbations in xc, the following
equations would be true:

δ

δxc
(
δCT

tr

δw
) = 0d×d (4.5)

δ

δxc
(
δCtr
δb

) = 0d (4.6)

We have that
δCT

tr

δw
=

1

n

n∑
i=1

(wTxi + b− yi)xi (4.7)

CHAPTER 4. OPTIMAL POISONING POINT & THE DIRECT METHOD 31

and
δCT

tr

δb
=

1

n

n∑
i=1

(wTxi + b− yi) (4.8)

and,

δ

δxc
(
δCT

tr

δw
) =

1

n

n∑
i=1

[(wTxi + b− yi)
δxi
δxc

+ xi(
δ

δxc
(wTxi + b− yi))T]

=
1

n
[(wTxc + b− yc)Id×d + (

∑
i 6=c

xi(
δ

δxc
(wTxi + b− yi))T)

+ xc(
δ

δxc
(wTxc + b− yc))T]

=
1

n
[(
∑
i 6=c

xi(
δwT

δxc
xi +

δb

δxc
)T) + xc(

δ wT

δxc
xc + w +

δb

δxc
)T

+ (wTxc + b− yc)Id×d]

=
1

n
[(
∑
i 6=c

xi(xTi
δw
δxc

) + (
δb

δxc
)T) + xc(xTc

δw
δxc

+ wT + xTc (
δb

δxc
)T)

+ (wTxc + b− yc)Id×d]

=
1

n
[(

n∑
i=1

xi(xTi
δw
δxc

) + (
δb

δxc
)T) + xcwT + (wTxc + b− yc)Id×d]

(4.9)

and

δ

δxc
(
δCT

tr

δb
) =

1

n
[(
∑
i 6=c

δ

δxc
(wTxi + b− yi)) +

δ

δxc
(wTxc + b− yc)]

=
1

n
[(
∑
i 6=c

(
δwT

δxc
xi +

δb

δxc
)) + (

δwT

δxc
xc + w +

δb

δxc
)]

=
1

n
[(

n∑
i=1

(
δwT

δxc
xi +

δb

δxc
)) + w]

(4.10)

Therefore, from equation 4.9, we would have that,

1

n
[(

n∑
i=1

xi(xTi
δw
δxc

) + (
δb

δxc
)T) + xcwT + (wTxc + b− yc)Id×d] = 0d×d

1

n

n∑
i=1

xixTi (
δw
δxc

) +
1

n

n∑
i=1

xi(
δb

δxc
)T = − 1

n
(xcwT + (wTxc + b− yc)Id×d) (4.11)

and from 4.10,
1

n
[(

n∑
i=1

(
δwT

δxc
xi +

δb

δxc
)) + w] = 0d

1

n
[(

n∑
i=1

(xTi
δw
δxc

+ (
δb

δxc
)T)) + wT] = 0d

CHAPTER 4. OPTIMAL POISONING POINT & THE DIRECT METHOD 32

1

n

n∑
i=1

xTi (
δw
δxc

) +
1

n
(
δb

δxc
)T)) = − 1

n
wT (4.12)

With the equations 4.11 and 4.12, a similar linear system as in Biggio’s work can be
formed like so: [

Σ µ
µT 1

n

][δw
δxc

δb
δxc

T

]
= − 1

n

[
M
wT

]
(4.13)

where

Σ =
1

n

n∑
i=1

xixTi

µ =
1

n

n∑
i=1

xi

M = xcwT + (wTx + b− yc)Id×d
where I is the Identity Matrix.

Solving the system 4.20 allows us to obtain δw
δxc

and δb
δxc

which then can be
substitute into the equation 4.4 to solve for the attacker’s optimisation problem
gradient δCval

δxc
.

4.2.2 Logistic Regression Classifier

Similar approach can be used with Logistic Regression. The only differences are the
loss function l and the activation function f(x):

f(x,w) = σ(wTx + b)

and
l(f(x,w), y) = y log(f(x,w) + (1− y) log(1− f(x))

Thus,

Cval =
1

m

m∑
j=1

yjlog(σ(wT x̂j + b)) + (1− yj)log(1− σ(wT x̂j + b)) (4.14)

δCval
δxc

=
1

m

m∑
j=1

(σ(wtx̂j + b)− yi)(x̂Tj
δw
δxc

+
δb

δxc
) (4.15)

KKT condition:

δCT
tr

δxc
=

1

n

n∑
i=1

(σ(wtxj + b)− yi)xi = 0d (4.16)

δCT
tr

δb
=

1

n

n∑
i=1

(σ(wtxj + b)− yi) = 0 (4.17)

The KKT condition of the inner optimisation problem remains satisfied with
small perturbation of xc:

δ

δxc
(
δCT

tr

δw
) = 0d×d (4.18)

CHAPTER 4. OPTIMAL POISONING POINT & THE DIRECT METHOD 33

δ

δxc
(
δCtr
δb

) = 0d (4.19)

By differentiating δCT
tr

δw and δCtr

δb
with respect to xc and letting them equal to zero

as we have done for Adaline, we can obtain a similar linear system:[
Σ µ
µT α

][δw
δxc

δb
δxc

T

]
= −

[
M
p

]
(4.20)

where

Σ =
1

n

n∑
i=1

((σ(wTxi + b)(1− σ(wTxi + b)))xixTi

µ =
1

n

n∑
i=1

((σ(wTxi + b)(1− σ(wTxi + b)))xi

α =
1

n

n∑
i=1

((σ(wTxi + b)(1− σ(wTxi + b)))

M =
1

n
(σ(wTxc + b)− yc)Id×d +

1

n
(σ(wTxc + b)(1− σ(wTxc + b)))xcwT

p =
1

n
(σ(wTxc + b)(1− σ(wTxc + b)))xcwT

where I is the Identity Matrix.

4.2.3 Method’s Limitation

This method of finding the gradient will suffer a scalability problems with the num-
bers of features. This is a result of solving for δw

δxc
and δb

δxc
in equation 2.15 by

computing the matrix inverse as shown.[
δw
δxc

δb
δxc

T

]
= − 1

n

[
Σ µ
µT 1

]−1 [
M
wT

]
(4.21)

The complexity for computing the matrix inverse is known to be O(di3) where
di is the dimension of the square matrix, in this case it is the number of the features
in a data point plus one for the bias term, i.e. di = d+ 1.

To overcome this problem, Conjugate Gradient method could be used to solve
the linear system. We will see this in the next chapter.

Chapter 5

Poisoning with Conjugate Gradient
Method

5.1 Conjugate Gradient Optimisation
Conjugate Gradient [18] is an iterative method that solves a system of linear equation
Ax = b without calculating the matrix inverse A−1, avoiding its O(di3) complex-
ity, thus improving the speed performance of the optimisation problem drastically.
By avoiding the computation of the matrix inverse, the conjugate-gradient method
is more stable and more efficient than the standard method. The complexity of
Conjugate Gradient algorithm is equals to that of Ax.

5.1.1 Conjugate Gradient Algorithm

Algorithm 1 Conjugate Gradient Algorithm [43]
Require: matrix A, and vector b
1: x0 ← 0
2: r0 ← b−Ax0

3: k ← 0
4: while true do
5: αk ← (rTk rk)/(p

T
kApk)

6: xk+1 ← xk + αkpk
7: rk+1 ← rk + αkApk
8: if rk+1 is sufficiently small then
9: exit loop

10: end
11: βk ← (rTk+1rk+1)/(rTk rk)
12: pk+1 ← rk+1 + βkpk
13: k ← k + 1

14: end
15: return xk+1

With this method, one could solve the linear system for δw
δxc

and δb
δxc

in equation
2.15 without having to compute the matrix inverse. Notice that the equation 2.15

34

CHAPTER 5. POISONING WITH CONJUGATE GRADIENT METHOD 35

is not a matrix-vector multiplication as proposed in the Conjugate Gradient algo-
rithm, instead it is a matrix-matrix multiplication. However, this is not a problem as
solving a matrix-matrix multiplication system is the same as solving matrix-vector
for each column of the second matrix. Recall that the system in equation 2.15 has
the following dimensions A(d+1)×(d+1) ∗B(d+1)×d = C(d+1)×d where d is the number
of features in a data point. This means that solving for the matrix B would require
applying the conjugate gradient algorithm d times.

To solve the attacker’s optimisation problem with gradient descent the gradient
of the outer optimisation problem could then be computed directly by substituting
δw
δxc

and δb
δxc

into the equation of this form

δCval
δxc

=
δCval
δw

· δw
δxc

where δCval

δw is directly differentiated. Examples of such in equations are equation
2.12, 4.4, and 4.15

5.1.2 Improved Method

As mentioned in the previous section, using conjugate gradient to solve the matrix-
matrix multiplication system A(d+1)×(d+1) ∗ B(d+1)×d = C(d+1)×d would result in
having to perform conjugate gradient d times. To solve this more efficiently, I
studied the work by Andrew Ng et al. [9] and was able to rearrange the problem
to reduce the number of times conjugate gradient is performed – in order to find
δw
δxc

and δb
δxc

, i.e. B(n+1)×(n) – from d-times to only one time. This is a significant
improvement in performance as the number of features (d) could be very large in
some datasets. A data point in MNIST dataset, for example, has 784 features.

This improved method makes use of the Implicit Function Theorem [22] and the
Finite Difference Method [33].

Finite Difference

The finite difference trick is also described in Andrew Ng’s work [9]. It allows us to
estimate the product of a second-order derivative and a vector efficiently, especially
in the high-dimensional problem where we look for the second-order derivative with
respect to vectors. The equation for finite differencing is as follow:

δ

δx
(
δ

δy
f(x)) · v = lim

r→0

δ
δy
f(x + rv)− δ

δy
f(x)

r
(5.1)

where v can be any arbitrary vector. It is worth noticing the resemblance of this
equation with the first principle of differentiation.

Implicit Function

The implicit function theorem allows us to differentiate a function g(x) with respect
to a variable y that is not explicitly defined in the function, by differentiating another
function f(g, x) provided that f is a continuously differentiable function.

CHAPTER 5. POISONING WITH CONJUGATE GRADIENT METHOD 36

In our case, we would like to know the derivative δw
δxc

, and since w = argmin
w

L(D̂∪

{xc}), w is not explicitly defined by xc but we know that it depends on it. Therefore
we can apply the implicit function theorem we would give us the following equation:

δw
δxc

= (
δf

δw
)−1 · δf

δxc
(5.2)

where we let f(w,xc) = δ
δwCtr(w,xc), and we know that f is a continuously differ-

entiable function because from the KKT condition we know that f is smooth.

Method’s Proof

This subsection covers the proof of procedure taken to compute the attacker’s opti-
misation gradient δCval

δxc
with the new improved method.

1. The aim is to find δCval

δxc
. Performing the chain rule, we would get the formula

below:

δCval
δxc

= ((
δCval
δw

)T · δw
δxc

)T

2. Re-arrange the δCval

δxc
equation to get:

δCval
δxc

= (
δw
δxc

)T · δCval
δw

(5.3)

3. By KKT-condition of the inner optimisation problem, and implicit function:
δCval
δxc

= −(
δ2Ctr
δxcδw

)(
δ2Ctr
δw2

)−1 · δCval
δw

(5.4)

4. Taking the second and third term of the right hand side of the equation 5.4
let that equals to vector z:

δCval
δxc

= −(
δ2Ctr
δxcδw

)z (5.5)

and
z = (

δ2Ctr
δw2

)−1 · δCval
δw

(5.6)

The equation could be re-arrange in the form Az = b:

(
δ2Ctr
δw2

)z =
δCval
δw

where z can be solved using the conjugate gradient algorithm. It is worth
pointing out that, within this conjugate gradient computation, the matrix-
vector product (δ

2Ctr

δw2)z has to be computed multiple times to find the ‘right’
value of z. This product can be computed with the finite difference method.

5. Having obtained the vector z in the previous step, we can now solve the equa-
tion 5.5 for δCval

δxc
using again the finite difference 9.2 method:

δCval
δxc

= − δ2Ctr
δxcδw

· z = −
δCtr

δxc
(w + rz)− δCtr

δxc
(w)

r
(5.7)

taking r is a very small scalar quantity.

CHAPTER 5. POISONING WITH CONJUGATE GRADIENT METHOD 37

5.2 Experiments and Evaluation

5.2.1 Overall Algorithm

This sub-section summarises the overall conjugate-gradient-optimised algorithm used
to solve the attacker’s optimisation problem, i.e. to generate the optimal attacking
point to poison a classifier.

Algorithm 2 Finding the Set of Poisoning Points (Greedy)
Require: training datasetD, validation dataset D̂, size of required poisoning points

set np, learning rate α, training (updating) iteration iter
1: P ← {}
2: for j = 1, ..., np do
3: xc ← chooseInitialisePoint(D)
4: for i = 1, ..., iter do
5: w ← trainClassifier({D ∪ xc})
6: g ← (δCval)/(δxc) . use findGradient
7: xc ← xc + αg
8: xc ← Πx(xc) . where Πx(·) is the projection operator
9: . projecting xc onto the feasible domain

10: end
11: D ← {D ∪ xc}
12: Pj ← {Pj ∪ xc}
13: end
14: return P

Algorithm 3 Finding the Gradient for the Poisoning Point: findGradient
Require: weight w, poisoning point xc, training dataset D, validation dataset D̂
1: A← (δ2Ctr)/(δw

2)
2: b← (δCval)(δw)
3: z ← conjugateGradient(A, b)
4: g ← −((δ2Ctr)/(δxcδw))z
5: return g

Algorithm 4 Initialising Poisoning Point
Require: training dataset D, label of poisoning point yc
1: w ← trainClassifier(D)
2: x̄← set of x ∈ D where yj 6= yc
3: xc0 ← maxx̄{L(w, x̄, yc)} . L is the classifier’s loss function
4: return xc0

5.2.2 Correctness Evaluation

The Synthetic Dataset is small and only has 2 features. These two characteristics
allowed me to generate the poisoning points quickly to test and evaluate whether
my implementation of the bi-level optimisation problem solver was correct.

CHAPTER 5. POISONING WITH CONJUGATE GRADIENT METHOD 38

To carry out this correctness evaluation, I plotted a colour map like shown in
figure 5.1 to visualise the direction that the poisoning point is updated with gradient
descent, against the cost of the bi-level optimisation problem represented by the
colour. As observed, the poisoning point was updated towards the area with higher
cost for the classifier and ended up at the point which has highest cost within the
feasible constraints (represented by the rectangle). This shows that the implemented
poisoning algorithm is correct. Figure 5.2 is plotted to show that as the cost is
maximised in figure 5.1, the classification rate of the classifier is reduced. Notice
that such colour maps could only be generated for problems which use 2-featured
dataset such as the Synthetic Dataset.

It is clear from the colour map that the poisoning point was updated towards
the area with the highest cost within the limited constraints, which proved the
correctness of my bi-level optimisation solver.

5.2.3 Classifier Error Experiment

We can now carry out experiments to examine how well different machine learning
classifiers perform under the poisoning attack. I used the Spambase dataset for this
experiment because it has a reasonable number of features of 54 – large enough for
the problem to not be too simple and small enough that the algorithm to not take
too long to run.

As mentioned in section 3.4.2, different learning rates and number of iterations
are required to train each classifier in order for them to work well, and this is the
same for the update of the poisoning points. Determining the suitable learning rates
and iterations by looking at the cost graphs as mentioned in section 3.4.2, I arrived
at the values shown below for this experiment.

Classifier Iter LR Inner Iter Inner LR

ADALINE 2000 0.01 2000 0.1
Logistic Regression 1000 0.1 1500 0.5

Table 5.1: Table showing the hyper-parameters used in the experiment which results
shown in figure 5.5, where Iter and LR are the number of iterations and value of
learning rate used in gradient descent of the outer optimisation problem i.e. to
update the optimal poisoning point, and Inner Iter and Inner LR are the same
values used for the inner optimisation problem i.e. to find the optimal weights of
each classifier to best classify a given training dataset

False Positive and False Negative Rates

In this experiment I had only generated the poisoning points with positive class, and
the reason for this was discussed in section 4.1.2. One reasonable way to evaluate
the performance of this seemingly targeted attack is to look at the false positive and
false negative rates i.e. the rate which the negative class samples are mis-classified
as positive class (ham as spam) and the rate which the positive class samples are
mis-classified (spam as ham), respectively. Intuitively, we would expect the false
positive rate to increase and the false negative rate to stay constant because of the
nature of an attack targeting the positive class. However, this was not the case.

CHAPTER 5. POISONING WITH CONJUGATE GRADIENT METHOD 39

Figure 5.1: Colour map showing the direction of a poisoning as
it is updated from the initial point –circle– to the final point –
star, where colours represent the cost of training the ADALINE
classifier with respect to adding different values poisoning point to
the training dataset

Figure 5.2: Colour map showing the direction of a poisoning as
it is updated from the initial point –circle– to the final point –
star, where colours represent the classification rate of the ADALINE
classifier with respect to adding different values poisoning point to
the training dataset

Looking at the false positive and false negative rates of both classifiers (ADA-
LINE and Logistic Regression) under the poisoning attack in figure 5.3 and 5.4, we

CHAPTER 5. POISONING WITH CONJUGATE GRADIENT METHOD 40

would see that the false negative rate – although by a smaller amount compared to
the false positive rate – had also risen noticeably.

This result suggests that the attack carried out was not a purely a targeted
attack. By taking a closer look at the bi-level optimisation problem we solved for
this experiment, we would be able to discuss the reason behind this behaviour of
the increase in the false negative rate.

maximise
xc∈D

Cval(w, b)

subject to w, b = argmin
w,b

Ctr(D,w, b)
(5.8)

With this bi-level optimisation problem, although the attacker only has the ca-
pability to inject a poisoning sample xc of a positive class, this will not affect the
outer optimisation problem which tries to maximise the damage to the classifier
indiscriminately i.e. this outer optimisation problem will try to increase the over-
all mis-classification rate not the mis-classification rate of a certain targeted class.
Knowing this, it would be reasonable to evaluate the performance of the attack using
the overall classification error.

Figure 5.3:

Classification Error

As seen in figure 5.5, I had successfully poisoned the two classifiers. With the
proportion of poisoning points of about 4% I had increased the classification error
by about 10%. With 20% poisoning points in the training set, ADALINE and
Logistic Regression classifiers had 31.8% and 28.2% respectively. Note that with

CHAPTER 5. POISONING WITH CONJUGATE GRADIENT METHOD 41

Figure 5.4:

classification error of 50% a classifier is as good as classifying a sample at random.
Notice that with no poisoning point, Logistic Regression had performed better with
the classification error of 11.48% compared to ADALINE with classification error
of 15.19%. This shows that the Logistic Regression is a superior classifier for the
Spambase dataset classification problem. However, when the poisoning points are
added into the training dataset, both classifiers’ classification error increase equally,
suggesting that both classifiers suffer equally from the poisoning attack.

CHAPTER 5. POISONING WITH CONJUGATE GRADIENT METHOD 42

Figure 5.5: Graphs of Error Rate of ADALINE and Logistic Regression Classifiers
after being poisoned

Chapter 6

Poisoning with Back-Gradient
Method

6.1 Back-Gradient Optimisation
The work of L. Muñoz-González [24], shows that we can solve the attacker’s bi-level
optimisation problem with another method called the Back-Gradient Descent. The
main advantage of this method is that, unlike the other methods we have seen so far,
it does not require the KKT stationary condition of the inner optimisation problem
to be met, i.e. when solving for the optimal weight w, the gradient δCtr

δw does not
have to be zero. This has enabled us to solve for the bi-level optimisation problem
without needing to fully solve the inner-optimisation problem. In our case, we have
two direct benefits from this characteristic.

1. Faster (Better Scalability): with back-gradient method, to get the weights
w we want, we would no longer have to train the learning system with the
full number of iterations. This would mean solving the bi-level optimisation
problem more efficiently.

2. Enable Attacks on Neural-Network Systems: in Neural-Network learn-
ing systems, the KKT-condition stability condition does not have to be satis-
fied. The previous methods that have taken advantage of the KKT-condition
being satisfied i.e. δCtr

δw = 0, would not be able to solve for the Neural-Network
poisoning points. This is, however, not the case for the back-gradient method
as it does not require the KKT-condition to be satisfied. Therefore, back-
gradient method allows us to evaluate the effects of the poisoning attack on
Neural-Network classifiers.

6.1.1 Algorithm

See algorithm 5.

43

CHAPTER 6. POISONING WITH BACK-GRADIENT METHOD 44

Algorithm 5 Back-Gradient Descent
Require: weight of a system trained after T iterations wT , learning rate α, Lost

(cost) function of the learning system L(w, x, y), training dataset D, validation
dataset D̂

1: dxc ← 0 , dw ← (δCval)/(δw)
2: for t = T, ..., 1 do
3: dxc ⇐ dxc − α dw((δ2Ctr)/(δw δxc))
4: dw ⇐ dw − α dw((δ2Ctr)/(δw δw))
5: gt−1 = (δCtr)/(δwt)
6: wt−1 = wt + α gt−1

7: end
8: return dxc . dxc is the gradient of Cval w.r.t. xc

6.2 Experiments and Evaluation

6.2.1 Time Experiment

Test 1 - Effect of Different Classifiers

Figures 6.1 - 6.3 show the time different for each classifier – ADALINE and Logistic
Regression – to compute the outer-optimisation problem gradient δCval

δxc
for each

method – conjugate and back gradient – with each of the 3 datasets.

Observations:

1. Differences of ADALINE and Logistic Regression Classifier do not effect time,
i.e. whether we use the ADALINE or Logistic Regression classifiers, the time
taken for the gradient computation is similar.

2. As training sample size increases, the time taken for both conjugate-gradient
and back-gradient algorithm increases. However, the back-gradient algorithm
increases at a much lower rate i.e. having a better scalability.

3. Different datasets causes dramatic time differences. The time taken to com-
pute the gradient with any of the two algorithms range from approximately
0.01-0.17, 0.2-4.3, and 0.2-14 seconds for the Spambase, Ransomeware, and
MNIST datasets respectively.

4. The back-gradient algorithm performs better for the two larger-feature datasets
Ransomware and MNIST while performing worse with the Spambase dataset
which has smaller feature size.

Test 2 - Effect of Training with Different Feature Size

The observation (3) from Test 1 (above) suggests that the number of features in the
dataset contribute greatly to how much time each algorithm takes to perform the
gradient computation. Knowing this, I have plotted the graph in figure 6.4-6.5 to
show the scalability of each algorithm with respect to the number of features in the
problem it is trying to solve.

CHAPTER 6. POISONING WITH BACK-GRADIENT METHOD 45

Figure 6.1: Figure 6.2:

Figure 6.3:

Here we see that the back-gradient algorithm is indeed slightly slower than the
conjugate-gradient algorithm when the problem it is solving has small number of
features. The graph in figure 6.4-6.5 shows that, as the number of feature grows, the
time taken for the back-gradient algorithm to solve for the gradient increases linearly
while that of the conjugate-gradient algorithm increases more than linearly. The
graph suggests that the back-gradient algorithm performs better when the feature
size is higher than approximately 100 features. However, this conclusion cannot be
made with the current information as the experiments were carried out with only 3
different size of features; 54, 400, and 784. The lines in between each point are merely
results of linear interpolation. The exact behaviour of how each algorithm scales
cannot be determined by the shape of the graph by the same reason. Nevertheless,
at this point, we can conclude that:

1. the back-gradient algorithm scales better with respect to the number of fea-
tures in the problem it is solving,

CHAPTER 6. POISONING WITH BACK-GRADIENT METHOD 46

2. the back-gradient algorithm starts performing faster than the conjugate gradi-
ent when the feature size of the problem is between 54 and 400 features, where
it is very probable that this value is within the range 54-100.

Figure 6.4: Figure 6.5:

Test 3 - Effect of Different Sizes of Training Data

Figure 6.6-6.7 show the scalability of each method – conjugate-gradient and back-
gradient – as the number of training samples and the number of features in the
problem increases.

6.2.2 Classification Error

Linear Classifiers

For ADALINE and Logistic Regression, my expectation was that the classification
errors would be similar for both back-gradient and conjugate-gradient methods. This
was because the two algorithm are eventually solving the same problem mathemat-
ically.

Graphs in figure 6.8 and 6.9 shows that the results are as expected. I believe
that the reason why the results are not identical despite the two algorithms trying
to solve the same equation is because of the effect of the parameters used such as
the learning rates and iteration numbers as described in earlier in section 3.4.2.

Neural-Network Classifier

Figure 6.10 shows the multi-layered perceptrons – a neural-network learning system
– being poisoned by the back-gradient method. From the graph we can observe a
rise in the classification error of about 15% in each problem.

CHAPTER 6. POISONING WITH BACK-GRADIENT METHOD 47

Figure 6.6:

Figure 6.7:

CHAPTER 6. POISONING WITH BACK-GRADIENT METHOD 48

Figure 6.8: with the Spambase
Dataset

Figure 6.9: with the Spambase
Dataset

Figure 6.10:

Chapter 7

The Coordinated Attack

In the real-world settings, an attacker would have access to a proportion of the
training dataset. This means that an attacker would have to generate a number of
poisoning samples to include them into the training dataset. So far, we have only
been using a greedy method to generate multiple poisoning point – algorithm 2. As
shown in algorithm 2, the attacker would solve for one optimal poisoning point, add
it into the training dataset, then use the new training set to solve for a new optimal
poisoning point.

Although this greedy method was shown to have successfully carried out the
attack to the three machine learning classifiers – ADALINE, Logistic Regression,
and Multi-Layered Perceptron – it was plausible that a non-greedy method would
be able to work better i.e. it would be able to generate a higher classification error.
This section will discuss about this hypothesis, and will explore the coordinated
attack strategy – a non-greedy attack method.

7.1 The Algorithm

Algorithm 6 Finding the Set of Poisoning Points (Coordinate Method)
Require: training datasetD, validation dataset D̂, size of required poisoning points

set np, learning rate α, training (updating) iteration iter
1: P ← chooseMultipleInitialisePoint(D,np)
2: for i = 1, ..., iter do
3: w ← trainClassifier({D ∪ P})
4: for j = 1, ..., np do
5: xc ← Pj
6: g ← (δCval)/(δxc) . use findGradient
7: xc ← xc + αg
8: xc ← Πx(xc) . where Πx(·) is the projection operator
9: . projecting xc onto the feasible domain

10: Pj ← xc
11: end
12: end
13: return P

49

CHAPTER 7. THE COORDINATED ATTACK 50

Algorithm 7 chooseMultipleInitialisePoint

Require: training dataset D, label of poisoning point yc, number of poisoning
points np

1: w ← trainClassifier(D)
2: x̄← set of x ∈ D where yj 6= yc
3: x̄s ← sort {x̄} in descending order of L(w, x̄, yc)
4: return first npth elements of x̄s

Notice that instead of computing the gradient δCval

δxc
for one point in each iteration

as before, this algorithm calculates q gradients each of the q poisoning points in one
iteration. One side-effect of this is a faster performance as the same weight w is
used to compute multiple gradients.

7.2 Theory behind the algorithm
The explanation of why this algorithm could produce better results than the greedy
algorithm is the idea that many poisoning points could work together to achieve a
common goal. This fits better to the problem of injecting a set of poisoning points to
poison a classifier. Looking at the optimisation problem, the greedy method would
be solving the following problem q number of times:

maximise
xc∈D

Cval(w, b) (7.1)

while the coordinated method would be solving the following problem once:

maximise
{xc}qj=1∈D

Cval(w, b) (7.2)

As seen in the equations, when trying to find the optimal set of poisoning points,
the greedy method is not strictly solving for that goal. Instead, it only tries to find
a single poisoning point that maximises the cost Cval. The coordinated method,
on the other hand, tries to look for the q poisoning points that maximises Cval,
conforming to the goal of the attacker.

From this, it is clear that the two methods would produce a different sets of
poisoning points. Thus, it is worth comparing the effects of each method in poisoning
the classifiers.

7.3 Experiments and Evaluation
This section shows the experiment carried out to show the classification errors of
different classifiers against a different numbers of poisoning points generated by the
two algorithms – greedy and coordinate.

7.3.1 Results - Spambase

The result for this experiment in the spam email classification problem is shown in
figure 7.1-7.3.

CHAPTER 7. THE COORDINATED ATTACK 51

Figure 7.1: Figure 7.2:

Figure 7.3:

7.3.2 Results - Ransomware

The result for this experiment in the ransomware classification problem is shown in
figure 7.4-7.6.

7.3.3 Results - MNIST

The result for this experiment in the hand-written digits classification problem is
shown in figure 7.7-7.9.

7.3.4 Result Discussion

As shown, the results we observed did not agree with the hypothesis we made.
There is no clear sign that the coordinate method outperform the greedy method.
Unlike the other results, results for the MNIST dataset in figures 7.7 and 7.8 show

CHAPTER 7. THE COORDINATED ATTACK 52

Figure 7.4: Figure 7.5:

Figure 7.6:

that the performance of the coordinate method is on par with the greedy method.
This suggests that the parameters for the coordinate method might have been chosen
poorly for the other experiments causing it to perform worse than the greedy method
in those experiments. As discussed in section 3.4.2, choosing the optimal parameters
is a difficult problem.

It is also possible that the algorithm 6 used in the experiment does not esti-
mate the solution for the optimisation problem described in equation 7.2 well. One
example of a minor flaw in the algorithm is that at each iteration, the algorithm
solves for δCval

δxi
c

using the weight w found by training the machine learning classifier
with {D∪{xc}qi=1} of the previous iteration. This could be improved by re-training
the classifier with the new xc found within one iteration. Thereby, modifying the
algorithm to be the algorithm 8.

The extent of how much this moderation in the algorithm would affect the per-
formance could be explored in the future. For the time being, we cannot conclude

CHAPTER 7. THE COORDINATED ATTACK 53

Figure 7.7: Figure 7.8:

Figure 7.9:

that the coordinate method is superior to the greedy one.

CHAPTER 7. THE COORDINATED ATTACK 54

Algorithm 8 Possible Improved Coordinated Method
Require: training datasetD, validation dataset D̂, size of required poisoning points

set np, learning rate α, training (updating) iteration iter
1: P ← chooseMultipleInitialisePoint(D,np)
2: for i = 1, ..., iter do
3: for j = 1, ..., np do
4: w ← trainClassifier({D ∪ P})
5: xc ← Pj
6: g ← (δCval)/(δxc) . use findGradient
7: xc ← xc + αg
8: xc ← Πx(xc) . where Πx(·) is the projection operator
9: . projecting xc onto the feasible domain

10: Pj ← xc
11: end
12: end
13: return P

Chapter 8

Poisoning Multi-Class Classifier

8.1 Multi-class Classifier Poisoning
Examining the effect of the poisoning attack on a multi-class classification problem
has not been seen before in the literature. However, there is no reason to believe
that the same methods we have seen before such as the conjugate-gradient or back-
gradient methods cannot be applied to poison a multi-class classifier. It is therefore
interesting to examine the performance of our poisoning attack on such classifier,
making a contribution with respect to the state-of-the-art.

In this work, we will investigate the effect of the greedy-back-gradient poisoning
attack against a multi-class logistic regression classifier. Since the classifier now
have to deal with multiple labels for each dataset sample, the cost function and the
prediction function of the binary-class logistic regression classifier has to be modified
[13].

Cost Function

The binary-class cost function of the logistic regression classifier will not work for
the multi-class case. Instead, the multi-class Cross-Entropy Function is used, as it
support multiple labels i.e. label vector y.

Cost(w) =
n∑
i=1

C∑
k=1

yk log(Pr(G(xi) = k|x = xi)) (8.1)

and

Pr(G(x) = k|x = xi) =
ew

T
k xi∑C

k=1 e
wT

k xi
(8.2)

where C is the total number of classes, and G(xi) is the prediction, and thus
Pr(G(x) = k|x = xi) would translate to “the probability that the classifier will
classify the sample x as class k ”. This is also known as the softmax function.

Prediction Function

In the binary-class case, the logistic regression would have a scalar output value
o = wTx and the prediction function would be the sigmoid function which would,
in practice, result in 0 or 1. However, in the multi-class case, the output values
would be a vector o where each dimension corresponds to each class. For class k,

55

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 56

ok = Pr(G(x) = k|x = xi). With output being a vector, our classifier would predict
the class of x by choosing the value k that corresponds to the highest value in the
output vector o.

G(x) = argmax
k

ok (8.3)

Finding Optimal Weights

The weights of the multi-class logistic regression system is optimised using the stan-
dard gradient descent technique, similar to the case of the binary-class logistic re-
gression.

8.2 Experiments and Evaluation
This section will show the results of the experiments that I have run to evaluate the
effects of the poisoning attack on a multi-class classifier. The multi-class Logistic
Regression was used for all experiments in this section. It was tested against, first the
Matlab IRIS dataset, then the multi-class MNIST dataset (1000 samples training
set, 1000 samples in validation set, and 8000 samples in the test set). Since the
number of the training set increased to 1000 – from 100 in all previous experiments
– in each of our 10 dataset split described in 9.2, and due to the constraints in
time and computational power, I decided to stop the experiment after generating 60
poisoning points in each split, creating the set of poisoning points up to about 6%.
The IRIS dataset was used to test if the code was running correctly as it is smaller
in the number of features and training size, and thus it is much faster to train with.
In this section we will not show the result of the IRIS dataset, but will go straight
to examining the multi-class MNIST problem. In the following experiments, since
we cannot conclude that the superiority of the coordinate method, I have continued
using the greedy method to generate the poisoning points.

Targeted Attack VS Indiscriminate Attack

The experiments carried out will examine two different type of attacks: targeted
and indiscriminate. The main difference in these two attack strategies are:

• Targeted attack chooses the initial value of the poisoning point by randomly
selecting the value of a training sample with a given label, while the indiscrim-
inate attack select a random value of a training sample in the whole training
set. In our experiments, I chose the initial label as 3.

• Targeted attack generates poisoning points and label it with the same targeted
label, while the indiscriminate attack calculates for the label that generates
highest cost with respect to the chosen initial poisoning point value. In our
experiments, I chose the targeted label as 8.

See Algorithms 9 and 10.

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 57

Algorithm 9 Initialising Multi-class Poisoning Point (Targeted)
Require: training dataset D, initial label yi, target label yt
1: w ← trainClassifier(D)
2: x̄← set of x ∈ D where its corresponding y = yi
3: xc0 ← selectRandom(x̄)
4: yc0 ← yt
5: return xc0, yc0

Algorithm 10 Initialising Multi-class Poisoning Point (Indiscriminate)
Require: training dataset D, set of all class labels C, cost function L(w, x, y)
1: xc0 ← selectRandom(D)
2: yc0 ← argMax(L(w, x, y), C) . argMax outputs label y ∈ C that
3: . gives highest cost L(w, xc0, y)
4: return xc0, yc0

8.2.1 Classification Error

To evaluate the performance of the attack on the classifier, we will begin by looking
at the classification error rate of the classifier as the number of poisoning points
grows.

Figure 8.1: Figure 8.2:

As shown in figures 8.1 and 8.2, poisoning of the multi-class Logistic Regression
classifier for MNIST dataset is promising in both targeted and indiscriminate case.
The graphs shown constant increase in classification error rate as the number of
the poisoning points increases. We can observe approximately 3% and 9% increase
in the targeted and indiscriminate case respectively after 6% of training data have
been poisoned.

To further examine the effect of each attack on the classification problem, we can
compute the classification rate of each class from the confusion matrices. Figures
8.3 and 8.4 show classification rates of each class while being poisoned. As we might
have expected, the indiscriminate attack raises the classification error of all classes,

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 58

while the targeted attack only raise the classification error of certain classes i.e. 8
and 3. However, it is interesting to observe that for both attack strategies, class
5 is more prone to error whilst class 1 is less prone to error to the other classes.
Increases in classification rates of class other than the two targeted classes (3 and
8) suggest the similarities in the features of those classes to that of class 3 and 8.

8.2.2 Confusion Matrices

For multi-class classifier problems, it is worth looking at the confusion matrix to
examine further how the classifier classify samples from each class. Figures 8.5 -8.7
and 8.11 - 8.14 shows the extended version of the confusion matrices we got from
this experiment. In this matrix we have extended the original confusion matrix
by dividing each cell by the total number of samples belonging to its actual class
then times 100. Values in this matrix will show the rate(%) which a sample of an
actual class is classified as a predicted class, representing classification rates for the
diagonal cells and mis-classification rates for the non-diagonal cells.

For the indiscriminate case, figure 8.13 shows no interesting feature except that
all the diagonal cells have been decreased i.e. classification rate of all classes are
reduced. The increase in classification error – diagonal cells – seems to be at random.
On the other hand, looking the similar matrix for the targeted case in figure 8.9, we
can clearly see that the increase in classification errors relating to class 8 – yellow
stripes across row 8 and column 8. This is the result of all other classes being mis-
classified as class 8, and the actual class 8 being mis-classified as other classes. We
can also observe the fall of classification rates in 3 classes represented by the blue
diagonal cells for class 3, 8 and 5 in descending order.

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 59

Figure 8.3:

Figure 8.4:

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 60

Figure 8.5: A colourmap representation of the confusion matrix of the multi-class
Logistic Regression classifier trained with a clean dataset. The colours represent the
classification and mis-classification rate (%) i.e. confusion matrix cell value divided
by total number of sample from the corresponding actual class.

Figure 8.6: Confusion matrix of multi-class Logistic Regression classifier when
trained with a clean dataset. Each value is the classification or mis-classification
rate (%) i.e. confusion matrix cell value divided by total number of sample from the
corresponding actual class, and the row and column represents the predicted class
and actual class respectively.

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 61

Figure 8.7: A colourmap representing the confusion matrix of multi-class Logistic
Regression classifier trained with a 6% poisoned dataset targeting class 3, initialising
poisoning points from class 8. The colours represent the classification and mis-
classification rate (%) i.e. confusion matrix cell value divided by total number of
sample from the corresponding actual class.

Figure 8.8: Values of the confusion matrix shown in figure 8.7. Each value is the
classification or mis-classification rate (%) i.e. confusion matrix cell value divided
by total number of sample from the corresponding actual class, and the row and
column represents the predicted class and actual class respectively.

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 62

Figure 8.9: This matrix is the difference in the classification and mis-classification
rates after the classifier has been poisoned with the targeted attack i.e. the difference
between the figure 8.7 and 8.5

Figure 8.10: Values of the confusion matrix shown in figure 8.9. Each value is the
classification or mis-classification rate (%) i.e. confusion matrix cell value divided
by total number of sample from the corresponding actual class, and the row and
column represents the predicted class and actual class respectively.

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 63

Figure 8.11: A colourmap representing the confusion matrix of multi-class Logistic
Regression classifier trained with a 6% poisoned dataset where the poisoning points
are made for the indiscriminate attack. The colours represent the classification and
mis-classification rate (%) i.e. confusion matrix cell value divided by total number
of sample from the corresponding actual class.

Figure 8.12: Values of the confusion matrix shown in figure 8.11. Each value is the
classification or mis-classification rate (%) i.e. confusion matrix cell value divided
by total number of sample from the corresponding actual class, and the row and
column represents the predicted class and actual class respectively.

CHAPTER 8. POISONING MULTI-CLASS CLASSIFIER 64

Figure 8.13: This matrix is the difference in the classification and mis-classification
rates after the classifier has been poisoned with the indiscriminate attack i.e. the
difference between the figure 8.11 and 8.5

Figure 8.14: Values of the confusion matrix shown in figure 8.13. Each value is the
classification or mis-classification rate (%) i.e. confusion matrix cell value divided
by total number of sample from the corresponding actual class, and the row and
column represents the predicted class and actual class respectively.

Chapter 9

Transferability

9.1 Transferability of Attacks
So far I have only tried to poison my local classifier systems. Knowing exactly
the code of those classifiers enabled me to generate the poisoning points that are
specifically targeting those classifier systems. Although this is a good way to evaluate
test robustness of each classifier algorithm, it is unlikely that a real-world attacker
would know the exact way that his targeted classifier is coded. For example, he
might not know the exact learning algorithm of the system, or how the learning
process of the system is optimised.

In the real-world, the attacker would have some knowledge about the system he
is targeting. Thus he could model his own version of the targeted classifier system –
similar to what I have done with ADALINE and Logistic Regression – and use the
model system to generate the poisoning points. It is, therefore, interesting to observe
how the poisoning points generated by our methods perform against classifiers made
by somebody else, i.e. investigating the transferability of the attacks.

In this experiment I have 9 sets of the poisoning points generated with the greedy
algorithm, 3 binary-class datasets (MNIST, Ransomware, and Spambase), and 3
model classifier (ADALINE, Logistic Regression, and Multi-Layered Perceptrons).
For example, the ‘Spambase ADALINE poison’ is a poisoning point generated to
poison our ADALINE classifier for the Spambase problem. With these poisoning
points, I have targeted two following classifiers implemented by MathWorks:

1. The glmfit function - A logistic regression classifier from the Matlab library.
This experiment will show that even though the target system matches our
model system (logistic regression), differences their implementation will cause
the result of the poisoning attack to be different.

2. The svmtrain function - An SVM classifier from the Matlab library. With
this experiment, we will observe the effect of poisoning points generated based
on a model system that does not match the target system.

9.2 Experiments and Evaluation
In order to carry out the experiments described in the previous section (9.1) in a
way such that the results can be compared with all our previous results in a fair way,

65

CHAPTER 9. TRANSFERABILITY 66

I have used the same 10-Splits method as described in section 3.2.2, and the same
real 10-Splits datasets as used in the experiments in all previous chapters. Each
split of the training set is injected with poisoning points generate for that particular
training set split, in other words, the 10 different dataset splits are injected with
different poisoning points.

9.2.1 Poisoning Matlab’s Logistic Regression Classifier

Figures 9.1-9.3 shows the result of using the different sets of poisoning points to
poison the Logistic Regression classifier from Matlab library. From the graph, it
is clear that the poisoning points generated by all 3 model systems can be used
to poison glmfit classifier system, as seen in the increase in classification error
rates. It is interesting to see that we can increase the classification error for the
MNIST problem by as much as 30%. However, for both MNIST and Ransomware
problem, the graphs are not smooth. This suggests that the classifier is not stable
for the two datasets. The further investigation on this requires studying the glmfit
implementation which could be done in the future.

9.2.2 Poisoning Matlab’s SVM classifier

Similar to the experiment on Matlab’s Logistic Regression classifier, Figures 9.4-
9.6 shows the result of using the different sets of poisoning points to poison the
svmtrain SVM classifier, using setting the ‘kernel_function’ option as ‘rbf’
(Radial Basis Function) with the alpha value as 10 for the Spambase problem and
20 for the Ransomware and MNIST problem. In this experiment, we can observe
that the effect from the poisoning attack reduces as the problem grows in the number
of dataset features. In the MNIST classification problem, we observe no substantial
increase in the classification rate after injecting as much as 15% of poisoning points
into the training dataset.

9.2.3 Effect of Different Sets of Poison

We can observe from the graphs in figure 9.1-9.6 the effect of each set of poisoning
point generated from different model classification system i.e. our local ADALINE,
Logistic Regression, and Multi-Layered Perceptron. Although the observation seems
to suggest that the poisoning points are transferable – each set of poison generated
by different model classifier has the same effect on the target system –, the result
from figure 9.3 suggests that this might not always be true. Figure 9.3 shows that
the poisoning point generated by the local Logistic Regression works best to poison
the target Logistic Regression classifier glmfit. Therefore, the transferability of
poisoning points is likely to be dependent on the classification problem and the
target classification system. More on this is to be examined in the future.

CHAPTER 9. TRANSFERABILITY 67

Figure 9.1: Figure 9.2:

Figure 9.3:

CHAPTER 9. TRANSFERABILITY 68

Figure 9.4: Figure 9.5:

Figure 9.6:

Chapter 10

Conclusion and Future Work

Attacks against machine learning systems are real threats which has been reported
before [14] [12] [16] [36]. This work has explored, in detail, ways in which attackers
can exploit machine learning systems with the poisoning attack – an attack that is
known to be one of the most relevant attacks faced by machine learning systems.
With the aim to provide a thorough analysis on the vulnerabilities of well known
classifiers – both linear classifiers (ADALINE and Logistic Regression) and the non-
linear classifier (Multi-Layered Perceptrons) – against poisoning attacks. Ultimately
I have shown that the poisoning attacks can be done in practice, and that such
attacks are indeed very harmful to different machine learning classifier systems.

10.1 Work Summary
This section summarises the work I have done for this project.

• I started off by proving and examining the method described in the work Biggio
et al. [45] that allows attackers to craft the most harmful poisoning sample by
solving a bi-level optimisation problem, using a KKT condition assumption.

• I have then proposed a more efficient and stable method to solve the same
bi-level optimisation problem using the conjugate-gradient algorithm. With
this method I have carried out experiments to determine how ADALINE and
Logistic Regression classifier are affected by the optimal poisoning attack.

• I have explored the novel back-gradient method proposed by L. Muñoz-González
[24] to solve the bi-level optimisation problem without having to depend on
the KKT stability condition assumption. This has then allowed the bi-level
optimisation for a neural network system to be solved, enabling examination of
the poisoning attack on neural network systems. With this method I have also
carried out the same experiments to determine how ADALINE and Logistic
Regression classifier are affected by the optimal poisoning attack.

• Further, as the back-gradient method is known to be very efficient, I have also
investigated the time-complexity of the back-gradient method by carrying out
time experiments and compare the results with the conjugate-gradient method
I proposed.

69

CHAPTER 10. CONCLUSION AND FUTURE WORK 70

• I have then explored two attack strategies – greedy and coordinated strategy,
and examined, via experiment, how each poisoning strategy performs against
each of the three classifier: ADALINE, Logistic Regression, and Multi-Layered
Perceptron.

• I have also extended the attack to attacking a multi-class classifier, experiment-
ing with two different attack strategy – targeted and indiscriminated. Work
on poisoning multi-class classifiers has not been done before in the literature,
hence the results of this experiment have shed light on the issue.

• I have ended the project by carrying out the poisoning attacks in an even more
realistic settings i.e. reducing the knowledge of the attacker on the implemen-
tation and the learning algorithm of the targeted classifiers. In this experiment
I have essentially looked at the transferability of the poisoning samples i.e. in-
vestigating whether poisoning samples crafted using one underlying machine
learning classifier can be used to poison another (different) classifier.

10.2 Future Work
Parameters Optimisation

As discussed in section 3.4.2, in this work, I have only been estimating the ‘right’
values of the parameters by looking at the cost graph and by trial-and-error. This
is because solving for the optimal value of the parameters is hard, as it requires us
to solve another bi-level optimisation problem, similar to solving for optimal hyper-
parameter values. This bi-level optimisation problem has been explored by Andrew
Ng et al. [9]. I would like to apply that to the work of this project, as successfully
solving for the optimal parameters would result in better overall effectiveness of the
poisoning attacks. Further, it would also provide an even more fair results to use
when comparing the effectiveness of different attack methods or strategies.

Defense Analysis

Various methods such as RONI[19] and Dynamic Threshold Defenses[29] have been
introduced to defend against the poisoning attack. I would like to examine their
performance in defending against the attack methods we explored in this work.
Further, having known how the optimal poisoning attack works, I would like to
implement an effective defense mechanism to protect against it.

Constrained Attacks

The optimal poisoning attack method is useful when we want to evaluate the degree
of damage that a poisoning attack can cause. However with this method, it is
possible that developers of the systems in the real world could use an anomaly
detector to separate our poisoning training samples from the legitimate ones. Hence,
I would like to explore the constrained poisoning attack method, which is a method
that generates poisoning points that are similar enough to the legitimate training
sample that they cannot be detected by anomaly detectors.

CHAPTER 10. CONCLUSION AND FUTURE WORK 71

Poisoning Attack on Recommendation System

So far we have only been looking at classification systems. The attack on the recom-
mended is also very relevant and interesting to look at, as recommendation systems
are trained with the users’ input. The ability to manipulate the recommendations
or suggestions in an application can benefit malicious users in number of ways. I
would like to explore the poisoning attack for this problem.

Poisoning Attack on Deep Learning Systems

Many sophisticated machine learning applications nowadays have made use of deep
learning architectures. It would be interesting to see if the deep learning systems
are also prone to the poisoning attack.

Chapter 11

Appendix

11.1 Parameters for Conjugate-Gradient Method Ex-
periments

11.1.1 Classification Rate Experiment on Spambase dataset

Classifier Iter LR Inner Iter Inner LR

ADALINE 2000 0.01 2000 0.1
Logistic Regression 1000 0.1 1500 0.5

11.2 Parameters for Back-Gradient Method Exper-
iments

11.2.1 Classification Rate Experiment on Spambase dataset

Parameters-Classifiers ADALINE Logistic Regression

Iterations 300 300
Learning Rate 0.2 1
Inner Iterations 2000 1500

Inner Learning Rate 0.1 0.5
Back-Gradient Iterations 100 100

Back-Gradient Learning Rate 0.1 0.1

72

CHAPTER 11. APPENDIX 73

11.2.2 Classification Rate Experiment on Ransomware dataset

Parameters-Classifiers ADALINE Logistic Regression

Iterations 200 300
Learning Rate 1 1
Inner Iterations 2000 1500

Inner Learning Rate 0.05 0.5
Back-Gradient Iterations 80 100

Back-Gradient Learning Rate 0.2 0.1

11.2.3 Classification Rate Experiment on MNIST dataset

Parameters-Classifiers ADALINE Logistic Regression

Iterations 200 300
Learning Rate 1 0.5
Inner Iterations 2000 1000

Inner Learning Rate 0.05 0.5
Back-Gradient Iterations 80 80

Back-Gradient Learning Rate 0.02 0.5

11.3 Time Experiment

11.3.1 Conjugate-Gradient Method on Ransomware dataset

Parameter setting for this experiment is the same as in appendix section 11.1.1.

11.3.2 Conjugate-Gradient Method on Ransomware dataset

Classifier Iter LR Inner Iter Inner LR

ADALINE 200 1 2000 0.5
Logistic Regression 300 1 1500 0.5

11.3.3 Classification Rate Experiment on MNIST dataset

Classifier Iter LR Inner Iter Inner LR

ADALINE 200 1 2000 0.5
Logistic Regression 300 0.5 1000 0.5

The time experiment parameter settings are the same as that of the classification
rate experiments.

CHAPTER 11. APPENDIX 74

11.3.4 Back-Gradient Method

11.3.5 Multi-Layered Perceptron Poisoning Experiment

Parameters-Datasets Spambase Ransomware MNIST

Number of Layers 2 2 2
Neurons in hidden layer 10 10 10

Iterations 300 400 400
Learning Rate 0.2 0.2 0.2
Inner Iterations 1000 400 400

Inner Learning Rate 0.1 0.1 0.1
Back-Gradient Iterations 200 200 200

Back-Gradient Learning Rate 0.1 0.1 0.1

11.4 Parameters for Experiments on Coordinated
Attack Strategy

11.4.1 Classification Rate Experiment on Spambase Dataset

Parameters-Classifier ADALINE Logistic Regression MLP

Number of Layers n/a n/a 2
Neurons in hidden layer n/a n/a 10

Iterations 300 300 300
Learning Rate 0.5 0.3 0.2
Inner Iterations 2000 1500 1000

Inner Learning Rate 0.1 0.5 0.1
Back-Gradient Iterations 100 100 200

Back-Gradient Learning Rate 0.1 0.1 0.1

11.4.2 Classification Rate Experiment on Ransomware Dataset

Parameters-Classifier ADALINE Logistic Regression MLP

Number of Layers n/a n/a 2
Neurons in hidden layer n/a n/a 10

Iterations 200 300 300
Learning Rate 0.2 0.1 0.2
Inner Iterations 2000 1500 1000

Inner Learning Rate 0.05 0.5 0.1
Back-Gradient Iterations 80 100 200

Back-Gradient Learning Rate 0.02 0.1 0.01

CHAPTER 11. APPENDIX 75

11.4.3 Classification Rate Experiment on MNIST Dataset

Parameters-Classifier ADALINE Logistic Regression MLP

Number of Layers n/a n/a 2
Neurons in hidden layer n/a n/a 10

Iterations 300 300 300
Learning Rate 0.2 0.3 0.1
Inner Iterations 2000 1000 1000

Inner Learning Rate 0.05 0.5 0.1
Back-Gradient Iterations 80 80 1000

Back-Gradient Learning Rate 0.02 0.5 0.1

11.5 Parameters for Experiments on Multi-Class Lo-
gistic Regression Classifier

11.5.1 Targeted Strategy

Parameter Value

Iterations 20
Learning Rate 10
Inner Iterations 400

Inner Learning Rate 0.5
Back-Gradient Iterations 60

Back-Gradient Learning Rate 0.2

11.5.2 Indiscriminate Strategy

Parameter Value

Iterations 20
Learning Rate 10
Inner Iterations 400

Inner Learning Rate 0.5
Back-Gradient Iterations 60

Back-Gradient Learning Rate 0.2

Bibliography

[1] Abdeslam, D. O., Wira, P., Mercklé, J., Flieller, D., and Chapuis,
Y.-A. A unified artificial neural network architecture for active power filters.
IEEE Transactions on Industrial Electronics 54, 1 (2007), 61–76.

[2] Andrea Paudice, Luis Muñoz-González, A. G., and Lupu, E. C. A
critical survey on poisoning attacks against learning systems.

[3] Baldi, P., and Brunak, S. Bioinformatics: the machine learning approach.
MIT press, 2001.

[4] Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. The security
of machine learning. Machine Learning 81, 2 (2010), 121–148.

[5] Bergstra, J., and Bengio, Y. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[6] Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. Algorithms
for hyper-parameter optimization. In Advances in Neural Information Process-
ing Systems (2011), pp. 2546–2554.

[7] Burges, C. J. A tutorial on support vector machines for pattern recognition.
Data mining and knowledge discovery 2, 2 (1998), 121–167.

[8] C. Blake, C. M. Uci repository of machine learning database
,https://www.ics,uci.edu/ mlearn/mlrepository.html, 1998.

[9] Chung B. Do, Chuan-Sheng Foo, A. Y. N. Efficient multiple hyperpa-
rameter learning for log-linear models.

[10] Daniele Sgandurra, Luis Muñoz-González, R. M. E. C. L. Automated
dynamic analysis of ransomware: Benefits, limitations and use for detection,
2016.

[11] Davidian, D. Feed-forward neural network, Aug. 1 1995. US Patent 5,438,646.

[12] Dennis Batchelder, H. J. Immunity from antimalware automation attacks.

[13] Friedman, J., Hastie, T., and Tibshirani, R. The elements of statistical
learning, vol. 1. Springer series in statistics Springer, Berlin, 2001.

[14] Garcia, M. How to keep ai from turning into a racist monster.

76

BIBLIOGRAPHY 77

[15] Gardner, M. W., and Dorling, S. Artificial neural networks (the multi-
layer perceptron)—a review of applications in the atmospheric sciences. Atmo-
spheric environment 32, 14 (1998), 2627–2636.

[16] Gendreau, H. The internet made fake news a thing then made it nothing.

[17] Guyon, I., and Elisseeff, A. An introduction to variable and feature se-
lection. Journal of machine learning research 3, Mar (2003), 1157–1182.

[18] Hestenes, M. R., and Stiefel, E. Methods of conjugate gradients for solving
linear systems, vol. 49. NBS, 1952.

[19] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and Tygar,
J. Adversarial machine learning. In Proceedings of the 4th ACM workshop on
Security and artificial intelligence (2011), ACM, pp. 43–58.

[20] Kawaguchi, K. University of texas, ece online material.

[21] Kira, K., and Rendell, L. A. A practical approach to feature selection. In
Proceedings of the ninth international workshop on Machine learning (1992),
pp. 249–256.

[22] Krantz, S. G., and Parks, H. R. The implicit function theorem: history,
theory, and applications. Springer Science & Business Media, 2012.

[23] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems (2012), pp. 1097–1105.

[24] L. Muñoz-González, A. Paudice, A. D. B. B. F. R. E. L. Poisoning
neural networks with back-gradient optimization”. international conference on
machine learning (submitted). ICML.

[25] LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J. S.,
Drucker, H., Guyon, I., Muller, U., Sackinger, E., Simard, P.,
et al. Learning algorithms for classification: A comparison on handwritten
digit recognition. Neural networks: the statistical mechanics perspective 261
(1995), 276.

[26] Lison, P. “an introduction to machine learning, 2015.

[27] Lyon, A. Why are normal distributions normal? The British Journal for the
Philosophy of Science 65, 3 (2013), 621–649.

[28] Mei, S., and Zhu, X. Using machine teaching to identify optimal training-set
attacks on machine learners. In AAAI (2015), pp. 2871–2877.

[29] Nelson, B., Barreno, M., Chi, F. J., Joseph, A. D., Rubinstein, B. I.,
Saini, U., Sutton, C. A., Tygar, J. D., and Xia, K. Exploiting machine
learning to subvert your spam filter. LEET 8 (2008), 1–9.

[30] Ng, A. Coursera: Machine learning online course.

BIBLIOGRAPHY 78

[31] Papernot, N., McDaniel, P., Sinha, A., and Wellman, M. To-
wards the science of security and privacy in machine learning. arXiv preprint
arXiv:1611.03814 (2016).

[32] Pazzani, M., and Billsus, D. Content-based recommendation systems. The
adaptive web (2007), 325–341.

[33] Pearlmutter, B. A. Fast exact multiplication by the hessian. Neural com-
putation 6, 1 (1994), 147–160.

[34] R. A. Fisher, M. M. Uci repository of machine learning database
,https://archive.ics.uci.edu/ml/datasets/iris, 1988.

[35] Robinson, G. A statistical approach to the spam problem. Linux journal
2003, 107 (2003), 3.

[36] Smutz, C., and Stavrou, A. Malicious pdf detection using metadata and
structural features. In Proceedings of the 28th Annual Computer Security Ap-
plications Conference (2012), ACM, pp. 239–248.

[37] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the im-
portance of initialization and momentum in deep learning. In International
conference on machine learning (2013), pp. 1139–1147.

[38] Tino, P. Machine learning and computational finance.

[39] Tsai, J. J., and Philip, S. Y. Machine learning in cyber trust: security,
privacy, and reliability. Springer Science & Business Media, 2009.

[40] Tsai, J. J., and Philip, S. Y. Machine learning in cyber trust: security,
privacy, and reliability. Springer Science & Business Media, 2009.

[41] University, S. Standford deep learning online tutorial.

[42] Widrow, B., and Lehr, M. A. 30 years of adaptive neural networks: per-
ceptron, madaline, and backpropagation. Proceedings of the IEEE 78, 9 (1990),
1415–1442.

[43] WikiPedia. The conjugate gradient.

[44] Wing, J. M. Computational thinking. Communications of the ACM 49, 3
(2006), 33–35.

[45] Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., and Roli,
F. Is feature selection secure against training data poisoning? In ICML (2015),
pp. 1689–1698.

	Introduction
	The Problem
	Contributions
	Report Structure

	Background
	Machine Learning
	Machine Learning Tasks
	Supervised Learning Model Representation
	Deriving the Hypothesis Function
	Cost Function
	Gradient Descent
	Over-Fitting

	Solving the Classification Problem
	Linear Classifiers
	Neural Networks as Non-Linear Classifiers

	Adversarial Machine Learning Case Study
	Classification
	Attacks

	Studies of Adversaries in Machine Learning
	Taxonomy
	Attacker's Capabilities in Causative Attack
	Attacker's Knowledge

	The Poisoning Attack
	Attacker's Goal as an Objective Function
	Solving the Optimisation Problem
	Determining the target model for Machine Teaching
	Standard Method from Biggio et al.
	Counter Measures

	Project Setup
	Learning Algorithms
	Datasets
	The Synthetic Dataset
	The Real Datasets
	Spambase
	Ransomware
	MNIST
	IRIS

	Evaluating the Classifier
	Confusion Matrix
	Classification Rate and Classification Error
	False Positive Rate and False Negative Rate

	Specific Problems
	Value of Sample Labels
	Finding Reasonable Parameters Values
	Initialisation of Poisoning Point

	Optimal Poisoning Point & the Direct Method
	Optimal Poisoning attacks
	Bi-Level Optimisation problem Difficulty
	Attacker's Capability
	Black-Box Characteristic

	The Standard Method
	ADALINE Classifier
	Logistic Regression Classifier
	Method's Limitation

	Poisoning with Conjugate Gradient Method
	Conjugate Gradient Optimisation
	Conjugate Gradient Algorithm
	Improved Method

	Experiments and Evaluation
	Overall Algorithm
	Correctness Evaluation
	Classifier Error Experiment

	Poisoning with Back-Gradient Method
	Back-Gradient Optimisation
	Algorithm

	Experiments and Evaluation
	Time Experiment
	Classification Error

	The Coordinated Attack
	The Algorithm
	Theory behind the algorithm
	Experiments and Evaluation
	Results - Spambase
	Results - Ransomware
	Results - MNIST
	Result Discussion

	Poisoning Multi-Class Classifier
	Multi-class Classifier Poisoning
	Experiments and Evaluation
	Classification Error
	Confusion Matrices

	Transferability
	Transferability of Attacks
	Experiments and Evaluation
	Poisoning Matlab's Logistic Regression Classifier
	Poisoning Matlab's SVM classifier
	Effect of Different Sets of Poison

	Conclusion and Future Work
	Work Summary
	Future Work

	Appendix
	Parameters for Conjugate-Gradient Method Experiments
	Classification Rate Experiment on Spambase dataset

	Parameters for Back-Gradient Method Experiments
	Classification Rate Experiment on Spambase dataset
	Classification Rate Experiment on Ransomware dataset
	Classification Rate Experiment on MNIST dataset

	Time Experiment
	Conjugate-Gradient Method on Ransomware dataset
	Conjugate-Gradient Method on Ransomware dataset
	Classification Rate Experiment on MNIST dataset
	Back-Gradient Method
	Multi-Layered Perceptron Poisoning Experiment

	Parameters for Experiments on Coordinated Attack Strategy
	Classification Rate Experiment on Spambase Dataset
	Classification Rate Experiment on Ransomware Dataset
	Classification Rate Experiment on MNIST Dataset

	Parameters for Experiments on Multi-Class Logistic Regression Classifier
	Targeted Strategy
	Indiscriminate Strategy

