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Abstract

Ray tracing is a computer graphics method for creating photorealistic images and animation for
games and film. Problems arise when the scene to be generated is highly detailed with many objects
- these jobs can be hugely computationally expensive to render with this method. We will attempt to
employ a machine learning algorithm to reduce the amount of time it requires to render an image.
By cleaning up artefacts in fast, low quality renders to produce the end result, we will reduce the
total pipeline time by 97%.

Our work results in a machine learning method that takes rough renders as input and per-
forms artefact removal and detail preservation. We will document the training and evaluation
of our evolving models during the research phase - the Single Layer Perceptron, the Con-
volutional Neural Network and the Deconvolutional Neural Network; as well as
scrutinizing our best architecture - the Inception Module Network.

We then deploy our most successful model to the internet as a web application that allows
access to the neural network via the internet, allowing clients to execute the network on their own
examples.
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1 Introduction

The year is 1995 and Toy Story, which is the world’s first feature length computer animated film,
had just been released[1]. Over the next few weeks, the film went on to receive universal critical
acclaim, creating a lasting impression with reviewers and filmgoers alike. For many people, this was
the first time they had been sold on the impact and relevance of computer graphics as a platform
for entertainment. At the centre of it all, PIXAR, the creator, had proven the worth of computer
generated graphics among entrepreneurs, paving the way for a new industry.

Figure 1: Toy Story[2].

Computer graphics has a rich and diverse set of applications - architectural illustrations,
simulations, computer aided design and entertainment. The 3d content creator community spans
a wide range of professions including engineers, architects, entertainment artists and technical
artists. As the love for artificial graphics permeate the masses, growing demand for ever more
realistic and detailed scenes have surfaced. It is now all too common for us to mistake computer
generated images for real ones. Over the years, computer hardware for processing graphics have
evolved too - what used to be a subsidiary of the motherboard or CPU is now available as a large
power hungry dedicated graphics processing unit with its own memory and power supply. Faced
with ever growing demand for more vibrant and lifelike graphics, we must take advantage of the
latest in technology to advance our graphics software. This will be the setting for our project.

Ray tracing emerged as one of the two main ways of creating computer graphics. It is often
favoured over the traditional rendering pipeline for its potential to achieve superior photorealism
through unbiased simulations of light behaviour in the real world, producing virtually photorealistic
images. However these benefits come at the expense of significantly more computation time or
resources. It is not unusual for one frame to take around 2 hours to render on a top of the range
graphics card, and considering that films are rendered at 24 frames per second, there is a huge
potential for the computation time to blow up. Nevertheless, this technique has entered many
production environments such as Quake Wars: Ray Traced[3], a ray traced 3d shooter, and many
of PIXAR’s more recent films such as Cars[4].

1.1 Objectives

Most ray tracing methods use progressive refinement, that is, when we instruct a scene to be
rendered from a simulated camera, we get an output right from the start. As time progresses,
the renderer samples the scene more finely and as a result we receive progressively more refined
outputs that slowly tends to the final output. We use the number of samples as a quantitative
measure of how much refinement a scene has received. The higher this number, the more accurate
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the output as a representation of the scene. With this unique ability to gain information about
the entire scene right from the beginning we can choose when to stop the rendering process after
enough detail and clarity has been obtained in the render.

Our goal would be to create a machine learning system that can take a low sample image as
input, and output a result that is very similar to a high sample image. We would like this system
to be fast, be general, be able to filter renders of all types and lighting scenarios, and be easily
deployed to inexpensive hardware. This essentially means that we would slash the computational
time by some defined proportion. Given that a low sample image with most of the details preserved
only takes around 8-10% of the time it takes a high sample image to render, we would be saving a
huge amount of time, especially if we are previewing an animation. Not only would this save the
creator time and electricity, we also save the opportunity cost associated with high render times
causing humans to idle. For example, artists frequently need to re-render an image to review the
modifications they have made in a scene, the shorter the wait time, the more times he can adjust
the scene to his artistic desires. Finally, it would also be great if this system could be presented
to and used by the people who are actively engaged in this field. For this we certainly want to
encapsulate all the machine learning details away so that the user has a simple interface to submit
a job and retrieve the result.

1.2 Challenges

A neural network is an inherently hard construct to understand. The input layers deliver your data
to an emporium of generic structures - the hidden layers are riddled with endless nodes and weights
whose meaning seems to be concealed within. Intuition on the efficiency of particular architectures
for various tasks comes only with repeated experimentation. Throughout the project, I will work
hard to understand and document my journey to rationalizing the results from these different
architectures - which will help me to better pick new architectures.

I want to keep my filtering application as general as possible, this means catering for images
with different magnitudes of noise. So, how could we train a neural network to filter images with
heavy noise aggressively, whilst being efficient at resolving images with light noise i.e. being gentle
with the intricate detail that is already present in the scene? Perhaps we need to train a number
of neural structures, and a differentiator that would feed heavily noisy images into some structures
whilst inhibiting other structures for images with low noise?

Another challenge is the difficulty of choosing an efficient error function, something I will go
into detail in section 4.1.

1.3 Contributions

• A trained machine learning architecture for removing noise from a Monte Carlo low sample
ray traced render, thereby reducing the amount of samples and by extension, the amount
time, required to create the same end product. Chapter 4.

• A load balanced, extensible web app architecture for deploying this machine learning algo-
rithm to the internet, allowing users with no knowledge of the machine learning framework
to filter their images. Chapter 5.

• An implementation of the about web app in PHP, Node.js and frontend javascript. Access
at www.airenderer.com. Chapter 5.
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2 Background

We will present the core of the relevant topics and ideas used in this project. An insight into com-
puter graphics and ray tracing will be useful for analysing noisy images and formulating methods
to target specific problems. We will also explain some neural network constructs that will be used
to model and train our network. Finally, we will survey the current state of the art to update
ourselves with the most successful techniques now.

2.1 Creating our 3D World

In computer graphics, the world is commonly represented as a list of geometries, a list of lights and
an active camera. These comprise the basic ingredients we need to define a mechanism to produce
a render - a 2D representation of the world as seen by the camera.

Camera

A camera is represented by a set of parameters usually comprising of a 3d location, a direction
and a focal length. With these parameters, we can calculate which portion of the 3d world is
visible and evaluate the rendering equation for this portion in the appropriate direction. The
camera will not affect the physical world with respect to lighting so will not appear in any render.
There are many effects that are added to a camera such as depth of field calculations and clip-
ping during pre-rendering, and vignettes and chromatic aberration in post production compositing.

Figure 2: Example 3D Scene Specification[5].

Geometry

These are what the camera will see during the rendering process. Each piece of geometry is com-
prised of a list of vertices and method of connecting these into a face. Geometry fragments can also
contain material data and other mapped data that may change its appearance. Large geometries
are sometimes broken into triangles and quadrilaterals to simplify storage or manipulation. In
figure 2, our example shows a monkey head made completely of triangles.
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Lights

These objects emits light into the scene and are the only sources of light. For scenes where we do
not consider secondary light bounces, the brightness at a point can be found by calculating the sum
of the exposures of each light with respect to the point. There are two types of light - point and
area sources. The occlusion of a point with respect to a point light source is easy, simply calculate
whether there is an unobstructed vector from a point of occlusion to the source. These are usually
added to the scene to increase the artificial brightness and not to be the main illuminators since
point light sources are not realistic. Area sources are far more difficult to sample - for each point
we wish to know the occlusion with respect to the source, we must calculate what percentage of
the area light is occluded with respect to that point. The higher the percentage, the darker that
point will appear.

Figure 3: Area light vs Point light[6].

The Rendering Equation

So with the world set up, we just need a model of how light behaves in our sandbox. This model
must accurately approximate how light behaves in the real world. It turns out that this may be
represented as a single equation for the intensity of light at a given point and direction, known as
the rendering equation[7][8][9].

L0(x, ω0) = Le(x, ω0) +

∫
Ω

fr(x, ωi, ω0) Li(x, ωi) (ωi · n) dωi

where ωi ∈ Ω.

All occurrences of L are triples of values representing red, green and blue.
L0(x, ω0) represents the total light leaving position x on a surface of the world in the direction of
ω0.
Le(x, ω0) represents the light created and emitted from position x on a surface of the world in the
direction of ω0. This is zero if the surface is not a light source.
Li(x, ω0) represents the light entering position x on a surface of the world from the direction of
ω0.
fr(x, ωi, ω0) represents the bidirectional reflectance relationship between the direction ωi and ω0)
at the position x.
n represents the normal vector to the surface at position x.
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Figure 4: Example 3D Scene Rendered through the camera[5].

2.2 Monte Carlo Ray Tracing

Monte Carlo Ray Tracing is a technique to approximate the rendering equation without performing
the explicit integral as well as to extend the ideas used in the rendering equation to transmission
geometry. It simulates the behaviour of light in the real world to produce realistic images given
a 3d scene. This technique is currently very popular and is supplied as the default production
renderer for many 3d packages. It also progressively refines the render result - producing a clearer
image the more samples it processes as shown in Figure 5 - a useful property that we will take
advantage of later.

Figure 5: Progressive refinement of the path tracing technique [10].

2.3 The Tracing Algorithm

First of all we account for the pixels in the final image by projecting a vector ray into our scene
for every pixel on our screen. For each ray, if it intersects a mesh in our scene then save that
intersection, if not, we clip the ray and paint that pixel the background colour.

For each saved intersection point, we are interested in the true colour there. To approximate
our integral in the rendering equation for our intersection, we shoot random rays of light from that
particular point into the world and recursively calculate the colour intensities. Now we sum the
colour intensities leaving the point of intersection in the direction of the camera for the final result.
The recursion depth here is called the depth of the ray tracing algorithm.
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Definition Fireflies: A spike in intensity often 1 pixel large that appears randomly in a
low sample Monte Carlo ray trace of a scene. These appear because such as small number of rays
have been shot from that intersection point, some of them just happened to hit something bright,
causing a discontinuity of colour intensity. we can remove them by clamping the scene intensity
but at the cost of realism.

Definition Caustics: Calculation of the interaction of light through glass type materials -
effects such as reflection, refraction, total internal reflection and separation of light into its colour
components must all be taken into account.

Definition Subsurface Scattering: Calculation of the interaction of light as it passes
underneath of a surface of a diffuse material. This technique is used to create realistic skin, milk,
etc.

Artefacts such as fireflies appear when the rendering equation is only partially evaluated
and can be a prominent problem in a scene where only certain areas have a complex rendering
equation. Caustics and Subsurface Scattering are the most common causes of a rendering equation
that becomes difficult to evaluate. For example a diffuse scene with a large number of glass pieces
in one corner would take very long to converge.

2.4 Artificial Neural Networks

2.4.1 Architecture

A neural network is an artificial construct that is designed to simulate real neurons in a human
brain, approximating some function we want to apply to the input, to receive the desired output.
The input data is serialized and inserted into the input layer nodes. The exact size of the input
and output layer nodes should be suitably chosen for the task. Then for each of the nodes of the
hidden layers and the output layer, we apply a weighted summation function over all the previous
nodes, with the weights characteristic of each inter-node connection. It is these weights that we
aim to find during the training process. Before the value leaves a node, we apply an activation
function to the output to introduce a non-linearity to our multi-layer network. Our result will
appear on the output layer.

Figure 6: A Standard Multi-Layer Perceptron "Feed Forward" Neural Network[11].

Definition Training Set: A set of data comprising of data that should be fed into a neural
network and the expected output of those data. The expected output will give us the error value
used in backpropagation.

Definition Ground Truth: The expected output of the optimal neural network i.e. the
actual result.

In supervised learning, when we train a neural network, we insert our training example at the
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input nodes and retrieve the output. We then use our error function, which is a given measure of
the difference between the output node and the ground truth, to evaluate the result. Our error
function should be suitably picked to emphasise particular discrepancies that we want to minimize.
Popular error functions are Euclidean distance and cross entropy. This error is then used to adjust
weights to minimize the error.

The learning rate is the amount by which the weights of a neural network are adjusted with
respect to the training examples. This is a hyperparameter of the neural network that must be
tuned to ensure correct operation. We can also use a learning rate update schedule to decrease
the learning rate as time goes on so that the corrective behaviour of backpropagation does not
over-correct our finely tuned neural network in the final stages of training.

Figure 7: Effect of learning rate on convergence ability of a neural network[12].

Definition Epoch: The step number of the current iteration.

Definition Training Loss: The sum total of the amount each weight was adjusted by during
the last training epoch.

Overfitting is a common phenomenon where the trained network is overly attached to your
training set and fails to adapt to more general problems. One way of telling whether overfitting
has occurred is by looking at whether training loss increases over a period of time. However, it has
to be noted that the most definitive way to tell is to ensure that the quality of renders attained
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at later epochs is better than the ones attained previously, figure 8 shows a training session with
no overfitting from the loss-epoch curve. Dropout is a common technique to combat overfitting,
particularly if you have a smaller training set. This dropout metric occludes a certain percentage
of random selected elements of the training set from each epoch of training, and is usually made
larger with more epochs.

Figure 8: No overfitting in this session.

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are very similar to conventional Multi-Layer Perceptrons
(MLPs), but differ in that the first few layers may not be fully connected. This allows CNNs to
cope with much larger input values than MLPs at the expense of not being able to approximate
as many functions. For this reason, CNNs are most commonly applied to images, where the input
space is large.

Definition Same and Valid Padding: When we take convolutions of a patch, we need to
define how to handle the edge cases where the convolution matrix passes over a region outside a
patch. Same padding pads the outside with the default value, often zero. Valid padding says the
matrix is not allowed to travel that far out, hence reducing the output space.

A high level benefit of a CNN is that it is more likely to be sensitive to spatial patterns in
images making it more suitable for computer vision tasks, that is, the neural network will not
have to learn about apples in the top left and bottom right of the image separately - it will be
able to learn it once and recognize apples everywhere. MLPs will almost always require some
pre-processing in the input data to normalise the input to a format that it can work with more
efficiently.

2.4.3 Inception Module

The Inception Module is a method of arranging convolutions in a CNN to achieve a more com-
putationally efficient design and has enabled many implementations to achieve the current state
of the art, notably Google LeNet which is more accurate and 12 times smaller than the previous
state of the art published only 2 years ago[13]. The idea is to take a number of differently sized
convolutions and use the output from each of them in the next layer. This strategy combines the
strengths of using a large convolution mask with the efficiency of doing small convolutions.

8



2.5 Existing Work

"A Novel Monte Carlo Noise Reduction Operator"

Xu et al. provides an excellent demonstration of a noise reduction method for Monte Carlo noise.
Their research applies directly to filtering noise generated from computing global illumination
results, making specific use of the rendering loop. For example, they note that much of the noise
arises from calculating diffuse rays recursively and that specular and glossy rays create little noise.
It has to be said that a major drawback is that this is an algorithm that has to be run on the
image each time, which would require expensive hardware and computation time for every image
that is to be denoised. However a neural network only requires heavy computation at train time
and applying the network afterwards is very cheap[14].

"Removing the Noise in Monte Carlo Rendering with General Image Denoising Al-
gorithms"

For more general scenes with varying depths and camera effects, Kalantari et al. has proposed
an algorithm that is effective at removing noise from these scenes. This is one of the first papers
to address the problem of spatially dependent noise which arises all the time in Monte Carlo
rendering. Again one drawback of this method is that we cannot run the algorithm on a new
image very cheaply once the model has been learnt[15].

"Image Denoising: Can plain Neural Networks compete with BM3D?"

Burger et al. makes a challenge to using traditional algorithmic heuristics for denoising and makes
a move to letting a supervised neural network learn this denoising function from a noisy and clean
dataset. Two very large hidden layers are used with a hyperbolic tangent activation function in
a standard feed forward neural network trained on noisy and clean images. This paper makes no
assumptions about the source of noise and have been proven robust on a variety of noise types.
This is excellent. Their results show an improvement over traditional algorithms for some types of
images - in particular the neural network finds striped and jpeg noise particularly difficult. They
also seem to be keen to emphasise the importance of a large network and using large patches which
may negatively impact speeds and limit the hardware we can run this on in future[16].

"Natural Image Denoising with Convolutional Networks"

A good demonstration of the application of a Convolutional Neural Network to the image denoise
problem is provided by Jain et al.. The great benefit of this method was that they could afford to
use full size images e.g. 512x512 to train the network and hence could take the whole input image
during a final denoise application. However this group noted that the performance was poorer
when it came to introduced noise of an unknown variance in strength - which is the case in many
rendered images. It should be noted that only greyscale images were studied in this paper[17].

"A Machine Learning Approach for Filtering Monte Carlo Noise"

Kalantari et al. uses a standard Multi Layer Perceptron as the neural network architecture. In
this paper, they carefully describe the architecture of their network and presents their results to
contrast with existing methods. This approach seems currently to outperform many of the existing
methods. One drawback that the authors noted was that owing to the fact that this is a neural
network, some effects such as specular reflections show up well only if there exist a large number
of specular examples in the training set. Additionally, seven different, often domain specific data
images are used to generate the final output, decreasing the usability and the range of 3d software
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packages that it can be used on. So although this particular implementation seems to be producing
some of the best results, the way in which so much information is required in the system is rather
cumbersome[18].

10



3 The Dataset

I am fortunate in that there is an abundance of Public Domain and Creative Commons 3d artwork
on the internet available for me to use as my training and test sets. I used the 3d software
Blender[19] to render these scenes into images that will form the majority of my dataset.

The methodology for obtaining the datasets is simple: render just enough samples for an
image so that there is no visible noise - this becomes the ground truth image, then divide the total
number of samples used for the ground truth by around 20 and re-render - producing a noisy image
- this becomes the input data.

The most successful technique for noise filtration also required an additional input. This is an
OpenGL render of the basic 3d scene from which the renders are taken. For this pass an additional
clay render is produced and saved as input data. This is always fast to render for our purposes,
with most of them taking under 1 second.

Throughout the training process, training examples used were selected at random at each
epoch. We were careful to avoid overfitting when using 64 by 64 patches from our dataset as this
meant we had only 12,000 training examples. However, due to the small size of the networks we
could not see any visible overfitting from our error graphs. Interestingly, using dropout actually
increased our error rate and decreased the ability of the network to converge for many of the models
tried - including most of the successful ones, most likely due to the fact that the output is hugely
reliant on each input and training a reduced set of neurons would update the weights incorrectly
with respect to our image equilibrium. This was not a problem in our final product as we used
pixels as individual training examples so our dataset size was around 50 million.

We were careful to include images of varying magnitudes of noise, ranging from thin noise in
images that have been rendered to half the number of samples of the clean version, to coarse noise
which may only have 2 or 3 samples rendered out of 80 to 100 for a clean render. This was to
address one of the challenges we mentioned on the introduction to diversify the noise patterns we
can handle.

We have included a selection of training and test example images below. In order of appear-
ance, clockwise, Vault by Cephei(CC-BY), Train by dailerob(CC-BY), Caustic Fair by Zichen
Liu(CC-0), Coffee by b2przemo(CC-BY), Workshop by oldtimer(CC-BY) and Fishy Cat by
Manu Jarvinen(CC-0).
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4 Machine Learning Models

4.1 Preliminaries

Throughout the experimentation process, it is very important to have one uniform error metric.
Our choice was the sum of the squares between each individual pixel of the output and the clean
render. When this is minimized during the backpropagation phase, the output image should tend
towards the clear render. This is a highly advantageous property for us. However, a shortfall of this
is that if the output image is quite different from the clean render, then the error returned is liable
to be far too large to fit into a standard double. Under these circumstances, a NaN is returned and
backpropagation cannot begin. We will use normalization to circumvent this problem - mapping
each pixel value from [0, 255] to [0, 1] reduces the frequency this occurs. Another shortcoming of
this error function is that there are many ways in which a certain error value can be achieved. For
example an image with a few very incorrect pixels could yield the same error value as an image with
every pixel slightly off. We will see later on that models occasionally produce both these situations
and under the occurrence of such contention, we will judge by using additional test images and by
eye.

Correct parameter initialization is crucial for good training. On fully connected layers, if the
matrix is initialized with random values, then the output is likely to be solid noise. This is because
the neural network tries to factor in the surrounding pixels far too much resulting in unintended
noise. To avoid this issue, each fully connected layer is initialized to the identity matrix with some
noise added, ensuring that on the first iteration, the output is similar to the input - a good starting
place for the network to start adjusting weights. A similar idea is used for the convolution layers,
but this time the convolution mask matrix is all zero with a 1 in the central entry. The initial
values for biases were set to the zero vector with some minor noise (mean 0.04, standard deviation
0.4), this technique as was introduced by Krizhevsky[20] is to prevent neuron death at activation
nodes. This, coupled with an initially low learning rate gives us good convergence to the final
result.

The image model we used for filtering is a typical RGB system with 3 channels. Any partially
alpha pixel taken as input is assumed to have full alpha. During the first stages of modelling
(Models 1 and 2), a monochromatic filter was trained on the basis that it may be applied separately
onto the different channels. However, we realised that other channels may assist the filtering of a
given channel, we switched to filters that act on 3 channels for later Models. Please note that the
error function used for Models 3, 4, 5 and 6 do not correct for the additional colour channels i.e.
it displays the error for all 3 channels. Since log10(3x) = log10(3) + log10(x) and log10(3) ≈ 0.477
we will take this quantity away from the error on the graphs when making a direct comparison to
models 1 and 2.

Inspired by the range of exciting ideas in the literature review section - convolutional neural
networks, hyperbolic tangent activations, using additional outputs from 3d software packages as
the neural network input - I was very keen to try the broad spectrum of ideas that I had seen, as
well as adding some of the latest state of the art in machine learning. The total number of different
models I tried during the experimentation phase is roughly one hundred and fifty, however, I will
outline below the five most successful, instructive or surprising models that helped me to arrive
at the final product, which is model six. I will use the notation gt to denote the ground truth
image usually the clean render, ny to denote the partially rendered image, gl to denote an OpenGL
material render, Roman Numerals to denote the neural network filtered image and psd to denote
a noisy render with post processing in Photoshop using template filters with parameters judged
by a human trying their best to reduce noise.
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4.2 Model I: Patch to Patch Single Layer Perceptron

The first successful model that achieved appreciable results was a very shallow Artificial Neural
Network that processed image patches of 64 by 64 and returned a filtered 64 by 64 output. The
shallow depth meant that the amount of interference from neighbouring pixels is small and that it
converged very quickly. Once trained, the network can be re-evaluated cheaply. A critical shortfall
of this scheme is that there simply isn’t enough parameters here to store all the information that
is being learnt, as we will see.

Figure 9: Model 1 Architecture.

This neural network was particularly easy to train due to its size and shallowness. With just
a pancake of parameters, the process easily converges within a few epochs. The fact that over 50
epochs there was little change in the error since epoch 10 was really encouraging - the number of
training examples that the network could have seen by epoch 10 is a small fraction of the whole
dataset - this means the dataset is rather homogeneous in what it taught the network.

Figure 10: Training Error for Model 1.

The results from testing shows that the neural network has learnt the right idea of what needs
to be done. It can be seen in the examples Contrast Edge and Haze that the result of the
neural network is superior to the noisy output, albeit at the expense of sharpness. The loss of
detail problem becomes very prominent in Stripes, Lilypad and Cave Wall where important
feature details almost blends into the background. In the end, this turned out to be the most
effective non-convolutional neural network for patch to patch filtering.
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Figure 11: Model 1 Results.
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4.3 Model II: Path to Patch Convolutional Neural Network

There simply wasn’t enough parameters present in a small neural network for this kind of task,
as seen in the last model, and so we decided to go deeper. Adding an additional fully connected
layer and having 2 convolutional layers in parallel certainly increases the parameter count and is
reflected in the output where there is a visible reduction of noise. However it should be noted that
the error rate between models 1 and 2 are similar.

Training this model required more care as it is bigger and more prone to overfitting. We no-
ticed that the majority of the learning occurred in the first 100 epochs, after which no significant
progress was made. Our instinct to decrease the learning rate resulted in the same epoch-loss
profile so the learning rate was maintained.

Figure 12: Model 2 Architecture.

From the result set we can see that this network is far better at preserving detail. Examples
such as Subtle Edge and Stripes produced far more amicable results than the previous model.
Cave Wall and Horizon produced excellent quality results.

However, we noticed that for certain examples such as Contrast Edge and Similar Edge
there was an increase in the amount of blurry noise. We realised that this was because it is
difficult to ascertain whether the noise in an image is part of the original image. The noise in
Contrast Edge was certainly noise, but it could equally well be salt and pepper on a table edge.
Additionally, we realised that if we could feed in additional colour channels, the neural network
may perform better due to the additional information for each output pixel. This led us to rethink
our strategy for modelling the neural network - perhaps we should allow a greater range of pixels
affect the outcome of an output pixel? We will explore this next, resulting in Model III.
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Figure 13: Training Error for Model 2.

Figure 14: Model 2 Results.
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4.4 Model III: Patch to Patch Mixed Neural Network

A common issue with de-noising algorithms mentioned in the previous works or in the filters
that are commonly available on Photoshop is that the end result is blurry - causing detail to be
irrecoverably lost. The training set for noise removal frequently have inputs with lots of sharp
noise that disappear in the ground truth. So it is no surprise that the neural network will learn to
blur the input as well as removing noise. We will now attempt to address this.

4.4.1 Producing Sharp Images

First we have our 3 by 3 sharpen convolution mask that is applied to one branch. This is a
standard sharpen kernel that is used in lieu of the identity kernel in the hope of emphasising detail
after some noise removal convolutions. This is likely to be modified during training as the kernel
values change. The final unsharpen mask[21], however, is an untrainable module that applies an
unsharpen convolution to the final image. In this case we are favouring a sharper final image over
something that minimizes the l2 norm error. We think this is justified as there is inherently less
information provided by a noisy image, so we would like to sharpen the image up after having
performed noise removal. Since the unsharpen convolution kernel is likely to increase the error, we
will make this convolution untrainable such that at backpropagation will not modify the entries of
the unsharp kernel.

Aside from kernels, we also have a branch that takes takes the average of the largest in a 7 by
7 window, the average in a 5 by 5 window, the average in a 3 by 3 window and the smallest in a 7
by 7 window. We hope that this will dim fireflies and also flesh out boundaries of major regions.
Since in the max and min pool, we only take the brightest or darkest pixels, this decreases the
chance of noise interfering with our edge detection.

Figure 15: Model 3 Architecture.
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Figure 16: Model 3 Architecture.

Figure 17: Training Error for Model 3.

4.4.2 Results and Evaluation

In a number of the examples, such as Bright Edge, Universe I and Caustic Chaos, you
can clearly see small squares around fireflies or bright detail. This was a direct result of our
max/avg/min pool module. Although this seems detrimental, it actually helps to preserve detail
in scenes where there is a lot of edges such as Caustic Flower. Detail preservation was really
good here with Similar Edge and Faint Line retaining the most out of the models so far. This
was the first model that I used all 3 colour channels for filtering and the colour preservation was
excellent with even minor variations in the original image preserved, for example the dark region
in Contrast Edge.

20



Figure 18: Model 3 Results.

Figure 19: Model 3 Results.

The biggest drawback of this method was the enormity of the network and intermediates. With
around 8 GiBs of parameters and intermediate values, this network was very slow to converge and
very slow to evaluate. This is highly undesirable. The huge number of epochs this network has
been through meant that each training example would have been seen an average of 10 times.
Combined with its size, we are also at risk of overfitting.
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4.5 Model IV: Patch to Patch Deconvolutional Neural Network

4.5.1 Introducing Deconvolutions

An issue with using a convolutional neural network is that its strength arises from the fact that
the dimension of the input is reduced over time. Since we are maintaining the dimension of our
patch, we cannot do this. A new technique for using a convolution whilst maintaining dimension
was introduced by Noh et al. called deconvolutional neural networks[22].

Repeated experiments have shown that for this task, it is most effective when used without a
fully connected layer. I will also begin with deconvolution layers and finish with convolution layers
in order to prevent the original image data being destroyed by convolutions. Although this decon-
volutions have most commonly been used after convolutions such as for image segmentation[23],
it is most appropriate for us to use them first since we want to increase the space of data for each
pixel and let the convolutions convolute this data back into a single pixel.

Figure 20: Model 4 Architecture.

4.5.2 Training

This network was particularly expensive to train due to its size. We see there is some good learning
in the first 1200 epochs, coming to resting at a local minima. After this there is some spurious
further learning which is highly likely to be overfitting. If we needed to decide on a final model, it
seems like removing a few deconvolutions and putting a fully connected layer in its place would be a
wise decision - we would get faster training times and, from Model 1 and 2, a good chance of getting
a better render. However networks of this type uniformly failed to train on experimentation so
we are left to use deconvolutions without Perceptron layers. We will now evaluate its effectiveness
before deciding to use only deconvolutions or abandoning it entirely.

4.5.3 Results and Evaluation

This method at first seemed like a disappointment - the log error rate was around 3.9 compared
with around 3.5 previously. However upon closer inspection of the test set, the overall result was
far nicer than I and situationally better than II and III. One strength of this method was that
fireflies were removed very effectively, especially in Faint Edge and Firefly Forest mitigating
the need for a separate layer of post-processing. There is some welcome additional definition in
Contrast Edge and Stripes.
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Figure 21: Training Error for Model 4.

Figure 22: Model 4 Results.

In the discussion for the previous model, we talked about increasing the window of pixels that
could affect an output pixel in the convolutional layers. One major fear of mine was that this
would lead to entire regions being deformed or otherwise affected. However, thankfully, this is not
the case, Colour Edge and Photosynthesis demonstrated that whilst lines may be slightly
blurred, entire regions stayed true.
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Figure 23: Model 4 Results.
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4.6 Model V: Patch to Pixel Convolutional Neural Network

4.6.1 Moving to Patch to Pixel Networks

To further increase the number of parameters in our neural network per pixel output, we will
switch the input output architecture to Patch to Pixel. This means that the input to the neural
network is a 31 by 31 patch and the central pixel of the patch is the output.

Figure 24: Left: Patch to Patch networks. Right: Patch to Pixel networks.

From a quality standpoint Patch to Pixel filtering is superior to Patch to Patch filtering for
a number of reasons. First, we have automatically increased the number of training examples by
4096 times, i.e. each pixel is now an example with its own input. This means our training set
size is around 50 million with another 30 million for the test set. One consideration is that during
the entire training process, the neural network may not see certain training examples, by chance -
however since we value each data example equally, we are happy to allow this.

Additionally, assume we are taking patches from a sufficiently large image, for Patch to Patch,
the edges of each patch does not receive information from its surroundings from the other patches
as in same padding. However we cannot use valid padding as this would reduce our output space.
With Patch to Pixel, we can access surrounding pixel information for every pixel apart from the
edges of the original image, greatly increasing the filtering accuracy.

One major problem of Patch to Pixel processing is that the amount of computational time
increases by at least 3 orders of magnitude for the same architecture. We offset against this increase
by using memory more efficiently and loading all of the data into memory before training. Despite
this, our training time went from minutes to days.

4.6.2 Use of Additional Data

It is often a good idea to adorn a neural network with additional, appropriate information to pro-
duce a better render. For example, if there is a region of the scene where we have a texture material,
then it would be highly advantageous to be able to use the information from the texture to help
us in the denoising process. This idea is used in many papers including Kalantari’s MLP[18] with
spectacularly good results. Seven different images are used in the input, drastically increasing the
training and evaluation time. Furthermore, some of the additional data can only be generated by
certain software packages making the system domain specific. We wanted to maintain our network
as a piece of general purpose post production software that may be appended to any rendering
pipeline, hence we will introduce a general "OpenGL material render" that is to be included in the
training and evaluation process.

The OpenGL material render time is very small compared to producing even a noisy render
and can be produced on every 3d software package. In figure 25, we see that the noisy image has
patches where the texture is occluded by fireflies and other inconsistencies. The gl render on the
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Figure 25: Benefits of having an OpenGL Render.

other hand produces a clear reference to what the texture really looks like underneath. This assists
the neural network in discarding fireflies.

4.6.3 Architecture, Training and Evaluation

The input to the network is a 31 by 31, 6 colour tensor with 3 of the colours arising from the
noisy render and 3 colours arising from the OpenGL input. The network has 2 convolution layers
that maps trainable convolution matrices of varying sizes across the tensor. The dimensionality
reduction comes from the valid padding of the convolutions. The output of the convolutional part
is a 6 colour 7 by 7 patch which is flattened into a vector and fed through some fully connected
layers until it is a single RGB pixel. The design of the neural network appears to be of a very
traditional and conservative shape much like one used for image classification.

Figure 26: Model 5 Architecture.

This was a model that hugely benefited from sudden decreases in learning rate. We divided
the learning rate by 10 at epoch 1000 and 1800, and from the graph, these were where we had
huge decreases in the error rate. The final error was disappointingly high, however, surprisingly
the final result was clearer than previous models. A full discussion is given in the next model as
well as extensive testing.

The results show that one of the great strengths of Patch to Pixel is preservation of detail. In
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Figure 27: Training Error for Model 5.

Monkey Smile, the lines are sharp and crisp, almost as much so as the ground truth. The results
panel shows the output at each 100 epochs of training - this was one of the methods we used to
prevent models from overfitting. If there exists a few patches which is less well filtered than a few
other patches which have smaller epoch numbers, then we say overfitting has occurred and we can
perform early-termination.

Figure 28: Model 5 Results.
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4.7 Model VI: Patch to Pixel Inception Neural Network

Having now experimented with a number of models, it was time to pool together our experience
from each thus far to create our final product. Our experience tells us to go for a deep network
with lots of parameters, to use additional information from an OpenGL material render, to con-
catenate and not merge tensors post inception and to be creative with window and stride sizes
when performing a convolution.

Figure 29: Model 6 Architecture.

We will use an Inception Module as the prelude for our fully connected layers. Each prong of
the module has a different way of reducing the image. Notice the topmost prong is the same as
Model 5 with an added max pool. As we discovered in section 4.4.1, max/min pools are invaluable
to preservation of quality, so this was a welcome inspiration. We omit unsharp kernels here as
they may be applied efficiently after coming out of a neural network. The bottommost prong is
intended to remove horizontal or vertical noise by using non square strides. The features extracted
from these prongs are then concatenated into one large tensor of data and flattened to fit into a
fully connected layer.

4.7.1 Training

We ran this model many times with small variations to optimize the parameters - adjusting the
learning rate, the learning rate update schedule, dropout rate and the architectural hyperparame-
ters. We report our optimal architectural hyperparameters in figure 29. Since this was the model
we used in production, we left the training to run for 6 days, cumulating in around 44000 epochs.
Worryingly, although the training error decreased nicely as training progressed - showing good
learning, our final error rate was much higher than the final error rate for many of the other mod-
els. This may be explained by slight distortions in colour in some scenes. Or in other cases, the
neural network was simply being too assertive about its beliefs, but this is not always a bad thing.
For example although Caustic Flower has consistently been the most difficult to filter correctly,
Model 5 has done an admirable job - even though the output is not hugely similar to the ground
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truth - we would liken the result of VI to the ground truth, more so than the result of the other
renders - which would have had yield a lower error.

Figure 30: Training Error for Model 6. Left - first 7900 epochs, Right - 44000 epochs.

4.7.2 Results and Evaluation

As this is our final and best result, we will leave our detailed analysis of how well it meets our
objectives for section 6. For now, we will consider the output as a comparison to our previous
attempts. First thing to note is that there is very little blurring compared to before - individual
lines and boundaries in the test images stayed sharp and clear, as in Cave Wall and Stripes.
Noise removal from a blurry background has also improved as in Haze. Notice how there is this
undesirable square of haze that floats near the four edges of the output. This is due to the small
dimensions of the test input - 64 by 64 - this effect far more subdued in images of size over 100 by
100. For images over 500 by 500, other sources of error renders this effect insignificant.

Figure 31: Model 6 Results.
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One of the places where the OpenGL addition helped significantly is Contrast Edge where
almost all of the noise in the image has been removed, producing an output very similar to the
elusive ground truth. The majority of the noise is gone from Similar Edge, with some loss of
detail at the edge. From figure 30 the final error was around 4.0 to 4.4. When we take 0.477 from
this figure, our error is quite low, but certainly not the lowest.

Figure 32: Model 6 Results.
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5 The Web Application

Our overall architecture comprises of a modular web architecture, to allow easier separation of
concerns and distributed operation. Additionally, this design allows render nodes to be placed
behind strict firewalls such as the Department of Computing firewall. I made use of code snip-
pets from tutorial websites and adapted it to my needs. Snippets that assisted me were from
W3School’s php[24], NodeJS’ filesystem[25] and npm package manager examples for restler, mul-
ter, static-serve, mkdirp, mysql and http[26]. The website template is html5up[27]. The full
detailed acknowledgements is in the appendix.

5.1 Individual Components

User App

Front end web application written in Javascript/jQuery that allows users to submit a noisy and
OpenGL image along with their name and email. The client app shortly receives a unique key that
is issued to it by the Web Host and waits until there is a result on the Amazon host that accepts
the key, before retrieving it and displaying it to the user.

Web Host

A back end application written in PHP that logs any jobs that are received from the user to a
database and hosts the job for the render node to retrieve. It also logs the reviews that the users
might submit after having retrieved their result. This is where a large number of sanity checks
occur for the input data. Besides safeguarding our servers from injection attacks, we also restrict
the size of the image to sane dimensions and ensure the noisy image has the same dimension as
the OpenGL.

Database

A MySQL database that stores the TASKS and the RATINGS received. This database is hosted
which means the render node queries its rows directly in the first instance, without adding load to
the web server.

Amazon Host

A simple Node.js server that listens for incoming requests of the filtering results of jobs from render
nodes, the communication from the render nodes occurs via a key and the results are stored on
the file system. It then hosts the images received, again under a key, for the user to access.

Render Node

A heavy Node.js server that queries the database and the web host for jobs and stores it in the
file system. Any outstanding jobs will cause it to spawn Python child processes that invokes
Tensorflow framework. The locally stored neural network weights are loaded into memory and the
reconstructed neural network then begins to evaluate the outstanding jobs. When it is processing
a job, the server will not synchronize with the database and no new jobs are fetched. After
completion, it sends the result to the Amazon host and continues to listen for more jobs.
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Figure 33: Database Schema.

Normal Operation

There are two actors in the system - the user who initiates the original request and the request for
the end result, and the render node which initiates the request for a job and sends the result to
the Amazon host.

The following actions are initiated by the user:
1 - The user visits airenderer.com/app and uploads a payload to be processed.
2 - The web host generates an unique hash identifier (uhi) and is associated with the payload on
the file system. The uhi is a hash of the current UNIX timestamp and the name of the user.
3 - The client uses the uhi generated to check for the result of the render that is hosted on a
separate box.
4 - As soon as the render result is received from Graphic01, it is hosted and therefore any request
for this resource by uhi is fulfilled.

The following actions are initiated by the render nodes:
a - Graphic01 requests the uhi of any outstanding jobs from the database and updates that row
as retrieved.
b - The uhi is returned to Graphic01.
c - Graphic01 uses the uhi to retrieve the payload from the web host.
d - The web host returns the user uploaded payload to Graphic01, which is then processed.
e - The processed image and its uhi is then sent to the Amazon server and hosted immediately.

5.2 Distributed Operation

One of the strengths of the modular design is that it allows the workload to be distributed during
surges in demand. The trained neural network and web communication system is packaged in a
git repository called airenderer_heavy. This may be deployed to any number of additional render
nodes and can be used in lieu of or with Graphic01.

The fact that no part of the system has knowledge of the number of the number of render
nodes there are means that we may launch additional render nodes without modifying or informing
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Figure 34: Web Application Architecture.

the current system. This operation has been tested on one additional public (Amazon) node and
one additional Graphic node.

5.3 Neural Network Adaptation

For each render node, the logic is simple. If there is an outstanding job, retrieve the noisy and
OpenGL images and cache them. We then invoke the neural network and feed in the patch
corresponding to each pixel of the input image and the output we cache as the result. This is
immediately sent to the results host server.

Our scheme for handling the edge cases, which arises when a patch is taken of a boundary
pixel, is to pad the original image with an all black background, hence any undefined pixel is
taken in as black, suppressing the nodes in the neural network. The padding causes some minor
distortion in smaller images but is trumped by other filtering inaccuracies for larger images.
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Figure 35: A Distributed Operation Example.

Figure 36: Padding the Input Image.
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6 Evaluation and Conclusion

With our objectives from the introduction in mind, we will first try to show that this method
indeed speeds up the rendering of real world jobs. Once we are convinced that this has been
satisfied, we will then compare the quality of the output for a number of methods when given a
very large amount of time, to show that not only we are faster, we are also better than current
methods used to clear up noisy renders. The range of test images we will present here includes
a number of situations where our filter has performed very good and very bad to provide for
an interesting discussion, to see a list of really excellent filter output examples please check out
https://youtu.be/UOFa6Jd7NB8. Finally we will present the ratings obtained from user feedback
on our site on the public internet.

One new tool we would like to use to evaluate quality is Signal to Noise Ratio (SNR). This
is very commonly used to evaluate the strength of the true image against a noisy backdrop. In
general the signal to noise ratio[28] is expressed as

snr =
µsignal

σnoise

which we interpreted as a function of the test image

snr(test_image) =
µgt

σ ||gt−test_image||

for our particular situation. This means that a noisy image will have a lower SNR than a clearer
image. The SNR of the ground truth is infinity as the denominator is zero. One problem with this
method of evaluation is that if our ground truth has not truly been rendered to completion, and
that there are still some remaining artefacts, then the absence of these artefacts in a filtered image
will cause a decrease in the SNR - not what we want. Before we embarked on our evaluation, we
ensured that all the noisy images were to our satisfaction, inspecting individual patches of pixels
where necessary. The only one gt image that was a problem is from Abandoned Lab where
small patches of noise were still stubborn after 2 hours of rendering, so, the snr statistic for this
particular test example should be treated with less weight.

6.1 Speed

First we will show that an OpenGL material render is consistently fast to generate across a range
of scenes and the amount of time is negligible compared to other renders. For every image in our
test set, the time taken to produce has been less than 1 second, hence we will use 1 second as a
constant for this purpose.
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Figure 37: OpenGL material renders are fast to produce.
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In order to evaluate the speed, we first take a noisy image and filter it, noting down the
amount of time to filter. Then we let the renderer continue rendering from the noisy image for
the same amount of time as it took to filter algorithm to run, we will call this the equal time ray
traced (ETRT) result. We should note that the timings for the ETRT result has an error bound of
±10 seconds due to our method - we will place a star next to the statistic for these. If our filtered
result is equally or more desirable than the equal time ray traced image in all our tests, then we
will be satisfied that we are faster.

Figure 38: Sunny Room by ermmus (CC-BY).

There was a lot of visible noise that remained on ETRT render. Shadow regions where Monte
Carlo algorithms are less efficient were particularly bad. Our output managed to preserve details
whilst dousing the visibility of the coarse noise. We were pleased with the amount of detail
preservation especially between regions here. The frosted glass monkey head was a place where
our output blurred too much - there were some loss of detail around the eyes and more generally
between regions of similar colour.
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Figure 39: Old Interior by 2Theo (CC-0).

In Old Interior we had a good level of noise removal from the walls - with more of the raw
and sharp noise removed than the ETRT render. However, some detail was lost from the walls
- we suspect this is because the colour of the pattern on the walls were too faint and similar in
colour - prompting an anti-noise response from the neural network. This is a shame. The detail
preservation through the glass ball and flooring was excellent however, with all the subtle detail
overtly preserved. The ETRT rendition suffered since tracing refractive caustics is computationally
expensive. The output from our neural network proved to be much better than the noisy and ETRT
at the signal to noise ratio metric.
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Figure 40: Drums by bryanajones (CC-BY).

One recurring theme so far has been that two regions of very similar colour would have its
edges blurred rather badly, and the red drum texture here is another example - although the output
is better than the noisy input, it has arguably lost too much detail to be recognized as a wood
texture. In contrast, regions with different intensities or colours have had huge success - our output
for the drum stand with a chrome ball in the background is practically indistinguishable from the
ground truth whereas the ETRT render still has visible noise and distortion. Our output SNR was
within margin of error to the ETRT render which themselves are very close to the noisy SNR - we
believe that this is because our initial noisy input is of such a high quality, aggressive methods to
augment it to remove noise will disturb this high SNR. Here we will say that the accuracy of the
ray trace has not been improved by much, but the quality and aesthetics of the output has.
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6.2 Quality

We will test the resolve of Model 6 against competing Photoshop filters and the ground truth.
Photoshop filters are oftentimes quick to evaluate, sometimes being applied within seconds. How-
ever, this is not a contender if too much quality is lost or too little noise is removed. We also let
the scenes render to completion for the ground truth image. These should be taken as the ground
truth image.

Figure 41: Abandoned Lab by Elysia (CC-BY).

In figure 43 the noisy tree branches patch was done well by Photoshop but the output from
Model 6 is absolutely unmatched in terms of both colour quality and noise presence. It even trumps
the ground truth result which had already taken considerable amount of time and computational
power to produce. The Model 6 output for the blackboard blurred the details of the tiles above
the blackboard that was clearly visible in the ground truth render. The writing on the blackboard
was also somewhat less legible than the ground truth.
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Figure 42: Grassy Field by Spelle (CC-BY).

The removal of noise from this image is impressive. The noisy image is practically carpeted
with many types of fine and coarse grain noise and yet our output seems to triumph this to produce
a virtually noise free image. However, a main artefact that is in fact produced by the neural network
is a very dim haze around thin strands of bright regions. This is an artificial addition to the image
that blurs some detail unfortunately. The signal to noise ratio sees a great improvement over the
photoshopped version which can only use primitive noise reduction techniques as smart region blur
is not applicable here because each strand is too small to be considered a region of uniform colour.
In fact, this precludes a large number of scenes with similar detail from having smart region blur
applied in Photoshop.
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Figure 43: Blenderman by Juri Unt (CC-BY).

In figure 41, we have an indoor scene with glossy surfaces and additional light sources from the
scene. There is Subsurface Scattering used for the flesh and full sample Monte Carlo ray tracing.
Photoshop is able to remove the grunt of the noise from the hand, however some hazy noise still
remain. Model 6 was superior than Photoshop at both noise removal and maintaining contrast, but
there certainly is less vibrance than the ground truth. In the control panel patch, both methods
were good at maintaining colour quality, however, Photoshop still suffered a slight overlay of grain
on the bright parts of the image. Whilst Model V proved effective at de-noising large patches
of consistent colour on the control panel, there is a small amount of visible noise in intersections
between regions of colour.
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6.3 Preservation of Detail

We also would like to see explicitly how well detail is preserved in our neural network. To do this,
we will replace the ny input with the gt input and see explicitly just how much detail is lost. If
our neural network has done a good job, then our prediction is that the noisy output should be
the same as the ground truth input.

Figure 44: Blenderman by Juri Unt (CC-BY). gt_re is the filtered ground truth output.

We were wrong. The neural network proceeded to filter the ground truth image, removing the
final patches of noise from an already very clear ground truth render. The end output from the
neural network is actually better than the ground truth input! There is some very minor loss of
clarity near the honeycomb badge on the centre of his chest and the fan grille in the background.
This is definitely not desirable, and we would certainly want to ensure this doesn’t happen in a
future iteration. But I must stress that the detail loss is very minor - with the two images side
by side, one cannot notice the difference - it is only when you scroll between the images on a full
resolution screen do you notice this.

6.4 Effectiveness of the OpenGL Render

We would like to see explicitly just how much of an effect the OpenGL pass has on the filtering
ability. We will now compare two filtered images, one with its OpenGL render used as the OpenGL
input, the other with the noisy image used as the OpenGL input.

We find that the image that has been supplemented with an OpenGL input is far more
efficiently filtered. In figure 45, you can see that in the green patch, the numbers 2.78 is preserved
well in the filter that used an OpenGL supplement and the numbers are almost illegible in the filter
that did not use the supplement. In the orange patch, the mesh in the OpenGL supplemented
output is far clearer and sharper than the other. However, there was still some denoising compared
to the psd output which attained a snr of 3.70 dB, lower than the 3.94 here.

Considering the speed of production of OpenGL material renders as shown in figure 37 and
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Figure 45: Blenderman by Juri Unt (CC-BY). VI_nogl is the no OpenGL input pass result.

the fact that every 3d renderer has the ability to produce this pass, it is fantastic that we decided
to include this in our neural network. Other authors in our background section often opted to
include many more, often rather ambiguous passes at the expense of speed or accessibility. We
also note that on the areas where the OpenGL image did not provide much information, such as
on the hands, we did not notice a discrepancy between the two outputs - so it seems like where
the OpenGL is unable to provide information, there is no improvement in quality.

6.5 The Trial Period

We launched our app on the public internet on 26th of April 2017. Seven days later we implemented
an update - a feedback system for people to rate their results. The scale we used was out of 5
where 5 is "Excellent", 4 "Good", 3 "Acceptable", 2 "Bad" and 1 "Joke". Over this period of time
until the 1st of June 2017, we had over 1000 visits to view our website, 108 uses of the app and 26
ratings left.

The ratings were initially rather disappointing, however under close inspection, it turns out
that some of the jobs uploaded were users using our app improperly. A lot of these were people
uploading the same image for the noisy and OpenGL inputs. Although this was suggested to
novices in the quick start guide who did not know how to produce an OpenGL render in their own
software packages, it was not meant to be used in a production environment as professional users
of any 3d software package should be able to produce this OpenGL pass blindfolded. Please refer
to section 6.4 for the importance of having an OpenGL render. We will remove the ratings given
by users incorrectly using our app (shown in grey in figure 46) as we would like to simulate usage
by a professional who was proficient in his rendering workflow. Overall, we have an average rating
of 3.533/5.
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Figure 46: Accumulated Ratings.

6.6 Addressing Challenges

I want to address the challenges I opened with in the Introduction. Neural networks are difficult
to understand, and having to architect a new shape for a new task was daunting. However, this
turned out to be one of the most enjoyable parts of the project. Early on, I developed a methodical
approach for me to follow when evaluating architectures, which in the end would teach me the subtle
intuition associated with architectural design. The method was this. First, always peek at what
the output looks like in the early epochs. This gives you invaluable information of how well you
have tuned your initiation parameters. Most of the time we wanted the identity mapping with
some noise and this step tells you the success of the amplitude and variance of your noise filter.
An example of this is figure 28. Second, look for subtle hints of overfitting - if an image of the test
set degrades in quality later than a previous point in time, then we are likely to have some form
of overfitting. Overfitting is confirmation that our network size is large enough and that we to
simply vary our method. Finally, when you have branches in inception modules, it can be difficult
to ascertain how each branch might be affecting the output. In this case, it is perfectly good to
suppress the other branches and again, peek at the output. For example, in 29, we have a branch
with 2 convolutions of rectangular stride sizes. If we wanted to know what each convolution did,
then we simply replace the whole module with just 1 rectangular convolution.

Figure 47: A Vertical Convolution Applied to a Test Image.

The result of this replacement is shown in figure 47, when a vertically orientated convolution
layer is applied to image. The output shows good preservation of detail along the side of the pipe,
but the noise pattern turns into a nasty vertical looking disarray. This is what prompted me to
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follow this up with a horizontally rectangular convolution. These techniques allowed me to peek at
the concealed inner workings of neural network modules and to better understand how to handle
the machinery.

Keeping the system general with respect to the initial amount of noise in the image turned
out to be manageable. Two ingredients were needed - a large enough neural network with many
parameters and a training set that features coarse grain noise and gentle noise. An example of
coarse grain noise being aggressively filtered is Caustic Flower in figure 32, and an example
of detail preservation through gentle noise is the whiteboard patch of Abandoned Lab in figure
41. We showed in section 6.3 and the drums example that if we feed in a image with very little
noise, then almost all the detail is preserved and in some cases, the final noise is removed giving
us a result superior to the ground truth. For more noisy images, we realise that there is inherently
less information in a noisy image, and since being able to create fine detail is difficult and biased,
this would not be our intention. However, occasionally we may salvage some of this detail from
the OpenGL input, in which case, the extra information is certainly made use of by the neural
network.

One of the fears that I had before the projects - which did become a problem - was the choice
of error function for this task. Sure, the error function served us well in training the neural network
and evaluating the efficiency of training from loss-epoch graphs. But the final model that we were
most satisfied with had quite a high error! We were lucky that in this scenario we could use our
qualitative judgement to evaluate the best filter by eye but it certainly would have been nice to
find an error metric that is effective at training and evaluating a neural network for this task.

6.7 Final Thoughts

To finish, I just want to conclude by saying that this project has gone reasonably well in my
opinion. I had achieved much of what I set out to do in the objectives section and some of the test
set images have been filtered very very well. However, it is not a complete or universal solution.
Given a bad scene with bad lighting and and a bad combination of mesh locations, the filtered
output can be around the same or even slightly less clear than the equal time ray traced result.
This can also occur if the scene is very simple with only a few geometries. Sometimes some detail
is simply not preserved for no good reason, for example in figure 40. So we have a few proposals
for a more universal approach to the problem, in the next chapter.
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7 Future Work

Many Neural Networks

One of the challenges we had was to filter noise in different scenes. For example given a noisy image
of a uniformly coloured table, we would like all the detail of the noise to be removed - this is best
achieved by some form of smoothing or blurring filter. On the other hand, say we had a scene of
a dense forest bursting with leaves of every colour. In this scenario, using the same blurring filter
would have disastrous consequences. Throughout the project, there was a subtle power play of
whether we should go for more blur - for Horizon, Photosynthesis and Firefly Forest - or
more emphasis on the preservation of detail in Similar Edge, Faint Line and Colour Edge.

One possible solution for this problem is to train a neural network to determine whether a
pixel is in a region of roughly uniform colour or in a region of fragile edges that must be filtered
with care. We can then use the output of this neural network to determine which neural network
to use in order to filter the image. This is great because we can then train many neural networks
that are more specialized in filtering blurry pixels versus high contrast pixels versus firefly pixels.
We may find that the filtering resolve of the neural network that filters high contrast pixels is the
same as this neural network, but at least, if the other neural networks perform better, then we will
end up with a better overall result.

If this were successful, then we could even take it a step further by training our initial classifier
to recognize environments and then eventually specific objects. Imagine, the first neural network
pass could be to determine the type of scene, for example, nature versus architecture versus food
versus humans etc. Then if say nature were to picked, we could have another classifier neural
network to determine whether it is a tree or an animal or mostly sky... So we would have more
specializations until we can describe that pixel well, and then we would put it into the relevant
neural network to be filtered. Needless to say, this would require us to train hundreds of neural
networks for denoising specific objects, making the creation of training sets rather long.

Adding Artificial Detail

We must admit, that despite our best efforts, our final image will never be as clear or as accurate as
the original image. This is because for any two images A and B, if A has more noise than B, then
B will contain more information than A. We say A has a higher entropy. Thus the discrepancy of
the amount of information contained in A and B sets the upper bound for how close we are able to
reach the clarity of B. This is the reason we used material outputs from the OpenGL pipeline to
decrease the overall entropy of the noisy system. If we do not have information beyond this, then
one option may be to perform in-painting in regions where noise removal has left the image bare.

Neural networks have had much recent success at in-painting[29]. The usual test setup is to
remove a small rectangular portion of an image and let the neural network deduce what the colour
intensities in the removed portion should be. This is what we need! We simply need to mark
patches of the filtered image for regions where we have a lot of uniformity and run an in-painting
neural network on these patches. It may be that the uniformity was intended in the original scene,
in which case, the in-painting network should just leave it alone. This technique would certainly
add detail to the final output, at the expense of adding bias.

It would be interesting to see what would happen if we concatenated the denoising neural
network to the in-painting neural network, initialized to their respective trained weights and then
train the whole neural network.
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Appendix

Machines Used to Obtain Results

We used Tensorflow as our deep learning framework for operating tensors. We trained our small
models on a Nvidia GTX 960m and larger models on a Nvidia GTX 1080 (Graphic01). Evaluation
of images for the web app happened on various nodes including a Nvidia GTX 1080 (Graphic01)
and Nvidia Tesla K80 (Amazon p2.xlarge). Creation of the dataset occurred on various i7 CPU
machines that were free in labs.

Acknowledgement of Source Code Used

Repository - deep_filter

• In files tfrf.py and dataProvider.py we used the ideas related to setting up the training and
test datasets and the logging and graph plotting capabilities. No code was directly copied.
The original files came from a paper by Zichen Liu for emotion classification of faces, the
source code can be made available on request by the author.

• Note that all test patches used throughout this report are unreferenced here, but acknowl-
edged in the code base submission repository.

Repository - airenderer

• All files in assets/ and help/assets/ are library files taken directly from their respective
authors.

• The files elements.html, generic.html, help/elements.html and help/generic.html are taken
directly from the source code by the author Html5up at html5up.net.

• The files index.html and help/index.html are from Html5up but adapted with my content.

• The file app/test_input.php is from W3schools entirely.

• In the file app/index.php, lines 87-96 are from Google to provide analytics tracking.

• In the file app/welcome.php, lines 82-168 are adapted from W3schools to purpose.

Repository - airenderer_back

• In index.js, the code between lines 27-32 was adapted from the npm http site to purpose.

• In index.js, the code between lines 52-54 was adapted from the npm mv site to purpose.

Repository - airenderer_heavy

• In index.js, the code between lines 19 and 23 were adapted from the npm request site to
purpose.

• In index.js, the code between lines 151-156 was adapted from the npm restler site to purpose.
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Figure 48: Screenshot of the app page.
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Figure 49: Screenshot of the app performing filtering operations.
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Figure 50: Screenshot of when filtering operations are complete.
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Figure 51: Screenshot of the landing page.
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Figure 52: Screenshot of the tutorial guide.
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Figure 53: Reproduction of the quickstart guide from airenderer.com/help.
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