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Abstract

The execution of programs in virtual time is a powerful method for supporting a contin-
uous performance engineering development lifecycle. Firstly, it allows for the integra-
tion of timing models that run alongside a program, replacing parts of the application
which have been specified but not yet implemented early in development. Secondly,
it enables virtual time scaling in a multi-threaded application and between multiple
processes such as a web server and a database. This is useful during the later stages
of development when ‘what if’ experiments can help identify potential optimisation
opportunities that might significantly impact the execution of the program or work-
load of interest. We present an extension for the Linux scheduler which provides an
OS mechanism for virtual-time execution. It attempts to model the actual scheduler
(CFS) by executing it with a modified notion of virtual time. The mechanism in par-
ticular supports moving tasks in time, dynamic per-task time-scaling, and accurate
sleep duration in the presence of time-scaling of other tasks. We evaluate the accuracy
and overhead of the solution in a series of experiments that were also used to drive the
development of the framework. The measured time scaling overhead is in the order
of a microsecond and we are able to accurately predict a 10% speed-up of a workload
from the PARSEC benchmark under a speculative optimisation of a single function.
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1 | Introduction

The performance of every software system starts as a non-functional requirement when
it is first specified. Meeting this requirement is often crucial, just like meeting secu-
rity requirements. If the function of a system is to service an order, but it takes 10
minutes to do so or it leaks the credentials of the user, no one would use this system,
even though it meets its functional requirements. The parallels between performance
and security don’t end here - in practice both suffer from the fix-it-later phenomenon
and there is substantial research and growing adoption of model-based techniques that
integrate these processes in the software development lifecycle. A survey [1] on the
state of performance engineering in 2016 found that 70% of respondents agree the
importance of performance engineering is growing due to the rise of complex compos-
ite applications. In the same survey, performance testing and tuning and the design
of post-deployment performance testing and monitoring infrastructure were identified
as the main responsibilities of a performance engineer. In comparison, performance
modelling, influence on non-functional requirements in early stages of development,
and developing design guidelines that relate to performance were selected by just over
a half of the respondents. We believe providing and promoting tools for early-stage
performance modelling can help drive these numbers up and result in many more sys-
tems meeting their performance requirements. This is important for businesses because
problems caused by performance issues with large systems often lead to lost revenue
either through service outages or poor UX that drives customers away.

1.1 Objective

The objective of this project is to build a virtual-time execution framework. Such a
framework will enable us to explore the performance characteristics of software during
its development as part of the software performance engineering process. Specifically,
real code can be executed alongside performance models that predict the response times
of software components (which may not yet exist) along a unified virtual timeline. In
addition, the perceived time of processes or threads can be changed using a time dilation
factor to create the illusion of functions running relatively faster or slower. This will
allow hypothetical “what if” experiments to be undertaken to find potential bottlenecks
and to predict the effects of optimising specific parts of the code.

Virtual time execution has previously been explored for the JVM in VEX ([2],
[3]) and even though our project is a spiritual successor of that work we highlight
some important differences in our approach aimed at dealing with some of VEX’s
limitations. Regardless of the approach, software performance depends on all layers
of a system - from CPU architecture, through OS kernel and VM runtime, to user
libraries and applications, as well as the components at each layer - OS scheduler, VM
garbage collector, threading synchronisation primitives, to name a few. It is therefore
easy to get lost down the rabbit hole without setting some assumptions, restrictions
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and guiding principles. There isn’t a strictly-defined class of software systems under
consideration, but we target CPU-bound processes running on a single-core or SMP
architecture, while keeping in mind how any decisions could be affected by I/O and
other system resources.

1.2 Solution

The presented solution combines ideas from related work (VEX [3] and Timekeeper
[4]). The objective is to support fine-grained per-thread time-scaling and synchronisa-
tion in virtual time while having precise control over time and kernel-level events. The
former is more easily conceived in user-space either as an instrumentation framework
or modification of a runtime environment. However, there are risks associated to the
extensibility of such an approach beyond the scope of this project such as integration
into the I/O subsystem and robust virtual time execution on SMP. This is the reason
we choose a ‘best of both worlds’ path by building the mechanisms for virtual time
execution in a loadable kernel module (and directly into the Linux kernel where neces-
sary). The kernel module represents a virtual time device that is managed by standard
operations on a Linux file (open, read, write, seek, etc.). This interface is sufficient
to use the solution, but we present a C library and additional utilities that greatly
enhance the user experience.

1.3 Contributions

• Modifications to the Linux kernel, a loadable kernel module, and a user-space
C library combine ideas from related work into a framework that can take full
control of the experimental environment both in user- and kernel-space. This is
sufficient to address concerns about the extensibility of our work with features
that require arbitrary hacks to various subsystems of the kernel.

• Evaluation of two different approaches to time-scaling in the Linux scheduler -
overriding nice values vs. scaling vruntime of scheduling entities, and a review
of other solutions (VEX [2], Coz [5], Timekeeper [4]).

• Evaluation of the accuracy and overhead of the presented solution with controlled
experiments as well as a popular benchmark.
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2 | Background

2.1 Software performance engineering

Software Performance Engineering (SPE) has an interesting history [6] as a field of
computer science which has evolved over the years to meet the demands of new com-
puting paradigms and development methodologies. In its foundation are quantitative
techniques to predict the performance of software early in design and effectively ad-
dress performance risks to meet non-functional requirements. Academic reviews [7] [8]
of the field over the years identify the adoption of the fix-it-later mentality as a major
cause of performance failures. This approach prevails when it becomes more expensive
to model and evaluate software in design and development than to fix and tune it later.
In the context of SPE, this project is an instance of the efforts to develop more effi-
cient modelling and measurement approaches that outweigh the benefits of fix-it-later.
There is substantial interest in the design of adaptive self-managed systems that are
able to dynamically evaluate and adjust their performance. The ability to execute in
virtual time and measure the effects of possible optimisations at a macroscopic level is
one tool to implement adaptation strategies.

The performance of software is typically a matter of timeliness (responsiveness), effi-
ciency, and scalability. Common measures of timeliness are response time and through-
put. Efficiency can be measured by considering resource utilisation. Scalability can be
determined by observing timeliness and efficiency as the service demand and number
of resources increases. Common ways to assess the performance of software are the
use of performance models, software profiling, and symbolic execution. Each of these
techniques has its advantages and disadvantages and they can be often applied in a
combination. I give a brief summary of each with an example application.

2.1.1 Software profiling

In practice software performance engineers use high-precision timers and sophisticated
tools to analyse running systems. Profiling is a form of dynamic program analysis which
relies on collecting information about a program as it executes. There are different
types of profiling based on what the collected information is and what method is used
to gather it. The job of a sampling profiler is to periodically look at which code is
being executed (by examining the instruction pointer for example, Figure 2.1). As an
alternative, a tracing (or instrumenting) profiler modifies the application code or the
runtime by adding snippets of code. The main difference1 is that tracing code is part
of the normal execution of the profiled program while sampling acts as an independent
observer. A popular tool is the perf Linux profiler [9] which is used to sample and
trace events. The core mechanisms for tracing in Linux is supported by ftrace [10].

1See https://danluu.com/perf-tracing for a detailed discussion with great examples
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# Sample CPU stack traces for the specified PID, at 99 Hertz, for 10 seconds:
> perf record -F 99 -p PID -g -- sleep 10

Figure 2.1: CPU profiling by sampling the stack - 60% of CPU time spent in bar, 100%
in foo, and 2

7
of total time off-CPU with example perf command.

There is a trade-off to how frequently a sampling profiler can sample and still
be representative of reality, because high sampling frequency comes with increased
overhead and interference with the observed code. Even worse, sampling only sees
what is happening - sometimes it is more important what isn’t, such as waiting on a
software lock. Finally, sometimes (in Google’s data centres) the tail of a distribution
is what is actually important [11] and sampling only captures the average. This last
point is a bit harder to understand so consider the following example. A query is
answered by issuing thousands of remote procedure calls (RPCs) to various machines
(think map-reduce). In order to prepare a response, all RPCs need to return so it is the
slowest one that determines the response latency. However, each machine involved is
simultaneously handling thousands of RPCs for various queries and a sampling profiler
would report an average which is not indicative of the true performance for a query.
With all these disadvantages in mind, sampling profilers still play a significant, if not
dominant, role in performance engineering. The reason for this is their simplicity and
the fact that the majority of performance problems can be analysed by looking at the
approximate time spent on a line of code. Brendan Gregg, ‘all-round performance
guru’, even recommends CPU profiling (‘not technically “tracing” of events, as it is
sampling’) as the first thing to learn on his page about Linux tracing2 before going
into more depth.

It is important to understand how time is used in performance engineering. By
doing this one can reason about the choice of abstractions, in what cases the simulation
is accurate and thus useful, and how it might fail to represent the modelled system. A
program like perf can hook into thousands of events (see Figure 2.2 for a break-down
of the main classes) and this is just one of many tools. In the context of virtual-time
execution we are mostly interested in events generated by the scheduler such as context
switches, wake-ups, migrations to another run-queue, blocking on I/O, etc. It is thus
beyond the scope of this report to give a complete overview of what is commonly
used by performance engineers. However, it is easy to come up with experiments that
validate our expectations about virtual time execution. For example, if a piece of code

2http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html - Choos-
ing a Linux tracer
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Figure 2.2: perf instruments various events - CPU performance monitoring counters,
kernel counters (e.g. page faults), static trace-points at interesting places in the kernel,
dynamic tracing to generate an event anywhere (figure by Brendan Gregg [12]).

is made to run twice as fast in virtual time, a sampling profiler should see this code
two times less frequently than during a normal execution. In the same experiment, a
trace should show an instrumented method called by the accelerated code was called
the same number of times as normal unless the calls are driven by the progress of time.
However, it is hard to have any reasonable expectation about the number of page
faults or cache misses, or time spent holding a lock, especially in realistic scenarios.
Very specific knowledge about the whole stack (application, libraries, runtime, OS) is
required when it comes to interpreting a measurement and looking for performance
bugs or optimisations.

Finally, profilers record vast amounts of data, mostly stack traces. It is challenging
to do any kind of analysis by merely reading a stack trace. This is why visualisation
plays a role in software profiling, too. A popular one, invented by Brendan Gregg, is
a flame graph (Figure 2.3). The x-axis is an alphabetically sorted stack to make sure
as many samples as possible are merged to form ‘towers’. The y-axis simply shows
the stack depth. Different colours are used to highlight kernel, JVM, and Java user
code. The edge of the ‘flame’ shows which function is using the CPU, the context of a
function call can be traced down the y-axis, and more samples lead to a wider tower.

2.1.2 Performance models

The aim of a performance model is to predict performance aspects of a modelled system.
It consists of an abstract representation of the system’s hardware and software and a
workload model which describes the types of tasks handled by the system, the service
demand for a task, and how system resources interact to complete it.
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Figure 2.3: Example flame graph by Brendan Gregg [13]

For example, a performance model of a cache for a web application could contain
abstractions for clients requesting various resources at different times and the state of
the cache itself. The workload could be modelled by specifying the popularity of each
resource - viral videos could be requested 100 times per second, while an old news
article - 2 times a day. With this specification in place there are a range of techniques
to build the actual performance model. These techniques can be broadly grouped in
two categories - analytical models and simulation models.

Simulation models

The aim of this project is conceptually to build a simulation model - it tries to imitate
the performance of a software system. The modelled software system consists of parts
of the system itself, abstractions to imitate the slower or faster execution of certain
parts of the system, and abstractions to execute other performance models and use
their predictions to imitate interaction with non-existent parts of the system.

A simulation is a computer program that imitates how the state of the modelled
system evolves as it is exposed to the workload model. Simulations can be stochastic
(often using probability theory to introduce the element of randomness) or determinis-
tic. A discrete event simulation (DES) processes a time-ordered stream of events that
mutate the state of the system and cause new events to occur. The running example
with the web cache can be modelled using a DES. As an example, Figure 2.43shows the
hit ratio from three runs of a simulated cache with a First-In-First-Out cache policy
and cache size of 10. There are 100 resources with popularity following the harmonic
series.

In contrast to DES, continuous dynamic simulations solve a set of equations (often
with a changing solution over time) to model processes such as fluid dynamics in a flight

3The cache example is based on work I did in collaboration with Andreas Asprou in the Simulation
and Modelling course
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Figure 2.4: Hit ratio over time of a simulated cache (3 runs, FIFO, cache size = 10)

simulator or the fundamental laws of physics in a simulation of the universe. These
models often combine aspects of simulation and analysis [14]. They are less common
in performance engineering, but can be applied to dynamically adapting systems [15].

An important property of all simulation models is that the accuracy can be increased
arbitrarily - a running system is a perfect simulation of itself. Usually the prediction
of a (stochastic) simulation model comes with a confidence interval (CI) [16] which is
a type of interval estimate based on observed data. In our example with the cache
the observed data is n = 10 measurements for each row of Table 2.1. The confidence
level associated with a CI is usually interpreted as the probability of finding the true
value of the estimated parameter inside the produced range (90% in our example). The
most common case is when the underlying distribution is normal and the estimated
parameter is its mean. Also in most cases, the standard deviation is unknown, which
makes the sample mean follow a t-distribution. The CI in such setting is given by the
following formula:

x̄± z s√
n

where x̄ is the sample mean, s is the bias-corrected sample standard deviation, n
is the number of observations, and z is the critical value of the t-distribution with
n− 1 degrees of freedom at the chosen confidence level. Critical values are taken from
statistical tables [17] that contain approximations for common confidence levels.

Analytical models

An analytical model uses mathematical theories to model a system. The main challenge
is to represent a real-world system architecture at the high-level of abstraction of a
formalism. However, such models can be analysed with more precision and when
understood well require less effort to build than a simulation. For example, queueing
theory can be used instead of a DES to model the response times in our cache example.
Once we’ve estimated the probability of a cache hit, this can be used to construct a
network to model the interaction with a database to retrieve the requested resource
(Figure 2.5). In a practical scenario this could be used to try out hypothetical cache

10



Cache (policy and size) Point estimate of hit ratio Confidence Interval (90%)
10 measurements in steady-state

FIFO 10 0.18238 (0.18212, 0.18263)
RAND 10 0.18363 (0.18306, 0.18421)
FIFO 50 0.40625 (0.40601, 0.40650)
RAND 50 0.40730 (0.40698, 0.40763)
FIFO 100 0.51854 (0.51804, 0.51904)
RAND 100 0.52227 (0.52187, 0.52267)

Table 2.1: Confidence intervals for hit ratio with different cache policy and size based
on 10 runs of a DES

phit

1-phit

Web cache

Clients

Replicated database

Figure 2.5: A closed queuing network with cache and database models

policies against a real database system to evaluate its performance at workloads caused
by cache miss behaviour.

In addition, a continuous-time Markov chain could be used to estimate the prob-
ability of a cache hit instead of the DES. For this reason, analytical models are very
useful when evaluating simulations. Figure 2.6 shows the CTMC for a small cache -
each state shows which resources are currently cached, transitions show the exponen-
tially distributed rate at which one state can move to another. The probability of being
in each state can be calculated by solving a system of linear equations that models the
system at equilibrium (steady-state). On the other hand, when the prediction of an
analytical model doesn’t meet what is observed in reality, a fine-grained simulation can
be used to find details that were lost in abstraction.

2.1.3 Symbolic execution and static analysis

Symbolic execution is a program analysis technique commonly used in system verifica-
tion to test whether software meets or violates a specification or property. It is often
described as a middle ground between performance models and profiling. Performance
models provide a very coarse-grained abstraction, while profiling can only capture data
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Figure 2.6: CTMC of the web cache with size of 2, 3 resources in total, and RAND
replacement policy

from a finite set of possible executions. Probabilistic symbolic execution has been used
to generate performance distributions [18].

2.2 Virtual-time execution

Virtual time was introduced by [19] as a paradigm for programming distributed systems
that relies on optimistic simulation and state roll-backs to enforce causality constraints
without explicit synchronisation. The described time-warp mechanism is nowadays
used in large-scale parallel discrete event simulations [20]. However, we are interested
in a slightly different notion of virtual time because of the direct execution aspect.
A DES in the spirit of [19] that solves our problem would require detailed models of
the hardware, host operating system, virtual machine, etc., running in a specialised
simulator such as the one presented in [20]. Clearly, using a supercomputer to analyse
the performance of a web application is not very practical and doesn’t scale very well
to being used by many developers on different systems.

2.2.1 VEX

This project is based on VEX [2], [3] for the JVM which describes a user-space schedul-
ing profiler that is used to enforce a correct virtual-time execution sequence while
recording timing events. A Java agent is used to instrument an application so that it
communicates thread state changes and events from profiled methods to a scheduler
which is controlled by VEX. For example a time-scaled method marked by a Java an-
notation is instrumented to trap into VEX so that its virtual time can be updated.
Similarly, Java synchronisation primitives are modified to communicate with the sched-
uler. The thread that VEX wants to schedule is the only thread that is made runnable
by the OS scheduler - VEX effectively forces the OS scheduler to respect its decisions.
We proceed by answering some common questions related to schedulers with quotes
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from VEX:

How is the next task to run chosen?

The next thread to be resumed is the one that was suspended earliest on
the virtual timeline; this is essentially the Borrowed Virtual Time (BVT)
scheduling policy [21] with our method time scaling factors being equivalent
to “weights” of BVT processes.

How is the timeslice chosen?

The virtual time scheduler enforces a priority-free round-robin scheduling
policy, with a default virtual timeslice of 100ms (which is the base time
quantum for the default static priority in Linux).

The scheduler allows an application thread to run for one timeslice by
invoking a timed wait for the duration of the timeslice, suitably scaled by
the Time Scaling Factor (TSF) of the thread’s currently executed method.
For example, if the default scheduler timeslice is 100ms and the current
method has a TSF equal to 3 then the thread executing it gets a timeslice
of 300ms in real time. The method’s estimated virtual time is then its
measured execution time divided by 3, thus adding 100ms of virtual time
for 300ms of execution. This simulates the effect of the method executing
3 times faster within a single timeslice.

When VEX was designed the scheduling algorithm in Linux indeed had a fixed
timeslice based on priority. However, CFS’s distinctive feature are dynamic timeslices.
This increases the implementation complexity for any solution that tries to keep the
dynamic nature of CFS.

What happens if the scaling factor changes during the timeslice?

In this case the scheduler is notified and updates the duration of the re-
maining timeslot accordingly. The scheduler is similarly notified if a method
with scaling factor 1 calls a method with TSF 6= 1.

Trapping into the scheduler, regardless of whether it’s in user-space or the kernel,
deviates from the normal execution of the instrumented program. VEX tackles this
by accounting for the overhead and adjusting accordingly. However, at a lower level of
abstraction, side-effects such as flushing CPU caches could modify the execution in an
unpredictable way. It is important to note that a significant part of VEX deals with
time-scaling and prediction of I/O in virtual time.

2.2.2 Progress of threads in virtual time

More recent work in [22] extends VEX to run with multiple processes so that the
performance of distributed programs can be analysed with the virtual time framework.
Figure 2.7 shows a visualisation technique that was invented by O. Myerscough to
clearly present complex execution sequences in both real and virtual time. Each thread
of execution is shown in a different colour and pattern. Diagonal lines mean a thread
is currently executing, horizontal lines mean a thread is not executing, vertical lines
are instant jumps in virtual time. The staircase pattern in this figure is typical for
uniprocessor systems where only one thread can progress.
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Figure 2.7: Progress in real and virtual time of two threads - blue appears to run two
times faster because at virtual time 80 it has consumed 2

3
of real time

In a multiprocessor simulation environment it is crucial to synchronise the virtual
timelines of all cores to avoid causality errors. Consider the same example as above
running on two cores without synchronisation (Figure 2.8). Imagine the red thread
(producer) creates a piece of work for the blue one (consumer). Now suppose that we
want to simulate the blue thread being two times faster than real. However, you can see
that at real time 40 the blue thread has received two jobs already. We have managed
to modify the timing behaviour by making the blue thread perceive real time 40 as 20.
Unfortunately, the functional behaviour is the same as before and the simulation won’t
tell us anything.

In order to fix this we would need to make the red thread wait for its blue counter-
part to catch up in virtual time before progressing further (Figure 2.9). Note that the
diagram shows a particular synchronisation scheme that synchronises every 20 units of
virtual time. There are many options, both conservative and optimistic, and choosing
the right one is a matter of understanding what is being modelled. In reality the red
thread wouldn’t block simply because the blue one would execute two times faster.
At granularity much lower than the minimum granularity of the scheduler this would
introduce significant simulation inaccuracies. However, in a real system tasks get pre-
empted all the time and events that happen at the granularity of preemption could be
accurately simulated by integrating such synchronisation into the system scheduler.

2.2.3 VEX in the Linux kernel

A student project by James Greenhalgh from 2012 presents an implementation of
virtual-time execution in the Linux kernel (K’VEX). Crucially, the author identifies
a few limitations in his approach that my project tries to address. Firstly, the im-
plementation is uniprocessor - this doesn’t expose interesting thread schedules that
would matter to the performance of a multi-threaded program running on a multi-core
architecture. Secondly, the information passing mechanism to the kernel introduces a
lot of overhead and adds noise to the simulated execution. The author identifies that
he could optimise out a lot of the system calls and presents empirical measurement of
the overhead.
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the diverge.
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Figure 2.9: The plot suggests round-based execution with a synchronisation step of 20
time units.
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2.2.4 Network emulation

Virtual-time execution is closely related to network emulation. Time-scaling VMs or
containers is commonly used to analyse the effects of a faster network on an application
or to test a network protocol against a simulated execution [23], [24]. A key challenge is
placing events from emulation and simulation on a unified causally-consistent timeline
[25].

Timekeeper, a solution that modifies the Linux kernel and uses time dilation in
Linux containers (LXC), is presented in [4] and integrated with network emulators in
[26]. We considered adapting Timekeeper to achieve similar effect for virtual-time exe-
cution. However, this has been shown to work only at coarse granularity - network de-
lays dominate the overhead. In order to achieve method-level scaling and performance
model execution, fine-grained control is required. The freeze-unfreeze mechanism in
Timekeeper relies on signals which is not desirable in our case. A SIGSTOP signal acts
on a thread group and would block all pthreads in a process instead of stopping only
one of them until another one catches up. Another difference is that time-scaling fac-
tors in Timekeeper experiments are not meant to change dynamically at the function
level.

In his work Baltas identifies this difference between time-scaling in network emula-
tion and virtual-time execution as a key one:

Grau et al. introduced the time-virtualised emulation environment [27],
which dynamically changes the TDF according to some load metric to better
balance the emulation’s resource utilisation. Nevertheless, in both cases the
passing of time is altered at the level of a virtual machine and for all its
components. This results into poor granularity in the level of alteration
and restricts these techniques from uses beyond network emulation like
extending or accelerating the duration of an application method to identify
its performance effect.

We note that there is soon-to-be-published work by the authors of Timekeeper
which promises to deliver “much higher accuracy, scalability and repeatability than the
older version and should be able to run in a distributed mode as well”.

2.2.5 Causal profiling

Another approach to virtual-time execution which focuses on performance engineering
is presented in [5]. Coz uses a technique called virtual speedup to measure the effect of
speeding up a line of code by inserting forced slowdowns in other threads of execution.
The Coz causal profiler implements virtual speedup by sampling the instruction pointer
to find how often a section of code that falls within a virtual speedup section runs.
A statistical approach is used to compute the average slowdown incurred by each
thread. Coz instruments the pthread library calls for blocking and unblocking threads
to correct the accumulated delays while a thread is blocked and another one is going
through delays that both threads need to be credited for.

2.3 Linux

The target operating system for this project is Linux because of its open nature that
would allow us to subject it to various hacks as well as its adoption among soft-
ware developers who would benefit from using virtual-time execution for performance
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engineering. What follows is an overview of some Linux fundamentals and detailed
description of topics which are relevant to our implementation. The reason why we
are interested in the kernel is because it is responsible for sharing hardware resources
between processes. We have seen in the previous section that time dilation in virtual
time is mostly concerned with changing the shares of a process in a given resource. For
a more complete reference on the Linux kernel see [28], [29] and the source [30].

2.3.1 Linux kernel 101

A Linux machine is in one of three states at any given time - executing user code,
kernel code in process context (such as a system call), or kernel code in an interrupt
handler (such as a timer tick). There are also kernel threads which are treated as
lightweight processes that work on asynchronous jobs. The operating system defines
core abstractions such as tasks (processes), files, virtual memory areas, etc., and sub-
systems that operate on them such as the scheduler, memory and file management.
The main communication mechanism from user code into the operating system are
system calls. New features can be implemented through the addition of system calls
but this is discouraged. Instead, it’s best to follow the device driver model, either
exposing a file interface via sysfs, ioctl, a custom file system, netlink, etc. The
Linux kernel is monolithic, but it supports dynamically importing and removing kernel
code packaged in loadable kernel modules. Various kernel functions are “exported” for
use in modules.

Apart from loadable modules, Linux has a few more unique features. Both pro-
cesses and user-level threads are handled by the task abstraction, but threads are
created as processes that share a set of resources (most notably the virtual address
space) by passing the right arguments to the clone system call. The kernel supports
symmetric multiprocessing (SMP) which introduces some revolutionary changes related
to fine-grained synchronisation, per-CPU data, and how the OS works with hardware
in general. It also significantly increases the complexity of the code-base. Another in-
teresting trait is that Linux is a preemptible kernel [31]. In a nutshell, this means kernel
code executing in process context is subject to context switches. This greatly improves
the performance of some device drivers, but again at the cost of added complexity,
because special considerations need to be made in regards to synchronising re-entrant
functions. Note that, the implementation of spin-locks in Linux disables preemption.

2.3.2 Process priorities

As already mentioned, we are interested in understanding resource sharing in Linux
and we focus on CPU-bound processes. In order to get a grasp on CPU sharing, we
need to review process priorities. Linux, just as every major operating system, has
a mechanism for specifying that a process is more important (has higher priority)
than another process. When it comes to priorities, Linux separates processes in two
main classes - real-time and other. Real-time processes are handled by the FIFO and
Round-Robin schedulers which run as soon as there is a runnable real-time process.
In this project we are interested in the other class which comprises of most processes
running on your machine right now. Their priorities are called nice levels. They
specify how “nice” a process is to others - the higher the nice level of a process, the
lower its priority. Historically, every scheduler implementation has treated nice levels
differently. In the current one only relative differences in nice values matter. The rule
of thumb is that there is a 10% difference in weight between each level (See Table 2.2).
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Figure 2.10: High-level architecture of Linux - user- and kernel-space and major sub-
systems in the kernel.
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Nice Weight Nice Weigh Nice Weigh Nice Weight
-20 88761 -10 9548 0 1024 10 110
-19 71755 -9 7620 1 820 11 87
-18 56483 -8 6100 2 655 12 70
-17 46273 -7 4904 3 526 13 56
-16 36291 -6 3906 4 423 14 45
-15 29154 -5 3121 5 335 15 36
-14 23254 -4 2501 6 272 16 29
-13 18705 -3 1991 7 215 17 23
-12 14949 -2 1586 8 172 18 18
-11 11916 -1 1277 9 137 19 15

Table 2.2: Nice levels to weights in Linux

Weights are the actual values that correspond to CPU shares linearly and you can see
that the mapping to nice levels is exponential.

weight ≈ 1024

1.25nice

For example a difference of 5 gives approximately three times more CPU time and it
doesn’t matter if the increase is from 5 to 10 or from 10 to 15.

2.3.3 Clocks and timers

Linux has a sophisticated and well-organised system for keeping track of time. The
key abstractions over hardware are clock sources and events [32]. Clock sources are re-
sponsible for providing a monotonic timeline with high resolution and stable frequency.
Clock events trigger interrupts at specified points on the timeline. There is an inher-
ent trade-off between overhead and precision in timekeeping and the kernel provides
various options to cover all use cases. For example the sched_clock() function used
by the scheduler is very fast at the cost of some loss of precision. Another example are
hrtimers [33] which accept a slack argument that allows for events with overlapping
ranges to be grouped in a single interrupt. We note that the hrtimer API is by far the
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cleanest, most accessible, well-organised and documented part of the kernel we have
seen.

2.3.4 Fair process scheduling

The scheduler of an operating system is responsible for sharing the most important
resource in a computer - the CPU, while respecting various constraints such as process
priorities and affinity. The default scheduling algorithm in Linux - the Completely
Fair Scheduler4 [28], already uses the concept of virtual time. From the CFS design
document:

On real hardware, we can run only a single task at once, so we have to
introduce the concept of “virtual runtime”. The virtual runtime of a task
specifies when its next timeslice would start execution on the ideal multi-
tasking CPU described above. In practice, the virtual runtime of a task is
its actual runtime normalized to the total number of running tasks.

However, the simple idea of perfect multitasking hides the complexity of implemen-
tation.

The Completely Fair Scheduler was designed to improve the performance of inter-
active processes which are the most common type of workload on a desktop system.
An interactive process is best serviced by making sure it gets scheduled as soon as it
becomes runnable. Normally, schedulers achieve this by allocating a larger timeslice
and giving higher priority to interactive processes than to purely CPU-bound work-
loads. Consider an interactive text editor versus a CPU-heavy video encoder. The
text editor is given a larger timeslice not because it needs it all the time, but because
the system wants to make sure it has enough time when it is really needed. It is also
given a higher priority so that it preempts the video encoder as soon as it becomes
runnable. In the following paragraph we describe CFS’s unorthodox interpretation of
priority and timeslices in order to achieve interactivity.

CFS does something completely different than the example above. Assuming both
processes have the same nice values they are allocated the same ‘timeslice’. Timeslice
is in quotes here because CFS doesn’t really have the concept of a timeslice. In CFS
processes are not assigned a timeslice, they are assigned a proportion of the processor.
When a process is about to be scheduled the time it is given is calculated dynamically.
Based on compile-time options an hrtimer could be set to drive pre-emption (a.k.a
dynamic ticks) or the timing information is updated by a conventional scheduler tick at
a fixed frequency (250 Hz on most systems, but also configurable). This is contrary to
previous solutions with fixed timeslices based on process priorities which have problems
with fairness [28].

The two main parameters for tuning CFS are target latency and minimum granular-
ity. The target latency is a period of time in which all runnable tasks are guaranteed
to run. It is fairly divided between the currently runnable tasks according to their
weight5. However, as the number of runnable tasks grows, the interactivity provided
by low target latency will be outweighed by high switching costs. The other parameter,
minimum granularity, defines the shortest possible timeslice that a task should receive.
It is also used to solve the above problem by stretching the scheduling period to the
minimum granularity times the number of runnable tasks if that would give a longer

4https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
5I’ll come back to the notion of weight in the next section
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period. CFS doesn’t use the scheduling period as an epoch or round in which actually
all tasks would get to run for their fair share. Instead the period is computed just
before a task is about to start running so that this task’s share (dynamic timeslice)
can be determined. This is what allows interactive processes to possibly run multiple
times during what would be considered a single scheduling period in an epoch-based
view of the scheduler.

By using the vruntime value CFS keeps track of how much time each process has
spent running on the CPU out of the time that it was allocated. Clearly, the interactive
process spends only a fraction of its allocated time actually executing. When the text
editor wakes up, CFS compares the time each process has spent using the CPU and
lets it preempt the video encoder until it blocks again waiting for user input or the
virtual runtimes of both processes become equal.

An interesting architectural pattern in the Linux scheduler are scheduler classes.
The core of the scheduler encapsulates logic which is policy-agnostic and exposes hooks
for implementing various scheduling policies. For example an algorithm can decide
what happens when a task becomes runnable and when it leaves the queue, or how
to check if the current task should be preempted by a given task. A list of scheduler
classes can be defined such that the core of the scheduler chooses a task from the first
class that has a runnable one. CFS is implemented as one of the scheduler classes in
this list. The others are the real-time schedulers and the idle scheduler.

2.3.5 Fair group scheduling

The CFS algorithm described above operates on individual tasks, but remember that in
Linux threads are tasks, too. An application could potentially starve others or have a
significant impact on fairness by spawning many threads. By default runtime statistics
about all threads in a process are grouped in a parent entity which is compared against
other such entities. System administrators are free to create various other groups
based on users, types of applications, time of day, etc. This gives rise to a hierarchy of
scheduling entities (struct sched_entitiy) that CFS operates on instead of tasks.

2.3.6 CFS and Multi-processing

Everything described so far about process scheduling is true for a uniprocessor system.
There is a lot of added complexity as the OS tries to make use of multi-core architec-
tures. As alredy mentioned, modern versions of Linux support symmetric multipro-
cessing (SMP). Even though in this paradigm a single OS is shared by all processors,
for scheduling every processor has its own runqueue to avoid synchronising access to a
shared data structure on every context switch. This optimisation prevents CFS from
making global scheduling decisions as the best task to run might be in the runqueue
of another CPU.

Periodically, the kernel executes a load-balancing algorithm to make sure CFS has
the preconditions to provide fairness and keep all cores utilised. The load-balancing
algorithm plays a crucial role when it comes to the perceived performance of multi-
threaded applications [34]. This is why its behaviour will need to be considered when
evaluating my implementation. The load tracking metric is a combination of the weight,
average CPU utilisation, and the hierarchy of control groups. It is important to make
sure any modifications described in the section above don’t influence load-balancing
decisions severely such as forcing a task to constantly migrate between two processors.
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3 | Tense1

3.1 Approach to virtual-time execution

As already discussed, both the weight of each process and virtual runtime are important
for scheduling decisions. This gives two opportunities to drop in our implementation of
virtual time. Imagine a process enters a block of code that should be simulated at two
times the normal speed. This is equivalent to letting this code run two times longer
relative to the rest of the program.

The first idea is to artificially scale the weight of the simulated process by the time
dilation factor that we want to achieve. The second idea is to “lie” to CFS about the the
virtual runtime by scaling the increment which happens when a scheduler or dynamic
tick updates the runtime statistics for a task. Because CFS tries to always keep virtual
runtimes close to each other, a process that appears to spend less time will be given
more time to catch up. In this case we would need to divide the increment by the time
dilation factor. One of our contributions is to explore both of these ideas and produce
experimental results to evaluate them.

As discussed in the introduction, the primary use case for model-based performance
engineering and for this project is in complex systems. It is almost certain that any
such system will be developed to take advantage of multiprocessing. So why do we
start with a uniprocessor implementation? Firstly, separation of concerns - problems
such as designing the API exposed to user programs and creating experimental setups
to evaluate the implementation are mostly shared between uni- and multiprocessing
implementations. A multiprocessing implementation introduces more complexity to
the virtual time scheduling algorithm. Dealing with all these problems at once is not
desirable. Secondly, a uniprocessor implementation could be used to get some (although
limited) insight about multiprocessing behaviour through multitasking. Finally, the
learning curve for myself (someone who is fairly new to kernel development) wouldn’t
be as steep with a uniprocessor implementation. On the down side, translating a uni-
processing to a multiprocessing one poses some risks - some assumptions might not
have a natural extension leading to a complete re-design of the system. Other projects,
such as the Linux kernel itself, successfully transitioned to SMP. VEX also started
with a uniprocessor implementation and added support for multiprocessing later by
introducing two synchronisation schemes. This will be a good starting and reference
point for our implementation.

1Tense stands for Tencho’s scheduler extension, staying true to the Computer Science tradition of
putting the author’s name in the name of an algorithm or project.
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3.2 A note on alternative ideas

In this section we briefly discuss some ideas that we spent some time pondering with
but decided to drop in favour of the presented solution.

3.2.1 Tense as a scheduler class

Linux kernel scheduler classes present an implementation opportunity for our case.
Imagine that a new scheduler class is defined for virtual time execution and placed as
the highest priority class to be considered by the core scheduler. It mostly shares the
behaviour of CFS, so that the simulation is accurate, but applies the changes needed
to simulate a correct virtual time execution sequence. We then make sure that the
instrumented tasks (threads) are placed to be scheduled by this class on creation. The
first benefit is the implementation is completely decoupled from CFS which would make
it easier to maintain and configure. Secondly, it guarantees a high degree of scheduling
isolation between the process under analysis and other processes that might be running
on the system. This is not what we ended up doing in the implementation that is
presented in the following section. However, if the scheduling isolation provided by the
current solution is not enough in practice, we think this would be a good addition.

3.2.2 Shared memory as a communication mechanism with the
kernel

An interesting idea is to eliminate the need for new system calls, by storing the timing
information in shared memory [35] or thread local storage (TLS2) and processing it
when the kernel runs normally. It is inspired by modern hypervisors [36] that face the
same problem when hosting an OS that requires timer interrupts at a given frequency.
A hypervisor, as well as the guest operating system, can’t rely on running all the time,
so it needs to catch up on time when it gets a turn. Our prototype using a memory-
mapped page per-process achieved a lower overhead than the presented solution using
file operation system calls. However, it doesn’t play well with sleeping and virtual time
synchronisation in general because it gives too much room for error between when a
critical change in time dilation happens and when our implementation can action on it.
This would lead to reduced guarantees about the accuracy of our solution, but might
be a preferable approach in some cases.

3.2.3 Tense as a modification to the JVM

A suggested approach at the start of the project is to introduce virtual CPUs, virtual
time and thread scheduling in the JVM, making it more akin to a hypervisor. Normally,
Java threads are mapped 1 : 1 directly to OS kernel threads and the JVM cedes all
thread scheduling decisions to the OS kernel. Instead, we want to achieve a hybridm : n
mapping wherem Java threads are scheduled by the JVM to run on n OS threads under
the JVM’s control. These Java threads are lightweight user-space threads, similar to
the concept of “fibers”, “green threads” or “actors”. We would introduce n OS kernel
threads as JVM system threads that get scheduled together by the OS, where n ≤
number of logical CPUs and can be considered to be “virtual CPUs”. The idea is
to add a virtual clock to the JVM running independently of the system clock, only

2https://www.akkadia.org/drepper/tls.pdf

22

https://www.akkadia.org/drepper/tls.pdf


progressing when the JVM is running. Finally, we add a thread scheduler to the JVM
to schedule them Java threads on top of n “virtual CPUs” according to some scheduling
policy.

In VEX [2], [3], one of the main issues has been the limited access to native thread
states. This problem would still exist in the above approach unless additional informa-
tion is sent up to user space from the OS kernel (an upcall). There is a lot of complexity
hidden in the OS kernel, but the user-space solution also suffers from it due to hard
synchronisation issues that always appear in architectures with layered schedulers.

Note that a solution for the JVM is unlikely to be platform-independent by design,
because, based on our inspection of the HotSpot sources, the changes would need to
be made in architecture-specific parts of the implementation.

3.3 Algorithm

The core algorithm consist of a set of procedures which are invoked either by hooks that
we have inserted into the Linux scheduler (update_curr, after_task_tick) or by a
user process interacting with the custom file operations that we define (add_current,
remove_current, sleep_current, etc.). This is our way of separating the imple-
mentation from the exposed interface. We give a high-level description of the most
important procedures in the list of algorithms below. Throughout task refers to the
struct tense_task data structure associated to the current Linux task. It has the
following fields:

• task_struct - a handle to the task which owns this data

• wakeup_time - the virtual time when the process should wake up

• wakeup_timer - an hrtimer used for waking up this process when it goes to sleep

• faster - how many times faster this process is than real time

• slower - how many times slower this process is than real time

• list - a list head for the list of all tense tasks

We store a pointer to each tense_task in the corresponding task_struct so that
we can access the current one by using the macro current→tense_task. Apart from
this modification to the task_struct, the insertion of a few calls to our hooks in core
scheduler code, and a header file that defines those hooks, the rest of the implemen-
tation lives in a loadable kernel module. This allows us to quickly change, re-compile
and re-insert the module without needing to rebuild the kernel and restart the machine
every time a small change is required3.

3.3.1 Dynamic time-scaling

In order to support dynamic time-scaling we need a way to keep track of tasks that
are executing in virtual time, set their time dilation factor, and cause changes to the
scheduling sequence.

3In practice, we use a struct of function pointers holding the definitions of our hooks. Kernel code
initialises this structure with do-nothing functions. When the module is inserted, the pointers are
changed to point to the implementation defined in the module. This requires us to forcefully remove
the module (rmmod -f instead of just removing it normally) because the system thinks it is busy at
all times.
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Function 1 add_current
The currently executing task joins a Tense experiment by initialising the required data
structure and adding it to the list of tense tasks. This function is called by the open
file operation.
task→task_struct := current
task→faster := 1
task→slower := 1
task→wakeup_time := 0
list_add task, tense_tasks
current→tense_task := task

The complementary function to add_current (described in Function 1) is
remove_current. It is called by the release file operation of our custom file interface.
We spare the whole description as it is almost as boring as its counterpart. However, if
the removed task is the last one in an experiment, making the list of Tense tasks empty,
the virtual time will be reset to 0 marking the end of this experiment. Both of these
functions work with dynamic memory allocation from kernel pages. It is important to
carefully manage this memory to avoid common bugs and leaks from our module.

Moving on to some more interesting functions, the set_tdf function changes the
time dilation factor of the current process. It is invoked by writing the new value to
the Tense file. This function makes sure that the time spent executing before the call
is accounted for with the previous scaling factor by forcing CFS to update the time
statistics for the process before setting the new value.

The update_curr function is responsible for advancing virtual time by applying the
correct scaling factor to an execution slice accounted by CFS. We insert a call to this
function into the corresponding update_curr function of CFS. This is a change to the
kernel sources and requires running a custom-compiled kernel which might be a concern
in some use-cases. See 5.2 for a discussion of more user-friendly approaches. CFS calls
its update_curr at various points such as when a task is enqueued or dequeued, and
during static and dynamic scheduler ticks.

Because CFS mostly works with scheduling entities and not tasks, extra care is
needed when updating our virtual time. For example, when a scheduler tick hits a
thread, update_curr will be called for the scheduling entity of this thread and for its
parents (the process, a.k.a thread group) all the way up the hierarchy of entities. We
need to update virtual time only when the entity is a task, while vruntime needs to be
scaled for all entities so that time-scaling can be achieved between multiple processes
each with multiple threads (a web server and a database) and any other arbitrary
scheduling hierarchy.

Another implementation detail is that when a task is about to go to sleep we
calculate its virtual wake up time, but there is an additional update_curr that happens
during the context switch as the task is being deactivated. This update moves our
virtual time to what is should have been when the sleep calculation was made.

It is important to note that update_curr lies on a path of the scheduler that
needs to be extremely fast - it gets called very frequently in contexts that hold many
locks. Therefore, we need to be careful not to introduce any significant overhead. An
optimisation opportunity is to represent the time dilation factor as a single value and
a shift offset to replace the integer division when scaling delta_exec with a bit shift.
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Function 2 update_curr (delta_exec, is_task)
A direct hook into the corresponding function of CFS. It is used to scale a slice of
execution before updating the vruntime of a scheduling entity.

if current is not a tense task then
return delta_exec

end if
delta_exec := delta_exec * task→slower / task→faster
if is_task then
tense_time + = delta_exec

end if
if task sleeping then
task→wakeup_time + = delta_exec

end if
return delta_exec

3.3.2 Jumping in virtual time

Simulated execution based on time predictions from a performance model is in fact
fairly simple in the current setting. We just need to add the predicted time to the
vruntime of the task (appropriately scaled by its weight) and force a scheduling decision
in case there is another task with much lower virtual runtime after the jump of the
current one.

This functionality is exposed through the lseek file operation4. When the whence
argument is set to SEEK_CUR the given offset is added to the current virtual runtime. If
the whence is SEEK_SET instead the virtual runtime is directly set to the given offset. If
you like having fun with time travel, you will be delighted to learn that negative offsets
are allowed and will in fact decrease the vruntime in the SEEK_CUR mode. However, the
behaviour for SEEK_END is currently undefined and will result in an error. Suggestions
on how it should behave are welcome. SEEK_HOLE is used for sleeping as presented
later, while SEEK_DATA is reserved for predicted I/O operations.

3.3.3 Sleeping in virtual time

The functions presented so far are sufficient to implement time dilation of CPU-bound
processes executing on a single core. The next objective is to support accurate sleep
times in the presence of time dilation. As an example, consider a process goes to sleep
for 10ms while another one is executing a workload. To simulate a faster execution of
the workload, the sleep has to take longer. Otherwise, upon waking up the sleeping
process would be able to observe a state that suggests the workload is not actually
executing faster. In a nutshell, the sleep of 10ms needs to be transformed into a sleep
of arbitrary duration that takes 10ms of virtual time. Assuming static time dilation and
only two processes, the problem is easily solved by simply scaling the sleep duration by
the time dilation of the other process. However, our setting is made more complicated
because time dilation factors could change at any time and we have an arbitrary number
of processes.

An initial approach is to add the sleep time to the vruntime of each process before
it wakes up. This forces processes to wait longer on the run-queue after they wake

4Some might think this is an abuse of the file interface, but I think it is definitely better than invent-
ing custom system calls. In fact, solving problems by creatively using existing tools and abstractions
in the kernel is welcomed by the community.
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up, if there is an executing process that is behind in virtual time. We are able to
simulate a relative speed-up. However, this solution has two severe flaws. Firstly, it
doesn’t work at all for simulated slow-downs when the sleeping process should actually
wake up earlier than set. Secondly, it doesn’t match real execution when time dilation
is switched off because the added sleep time leads to increased queueing latency for
sleepers.

The presented approach solves the problems above by keeping track of the virtual
wake-up time and managing its own hrtimers for sleeping instead of calling into the
nanosleep API. A crucial observation is that virtual wake-ups need to be very accurate,
because the normal mechanism using hrtimers is as accurate as it gets and CFS
usually runs a process as soon as it wakes up to boost interactivity. On the other
hand, execution of CPU-bound workloads can be a bit jittery because scheduling is
non-deterministic from a high-level point of view. To achieve the required accuracy,
hrtimers are used to trigger the wake-ups. However, a timer is only set when virtual
time has advanced to a certain point. This is when the virtual wake-up time of a task
falls between the current virtual time and a bound which represents the longest time
that might pass without us receiving a virtual time update while a process is actually
executing in virtual time (usually this is the full duration of a tick). At this point our
complex problem is reduced to the two-process static time dilation scenario described
above, so a timer that will trigger the wake-up is set. The only events that could spoil
the party is a change of time dilation either of the current process or a context-switch
to a process running with a different time dilation. In this case we need to restart all
started timers. This seemingly ‘bad’ case doesn’t really influence the complexity or
performance of the implementation because we initially start the timers in response to
a context switch (or scheduler tick), and restarting a timer is the same as starting it.

Function 3 sleep_current (duration)
Puts the current task into an interruptible sleep for the specified duration in virtual
time. This function is called by seeking the Tense file in a SEEK_HOLE mode with the
offset being used as the sleep duration. Negative offsets are converted to unsigned
values. It returns the virtual time when the process woke up so that if a signal was the
reason, the restarting behaviour of nanosleep can be emulated.
task→wakeup_time := tense_time + duration
repeat
current→state := TASK_INTERRUPTIBLE
schedule

until task→wakeup_time == NO_SLEEP or signal_pending(current)
current→state := TASK_RUNNING
return tense_time

The timer callback for waking up a process is not very interesting. It just calls the
wake_up_process function exported by the scheduler and cleans up the wakeup_time
field of the waking Tense task.

3.3.4 Synchronisation of multiple timelines

The tense_time value works well when all tasks in an experiment are running on the
same CPU. However, the transition to an SMP algorithm introduces a timeline for each
CPU. The key challenge is keeping those timelines synchronised so that an accelerated
process running on one CPU actually gets more time than a normal one on another.
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Function 4 prepare_wake_up
Sets hrtimers for virtual wake-up as described above. This function is called after a
scheduler tick and during a context switch. We omit some checks that make sure the
task is indeed sleeping and an optimisation that doesn’t restart timers if the difference
is too small.
cur := current→tense_task
wakeup_range := tick * cur→slower / cur→faster
for all tasks in tense_tasks do

if tense_time < task→wakeup_time < tense_time + wakeup_range then
real_sleep := (task→wakeup_time - tense_time) * cur→faster / cur→slower
hrtimer_set(task→wakeup_timer, real_sleep)

end if
end for

The time of the accelerated CPU would quickly fall behind that of the normal one
by virtue of the updates being scaled down. We already discussed that CFS has a
load balancing algorithm, but in this case it wouldn’t do anything about the imbalance
because both CPUs are actually utilised, and in fact even if CFS did something it
would be undesirable. CFS would migrate the normal process onto the accelerated
CPU which appears to be under-utilised - clearly not what we aim to achieve.

There are various approaches to solving this problem originating in parallel discrete
event simulation. The SMP algorithm of Tense is a take on conservative synchronisation
with a configurable upper bound between the timelines of CPUs. As soon as the time
for a given CPU goes beyond that bound compared to the minimum time of all CPUs,
we stop executing tense tasks on it until the rest can catch up.

There are a lot of tricky things to keep in mind, though. For example, we need
to be careful not to account the time that a CPU spent “blocked” as actual execution
time for a task which would get fed back in through the update_curr hook and cause
even more waiting for synchronisation. To solve this issue we carefully deactivate Tense
tasks instead of busy-looping while waiting for synchronisation. One needs to be very
cautious about the context in which tasks are activated and deactivated as this might
lead to hard to debug soft lock-ups.

Another issue is a possible deadlock if tasks on a “blocked” CPU hold locks that are
required by tasks on the other CPUs in order to make progress. To solve this we keep
track of the number of runnable Tense tasks on each CPU. Only the times of CPUs
with at least one runnable task are considered when calculating the minimum.

There are also issues related to process migration which we are still working on at
the time of writing. As an example, consider a CPU that is not part of a currently
running experiment and thus has its tense_time at zero. This is fine because we just
said a CPU with no runnable Tense tasks does not influence synchronisation. Now
imagine that one of our Tense tasks is migrated to this CPU for whatever reason (load
balancing, processor affinity, etc.). As soon as this task gains some execution time on
its new CPU, the tense_time of this CPU starts playing a role in the synchronisation
algorithm. However, it is highly likely that the times of other CPUs are far ahead as
the experiment has been running for a while before the discussed migration happens.
This causes the whole experiment to unnecessarily synchronise against the newly joined
CPU. In the presented case we could just detect there has been no activity on this CPU
and set its tense_time to the current minimum. However, we are looking for a solution
which can solve the migration problem in general.
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3.4 User library and utilities

Thinking about the project from a user’s point of view early in development was
very beneficial. Unfortunately, there is a large gap between providing a user-friendly
interface and iterating fast while looking for a reasonable solution to the core problem
that the project solves. In this section we present the vision and steps towards the user
experience for this project.

The C dynamic library libtense is made up of two components. Firstly, it wraps
the Linux file interface described in the previous section and exposes a simple and
slightly opinionated C API.

1 // l i b t e n s e / tense . h
2

3 i n t t en s e_ in i t ( void ) ;
4

5 i n t tense_destroy ( void ) ;
6

7 i n t tense_health_check ( void ) ;
8

9 i n t tense_sca le_percent ( i n t percent ) ;
10

11 i n t tense_scale_pop ( void ) ;
12

13 i n t t ense_sca l e_c l ea r ( void ) ;
14

15 i n t tense_move ( const s t r u c t t imespec ∗ de l t a ) ;
16

17 i n t tense_time ( s t r u c t t imespec ∗ time ) ;
18

19 i n t tense_s leep ( const s t r u c t t imespec ∗ durat ion ) ;

Most functions should be self-explanatory, but we provide a brief description of
each. The return value always indicates whether the call was successful or if an error
occurred.

• tense_init Must be called by each process or thread to add it to a Tense exper-
iment or start a new one if there isn’t one already running. This functions simply
opens the Tense file. The behaviour of other functions (apart from health-check)
is not defined unless tense_init has been called successfully.

• tense_destroy Must be called by each process or thread that successfully called
tense_init in order to clean up when that process or thread is exiting an exper-
iment. This is normally done right before a process exits or a thread returns, but
this is not a requirement. This function closes the file and cleans up resources
used by the library in user-space.

• tense_health_check This function checks that the system supports Tense by
making sure the kernel module is inserted, the Tense file is mounted at the ex-
pected path, and various other checks.

• tense_scale_percent Sets the time dilation factor in percent.

• tense_scale_pop Resets the time dilation factor to the previous value or one if
there is no previous value. This function can be used together with tense_scale_percent
to implement nested time dilation without needing to keep a reference to the time
dilation of the parent.
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• tense_scale_clear Resets the time dilation factor to one and clears any previous
values.

• tense_move Adds delta to the virtual runtime of the caller.

• tense_time Writes the current virtual time to the struct timespec pointed to
by time.

• tense_sleep Puts the process to a virtual-time aware sleep for the specified
duration.

The second component of the library is an instrumentation layer which wraps some
common functions to avoid the need for adding boilerplate code and changing calls
to standard library routines in a user’s project. We refer to it as the pre-load library
because it injects a function into the init_array section of the binary. If the path
to libtense is specified in the LD_PRELOAD environment variable when running an
executable, this function will check if Tense should be enabled for this executable and
enable the instrumentation even if that binary was not linked with the library.

The instrumentation applies a wrapper to pthread_create which replaces the start-
ing routine with one that initialises Tense before it, reports the time when it returns,
cleans up, and returns the original value. Some of the other instrumented functions
are clock_gettime and nanosleep. We replace calls to read the monotonic clock with
calls that return our virtual time as this is probably the desired behaviour in 90% of
the cases. The sleep calls are replaced so that we can trigger the wake up at the correct
moment in virtual time as already discussed.

This machinery allows us to run and time applications in virtual time without any
modification to their source code or the need to recompile them. However, if they want
to apply time scaling or jumps in virtual time to certain parts of the code, a user would
currently need to insert calls to the corresponding libtense functions in their project
and recompile it. We realise this is not ideal and that perhaps the best solution is to use
an ELF binary instrumentation library (libelfsh) to statically re-write the executable
around a set of specified functions for time-scaling. Using a dynamic instrumentation
solution such as Pin is not sensible because that would have some noticeable impact
on the behaviour of the application.
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4 | Evaluation

4.1 Experimental setup

Our patches are based on the 4.16 Linux kernel. In some of the early experiments we
run an Ubuntu image in the Qemu hypervisor with the default KVM configuration
and options that enable virtio. Later we run all experiments on bare-metal with the
default configuration of Ubuntu 16.04. The machine used is a Lenovo y510p personal
laptop, during experimental runs there is usually a text editor and a few browser tabs
open, which we believe is representative of the environment of a normal user.

4.2 Dynamic time-scaling

In this section we evaluate the time-scaling behaviour of processes called “spinners”
that count executions of a busy loop. The aim is to run a set of processes in parallel
for a fixed amount of time. The output of each process, cycles, is the number of busy
loop iterations it managed to complete in the specified amount of time. Instead of
time scaling ratio we use an equivalent notion - vtime_spd which denotes the “speed of
time” for each process. It’s the inverse of a time scaling factor - you can’t tell if time is
going fast or the process is just slow. We expect that the cycles to vtime_spd ratio
for each process is the same.

4.2.1 Using process priorities

We emulate the time dilation effect by changing the priority of each processes - a process
with higher priority gets a larger share of the CPU making it seem faster than others.
As already mentioned, Linux priorities translate to weights (Table 2.2) for scheduling
entities in CFS.

Figure 4.1 shows the results from 40 runs of the following experiment. 4 spinners
with nice levels 0, 3, 5, 6 are executed concurrently. There are 10 runs for each of the
selected durations 30ms, 100ms, 1s, 10s. We compute the reference cycles to weight
ratio for nice level 0 and compute the relative change for the same ratios at different
nice levels. For example, for nice level 3 where c0 and c3 are the number of cycles
completed by spinners 0 and 3 respectively the error is:

e3 =
c0

1024
− c3

526
c0

1024

The ratios converge nicely when given enough time (10s) and the error is about 10%
in the 100ms range which matches the 10% prediction error and timeslice of 100ms
by VEX. A caveat is that the experiment doesn’t take the starting delay into account
- the 4 spinners can’t start executing at exactly the same time. They are given the
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same amount of time to execute, but there is no guarantee the intervals will precisely
overlap. This certainly has some negative effect when execution durations are short.

4.2.2 Scaling vruntime

Even though changing nice levels seems promising, we need something to compare
against. It seems there isn’t a significant enough difference to conclude one approach
is better than the other (Figure 4.2). The bias towards the negative side of the error
confirms our expectation that the 30ms-duration experiment is severely influenced by
starting delay.

4.2.3 Illustrating the difference between the two approaches

This is a reproduction of a similar experiment described in VEX. A program computing
the first 5000 digits of π is used for the experiment. The idea is to run copies of this
program with different scaling factors and make sure they finish in order - fastest to
slowest. I present scheduling sequences obtained using ftrace and kernelshark. The
correct behaviour is achieved by both priority scaling (Figure 4.3) and vruntime scaling
(Figure 4.4), but the two approaches lead to very different scheduling sequences.

Priority scaling results in timeslices of varying duration - longer for faster processes
and shorter for slower ones. On the other hand, with vruntime scaling all timeslices
are of equal duration, but faster processes get a timeslice more frequently than slower
ones. Another way to think about it is that the transformation we apply to timeslices is
shifted from the time domain (priority scaling) into the frequency domain (vruntime
scaling). We conclude that both approaches are viable, but the latter has a more
elegant implementation and does not clash with the nice interface. Consequently, the
experiments to follow use vruntime scaling unless stated otherwise.
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Figure 4.1: Relative error of “nice spinners” with different priorities
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Figure 4.2: Relative error of “vruntime spinners” with different scaling factors
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Figure 4.3: Scheduling sequence of 6 π-computers - 2 slow, 2 normal, and 2 fast; Using
nice levels

Figure 4.4: Scheduling sequence of 6 π-computers - 2 slow, 2 normal, and 2 fast; Using
vruntime scaling

4.3 Accurate sleep duration in the presence of time-
scaling

Moving on to less trivial processes, the next experiment consists of a process that
spawns two pthreads - a producer and a consumer, communicating through a shared
queue. The producer places a job in the queue and spends exponentially distributed
periods of time sleeping, modelling a Poisson process. The consumer busy-waits for
jobs while the queue is empty, records the time a job spent in the queue and executes a
deterministic workload to simulate service time. We vary the service time by changing
the number of iterations of a loop in the workload function. Again, we are interested
in time-scaling the consumer to perform a what-if experiment. The main difference
from previous experiments is that now there is an off-CPU process involved in the
experiment. Remember that CFS’s vruntime is only based on execution time. It also
does a good job at boosting sleepers when they try to wake up. Because the producer
spends very little time actually executing code, its vruntime will be less than that of
the consumer at any point during the execution of the program. To simulate a speed-up
of the consumer we would normally have its vruntime progress two times more slowly.

In the spirit of test-driven development we present this normal behaviour as red data
points labelled no sleep. After modifying tense to correctly account for time spent
sleeping as described in the previous chapter, the corresponding green data points
are closer to the expectation. Note that in the plots both the waiting time and the
utilisation are based on empirical measurements so we see noise in both “dimensions”.

We also present a measurement with all internal tense logging switched on. One can
observe how the overhead of writing detailed logs from the kernel module translates
into higher utilisation and waiting times.

Finally, we present a measurement that switches the time dilation factor on and off
every time the server starts processing a new job. This is indicative of the significant
overhead of the framework in this case which is especially visible in Figure 4.6. In
that particular experiment the workload takes a very long time to run so the overhead
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off-the scale.

0.2 0.4 0.6 0.8

0

1

2

3

4

5

Utilisation

Av
er
ag
e
w
ai
ti
ng

ti
m
e
(m

s)

Server x1.75 high to medium utilisation

Analytical
Real execution
Scaled expectation
Before
Sleep patch
Dynamic scaling
Logs on

0.2 0.4 0.6 0.8

0

1

2

3

4

5

Utilisation

Av
er
ag

e
w
ai
ti
ng

ti
m
e
(m

s)

Server x1.75 high to medium utilisation

Analytical
Real execution
Scaled expectation
Before
Sleep patch
Dynamic scaling
Logs on

36



4.4 Dynamic time-scaling in a large application

The next objective is to use the developed tools on a larger application which was not
designed specifically for testing them. PARSEC [37] is a benchmark suite composed
of multi-threaded programs. It is designed for evaluating the performance of multipro-
cessors, but we can restrict all threads to a single CPU to evaluate the uniprocessor
implementation. Dedup is one of the compute-intensive applications in PARSEC. The
workload is passed through a pipeline of stages. The first and last stage are serial
(single thread) for input and output. The 3 parallel stages in between consist of thread
pools whose size can be configured. Each pair of consecutive stages is connected by
a queue. We are interested in observing the effects of speeding up a certain function
in one of the parallel stages. The compression stage uses zlib. We recompile the li-
brary with options for faster compression to produce an expectation and then execute
the slower version with a relative speed-up in virtual time. Each time we call dedup
with the following options. This uses the native input size and spawns more than 20
pthreads:

dedup -c -p -v -t 8 -i FC-6-x86_64-disc1.iso -o output.dat.ddp -w gzip

The function of interest, compress, is called 168354 times when executing with the
specified input. The average time it takes to execute a single call with the default zlib
build is 99000ns. With the fastest build this is reduced by ≈ 20% to 79000ns. The
overall execution of the benchmark takes 18.9 and 16.9 seconds (mean of 5 runs) of user
time in each case respectively - this is ≈ 10% overall speed-up. Execution in virtual
time without any speed-up vs. a speed-up of 20% of the compress function predicts
an overall improvement of ≈ 11% (also based on 5 runs). However, the predicted
absolute times are about 2 seconds greater than reality in each of the two cases -
with an without time-scaling. This indicates the overhead of the framework is ≈ 10%.
Microbenchmarks of the dynamic-time scaling calls where times were measured using
strace predict an overhead of about 1% so there is more to investigate on this front
in the future.
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5 | Conclusion

5.1 Summary

We have presented an investigation into virtual-time execution and our solution - Tense.
Even though there is a significant amount of work to be done before Tense becomes
the best it can possibly be, this project lays a solid foundation. The key features of
virtual time execution - moving threads in virtual time and dynamic time-scaling, are
supported accurately by our loadable kernel module.

5.2 Future work

5.2.1 Avoid the need to run a custom kernel

As discussed earlier, some of the core functionality of Tense relies on hooks that were
inserted into CFS and the core Linux scheduler code. This is not great in terms of
usability because it means any developer wanting to install Tense would need to run
a modified Linux kernel. A potential solution is to use the KProbes [38] package.
KProbes use standard exception handling and breakpoint mechanisms to insert probes
in the kernel. They are used for building debugging and tracing tools such as Sys-
temTap [39]. In theory, KProbes look exactly like what we need, but there were some
concerns that prevented us from implementing our current solution with them and will
require further investigation. The cited article states that there are some performance
issues with KProbes the most worrying of which is that the execution of KProbes is
serialized across all CPUs on an SMP machine.

5.2.2 Improve user-space features

The development of Tense so far has been informed, but not driven by, some use cases
around bottleneck detection and integration testing in virtual time on the JVM. Now
that the project is moving out of the investigation phase our plan is to put a lot more
effort into supporting these cases. In the bottleneck detection case this will require
some cooperation with other tools that use tracing to spot potential bottlenecks in
code. Tense would need to take the reported stack traces and perform experiments
to simulate the effects of speeding up the region of interest. This would allow us to
quantify the impact of optimising a potential bottleneck. In the other case, we would
at least need to develop a user library or bindings to the existing C library for the JVM.
There will probably be some additional issues related to handling internal JVM threads
and safepoints. It is also interesting to explore the usefulness of profiles captured by
traditional tools such as perf, but on programs executing in virtual time.
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5.2.3 Continue the development and evaluation of the SMP
algorithm

There is a lot more that we would like to know about the behaviour of the presented
solution on multi-core architectures. More specifically, it is non-trivial to assess how
the overhead of our (or any) synchronisation mechanism for virtual time affects the
functional behaviour of CFS. There are subtle cases such as process migration and
load balancing that we have safely ignored in the current evaluation, but are very
common in real applications and need to be considered carefully.

In practice, there are commonly used concurrency patterns that could be identified
in code via static analysis (or annotated by the programmer). Exploiting relaxations
that can be applied in the presence of such high-level patterns could improve the speed
of virtual time simulation without sacrificing accuracy.
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