
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Byzantic: Privacy-Preserving
Collateral Reduction for DeFi

Protocols

Author:
Ioan-Daniel Savu

Supervisor:
Dominik Harz

Submitted in partial fulfillment of the requirements for the MSc degree in
Advanced Computing of Imperial College London

September 2020

Abstract

Decentralized Finance (DeFi) is an ecosystem that originated in the Ethereum
blockchain, whose creation is a response to the 2008 Global Financial Crisis. It aims
to provide an alternative to the traditional financial system by promising increased
transparency, censorship resistance and better accessibility.

DeFi is still in its early stages, and its main offering is over-collateralised loans, the
equivalent of mortgage-backed securities. At the moment, debt is issued assuming
borrowers are self-interested, choosing to default if the escrowed assets become less
valuable than the loan. Moreover, legal action cannot be taken against agents who
”misbehave” because identities in Ethereum are pseudonymous. As a result, borrow-
ing in DeFi requires a collateral surplus to secure the lender against price volatility.
A significant disadvantage of this protection measure is the opportunity cost of the
locked-in collateral.

The current work presents Byzantic, a reputation system built on Ethereum, aimed at
reducing the opportunity cost associated with over-collateralisation. Byzantic inter-
mediates transactions between agents and DeFi lending protocols, measuring agent
reputation based on the actions they perform. Because lending protocols differ from
each other, the ideal reputation is subjectively defined by each protocol governance.
Good reputation reduces the amount of excess collateral needed for borrowing to
as little as zero, making the loan fully collateralised instead of over-collateralised.
Liquidity is thus unlocked, reducing price volatility and improving security in DeFi.
The discount in collateral ”good” agents gain is transferable across protocols that in-
tegrate with Byzantic up to 100%. In addition, Byzantic offers agents the possibility
of building reputation while remaining anonymous, based on a new architectural
design pattern proposed in this project.

We carried out a behavioural analysis of agents in Compound, Aave and Synthetix,
three of the most popular DeFi protocols, during the first quarter of 2020. With
the newfound insights, we simulated Byzantic user reputation over the same pe-
riod. The 10% most active users, who originate more than 85% of transactions,
achieve a Collateral Reduction (CR) of 30% on average. CR shrinks to 3% during
the ”Black Thursday” Ethereum price crash in March, confirming the resilience of
the system against sharp economic downturns. If Byzantic were to achieve 30% CR
across all of its target protocols, it would create 1.5B USD of additional liquidity as
of August 2020.

Acknowledgments

First, I wish to thank my supervisor, Dominik Harz, for his tremendous support and
encouragement throughout the last five months. His enthusiasm made this project a
very rewarding experience, in spite of only meeting once in person.

I also had the pleasure to collaborate with Tom Waite of Aztec Protocol, who was al-
ways willing to help me on topics related to his work. I would also like to thank Lewis
Gudgeon for his guidance on the evaluation of this thesis and Professor William J.
Knottenbelt for advising me as a second marker.

Lastly, I want to express my gratitude to my family and close friends for their love
and invaluable support. Without them, this work would not have been possible.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Proposed Solution . 2
1.3 Objectives . 3
1.4 Contributions . 3
1.5 Limitations . 5
1.6 Ethical Considerations . 6
1.7 Legal Considerations . 6

2 Background 7
2.1 Blockchain . 7

2.1.1 Bitcoin . 8
2.1.2 Liveness, Consensus and Proof of Work 8
2.1.3 Consistency, Forks and Double-Spending 9

2.2 Ethereum . 9
2.2.1 The Ethereum Virtual Machine 10
2.2.2 Contracts and Accounts . 10
2.2.3 Communication Protocols . 10
2.2.4 Upgradeability Proxy Design Pattern 11

2.3 Privacy . 12
2.3.1 Zero-Knowledge Proofs . 12
2.3.2 Mixers and k-anonymity . 14
2.3.3 Relay Networks and Tor . 14

2.4 Decentralized Finance (DeFi) . 15
2.4.1 Dapps and Custody . 16
2.4.2 Trust and Collateral . 16
2.4.3 Main Applications . 17

2.5 DeFi Protocols . 17
2.5.1 Balance . 17
2.5.2 Compound . 18
2.5.3 Aave . 18
2.5.4 Maker . 19
2.5.5 Uniswap . 19
2.5.6 Synthetix . 19

2.6 Trust and Reputation Systems . 19
2.6.1 Trust . 20

iii

CONTENTS

2.6.2 Reputation . 20
2.6.3 Decentralized Trust Management 22

2.7 Security . 23
2.7.1 DeFi Vulnerabilities . 23
2.7.2 Verification Methods . 24
2.7.3 Attacks Relevant to Byzantic 25

2.8 Technology . 26
2.8.1 Solidity . 26
2.8.2 Challenges . 27

3 System Overview 29
3.1 Description . 29
3.2 Actors . 30
3.3 Requirements . 31
3.4 Assumptions . 31

4 Byzantic 32
4.1 Main Components . 32

4.1.1 Layered Behaviour-Curated Registry 32
4.1.2 Web of Trust . 33

4.2 Initial Implementation Approach . 35
4.3 Second Implementation Approach . 35
4.4 Final Implementation Approach . 36
4.5 DejaVu Design Pattern for Anonymity 36

4.5.1 Transaction Authentication with Zero-Knowledge Proofs . . . 37
4.5.2 Tornado Cash . 38

5 Byzantic Implementation 40
5.1 Technology Choices . 40

5.1.1 Truffle . 40
5.1.2 Buidler . 40
5.1.3 TypeScript . 40

5.2 Initial Implementation . 41
5.2.1 Architecture . 41
5.2.2 Interaction Flow . 42
5.2.3 Integration with Aave . 43
5.2.4 Challenges . 44

5.3 Second implementation: Exploring chained delegatecalls 44
5.3.1 Changes from the previous Byzantic version 44
5.3.2 Chaining delegatecalls . 45
5.3.3 Architecture . 46
5.3.4 Interaction Flow . 47
5.3.5 Trying to integrate with Aave 48
5.3.6 Challenges . 48

5.4 Final implementation . 51
5.4.1 Changes from the previous version 51

iv

CONTENTS

5.4.2 Architecture . 51
5.4.3 Interaction Flow . 52
5.4.4 Challenges and Solutions . 53

5.5 General Implementation Challenges 54

6 DejaVu Design Pattern Implementation 55
6.1 Architecture . 55
6.2 Generating Zero-Knowledge Proofs 57
6.3 Challenges . 58

7 Simple Lending Protocol 59
7.1 Features . 59

7.1.1 Deposit . 59
7.1.2 Computing borrowable amount 60
7.1.3 Borrow . 60
7.1.4 Repay . 60
7.1.5 Liquidate . 60
7.1.6 Redeem . 61

7.2 Exchange rates . 62
7.2.1 Example . 62
7.2.2 Challenges and Solutions . 62

8 Behavioural Analysis of DeFi Protocols 64
8.1 Action Ratio and Volumes . 64

8.1.1 Approach . 64
8.1.2 Results . 65

8.2 Interaction Frequency . 66
8.2.1 Approach . 66
8.2.2 Results . 68

8.3 Relationship to Market Cycle Psychology 68

9 Evaluation: Economic Stress-Testing 69
9.1 Stress-Testing Framework . 69

9.1.1 LBCR Parameters . 69
9.1.2 Web Of Trust Parameters . 71

9.2 Simulation Approach . 71
9.2.1 Simulating System Parameters 72
9.2.2 Simulating Collateral Requirements 73

9.3 System Parameter Results . 73
9.3.1 LBCR Parameters . 73
9.3.2 Web of Trust Parameters . 75
9.3.3 Example Secure LBCR Configurations 77

9.4 Collateral Requirements Results . 78

v

CONTENTS

10 Evaluation: Solidity Implementation 79
10.1 Testing . 79
10.2 Static Analysis . 81

10.2.1 Oyente . 82
10.2.2 Securify2 . 83
10.2.3 Slither . 84

10.3 Gas Costs . 85
10.4 Challenges and Solutions . 85

11 Byzantic Adoption 88
11.1 Automatically generating the documentation 88

11.1.1 NatSpec . 88
11.1.2 solidity-docgen . 88
11.1.3 Antora . 89

11.2 Aave Grant Application . 90

12 Conclusion 91
12.1 Future Work . 91

A On-chain contracts analysed 93

B Aave Grant Application Response 94

vi

Chapter 1

Introduction

1.1 Motivation

The offerings of the traditional financial system range from lending and savings ac-
counts to exchange markets where securities can be traded, wealth management
and insurance [1]. However, after the 2007-2008 financial crisis, trust in this system
was severely undermined [2]. The literature on the topic agrees that secrecy sur-
rounding financial risk models was one of the main factors that led to the crisis [3].
The intellectual property aspect of risk models for credit scoring protected financial
companies from having these models audited. This lack of transparency, coupled
with the trust financial institutions enjoyed, resulted in misusing the risk models to
overvalue low-quality assets when issuing debt.

Had risk models been completely transparent, the crisis might have been avoided.
This is the main principle behind DeFi, which aims to provide the same services as
the traditional financial system, but in a fully transparent way. Moreover, in DeFi,
authoritarian governments should be unable to restrict certain individuals from par-
ticipating in the market. Lastly, even people in developing countries, without access
to sophisticated traditional financial opportunities, should be able to participate in
the global economy - all they need is internet connectivity and a computing device.

DeFi is built on technology that launched only five years ago: the Ethereum
blockchain. As such, it still faces scalability-related challenges and liquidity short-
ages, which prevent widespread adoption. While the former is on track to being
solved by the next version of Ethereum [4], low liquidity remains a critical problem
to DeFi stability [5].

When agents of an economic system trust each other, they benefit from increased
utility (Section 2.6). Reputation is an objective measurement of trust, so systems
which measure user reputation also benefit from increased economic utility. In the
context of lending, borrower reputation has been named ”intangible collateral” [6],
because collateral and reputation can act as substitutes to each other. As collateral
depreciates, the borrower is tempted to default on their loan. However, the prospect

1

1.2. PROPOSED SOLUTION

of being able to take loans on better terms in the future can counteract such default
risk. Thus, if economic agents are encouraged to build reputation as good borrowers,
the reputation framework acts as insurance against default risk in case of collateral
devaluation [7]. Whereas credit scoring is used ubiquitously in traditional finance
to rate and reward borrowers, reputation is not even being measured in DeFi at the
moment.

1.2 Proposed Solution

We propose Byzantic, a novel Ethereum protocol that measures reputation not only
for borrowers, but for all economic agents participating in lending services in De-
centralized Finance (DeFi). While credit scoring is an objective metric, Byzantic is
a versatile tool whereby protocols that integrate with it configure what constitutes
good reputation and how much of the reputation in other protocols is transferable
to their use case. There is no formal notion of reputation in DeFi as of yet, and as
such all interactions happen under the assumption that the other parties are dishon-
est. A consequence of this assumption is the usage of over-collateralisation to issue
debt, which protects lenders against the devaluation of security deposits. Our solu-
tion aims to bridge this gap, by providing DeFi users with the opportunity to build
reputation, the intangible asset that can replace physical security deposits.

Byzantic can reduce collateral requirements from over-collateralisation (e.g. collat-
eral amounts to 150% of the borrowed amount) to as low as full collateralisation,
where the value of collateral is equal to that of the loan. By doing so, Byzantic un-
locks assets that were previously locked-in, adding liquidity to DeFi. Furthermore,
Byzantic integrates with DejaVu, a new design pattern that improves privacy when
reputation is being tracked.

Byzantic can be applied to any protocol involving some form of lending. In DeFi,
this includes even Synthetix, a protocol used for minting derivatives, the issuing of
which requires a 750% collateral rate. Even if it is not directly a lending protocol,
Synthetix works as one, because its derivatives are issued with interest that needs
to be repaid when the derivatives are ”burned” [8]. Besides Synthetix, Byzantic can
integrate with: Aave, Maker, yearn.finance, Compound, InstaDApp, dYdX, ForTube,
DDEX, RAY, Dharma, bZx, which in total account for 77% of locked-in liquidity in
DeFi. Given that Byzantic can free up collateral, its impact becomes more significant
as more value flows into DeFi (Figure 1.1).

In addition to reducing collateral surplus requirements, the reputation Byzantic
builds could be used for other purposes too. For instance, agents with high repu-
tation might trust each other enough to pool their investments and share the risk,
without fearing that one agent will run away with all the pooled funds. Another
example is using Byzantic reputation as a credit scoring mechanism, allowing for
under-collateralised debt.

2

1.3. OBJECTIVES

Figure 1.1: Evolution of DeFi locked-in collateral [9]. The market crash in March 2020
is most likely due to the COVID-19 pandemic, since it coincided with a sharp stock
market decline [10]. It has been called ”Black Thursday”.

In this report, the terms user and agent are used interchangeably.

1.3 Objectives

First, the current project aims to reduce collateral surplus as much as possible,
with minimal increase to default risk, even during price drops. Second, even if
reputation-based collateral reduction has been shown to be secure [11], DeFi proto-
cols still need to be convinced to trust and integrate with a reputation system. In-
tegrating with Byzantic should require minimal changes to existing smart con-
tracts, such that the risk of introducing a security vulnerability is diminished. Third,
the smart contracts that constitute Byzantic should prove resiliency against attacks
such as double-spending, transaction reordering and Sybil identities. Fourth, agents
who use Byzantic should have the option of preserving anonymity while building
reputation.

1.4 Contributions

The current work brings the following contributions.

• Design of a reputation system for DeFi. We propose Byzantic, a novel frame-
work that can be applied to any decentralized ledger to measure DeFi reputa-
tion. We examine the use of this system in safely reducing over-collateralisation

3

1.4. CONTRIBUTIONS

requirements to full collateralisation (100% of the borrowed amount), improv-
ing agent utility and adding liquidity to DeFi. Each protocol that integrates
with Byzantic decides what type of user behaviour is rewarded and how data
from other protocols is aggregated to compute reputation. Byzantic can also be
configured to reflect how much collateral can be lowered, how soon users can
achieve good reputation and how quickly changes in user behaviour should de-
termine the re-evaluation of reputation. Because changes to the configuration
of a protocol may skew aggregated reputation in other protocols, it is possible
to distrust recently updated protocols by default, excluding their data from the
aggregation. This framework is presented in Chapter 3. Byzantic is an exten-
sion to Balance [11], which introduced a thorough game-theoretic analysis of
why collateral can be safely reduced in single protocols using reputation.

• Solidity implementation of Byzantic. Chapter 4 documents the design of
the implemented system. After iterating over the system architecture three
times (Chapter 5), we believe the final implementation offers the best usability-
security trade-off given the system requirements. To encourage integration
with Byzantic, we also set up a documentation website that automatically up-
dates itself based on smart contract comments (Chapter 11).

• A new design pattern for preserving privacy. In order to protect user pri-
vacy while tracking reputation in the Ethereum public ledger, we built and
integrated with DejaVu, a novel schema that provides k-anonymity guaran-
tees. It uses zero-knowledge proofs, a blockchain-layer relay and a transaction
mixing service. Besides anonymously tracking reputation, DejaVu can be used
for privacy-preserving joint accounts, such as organisation accounts where em-
ployee privacy is preserved while the business of the company is transparent.
Chapter 6 details the integration of Byzantic with DejaVu.

• Economic stress-testing of Byzantic using behavioural data. In Chapter 8
we present the first user behaviour analysis for Compound, Aave and Syn-
thetix, three of the most popular protocols in DeFi, with a particular focus on
the ”Black Thursday” Ethereum price crash. The results provide a better un-
derstanding of what constitutes good user reputation. They also show that
user behaviour after the crash seems to oppose findings from market cycle psy-
chology [12], possibly because of the fear of missing out. Using this data, we
designed a custom economic stress-testing package written in Python, which
protocol governances can use to tune their system configuration. We have ex-
emplified this process in Chapter 9.

• Security testing with smart contract audit tools. We used two static analy-
sers that are complementary in identifying vulnerabilities, such as transaction
reordering and reentrancy (Chapter 10). Moreover, a generic lending protocol
was implemented (Chapter 7) to perform integration testing to a high level of
coverage.

4

1.5. LIMITATIONS

1.5 Limitations

Byzantic has the following drawbacks.

1. Increased transaction costs. Byzantic runs additional instructions in the
Ethereum Virtual Machine when it intermediates transactions, which cost an
additional 73000 gas than a direct transaction - a 247% increase in our tests.
If the DejaVu pattern for privacy is used, the same call costs 381000 more gas
than a direct call - an increase of 867% (see Section 10.8).

2. Only benefits the most active users. Byzantic consistently reduces collateral
only for the most active 10% of protocol users, who perform at least 85% of all
actions in Compound, Aave and Synthetix. The rest of the users are most likely
acting too infrequently to benefit from Byzantic. However, an exact analysis
comparing gas costs and collateral reductions for these users has yet to be
performed.

3. Anonymity is not guaranteed. The DejaVu design pattern provides the k-
anonymity inherent its underlying components: a blockchain-layer relay and a
transaction mixer. This means that the more users with the same transaction
patterns, the better the privacy someone can achieve. This is similar to how
the Tor network cannot guarantee privacy.

4. Difficult setup. The high number of parameters makes configuring Byzantic
an error-prone process. This thesis presents guidelines and a stress-testing
simulation tool in an attempt to ameliorate this issue.

5. May require protocol redesign. If usage of our solution is not considered
when a protocol is designed, it might be too late to simply ”add” Byzantic.
Collateral checks can occur in multiple places and may not even be refactored
into a single component, so integrating with Byzantic may need to be delayed
until the next major release of a protocol.

6. External attacks. Agents can still interact with lending protocols outside of
Byzantic, and those actions cannot be tracked. Our analysis shows desired
and undesired actions to always be complementary, such as borrowing being
desired and loan repayment being undesired (Section 9). With the scoring con-
figurations we propose, protocols need to prevent users from repaying loans on
behalf of Byzantic identities. This is so that outside behaviour cannot manip-
ulate reputation. However, if a scoring configuration is found which rewards
undesired actions with zero rather than a negative score, then outside activity
is no longer a threat.

7. Fixed action rewards. An implementation detail that can be improved is
replacing fixed action rewards with a function that rewards users based on
transacted amount. We considered this simplification good enough because of
the high transaction fees in DeFi. They discourage users from performing the
same action multiple times with small values, encouraging single transactions
instead with the ”full” asset amount.

5

1.6. ETHICAL CONSIDERATIONS

1.6 Ethical Considerations

The current project involves the collection and processing of all transactions between
users and protocols that integrate with Byzantic. Such transactions are publicly
available on the Ethereum blockchain, but tracking can be prevented by using more
than one account. This prevents an accurate user profile from being built. Byzantic
uses a unique address for every identity, but this thesis shows how integrating with
DejaVu can protect privacy.

Names or other personal details are not included in transaction concerning Byzantic,
but user profiles may be built to track financial behaviour, infer socioeconomic class
or other aspects of personal nature. The publicly available transaction data could be
misused for malevolent purposes. The risk aversion of large segments of population
could be extrapolated by correlating changes in average transacted value with the
period of the year or political context. Grasping the risk appetite of population seg-
ments can serve for more intrusive marketing and targeting of political messages.
However, these risks are not particular to Byzantic - they are risks inherent to partic-
ipating in any activity on the Ethereum blockchain.

1.7 Legal Considerations

Byzantic is open-source, as is every third-party software it uses. It is thus free for
commercial use.

Analyses have shown that criminals are increasingly using cryptocurrencies for ille-
gal purposes due to their privacy-preserving properties and the usability convenience
compared to cash [13]. The use case of Byzantic, however, has nothing to do with
peer-to-peer payments. The project aims to improve decentralized lending through
a reputation system. Purchasing illegal goods is only facilitated by Byzantic to the
extent that protocols that integrate with it facilitate this. It can help terrorist organ-
isations as much as it can help counter-terrorist organisations.

6

Chapter 2

Background

This chapter introduces the concepts Byzantic relies on. It uses blockchain (Sec-
tion 2.1) as a public immutable data store, both for transactions and source code.
By doing so, Byzantic is completely transparent and open to inspection at all times.
Byzantic is a decentralized financial service called a Dapp, operating on the Ethereum
blockchain (Section 2.2). Ethereum identities are pseudonymous, and Byzantic of-
fers users the possibility of building reputation without compromising privacy (Sec-
tion 2.3). Byzantic was built on Ethereum because it needs to interact with all the
other Dapps that form the DeFi ecosystem (Section 2.4), which are themselves built
on this blockchain (Section 2.5). It aims to measure agent reputation across Dapps
(Section 2.6) to lower the over-collateralisation rate used in trustless lending. Im-
portantly, Byzantic reduces collateral without compromising protocol (i.e. Dapp)
security (Section 2.7). All of this is possible because Ethereum facilitates the cre-
ation of custom financial agreements via smart contracts (Section 2.8).

2.1 Blockchain

Fundamentally, a blockchain is a decentralized, distributed, append-only store of
data. There is no central authority or trusted node in the blockchain network, which
means peers organise themselves at the expense of added complexity [14]. The main
difference between blockchain and other distributed data storage systems stems
from its decentralized nature [15]. It allows network peers who do not trust each
other to work collaboratively towards ensuring the immutability of the data [16].
New records are added as part of a fixed-size block, which is appended to the pre-
vious blocks using cryptography (see Figure 2.1). A block is replicated across the
entire network and its validity is verified by every peer [17].

7

2.1. BLOCKCHAIN

Figure 2.1: Adding a block to the blockchain. Credits to Colorado State University [18].

2.1.1 Bitcoin

Blockchain technology was introduced in 2008 under the pseudonym of Satoshi
Nakamoto [17]. Bitcoin is an electronic payment mechanism that relies entirely on
digitally stored value - the first one of its kind to reach widespread adoption [19].
The type of financial asset it represents has been labelled ”cryptocurrency”, for its
use of cryptography. Because Bitcoin is a financial asset, the records comprising the
blocks in the chain are financial transactions.

2.1.2 Liveness, Consensus and Proof of Work

Distributed systems have a liveness property which mandates that something good
must happen eventually [20]. In the case of blockchain, this is achieved by all peers
agreeing on which block of data to add next to the chain. In other words, peers must
reach consensus for the system to be functional. The consensus algorithm most com-
monly used in blockchain systems is Proof of Work (PoW) [21], whose participants
are called miners.
A PoW algorithm requires miners to solve a computationally expensive search puz-
zle: finding an input that when applied to a cryptographic hash function produces
a hash belonging to a target set (e.g. a hash with three zeroes in the beginning).
A key feature of this class of algorithms is the asymmetry between generation and
verification. The difficulty of finding a solution is ensured by the ”puzzle-friendly”
property of the hash function [19]: there is no approach to finding a solution that is
faster, on average, than a brute-force approach.
The exact moment when PoW is applied is when a miner bundles transactions to-
gether in a block, because the network will only accept blocks that satisfy the PoW.
But why would miners be willing to expend their computational resources and elec-
tricity to help the blockchain maintain its liveness? The answer is the coinbase trans-
action, which occurs once per block and has a predetermined value, which rewards
the miner. The coinbase transaction is how new coins are minted, as it only has a
destination but no sender.
Thus, the more difficult the puzzle, the longer miners will take before a solution
is found. This fact is critical in the functioning of blockchains because the puzzle
difficulty impacts the throughput of the system: if blocks are found quickly, then

8

2.2. ETHEREUM

transactions are bundled quickly into blocks. But when blocks are generated often,
the risk of a double-spending transaction (one which uses the same funds twice)
increases. If two blocks have conflicting transactions (e.g. double-spending ones),
only one will be accepted by the peer-to-peer network (whichever one propagates
faster). However, it has been shown that low mining difficulty results in less secure
blockchains [22].

2.1.3 Consistency, Forks and Double-Spending

In addition to liveness, distributed ledger technologies like blockchain must also
satisfy a consistency property, where every node in the distributed system should
see the same state at all time. The Bitcoin and Ethereum blockchains run over
a network with message delays (the internet), and are subject to the limitations
explained by the CAP theorem: when a network partition occurs (P), a distributed
system can achieve either high availability (A) or strong consistency (C), but not
both. The Bitcoin and Ethereum blockchain follow an AP model, opting for high
availability and only eventual consistency. Pass et al. (2017) [23] formally define the
consistency of such blockchains as T-consistency: nodes agree on the current chain
except for a small number of blocks - T - that were recently appended and have yet
to fully propagate through the network, assuming there is a bound on the network
delay. In a network where delays are unbounded, however, neither consistency nor
consensus 2.1.2 can be achieved.
Because the blockchains in discussion only have eventual consistency, there may be
more than one candidate new block at a given time. Miners might begin mining on
top of any of them if they are valid. Such a situation is called a fork, and in PoW,
the main chain is the one with the most work. As long as all branches of a fork
have the same amount of work, there is no global main chain, which can happen
during a network partition. Forks threaten the security of a blockchain because they
mean that transactions are never final. They become ”more” final the more blocks
are appended after their block. Näıve users, who do not wait for transactions to
settle (i.e. do not wait for the block containing their transaction to become part of
the T-consistent section of the ledger), are easy victims to double-spending attacks.
It has been shown that in Ethereum, 37 block confirmations, or about 10 minutes,
are enough to prevent double-spending even when adversaries control 30% of the
hash power (mining power) in the network [24].

2.2 Ethereum

Bitcoin proved that Blockchain is a reasonably robust tool for storing value through
the internet [25], an inherently insecure piece of infrastructure. The blockchain
does allow for the creation of custom transactions using Bitcoin scripts, and there is
even a language for modelling smart contracts built on top of the Bitcoin scripts [26].
However, these features are not as expressive as the opcodes offered by the Ethereum
Virtual Machine (Section 2.2.1). Ethereum is a Turing-complete state machine [27],
in which transactions are state changes. This means that, as opposed to Bitcoin,

9

2.2. ETHEREUM

Ethereum is able to perform any sort of financial agreement, the only limiting factor
being gas costs. As blocks have a fixed gas limit [28], if a transaction exceeds that
cost it will not be ”computable” by the Ethereum Virtual Machine.

2.2.1 The Ethereum Virtual Machine

In Ethereum, financial agreements are defined by Smart Contracts, or computer
code usually written in Solidity and compiled to EVM bytecode. This bytecode is
executed by a global network of computers which comprise the EVM - a stack-based
virtual machine, which supports both volatile and persistent storage [29]. To prevent
Denial-of-Service attacks, storage and ”CPU time” in the EVM have a cost associated
to them, expressed in Gas [30]. The amount of gas required to run a transaction is
measured using the fixed gas cost of each EVM bytecode instruction. The gas is paid
to the miner, so transactions can have their gas costs ”artificially” inflated in order to
incentivize miners to include them into the blockchain faster.

2.2.2 Contracts and Accounts

The EVM bytecode of a Smart Contract is deployed onto the blockchain by issuing
a transaction with an empty destination address. The state transition creates a con-
tract account (i.e. an address) with the associated bytecode, whose methods can be
”called” by issuing transactions with the new contract’s address as the recipient.

Both Ethereum users and contracts have an account (a public key used as an ad-
dress) associated to them. This way, the EVM can keep track of account balances by
mapping addresses to amounts of Ether, the currency of Ethereum. Ether is used to
pay for Gas fees, but also as a store of value. The account-based approach to stor-
ing state is in contrast with Bitcoin’s ”Unspent Transaction Output”-based approach
(UTXO) [31]. In Bitcoin, the balance of an address is not stored explicitly anywhere.
Instead, it is calculated as the sum of all unspent outputs from transactions that have
occurred. The account-based model is better suited for smart contract development,
since checking an account’s balance in the UTXO model would require computation
(aggregation) to be performed every time. The same reason makes validating trans-
actions is simpler - no need to check all the UTXOs. The drawback of Ethereum’s
approach of explicitly storing account balances in every block is that it takes up
more storage space.

2.2.3 Communication Protocols

Ethereum is a peer-to-peer overlay network that operates over the internet. To
achieve liveness and consensus (Section 2.1.2), its nodes must be able to communi-
cate. To communicate, a new node must first discover some nodes in the network
and connect to them.

10

2.2. ETHEREUM

Figure 2.2: Standard Upgradeability Proxy Pattern

Node Discovery

Ethereum uses a Distributed Hash Table (DHT) to store information about nodes.
It is a modified version of the Kademlia DHT [32] and is used because it yields a
low-diameter network topology that supports fast lookups. Data is replicated across
every node in Ethereum, so the DHT is only used for node discovery and efficient
routing. This is in contrast with the classic Kademlia implementation, which also
supports index-based data storage and retrieval [33].

The node IDs used in the DHT are the Keccak-256 hashes of the node addresses
(which are ECDSA public keys). The DHT partitions the network according to the
distance from the current node ID. That distance is blog2(a⊕ b)c, and produces 257
partitions. To confirm a node is live and connect with it, two UDP messages, PING
and PONG are sent as a request-reply sequence. Then, to query that node for a path to
a target node, another pair of UDP reply-request messages is used: FINDNODE (with
the target node as a parameter) and NEIGHBORS. NEIGHBORS returns the 16 closest
nodes to the target node in its routing table. Based on the two pairs of messages, a
recursive lookup is performed until the target node is found.

RLPx Transport Protocol

RLPx is a TCP-based protocol that forms the transport layer of Ethereum commu-
nication. Following an initial handshake to establish connection, messages are ex-
changed in encrypted form. The most important protocols built on top of the RLPx
transport layer are the Ethereum Wire Protocol (eth), the Light Ethereum Subpro-
tocol (les) and the Parity Light Protocol (pip) [34]. Of these three, eth is the most
notable, as it enables chain syncing, block propagation and transaction exchange.

2.2.4 Upgradeability Proxy Design Pattern

One of the fundamental aspects that enable blockchain technology to serve as the
backbone of a new financial system is the immutability of state stored in it. No
individual can change smart contract state or transaction details. However, the im-
mutability of blockchain is also a disadvantage in the case of upgradeability. Once
deployed, the code of a smart contract cannot be changed to release bug-fixes or
new features. This is where the proxy design pattern comes in useful, which uses
the delegatecall EVM opcode to call the code of another contract (Logic Contract

11

2.3. PRIVACY

in Figure 2.2) and execute it in the context of the caller contract (Proxy Contract
in Figure 2.2) [35]. This way, msg.sender and msg.value are preserved. Using
delegatecall also means that all the state changes made by the called contract are
registered in the caller contract. Thus, the caller contract can be considered the
storage layer, and the called contract can be considered the logic layer. This pattern
allows programmers to upgrade smart contracts by deploying a new Logic Contract
and then changing the delegatecall target address in the Proxy Contract. No state
is lost during the upgrade, because the Proxy Contract is the one tracking state. See
Figure 2.2 for a visual representation of this technique.

2.3 Privacy

Ethereum is a permissionless blockchain, meaning that anyone can participate with-
out asking for permission from any entity. An advantage of this property is that there
are no ”hard” identities based on legal documents. An individual may possess more
than one account in Ethereum, and, as long as the accounts never transact with each
other, they are unlinkable.

Nonetheless, the fact that the Ethereum blockchain is completely open to public
scrutiny raises serious concerns about privacy and may prevent widespread adop-
tion. Two blockchain-layer measures have proven helpful in addressing this issue:
Zero-Knowledge Proofs (Section 2.3.1) and Mixers (Section 2.3.2). These can be
coupled with an internet layer solution, relay networks (Section 2.3.3), to further
enhance privacy.

2.3.1 Zero-Knowledge Proofs

A Zero-Knowledge Proof (ZKP) is a way to prove knowledge of some information
without revealing the information itself. An example is proving that a blue pen and
a red pen have different colours to someone who cannot distinguish any two colours
from each other. The colour-blind person holds one pen in each hand and both hands
behind their back. Thus, the prover cannot see the pens. The colour-blind person can
switch the pens from one hand to the other or leave them in their current position,
and then shows the pens to the prover. If the prover repeatedly guesses correctly
whether the pens have switched positions or not, they probabilistically prove that
the pens indeed have different colours. In this scenario, ”probabilistically” means
the proof is not guaranteed to be correct, since there is always the possibility of
guessing whether the pens have been switched. The probability of this proof being
wrong can be reduced by repeating the experiment. When the proof is verified as
valid, the verifier (the colour-blind person) has not learned what the colours of the
two pens are, thus having checked the proof in ”zero knowledge”.

12

2.3. PRIVACY

ZK-SNARKs

Zk-SNARKs are the most widespread form of zero-knowledge proofs. The acronym
means ”Zero-knowledge Succinct Non-interactive ARguments of Knowledge”. They
enable the verifier to check that a computation is correct without actually running it.
The properties of ZK-SNARKs make them an excellent solution in distributed ledger
settings:

• Zero-knowledge. The prover does not learn the private parameters of the com-
putation it checks.

• Succinct. The Ethereum platform is a state machine replicated on every full
node. Its state changes are verified by every such node, which means that
complex computations are very expensive. The succinctness property of ZK-
SNARKs ensures that proof verification is relatively inexpensive. This property
is achievable because the proof is only verified by the random sampling of
one point, similar to running one experiment of the coloured pens proof in
Section 2.3.1.

ZK-SNARK proofs are expressed using the following mathematical relation,
where A, B, C, H, Z are polynomial functions ”encoding” the proof:

A(x)×B(x)− C(x) = H(x)× Z(x)

Polynomial transformations are very computationally expensive, and perform-
ing them on-chain would severely limit the viability of ZK-SNARKs. Fortunately,
picking a random x and checking if the equality still holds offers very good sta-
tistical guarantees too.

• Non-interactive. Validating ZK-SNARK proofs only requires the prover to inter-
act once with the verifier: when sending the proof. This is also a great fit for
the use case of Ethereum, because user addresses cannot ”react” in response
to transactions sent to them, as opposed to contract addresses (Section 2.2.2).
Non-interactiveness thus contributes to user experience, as users do not need
to deploy a contract to help interactively validate the proof they are submitting.

• Arguments of knowledge. An argument of knowledge is different from a proof,
in that the former must satisfy the additional condition of being verifiable by
a computationally bounded validator (in polynomial time complexity). The
latter can be shown valid by any computationally unbounded validator.

Besides the aforementioned properties, ZK-SNARKs also make heavy use of another
concept: homomorphic encryption. This concept is used for evaluating the random
sample x without knowing its value. For instance, an encryption E is multiplicatively
homomorphic if, for any a, b ∈ Z, the following equality holds: E(a) × E(b) =
E(a × b). Similarly, the polynomials mentioned in the ”succinctness” bullet point
above can be applied directly to the encrypted value of x. Homomorphic encryption
preserves the privacy of the private arguments of the proof.

13

2.3. PRIVACY

Figure 2.3: Tornado cash k-anonymity set, with k = 19. The quasi-identifiers of this set
are the asset (ETH) and the quantity (0.1).

2.3.2 Mixers and k-anonymity

Mixers provide anonymity by pooling together multiple transactions and then mix-
ing them in such a way that makes it difficult to know which address sent which
transaction. An example is Tornado Cash, which enables peer-to-peer anonymous
transactions of value (Ether and ERC-20 tokens). First, the sender deposits funds
in Tornado Cash [36] and secures them with a hash value. Then, the receiver must
provide a zero-knowledge proof that shows they know the hash pre-image to re-
deem the funds. The receiver needs to wait for long enough, such that the trans-
acted asset and quantity have been deposited by other addresses as well. If enough
identical deposits have been made, the transaction is anonymised by those identical
transactions. The transacted asset and quantity are called quasi-identifiers - taken
individually, they may not uniquely identify a sender and a receiver; but together,
they could. This type of anonymity is known as k-anonymity [37], because the trans-
action is ”hidden” amongst k − 1 other identical transactions. Thus, a k-anonymity
set is determined by its quasi-identifiers. The larger the value of k, the stronger the
anonymity guarantees. A Tornado Cash k-anonymity example can be observed in
Figure 2.3.

2.3.3 Relay Networks and Tor

In communications network topology, a relay is a node that intermediates a source
and a destination [38]. If network communication is encrypted, external observers
only learn that the sender communicates with the relay node and the relay node
communicates with the receiver. If the relay is used by k senders for the same des-
tination, it provides k-anonymity against network observers. There is no encryption
in Ethereum, so the IP address of nodes broadcasting transactions is public [39].

14

2.4. DECENTRALIZED FINANCE (DEFI)

However, if the publisher is a relayer which communicates with senders over an en-
crypted protocol, the sender still benefits from k-anonymity. If a single relay is used,
the sender needs to trust it not to expose their identity. However, if a network of
relays is used, similar to Tor, this issue is solved.
The Tor network itself can only be used if node discovery is performed manually.
Tor is incompatible with the UDP-based node discovery protocol of Ethereum (Sec-
tion 2.2.3) because Tor only supports TCP-based communication. The rest of com-
munication is done over TCP (Section 2.2.3), where Tor could be used for protecting
privacy.

Tor

Tor is an acronym for ”The Onion Router”. An onion is a multi-layer encrypted mes-
sage, each encryption layer being analogous to the layer of an onion. As an example
of onion routing, let us consider two relays (R1, R2) between two network hosts: Al-
ice and Bob (an Ethereum node). The message sent by Alice to Bob would follow the
path: Alice-R1-R2-Bob. If Alice establishes a different symmetric encryption session
with each relay, she can send to R1 a message of the form:

KR1(R2, KR2(Bob,M))

where K(D,M) represents data encrypted with encrypted with the shared key K,
that once decrypted presents message M , that needs to be submitted to destination
D. Because R1 has the shared key KR1, it can decrypt the data it received, to learn
the message it needs to send to R2:

KR2(Bob,M)

After R2 decrypts this message, it send M to Bob. If enough relays are used, traffic
from a sender to a receiver becomes k-anonymised at each relay. Moreover, the final
relay, which in the case of Bob being an Ethereum node obtains the encrypted trans-
action message, cannot know the IP address of Alice, because the message she sent
became mixed with others in the relays. The relays become especially effective at
hiding traffic if there is an entire mesh of relays available, of which Alice randomly
chooses a path to Bob.

A relay network such as Tor does not guarantee anonymity, as a network observer
analysing message latency could correlate messages sent by Alice to replies from
Bob. Only if many other users are also communicating with Bob does Alice truly
become ”hidden in the crowd”.

2.4 Decentralized Finance (DeFi)

In spite of its sophistication, the traditional financial system is based on a handful of
institutions where power is concentrated and thus are susceptible to corruption and
human error. Besides, because they are for-profit organisations, they need to add a

15

2.4. DECENTRALIZED FINANCE (DEFI)

significant profit margin to the price of their services in order to stay operational.
Their offerings range from lending to savings accounts, exchange markets where se-
curities can be traded, wealth management and insurance [1].

Traditional financial services can be replaced by decentralized counterparts on Ethereum,
which together form DeFi. They are more transparent, easily auditable and pro-
vide more competitive prices or interest rates because there are no middle-men in-
volved [40].

DeFi also has the advantage of accessibility. At the moment anyone on the globe can
participate in DeFi if they have access to the internet, although this may change with
new regulations or censorship. Nonetheless, no documents or lengthy verification
processes are needed. A World Bank analysis has shown that of the 1.7 billion people
without a bank account, two-thirds have access to mobile phones [41], so they could
potentially take advantage of the financial services on DeFi.

2.4.1 Dapps and Custody

The financial services in DeFi are called Decentralized Applications (Dapps) and can
be built by anyone with an Ethereum account. They are usually non-custodial [42],
meaning that they do not store user funds, as opposed to banks. Custody of funds is
a double-edged sword. On the one hand, account holders are in full control of their
funds, so they are not affected if a Dapp gets hacked. On the other hand, if they lose
their private key or it is compromised, nobody can help them recover their funds.
With commercial banks, customer funds are protected by the central bank, at least
in part [43].

2.4.2 Trust and Collateral

DeFi is a trustless environment for accessing financial products. There is no formal
identity required, which means that misbehaving agents are outside any jurisdiction
and cannot be punished by law. In effect, DeFi is being built expecting agents to be
at best semi-honest and at worst Byzantine [44]. Instead of a legal system, the main
protection measures are game-theoretical rules [45] which incentivize economically
rational agents to comply with Dapp requirements. The most common such rule is
over-collateralisation: to take a loan, agents must provide more value as collateral
than what they are loaning. This way, it is more profitable for agents to repay their
loan than to default. The over-collateralisation model also accounts for price fluctu-
ations: if the ratio of collateral-to-loan-value is high enough, it is unlikely that the
loan will become more valuable than the collateral. Overall, this solution is arguably
worse than loaning in traditional financial systems, because the borrower needs to
already have the money being loaned and a loan in DeFi simply provides more ex-
posure to certain assets. In addition, there is an opportunity cost associated with
the locked-in collateral. The advantage, though, is privacy, as a legal identity is not
required.

16

2.5. DEFI PROTOCOLS

2.4.3 Main Applications

Stablecoins

Stablecoins are of critical importance to a very volatile DeFi. Without a stable store of
value, investors would be deterred from lending, for instance, because price volatility
may outweigh their accrued interest. Stablecoins are pegged to stable stores of value,
most commonly the US Dollar.

Lending and Borrowing

DeFi removes the need for a good credit score and usually provides better interest
rates than banks [40], but loans need to be over-collateralised.

Asset Tokenization

Tokenization allows for greater market liquidity, fundraisers and unconventional se-
curities. An expensive piece of art can be represented digitally as fungible Ethereum
tokens which are similar to shares in a company and can be traded at finer granu-
larity. There have also been cases where people used tokens as a decentralised form
of fundraising, such as fashion house Saint Fame’s $FAME Genesis Shirt [46]. More
recently, people have even been tokenizing themselves [47].

Decentralized Exchanges

To use a classic exchange for trading, a user first needs to make a deposit on the
platform, then trade, then withdraw their funds. Deposits and withdrawals not only
incur fees usually, but they also mean that traders need to trust that the platform
will not get hacked. Decentralized exchanges ensure their users can trade without
temporarily losing custody of their securities.

Payments

An innovation DeFi brought about is trustless, streamed payments, where money is
being paid continuously, like water from a tap. This can be used for pay-as-you-go
services or for streaming salaries instead of paying them once per month [48].

2.5 DeFi Protocols

2.5.1 Balance

Section 2.4.2 explained how over-collaterlization is used as a solution to the lack of
strong identities in Ethereum. It also highlighted the main drawback of this mea-
sure: opportunity costs.

17

2.5. DEFI PROTOCOLS

Balance is a game-theoretic mechanism that explicitly models the utility agents gain
from participating in a DeFi protocol [11]. When agents continuously perform de-
sired actions, their collateral ratio is reduced without compromising protocol secu-
rity. Assuming agents are economically motivated, Balance enables them to fulfil
their goals (reducing opportunity cost) if they perform the actions that are in their
best interest - a property called incentive compatibility. Not only do agents only have
to act selfishly, but doing so increases the social welfare of the protocol. The conse-
quence of using Balance in a protocol is that Byzantine agents are worse off trying to
single-shot their reputation than if they acted truthfully to their intentions from the
beginning. Moreover, by reducing collateral, Balance increases the ”economic band-
width” of DeFi. Balance was designed to only be used in a single protocol, however,
Byzantic takes it one step further by using it in a web-of-trust setting.

Mechanism

Balance reduces the collateralisation ratio in steps, by using layers. The layer mech-
anism follows the Layered Behaviour-Curated Registry (LBCR) design pattern [49]:
an agent can only be in one layer at a time, higher layers mean higher rank, and each
layer has its own membership rules. Agents advance to higher layers by performing
desired actions, which have scores associated to them. Each layer has upper and
lower threshold scores, which decide if agents are demoted, advanced, or left in the
same layer.

Drawbacks

From a privacy perspective, a shortfall of Balance is that it encourages agents to have
long-lived identities and thus anyone can observe their financial activity in DeFi.
Another drawback is that good and bad behaviours need to be explicitly defined and
scored, which makes adoption non-trivial.
Furthermore, it is not an ideal solution for reducing collateral when minting stable-
coins, where speculators act as market makers and ensure the coins are pegged to
their target value [50]. In such a scenario, desired and undesired actions change
very frequently and their scores would need to be dynamically adjusted.

2.5.2 Compound

A non-custodial protocol for lending and borrowing, Compound uses liquidity pools
as opposed to peer-to-peer interactions [51]. The interest rate is adjusted based on
supply and demand forces.

2.5.3 Aave

Similarly to Compound, Aave allows users to lend and borrow in a non-custodial
manner, but its distinctive feature is flash loans. Agents can take under-collateralised

18

2.6. TRUST AND REPUTATION SYSTEMS

loans as high as the liquidity in an Aave pool, with the requirement of paying it back
in the same transaction, plus interest rate (currently 0.09%) [52].

2.5.4 Maker

This is the biggest DeFi protocol in DeFi by collateral. Its main ”products” are Dai, a
stablecoin, and the Maker (MKR) token, used for governance [53]. MKR tokens are
used for voting, owning one token being equivalent to having one vote. The Dai peg
to the USD is maintained using a Stability Fee and the Dai Savings Rate. The former
is identical to the interest rate of a loan, suggesting that every Dai is borrowed, not
minted forever. The latter is used to stimulate demand in the token.

2.5.5 Uniswap

Decentralized exchanges enable users to trade assets without trusting the platform
as a custodian. Uniswap achieves this by having liquidity pools for asset pairs, which
are used to intermediate the trade of any two assets. Agents can become liquidity
providers by depositing both assets that a pool consists of. In exchange, they receive
rewards paid from the exchange fees [54].

2.5.6 Synthetix

Trading fiat currencies, commodities and more intricate financial products are made
possible in DeFi through synthetic assets [55]. To create a synth, just as for Dai,
one has to stake SNX, the Synthetix Network Token. Since SNX is less liquid than
ETH, stakers need more collateral to account for the risks discussed in Section 2.7.1.
Synthetix also offers a decentralized exchange that is different from the peer-to-
peer system of Uniswap, rather being peer-to-contract. The debt of one synth is
automatically transferred to other synths if need be, thus providing infinite intra-
synth liquidity.

2.6 Trust and Reputation Systems

In the online environment, agents often interact without knowledge of each other’s
identity or level of integrity. Without a system to promote honest cooperation, there
is little reason for one peer to trust another and thus interact efficiently. Both peers
would be exposed to a high risk of the other not ”playing by the rules”.

When it comes to service providers and consumers, the amount of risk they are ex-
posed to is asymmetrical. Consumers have to accept the risk of paying for a service
or good before receiving them, which may end up being sub-standard [56]. Service
providers, on the other hand, receive the payment instantly. The only way to en-
courage the actors in this scenario to act honestly is by rewarding positive actions

19

2.6. TRUST AND REPUTATION SYSTEMS

and punishing negative actions.

Trust and reputation have proven effective in online platforms, such as stars and
reviews on Amazon, where users explicitly rate their experiences [57]. Even if a
customer cannot try a product beforehand, they will be able to better discern the
risks of buying it. Moreover, sellers gain a competitive edge by receiving positive
reviews and lose sales in the other case.

2.6.1 Trust

Notwithstanding its effectiveness, trust is difficult to measure given the limited amount
of information a platform has about its users [56]. In real life, there are a plethora
of cues that can guide someone’s decision of trust.

Formally, McKnight & Chervany (1996) [58] define trust as ”the extent to which
one party is willing to depend on something or somebody in a given situation with
a feeling of relative security, even though negative consequences are possible”. This
definition outlines three facets of trust, which are dependence, utility and situational
risk [56]. The first party depends on the trusted party for a service, the delivery of
which may cause positive or negative utility, all while the first party deals with a
certain probability, or risk, that the transaction will not go as intended.

2.6.2 Reputation

Reputation is closely related to trust, the difference between the two being that the
former is an aggregated or collective measure of the latter, which occurs on a sub-
jective basis. Thus, on an individual level, one may say ”I trust you despite your
bad reputation” [56], a statement which implies that the decision of trust is made
with some additional, private information. This shows that the opinions of others
are usually considered only in the absence of direct experience. In consequence,
trust can be established by explicitly applying transitivity, whereas reputation uses
transitivity implicitly, through aggregation.

Resnick et al. (2000) [59] suggest that there are three fundamental properties a
reputation system must meet in order to be effective:

1. Past interactions must be used to inform decisions of trust

2. A requirement of Rule 1) is that agents must be encouraged to be long-lived

3. Another requirement of Rule 1) is that agents must be willing to give and
receive feedback

There are challenges that the properties above do not solve. One is obtaining honest
feedback, since agents may be coerced or into providing dishonest feedback or to not
give it at all. Second, game theory has been used to show that ”cheap” pseudonyms,

20

2.6. TRUST AND REPUTATION SYSTEMS

as is the case with Ethereum accounts, reduce the effectiveness of reputation sys-
tems [60]. Rule 2) addresses this partially, but agents might still use Sybil identities
to boost their reputation [57]. Third, research in economics has shown that a repu-
tation system can only impose limits on how much deception can be avoided, given
that there is a conflict between the cost of building a good reputation and the ben-
efits it brings [61], which promote fluctuations in reputation; however, such erratic
behaviour can be minimised when recent actions are given more importance [62].
Fourth, discrimination can occur between agents, which may be difficult to iden-
tify [56]; in this case, the feedback of the discriminating agent should not be al-
lowed to impact the victim. Fifth, the reputation system should take accuracy (or
lack thereof) into account (e.g. a single positive review is less informative than five
positive ones and one negative review). Sixth, it should be expensive to perform
ballot box stuffing, or acquiring feedback through cheap, repeated actions [56].

Reputation Context and Web of Trust

Most often, reputation is context-dependent [63]. One should not assume that a
good scientist is a good sportsman. But assuming a good scientist is a good teacher
seems more plausible. This example shows that in spite of context-dependency, there
appears to be a degree of overlap between contexts. A more granular reputation
system, one that scores agents in multiple contexts, can be more accurate, but it is
more computationally expensive and error-prone. The high likelihood of error occurs
because assigning a numeric value to context overlap is an imprecise science. Web
of trust systems aim to combine trust transitivity and measures of context overlap in
order to compute a global reputation score. In the literature, such systems have also
been called ”Transitive trust with semantic constraints” [64].

General Trust Models

Be it ”Web of trust” or some other name, such systems aim to compute a general
form of reputation. For instance, REGRET (Sabater & Sierra, 2001 [65]; Sabater-
Mir, 2003 [66]) combines multiple facets of trust into what they call an ontological
dimension of reputation. This ontological measurement is used for general concepts,
but the way it is computed differs from one individual to another, depending on
their preferences. More specifically, the system is modelled as a Direct Acyclic Graph
(DAG). Then, the reputation of each node is the aggregation of its children’s repu-
tation scores. The structure of the DAG and weight of each parent-child edge may
differ based on subjective preference. An example the authors give is the reputation
of an airline, which can be observed in Figure 2.4. Of course, someone else judg-
ing the reputation of the airline may not even consider on-board food quality as a
criterion.

21

2.6. TRUST AND REPUTATION SYSTEMS

Figure 2.4: Example of ontological reputation of an airline. As the measure is subjective,
the components comprising the reputation and their respective weightings can differ
according on the evaluator.

Reputation in Cryptocurrencies

Classical PoW consensus algorithms have been criticized for the fact that their secu-
rity is only based on empirical evidence, since at any moment someone could rent
51% of the mining power in the network and rewrite history [67]. A recent pa-
per exemplifies using mining history, instead of instantaneous hash rate, as a miner’s
power. In other words, mining power is the sum of all the PoW work done by a miner
over time, also named Proof of Reputation. Considering that the network hash rate
is constant, after just one year of activity, such a currency would be resilient against
a 51% attack that lasts less than a year. The paper goes on to show that there is
no incentive for an economically rational agent to attack the network. RepuCoin,
the cryptocurrency introduced by this work, also has better throughput than Bitcoin:
10000 transactions per second as opposed to just 7 [67].

2.6.3 Decentralized Trust Management

Web of trust, with its general trust considerations, is an instance of Decentralized
Trust Management (DTM) [68]. Such a framework acts as a standard for configur-
ing security policies, authorising credentials, and managing relationships between
actors in security-critical operations. Before DTM was established, distributed trust
was in use, but was implemented in specialised ways for specific purposes, such
as for X.509 and PGP. DTM was introduced as a general tool for tackling all trust
management needs, just as SSL was introduced as a standardised way for securing
network communication [69].

A flaw in early DTM implementations such as PolicyMaker [68] is that the trust re-
lationships it defines is static [70]. It can only be configured by the administrator of

22

2.7. SECURITY

the system and cannot adapt to the changing attitudes of the agents in the system.
Feedback and new experiences are not aspects PolicyMaker uses to model trust re-
lationships. While such a framework serves email security, for example, excellently,
it is too rigid for more dynamic types of decentralised applications, as is the case in
DeFi. Given DeFi is still in its early days, Dapps and their specifications are in con-
stant change. If PolicyMaker were to be used for a web of trust between Dapps, it will
probably become outdated in no time. Thus, there is a need for a DTM framework
which allows for trust re-evaluation (from feedback) and for dynamically redefining
actor roles and relationships.

2.7 Security

2.7.1 DeFi Vulnerabilities

Setting out on a journey to replace traditional finance is no easy task, even when
starting with a clean slate and cutting edge technology. It has been shown that in its
current form, DeFi is vulnerable to a number of threats [5].

Hijacking Maker Governance

Maker is the number one Dapp by locked-in collateral. It holds 55% of the $952M
in DeFi [71]. The failure to protect its user’s funds would not only result in massive
financial losses, but would also severely undermine the trust in DeFi. Most famously,
Maker issues DAI, a stablecoin algorithmically pegged to the USD.

Because decisions related to the governing of the system need to be taken, Maker
also issues an MKR coin, the holders of which have voting power proportional to the
amount of MKR they hold. MKR is used for executive voting, the result of which is a
newly elected executive contract which defines the rules Maker enforces.

The design of this governing mechanism has an inherent risk of undergoing a hos-
tile takeover, where the attacker obtains enough MKR coins to have the majority
vote and gains control over all the collateral in Maker. The most notable prevention
mechanism against such an attack is the Emergency Shutdown, which suspends the
system given sufficient MKR is used when voting. This protection is effective against
a slow hostile takeover, such as crowdfunding led by rebellious DeFi-ers. However,
given the emergence of flash loans, a hostile takeover can happen in a single trans-
action given a malicious executive contract is already deployed. Such a flash attack
needs enough liquidity, but it is risk-free from the attacker’s perspective, since if any-
thing goes wrong the transaction can be reverted.

A potential defence against this attack would be using a voting mechanism like Re-
puCoin’s Proof-of-Reputation [67]. If a holder’s vote weighs as much as the sum of
amounts they held over time, flash attacks are rendered useless even if the attacker
flash-buys 100% of the MKR tokens.

23

2.7. SECURITY

Price Drops

Price drops, like the one in Figure 1.1 can cause a DeFi lending protocol to become
under-collateralised and thus have more debt issued than underlying collateral. In
this scenario, given agents are not legally bound to act with integrity, the economi-
cally rational decision is to default on their loan.

Besides asset volatility, liquidity also impacts the security of a lending protocol. Be-
cause liquidity means how much of an asset can be sold on a market without chang-
ing its price [72], selling collateral in an illiquid market will dramatically impact its
price negatively. Gudgeon et al. (2020) [5] show that regardless of collateralisation
ratio, illiquidity may result in the lending protocol itself defaulting. For instance,
with ETH collateral worth $750M USD and a somewhat illiquid market, it would
take 40 days for the debt to become higher than the collateral.

Financial Contagion

Since assets generated by one DeFi protocol can be used as collateral in other pro-
tocols, the defaulting of one Dapp will severely impact the stability of other Dapps.
Moreover, an agent holding an under-collateralised asset will naturally try to buy
assets which are uncorrelated in order to reduce risk. This spreads the failure to all
assets that are traded in exchange for the low-quality asset, and potentially outside
of DeFi as well [5].

2.7.2 Verification Methods

Simulation

Section 2.6.2 discussed some of the basic attacks on trust and reputation systems
(TRSs). Yet even when there are mitigations in place against such attacks, the in-
crease in Artificial Intelligence (AI) capabilities brings new challenges to system se-
curity [73]. New attacks may no longer need human labour and become cheaper
as a result. The sophisticated nature of AI may reveal highly effective and targeted
attacks, which are impractical for humans to execute and unlikely to discover us-
ing the current tools. Most likely, the attacks that are going to flourish in the AI
era of computer security are strategic attacks. While single-actor attacks have been
explored comprehensively in the literature [74, 75], it is when multiple actors coor-
dinate their actions in order to achieve malicious goals that they create a strategic
attack [76]. Gunes et al. (2019) [76] proposed a framework for identifying coor-
dinated attacks, which models attack goals as optimisation problems and looks for
maxima in this space through Monte Carlo Simulation and Hierarchical Sampling.
The framework has found vulnerabilities in all analysed systems and could serve as
a rigorous evaluation method for Byzantic.

24

2.7. SECURITY

Game Theory

Rather than simulating various actions that can be undertaken by an agent, game
theory attempts to prove security assumptions using sound deductive arguments [77].
There foundation concepts for any game-theoretic proof are: game, economic agents,
utility, economically rational, simultaneous-move, sequential-move.

The system under analysis is modelled as a game, where economic agents take deci-
sions which influence the final result. By definition, an agent has a set of preferences
that they intend to fulfil, and doing so increases their utility, which is a measure of
subjective welfare. Agents employ strategies to reach their goals. If an agent is able
to rank outcomes by preference, understand the steps needed to reach an outcome,
and pick, at every step in the game, the most suitable action in terms of reaching the
best outcome, it is said to be economically rational.

A game may either be a simultaneous-move one, or a sequential-move one. An exam-
ple of the former are businesses, where strategic moves may occur at the same time,
while an example of the latter is chess. When an outcome is reached based on the
player’s decisions, the game is said to have reached an equilibrium.

A fundamental flaw in game theory, as in economics, is the assumption that individ-
uals are self-interested and utility-maximising. In cases where individuals are guided
by ideology or feelings, they may not be seeking to maximise economic utility.

2.7.3 Attacks Relevant to Byzantic

Network-Level Attacks

Double-spending attacks have been broadly explained in section 2.1.2. These take
advantage of the lack of finality in blockchain to send a transaction and then renege
it using another transaction that spends the same coins. The attacker gains utility as
if both transactions are final.

In selfish mining, miners hide (do not publish) new blocks in an attempt to earn
more [78]. If they are able to keep a private fork that is longer than the main public
chain, publishing this fork would invalidate the PoW of the network from the block
at which the fork occurred onward. Rational miners will join the pool controlled by
the selfish miners, potentially compromising blockchain decentralisation.

Transaction reordering happens when transactions that were launched in a certain or-
der are added to the blockchain in a different order (i.e. as part of different blocks).
This may happen either because miners prioritise certain transactions unfairly or be-
cause some transactions offer a higher reward than others. This attack can be used to
front-run transactions and create an arbitrage situation, forcing the sender of honest
transactions to pay more than normal. An example is in a Decentralized Exchange,
where traders placing a buy transaction cause front-runners to buy all the liquidity

25

2.8. TECHNOLOGY

first, by placing transactions worth much more gas than regular transactions [79].
Front-runners then do sell the assets to the traders, but at a higher price.

Application-Level Attacks

Protocol agents can attempt to single-shot their reputation: after gaining a certain
reputation, they can take full advantage of it through one malicious action. How-
ever, proper game-theoretical incentives should make agents gain less utility from
exploiting their reputation after gaining it first [11]. If agents do not wish to single-
shot, but instead stay in the protocol and exploit their reputation, their behaviour
can also be discouraged with a proper incentive structure [62], as discussed in 2.6.2.

By using sybil identities, agents can interact with themselves and falsely boost their
performance [57].

Since in Ethereum an account is not tied to formal identity, the reputation agents
gain can be sold [57]. However, since private keys cannot be changed, the seller will
still be in control of the account.

Compositional trust: agents may try to use the same collateral for multiple loans. If
they become under-collateralised using this technique, the best strategy for them is
to default.

Code bugs. The most common one is reentrancy - if a function controlling funds can
be called again before it ends, the contract can be drained of funds by someone who
exploits this property. Others are integer overflow and underflow and being depen-
dant on block timestamps (which can be changed by miners) [80].

A considerable challenge of blockchain is accessing off-chain data securely. The
providers of such data are called Oracles, and while the blockchain is secure, any
information coming from the outside can potentially be altered [81].

2.8 Technology

2.8.1 Solidity

Programmers have two possibilities for writing and deploying smart contracts on
the Ethereum blockchain. They could do so by using EVM bytecode directly, but that
would be rather unproductive. A simpler alternative is using a high-level language
such as Solidity, which is object-oriented and borrows from popular languages such
as C++ and JavaScript [82].

26

2.8. TECHNOLOGY

2.8.2 Challenges

As Ethereum was launched only five years ago, it still has a long way to go before
it reaches maturity. Zou et al. (2019) [83] outline five challenges to smart contract
development that this project needs to overcome.

Security

Because they are dealing with people’s funds, smart contracts have very high se-
curity requirements. An obstacle to fixing bugs once found is that transactions are
irreversible and implicitly code is unmodifiable after development. As a workaround,
the proxy design pattern is widely used in order to handle contract versioning [35].
The fact that deployed code is public means that attackers can easily discover any
vulnerabilities and carefully craft their exploits.
Solidity compilers are very young and buggy. A good comparison are C language
compilers, where hundreds of bugs have been found even 39 years after the initial
publication of C [84].

Debugging

Debugging is utterly painful in smart contracts, especially when they call external,
on-chain contracts. The main reason is the lack of interactive debuggers, the most
advanced of which is the Truffle Debugger, whose interface is similar to GDB [85],
yet cannot even run through code stored on-chain. What is more, most error mes-
sages are barely informative (both in Solidity and the EVM). Being able to observe
the Solidity stack trace of a crash is still not a possibility today, with the exception of
using Buidler on local contracts [86]. Printing logs is also not possible outside the
constrained use-case of Buidler.

Solidity

Lack of libraries. Every major programming language incorporates or has access
to a wide range of libraries that are well tested. In Solidity, on the other hand
programmers need to constantly re-write methods like checking if an element is in
an array or string manipulation.
Lack of CI/CD [87]. Another significant impediment to development speed is the
lack of automation tools (such as Continuous Integration / Continuous Develop-
ment) for deploying code to a test environment, even for the local blockchain.
Inability to use configuration files. It has become common sense in software en-
gineering to use different configurations for different tests. It should be possible
to use the same contract and different configurations with addresses for testing the
Ropsten testnet and the mainnet.

EVM

Critics of the EVM have claimed that the bytecode is too slow and that general-
purpose languages cannot be used to develop smart contracts [83]. Moreover, the

27

2.8. TECHNOLOGY

execution environment is very resource-constrained, and there is a limit on the num-
ber of local and global variables as well as on the stack size.

28

Chapter 3

System Overview

3.1 Description

Figure 3.1: High-level diagram showing how Byzantic intermediates transactions to
track reputation. The parameters which define what constitutes a good reputation in
Protocol A are configured by protocol governance.

Agents who wish to build reputation encode all state-changing transactions they
would have sent directly to DeFi lending protocols, sending them to Byzantic in-
stead. Byzantic keeps a reputation score for every agent, which is updated accord-
ing to their behaviour. If a user constantly performs ”desired” actions, they receive
a reduction of up to 10% in collateral. Desired actions can vary from one protocol
to another, and it is protocol governance who configure the scoring of each action.

29

3.2. ACTORS

Moreover, the collateral discount is computed using the user’s reputation from all
protocols, meaning that new lending protocols can integrate with Byzantic and at-
tract users who already have good reputations elsewhere.

Our system keeps track of user identity by deploying a new contract for every user
who registers. As Figure 3.1 illustrates, when Byzantic receives a transaction to for-
ward, it is that ”identity” contract which calls Protocol A. If Byzantic were simply to
be notified about which actions are taking place, there is a risk of agents only record-
ing high-scoring actions in our protocol, in order to boost their reputation unfairly.

Because reputation needs to be tied to an identity, the design in Figure 3.1 ex-
poses the transaction history of its users. However, if users have access to a trusted
Ethereum node that can act as a relay, they can use the DejaVu design pattern de-
scribed in Section 6 to alleviate this issue. In Figure 3.2, Alice is originating trans-
actions from the internet layer and uses DejaVu to anonymously publish them on-
chain. Her Byzantic identity can still only be used by her, owing to single-use zero-
knowledge proofs.

Figure 3.2: High-level diagram of Byzantic integration with the privacy-preserving de-
sign pattern DejaVu.

3.2 Actors

We have identified three actor types, with the following characteristics with respect
to Byzantic.

• Agent. Intends to use good reputation to provide smaller security deposits
when borrowing in DeFi. Anonymity is a top priority. Desires to pay low
transaction fees. Uses reputation in DeFi for informal purposes to improve
economic utility, such as by credit delegation (Section 12.1).

• DeFi Protocol Governance. Aims to maintain smart contracts to the highest
level of security, and default risk to the lowest possible level. Wants to con-
tribute to liquidity creation in DeFi.

• Byzantic Registry. The registry is comprised of two smart contracts deployed
on a decentralized ledger. It is entrusted by protocol governance to correctly
measure user reputation by tracking their behaviour.

30

3.3. REQUIREMENTS

3.3 Requirements

To be considered successful, Byzantic implementations must meet eight criteria.

• Collateral reduction, as a means of rewarding well-behaving agents and pro-
ducing liquidity.

• Transferable reputation, so that users who mainly act in a single protocol can
receive security deposit discounts in all protocols.

• Misconfiguration resistance, to protect DeFi protocols in case one of them up-
dates to an insecure Byzantic configuration, which awards reputation to easily.

• Price crash resistance. Our solution must be resilient against ”black swan”
events that would cause deposits to quickly depreciate.

• Transparency. As Byzantic is a reputation model for public decentralized
ledgers, anyone should be able to inspect how it operates.

• Sybil identity resistance. Agents should gain no additional utility from using
several identities in Byzantic.

• Strategy proofness. Byzantic implementations should be bug-free and cor-
rectly follow the model specification, so as not to allow users to ”game” the
system and boost their reputation.

3.4 Assumptions

We make the following assumptions. First, reputation is transferable only if there
is quantifiable inter-protocol compatibility. Second, Byzantic needs distributed
ledger functionality that enables DeFi to exist. Third, debt is issued using over-
collateralisation, so it can be reduced by measuring reputation. Fourth, agents in
DeFi are economically rational. Fifth, Byzantic reputation should have a verifiable
specification, which means that anyone can check the correctness of its results.

31

Chapter 4

Byzantic

4.1 Main Components

Byzantic uses a registry to compute reputation in a twofold way. On the one hand,
it uses a Layered Behaviour-Curated Registry (LBCR) smart contract to track rep-
utation at protocol-level. It assigns users into different layers of ”notoriety” in a
round-based manner, based on their behaviour in the previous round. The LBCR is
described in Section 4.1.1. On the other hand, the registry aggregates information
from all LBCRs when determining a user’s collateral reduction. Aggregation is per-
formed at system-level, in the Web of Trust smart contract, detailed in Section 4.1.2.
For both of these components, configuration is decided by protocol governance when
they integrate with Byzantic.

4.1.1 Layered Behaviour-Curated Registry

Byzantic extends the LBCR introduced in Balance (Section 2.5.1) and is a round-
based mechanism for tracking reputation. Every round, users are scored based on
the actions they perform. At the end of a round, users are assigned new layer posi-
tions based on their ”performance”. Every protocol that integrates with Byzantic has
its own LBCR, with the following parameters.

• Layers. The number of layers to be used for promoting users.

• Action Rewards. The reward users receive, within a round, for performing
a certain action. Action scores can be fixed or computed using a function, to
account for different transaction values.

• Layer score boundaries, which specify the minimum score a user needs qual-
ify for the membership of a layer.

• Layer Factors. An array of values between 0 and 1, each value corresponding
to a collateral reduction. For instance, a factor of 0.9 on a base collateralisation
rate of 150% results in a collateralisation of 135%.

32

4.1. MAIN COMPONENTS

Figure 4.1: Layered Behaviour-Curated Registry (LBCR) smart contract functionality. The diagram on the left-
hand side shows the state of the LBCR at the end of a round, with the score each agent has gained during that
round between parentheses. Every layer has a specific Lower Boundary (LB) required to be promoted to it; the
higher the layer, the higher the reputation a user has and the more Collateral Reduction (CR) they receive. The
arrow marks the transition to the next round, during which users are promoted or demoted based on the score
they achieved in round T. New rounds reset user scores to zero, so that users need to consistently act in the
interest of the protocol to receive high CR.

• Compatibility Scores. A value between 0 and 100 that is assigned to every
other protocol in Byzantic. It quantifies the transferability of reputation be-
tween each of those protocols and the current protocol.

• maintainCompatibilityScoreOnUpdate. As a result of using LBCR configu-
ration versioning (Section 5.4), protocol governance should set this Boolean
parameter. It represents whether compatibility score with an updated protocol
should remain the same after LBCR version updates and its default value is
True.

4.1.2 Web of Trust

When a DeFi protocol checks whether an agent is properly collateralised, the Web
of Trust component is the one being called. It determines agent collateral reduction
using one of two functions: Reputation Maximiser and Weighted Average. Figure 4.2
illustrates the high-level functionality of this component.

Reputation Maximiser

Following the system evaluation in Section 9. This is the aggregation function of
choice. Given the inter-protocol compatibility scores and LBCR layer positions of a

33

4.1. MAIN COMPONENTS

Figure 4.2: Web of Trust smart contract functionality. To decide the discount that should
be awarded to its users, Protocol 1 calls the Web of Trust smart contract to aggregate
user reputation across all protocols in Byzantic. Protocol 1 specifies the parameters of
the aggregation, so the final result is both comprehensive (combines all LBCRs) and
specific to Protocol 1 requirements.

user, this function computes the user’s maximum discount. The following python
code describes its implementation. Its input, LBCR Discounts, is an array containing
(compatibilityScore, discount), where discount is the reputation achieved by
the current user in a DeFi protocol with compatibilityScore.

def raputationMaximiser(LBCR_Discounts):

LBCR_Discounts.sort(key = lambda x: x[1], reverse=True)

aggregatedDiscountInCurrentRound = 0

compatibilityScoreRemaining = 1

for (compatibilityScore, discount) in LBCR_Discounts:

if compatibilityScoreRemaining == 0:

break

compatibilityScoreUsed =

min(compatibilityScoreRemaining, compatibilityScore)

compatibilityScoreRemaining -= compatibilityScoreUsed

aggregatedDiscountInCurrentRound +=

(compatibilityScoreUsed * discount)

Weighted Average

Let RA,Pk
denote the reputation Byzantic will compute for agent A with respect to

protocol Pk, and CPx,Py to denote the inter-protocol compatibility of protocols Px and
Py. Given n protocols integrated with Byzantic, the Weighted Average function uses
the following formula to determine RA,Pk

:

RA,Pk
=

∑n−1
i=0 RA,Pi

× CPk,Pi∑n−1
i=0 CPk,Pi

34

4.2. INITIAL IMPLEMENTATION APPROACH

The literature proposes two improvements to the approach above.

1. Time-Weighted Average. This approach is supported by game-theoretic anal-
ysis [62]. However, it was not implemented in Byzantic, because Section 9.3.1
showed it is detrimental to the system responding promptly to price crashes.
Instead of using the current layer position of an agent A in protocol P, we can
take into account past layer positions when computing RA,P . For instance, if
we use a forgetting factor F, and we take into account the last k layer positions,
out of the total N layer positions:

RA,P =
k−1∑
t=0

RA,P,N−t × F t

Informally, this can signal whether an agent ever lost their position from the
top layer of trust, even if they are currently on the top layer.

2. Ontological reputation using a Direct Acyclic Graph, as shown in Section 2.6.2.
However, the reputation graph of Byzantic forms an undirected graph, so it is
incompatible with this proposal.

4.2 Initial Implementation Approach

The approach to implementing Byzantic evolved over time, as certain design limita-
tions became apparent. The initial implementation aimed to accurately track repu-
tation and, in theory, to allow users to lock in less collateral. To avoid making code
changes in target protocols, Byzantic required low reputation agents to provide even
more collateral than would normally be required. It would then redistribute the
difference between the standard collateral requirement and the increased Byzantic
requirement to high reputation agents, such that their security deposit would be re-
duced. Nonetheless, low reputation agents can always withdraw the full amount
deposited at any time. This may prompt Byzantic to repay the loans of some high-
reputation users to retrieve the redistributed funds of the low-reputation user. This
approach had the great advantage of not requiring any code changes in target pro-
tocols, but it did not produce any liquidity.

4.3 Second Implementation Approach

The initial implementation showed that collateral redistribution cannot lead to liq-
uidity creation. It made it clear that liquidity can only be added to DeFi if protocols
trust Byzantic and allow high-reputation users to provide less collateral. However,
it still seemed possible to achieve this without modifying already deployed smart
contracts.

35

4.4. FINAL IMPLEMENTATION APPROACH

4.4 Final Implementation Approach

Considering that the first implementation (Chapter 5.2) could not generate liquidity
and the second one was technically infeasible, we evaluated the trade-offs inherent
in implementing Byzantic. Similarly to the pivoting concept from Lean Startup prin-
ciples [88], we needed to steer the project in a new direction. We identified two
alternative pathways: offering interest-free loans and unlocking liquidity. The for-
mer does not require code changes, while the latter does. Ultimately, we chose the
latter, as lack of liquidity is a more pressing problem in DeFi at the moment [5].

Interest-free Loans. Without modifying the code of deployed protocols, Byzantic
would be best suited as an extension to the initial implementation - performing re-
distribution of funds, but for general purposes. High reputation agents could use
Byzantic buffer funds not only for collateral, but also for flash loans or other use
cases. Effectively, Byzantic would offer interest-free loans to high-reputation users.
These loans would only be usable through a Byzantic address, for operations that
can be ”reverted” within a transaction by Byzantic (deposits, flash loans, possibly
even trading on a decentralized exchange).

In the unlikely case where all agents are in the same LBCR layers, they would all
have a Byzantic factor of 1.0, so there would effectively be no low-reputation agents,
since all agents have the same reputation. Thus no excess funds would be available
to loan.

Interest-free loans are a novel concept in DeFi. A drawback is that the duration
of a loan is unknown in advance, as it depends on there being buffer collateral in
Byzantic. In the worst-case scenario, the minimum duration of such a loan is one
transaction, which is comparable to flash loans. Unfortunately, this solution does not
add liquidity to DeFi.

Unlocking Liquidity. To add liquidity to DeFi, collateral redistribution can no longer
be considered. Protocols that integrate with Byzantic need to allow high-reputation
agents to use less collateral, by trusting Byzantic. As low liquidity may pose an
even greater threat to DeFi security than the small code changes required to use
Byzantic [5], the final architecture prioritises liquidity creation over interest-free
loans.

4.5 DejaVu Design Pattern for Anonymity

The DejaVu pattern allows users to build reputation while staying anonymous. Be-
sides anonymously tracking reputation, DejaVu can also be used for privacy-preserving
joint accounts, such as organisation accounts where employee privacy is preserved
and the business of the company is transparent.

36

4.5. DEJAVU DESIGN PATTERN FOR ANONYMITY

This solution is made possible through zero-knowledge proofs (Section 2.3.1), mix-
ers (Section 2.3.2) and blockchain-layer relays (Section 2.3.3). Zero-Knowledge
Proofs (ZKP) have been used for authenticating transactions to the User Proxy con-
tract (see Section 4.5.1), which is how agent identities are tracked in Byzantic. ZKPs
were implemented using ZoKrates, which provides a simple abstraction over ZK-
SNARKs. Any mixing service could be used, but this project considered Tornado
Cash (Section 4.5.2) because of its simple integration; Zether [89] or Aztec 2.0 [90]
(not yet released) can also be used to make anonymous value transfers.

We describe the use of zero-knowledge proofs in Section 4.5.1 and that of a payment
mixer in Section 4.5.2.

4.5.1 Transaction Authentication with Zero-Knowledge Proofs

A key requirement for preserving privacy is linking incoming transactions to a Byzan-
tic reputation account, even if the transaction was not initiated by that account,
through authentication. To achieve this, Byzantic makes use of the common pat-
tern of proving the knowledge of a hash pre-image without revealing it [91]. This
zero-knowledge proof pattern resembles providing a password to log in to an ac-
count. In the classical implementation, the password hashes of registered users are
stored in a database and login password input is hashed and compared to the stored
hashes. If there is a match, the user is authenticated - this process is indeed a proof
of hash pre-image. However, there are two differences between traditional authen-
tication and Byzantic authentication: the inability to have authenticated sessions
on Ethereum, and the necessity to change the pre-image (the password) after every
successful authentication.

Lack of Authenticated Sessions

Authentication in Byzantic is performed at action level: a valid zero-knowledge proof
allows for one action to be performed on behalf of a Byzantic account regardless of
the caller. Still, because of how Ethereum was designed, this authentication cannot
start a ”user session” that spans across multiple actions. Authenticated sessions over
the web are technically feasible because the server sends a secret cookie over an en-
crypted channel. In a perfectly secure implementation of encrypted communication,
only the user has access to the secret cookie and can use it to maintain an authen-
ticated session. In Ethereum, however, all transaction data is public, so if a session
cookie were to be generated, anyone could read and use it. Moreover, password-
based authentication is usually not required in Ethereum, because msg.sender ad-
dresses cannot be spoofed; knowing who the sender is is usually enough to authen-
ticate them.

In the Byzantic privacy model, however, users send a transaction at the internet
layer to a relay, which then creates the transaction and becomes the tx.origin. If the
msg.sender identity was used to create a session based on the valid zero-knowledge

37

4.5. DEJAVU DESIGN PATTERN FOR ANONYMITY

proof, anyone using the same relay could hijack the authenticated Byzantic reputa-
tion. Thus, at the expense of lower throughput and increased gas costs, reputation
authentication is performed for every transaction.

Single-use Passwords

All transaction data is public in Ethereum. Thus, if a user sends a transaction with a
zero-knowledge proof to take a certain loan, someone else could reuse the same
msg.data to take the same loan on behalf of the same reputation and increase
the risk of liquidation. Reusing zero-knowledge proofs this way is just like double-
spending some funds (Section 2.7.3). To prevent this from happening, users must
change the hash value whose pre-image is to be proved after every authentication.
Reusing the same msg.data results in one valid proof and one invalid proof.

Front-running attacks are a subcategory of transaction reordering attacks (Section 2.7.3),
where someone sends a transaction with more gas than a pending transaction, such
that the former is mined more quickly than the latter. In this case, an adversary may
try to duplicate a Byzantic transaction that contains a zero-knowledge proof authen-
ticating some action. These attacks are not an issue, since the password that is newly
set by the first transaction will invalidate the second transaction (which will try to
authenticate with the now obsolete hash pre-image proof). The timing does not
matter much, since the same action that the user intended to do happens, and the
front-runner earns nothing, because they still have not learned the hash pre-image
and cannot generate a proof of their own.

Zero-Knowledge Proofs using ZoKrates

ZoKrates is a suite of utilities for zero-knowledge proofs on Ethereum. It implements
the proofs using ZK-SNARKs (Section 2.3.1), which is ideal because the proofs are
non-interactive. ZoKrates provides a high-level language for writing verification pro-
grams that are converted into arithmetic circuits that can be run on-chain. Its stan-
dard library includes hash functions and elliptic curve cryptography, which are also
compiled to efficient arithmetic circuits.

4.5.2 Tornado Cash

Tornado Cash is a non-custodial payment mixer for Ether and ERC-20 tokens, which
works as described in Section 2.3.2. It is needed for transferring funds from an ac-
count to another without linking those accounts through a transaction.

Stealth addresses are not a viable solution in this case, because the transactions al-
ways happen between two account of the same user: the one that is directly linked
to a reputation and another one, which must remain unlinkable to the first account.
If a payment was made from the ”unlinked” account to a stealth address belong-
ing to the reputation account, the stealth address would still need to deposit the
funds in the reputation account - in which case a stealth account is ineffective at

38

4.5. DEJAVU DESIGN PATTERN FOR ANONYMITY

preserving privacy. Mixers, on the other hand, attempt break traceability rather than
trying to avoid the problem. Using a mixer like Tornado Cash, payments to the
reputation-linked account will always be anonymous if executed diligently enough.
See Section 6.3 for issues that users should be aware of when using a transaction
mixer.

39

Chapter 5

Byzantic Implementation

5.1 Technology Choices

5.1.1 Truffle

At the moment, Truffle is the only tool available for stepping through smart contract
code. Not only does it allow debugging local contracts, but with some work it can be
used for debugging external contracts too (Section 5.5). The debugger is very slow
and it can only run tests written in plain JavaScript, but for the most part there are
no alternatives.

5.1.2 Buidler

The one case where Truffle can be replaced is when building a project locally. In this
case, the much better choice is the Buidler EVM, which is a local Ethereum instance
- a completely new blockchain, whose single block is a new genesis block. It has
enhanced debugging capabilities such as console.log, detailed stack traces and is
significantly faster than Truffle.

5.1.3 TypeScript

Most DeFi tools are written in TypeScript and are only compatible with JavaScript [92].
TypeScript is safer to use than regular JavaScript and most IDEs offer autocomplete
when using TypeScript. Furthermore, code is easier to understand and extend when
written in this programming language. Becoming familiarised with it was useful
when looking through the code of those tools (Section 5.5). While Buidler is able to
run smart contract tests written in TypeScript, to run the same tests with Truffle one
must first compile them to JavaScript, which slows down the development process.
To work around this, when we needed to debug transactions to external contracts
we also wrote small JavaScript tests and ran them from the Truffle Console.

40

5.2. INITIAL IMPLEMENTATION

5.2 Initial Implementation

Byzantic deploys a ”personalised” contract for every (agent, DeFi protocol) pair.
Agents deposit funds in such a contract and use those funds as collateral or for
other purposes when interacting with a DeFi lending protocol. Users need these in-
dividual contracts (named ProtocolProxy) because they offer unique addresses, or
identities, for interacting with DeFi protocols. Without a unique address, Byzantic
would not be able to intermediate transactions while keeping secure against user
activity outside of this system.

5.2.1 Architecture

Figure 5.1: Initial system architecture. While this solution reduces collateral for high-
reputation users, it does not add liquidity to DeFi, which is the main goal of Byzantic.
This is because it does not require making changes to the smart contracts of Protocol A.

The Diagram Components in Figure 5.1 are the following.

Web of Trust. The core contract of Byzantic. It computes agent reputation using
LBCR data from all protocols and deploys Proxy contracts for new users. It is also
used to move collateral from the over-collateralised to the under-collateralised.

41

5.2. INITIAL IMPLEMENTATION

LBCR. Layered Behaviour-Curated Registry (LBCR) is the mechanism used to pro-
mote or demote agents in layers. The higher the position in LBCR, the smaller the
collateralisation ratio becomes and agents lose less opportunity cost. The LBCR con-
tract being used is the one from Balance [11].

Protocol A Proxy. A contract that is deployed individually for each user (using the
factory pattern) from the Web of Trust contract. The contract mediates and tracks
agent interactions with the target protocol, feeding them to the LBCR contract to
update the agent score. The Proxy contract can also be used by the user to request
more collateral if they are in a high LBCR layer. The additional collateral is taken
from over-collateralised agents in the low layers. Whenever a low-reputation user
wants to withdraw funds, the Proxy requests any missing funds from the Web of
Trust contract, which liquidates some of the buffer collateral from the high reputa-
tion users.

Protocol A. DeFi protocol that Byzantic has integrated with (i.e. a Protocol A Proxy
has been deployed in Byzantic, and LBCR parameters for Protocol A have been de-
termined).

Alice. The agent that interacts with Protocol A.

5.2.2 Interaction Flow

When a new agent (Alice) starts using Byzantic:

1. Alice calls the Web of Trust contract to deploy a Protocol A Proxy instance for
herself. The Web of Trust does so, using the Factory design pattern.

2. The Protocol A Proxy registers Alice to the LBCR for Protocol A.

3. Alice stores funds in her Protocol A Proxy contract. These funds can be used as
collateral for loans, or any other purposes related to Protocol A.

4. To interact with Protocol A, Alice calls the Protocol Proxy to execute action X
on her behalf.

5. The Protocol Proxy queries the Web of Trust contract, which aggregates the rep-
utation of Alice from all protocols, to decide the amount of collateral needed
for action X. If Alice does not have enough collateral, the transaction is reverted
at this step.

6. The Protocol Proxy makes the call for action X

7. If the call succeeds, Alice’s score is updated in the LBCR of Protocol A.

42

5.2. INITIAL IMPLEMENTATION

5.2.3 Integration with Aave

As part of the New York blockchain week hackathon [93], we integrated Byzantic
with Aave using the initial architecture (Figure 5.1) and a newly implemented Pro-
tocol Proxy for Aave.

Desired and Undesired Actions

Specific action rewards were left to be decided by Aave’s governance, so the integra-
tion used arbitrary scores. The following desired and undesired actions have been
identified, assuming that increased liquidity is the top priority.

• Lending

– Desired: Minting aTokens (increases pool liquidity).

– Undesired: Redeeming aTokens (reduces pool liquidity).

• Borrowing

– Desired: Repaying a loan, including others’ (increases pool liquidity).

– Undesired: Borrowing (reduces pool liquidity).

• Liquidation

– Desired: Liquidating a user who fell below the over-collateralisation ratio
(reduces default risk).

– Undesired: Being liquidated.

• Flash loan

– Desired: Taking a flash loan (adds liquidity through the flash loan fee).

Testing and Debugging

The Ganache Command Line Interface [94] was used to run a locally hosted in-
stance of the Ethereum mainnet. Initially, the Infura Ethereum API [95] was used
for spawning a Ganache local fork of the mainnet. The unit tests were written in
TypeScript. For each type of action in Aave’s Protocol Proxy, a unit test would call
Aave both directly and through the Proxy. The tests fail when there is a result mis-
match of the two calls.
Integrating with Aave meant every transaction called external contracts, and thus
Buidler’s debugging capabilities could not be used. Instead, we used Truffle Debug
with some simplified tests (as Truffle cannot run TypeScript) and ran step-by-step
through the smart contract code. Another challenge to debugging was that the free
Infura version only supports querying the most recent 128 blocks, which prevents
the Truffle Debugger from fetching all the information it needs. Fortunately, the
Centre for Cryptocurrency Research and Engineering at Imperial College runs a full
Ethereum node at http://satoshi.doc.ic.ac.uk:8545. Finally, using this full node

43

5.3. SECOND IMPLEMENTATION: EXPLORING CHAINED DELEGATECALLS

we could successfully run a Ganache instance and debug using Truffle:

ganache-cli -f http://satoshi.doc.ic.ac.uk:8545 -a 10 -e 100 -p 2000 -v

-m depart mistake volume quick route family festival wedding pen fork build

gauge

The flags in the command above are:

• -f: Fork from the given Etherum client at an arbitrary block (default is the
latest block).

• -a: Number of test Ethereum accounts to generate.

• -e: Ether balance in the generated accounts.

• -p: Port of the local Ethereum client in localhost.

• -v: Output requests and responses to stdout. This flag is very useful for de-
bugging transactions that reverted because it outputs their transaction hash.
While successful transactions return transaction details (including the hash) to
the JavaScript client, reverted transactions return undefined. The transaction
hash is useful because it is the only argument Truffle debug takes.

• -m: Mnemonic that can be used to authenticate into the generated accounts
from MetaMask, a UI browser client.

5.2.4 Challenges

No Added Liquidity. Since Byzantic would only perform a redistribution of col-
lateral from low-reputation to high-reputation users, there would be no liquidity
unlocked by integrating target protocols with our solution. On average, the locked-
in liquidity would be the same both with and without Byzantic. Some users would
provide less collateral just because others provide more. This realisation led to an
in-depth analysis of the various ways to prevent user liquidation, described in Sec-
tion ??. This drawback means that the only positive impact the current project would
make is encouraging users to abide by social welfare norms. But since Byzantic is an
opt-in protocol, users would probably have little incentive to use it.

5.3 Second implementation: Exploring chained dele-
gatecalls

5.3.1 Changes from the previous Byzantic version

Previously, agents had to store funds in their personalised Protocol Proxies separately
and withdraw from all of them when they left Byzantic. This did not provide a natu-
ral User Experience, and now Byzantic offers a single contract for users to deposit to

44

5.3. SECOND IMPLEMENTATION: EXPLORING CHAINED DELEGATECALLS

Figure 5.2: Chaining of upgradeability proxies that occurs when Byzantic is imple-
mented with another protocol. Because of how delegatecall is implemented in the
Ethereum Virtual Machine, using it to forward a transaction does not alter the storage of
Protocol A. State-changing transactions forwarded this way will revert without a reason.

and withdraw from (the UserProxy). Moreover, a Collateral Manager contract is in-
troduced, meant to become the only way DeFi protocols should allows transactions
to happen. This is because it is to be called by both Byzantic and non-Byzantic users,
forwarding their calls along with the collateralisation discount they should receive.

A new architecture is introduced, as can be observed in Figure 5.3. The main mod-
ification to the event flow is the Collateral Manager contract, an instance of which
is deployed for every protocol integrating with Byzantic and intermediates all trans-
actions with it. The Collateral Manager is deployed by DeFi protocol governance,
but works as part of Byzantic (see Figure 5.3). This solution requires that protocols
completely entrust Byzantic with collateral checks.

Since deposit and borrow details are publicly available in lending protocols via getter
functions, the Collateral Manager does not require elevated privileges to compute
whether callers are properly collateralised. The Collateral Manager performs user
collateral checks, so protocols need to remove their own collateral checks and call
the Byzantic Collateral Manager instead.

In order for this solution to work, the Collateral Manager must work as a proxy: if a
call is valid, it is ”forwarded” to the corresponding protocol, keeping the msg.sender

and msg.value fields in the call payload unchanged. Therefore, we have attempted
to use the Upgradeability Proxy design pattern (Section 2.2.4) to achieve this func-
tionality.

5.3.2 Chaining delegatecalls

In Aave and Compound, the main lending protocols that Byzantic is targeting, no
logic contracts are directly exposed to users. Instead, they are using the Upgrade-
ability Proxy design pattern (Section 2.2.4). In Aave, when a user requests the
address of a contract from the Addresses Provider contract [96], they are returned
the address of a proxy to that contract. Thus, Byzantic needs to be designed with
the assumption that the aforementioned design pattern is ubiquitous in DeFi.
In the second implementation, Byzantic aims to use the Collateral Manager contract
as a proxy to other protocols. However, because all protocols use proxy contracts

45

5.3. SECOND IMPLEMENTATION: EXPLORING CHAINED DELEGATECALLS

”at the edge”, directing all traffic through them, the new architecture unknowingly
attempted to chain proxy contracts: Collateral Manager delegatecalls the Proxy Con-
tract of Protocol A, which delegatecalls a logic contract (Figure 5.2). When a trans-
action that traverses consecutive proxies fails, it reverses without a reason, making
debugging very difficult with Truffle. Moreover, using a delegatecall results in state
changes in the caller contract, not in the callee contract. In the current implemen-
tation of Byzantic, the callee contract is in a foreign protocol. It would be a security
vulnerability if it used the storage of the caller contract, making this solution techni-
cally infeasible.

5.3.3 Architecture

Figure 5.3: Second system architecture of Byzantic. Contracts with dashed borders are
managed by their corresponding protocol governance.

Diagram Components. We describe how each component in Figure 5.3 changed
from the first implementation (Section 5.1) and why.

Web of Trust. No longer deploys unique Protocol A Proxy instances for users, as
that contract is now unique per protocol. Instead, WebOfTrust calls the UserProxy
Factory to deploy a UserProxy contract for each new user. Since Byzantic no longer
performs collateral redistribution, WebOfTrust no longer has this responsibility.

UserProxy Factory. Deploys a UserProxy contract for every new user and stores
(user, userProxyAddress) pairs.

46

5.3. SECOND IMPLEMENTATION: EXPLORING CHAINED DELEGATECALLS

Alice’s UserProxy. This contract is unique to every user and provides a unified ad-
dress for all user interactions with the protocols Byzantic integrates with. This is in
contrast with the initial approach, where Byzantic would call DeFi protocols from
different addresses, even if it was the same user originating the transactions. Users
deposit to and withdraw funds from Byzantic using this contract.

LBCR. No functionality changes.

Protocol A Proxy. (Not to be confused with the Upgradeability Proxy design pat-
tern). This contract is now unique per protocol and is deployed by the protocol
governance, just like the Collateral Manager contract. Due to the introduction of
User Proxy contracts, this protocol no longer manages funds.

Protocol A Collateral Manager. New contract that is unique for every protocol and
is deployed by the corresponding governance. This contract is meant to be called
both by Byzantic and non-Byzantic users, redirecting their calls to DeFi protocol
contracts. In order to do this, it implements the Upgradeability Proxy design pat-
tern. Before the call is forwarded, the Collateral Manager checks whether the caller
is properly collateralised for the action they are trying to perform.

Protocol A. No longer checks if calls are properly collateralised, as this functionality
is outsourced to the CollateralManager.

Alice. No changes.

5.3.4 Interaction Flow

When a new agent (Alice) starts using Byzantic:

1. Alice calls the Web of Trust contract to sign up.

2. The Web of Trust contract calls the UserProxy Factory to deploy a personal
UserProxy for Alice. She is automatically signed up with all existing protocols
in the Byzantic ecosystem. When a new protocol is added to Byzantic, Alice is
automatically signed up with it.

3. Alice stores funds in her UserProxy contract. These funds can be used as col-
lateral for loans, or any other purposes related to the protocols integrated with
Byzantic.

4. To interact with Protocol A, Alice calls the Protocol Proxy to execute action X
on her behalf.

5. The Protocol Proxy bundles the call details in an abiEncoding and sends it to
Alice’s UserProxy.

6. Alice’s UserProxy performs a low-level call to the Protocol A Collateral Man-
ager, using the abiEncoding from the previous step.

47

5.3. SECOND IMPLEMENTATION: EXPLORING CHAINED DELEGATECALLS

7. The CollateralManager queries the Web of Trust contract, which aggregates
the reputation of Alice from all protocols, to decide the amount of collateral
needed for action X. If Alice does not have enough collateral, the transaction
is reverted at this step.

8. The call is forwarded to Protocol A using delegatecall.

9. If the call succeeds, Alice’s score is updated in the LBCR of Protocol A.

5.3.5 Trying to integrate with Aave

Because work on integrating Byzantic with Aave had already started with the occa-
sion of the New York blockchain week hackathon (Section 5.2.3), the Protocol Proxy
for Aave was already implemented. To make the second Byzantic implementation
work with Aave, all that was left was writing an Aave CollateralManager. How-
ever, in spite of writing a very basic Collateral Manager, all state-changing transac-
tions would revert. The Truffle Debugger was of no help, as it would often crash
when stepping through the delegatecalls. When it would not crash, the fact that
delegatecalls execute in the storage of the calling contract caused the debugger to
skip large portions of code or not display any variable values.

Figure 5.4 is an example debugging attempt with Truffle. The code being executed
is Aave’s InitializableAdminUpgradeabilityProxy contract, as can be seen on
the first line. This contract is Aave’s upgradeability proxy, which redirects all in-
coming calls to the latest LendingPool contract. The executing context is Byzan-
tic’s AaveCollateralManager (penultimate line in the figure), because the code was
called using delegatecall. Most likely, the variable newImplementation has no
value because it does not exist in the storage context of AaveCollateralManager.
Nonetheless, the debugger was useful in figuring out that Aave uses an upgrade-
ability proxy, a fact enforced by comments found in Aave’s smart contracts. Aave’s
documentation does not mention anything about upgradeability proxies [96], so we
could only observe this by exploring the code itself.

Finally, after we reached out for support on Aave’s Discord channel, a developer
confirmed that using a delegatecall will not influence the protocol’s storage and
that the problem should be approached differently.

5.3.6 Challenges

Unfortunately, this solution is not technically feasible. The only way proxy func-
tionality could be achieved in the EVM is via delegatecall, which does not work
as needed. The Ethereum Improvement Proposal (EIP) for delegatecall specified
the following behaviour: ”CALLER and VALUE behave exactly in the callee’s envi-
ronment as they do in the caller’s environment” [97]. The proposal makes a clear
distinction between the environment of the callee and that of the caller, but specifies
that they should behave identically. If delegatecall were implementated like in the

48

5.3. SECOND IMPLEMENTATION: EXPLORING CHAINED DELEGATECALLS

Figure 5.4: Truffle Debug failing to display the value of the vari-
able newImplementation. The code being executed is Aave’s
InitializableAdminUpgradeabilityProxy contract. However, the code is not
executing in the storage context of Aave’s contract; it is executing in the context of the
caller contract, Byzantic’s AaveCollateralManager, because the code was called using
delegatecall. Most likely, the memory location at which the code attempts to read
newImplementation is uninitialized.

Figure 5.5: Aave source code NatSpec providing information that is missing from the
documentation

49

5.3. SECOND IMPLEMENTATION: EXPLORING CHAINED DELEGATECALLS

EIP specification, the upgradeability proxy design pattern would not have been pos-
sible, because logic contracts would have also stored their own state - which would
have been lost after upgrading to a new logic contract. It is probably for this reason
that delegatecall was implemented differently from the EIP specification: to allow
the usage of delegatecall for the upgradeability proxy. Nonetheless, the difference
between the proposal and its implementation, coupled with the difficulty of debug-
ging delegatecalls, is what delayed the development of this individual project by
two weeks. Eventually, it became clear why delegatecall cannot be used as a reg-
ular proxy and the final architecture was designed (Chapter 5.4).

The delegatecall implementation makes a call to a different contract in such a
way that the code of the callee contract is executed in the storage context (envi-
ronment) of the caller contract. Any changes that would have been recorded in the
callee contract’s storage now get stored in the caller contract storage. The EVM sim-
ply overwrites the bytes in the caller contract that would have normally (i.e. using
call) been written to in the callee contract. Unless the caller has an identical mem-
ory layout to the callee (the same variable types, declared in the same order), these
changes will corrupt the memory state of the caller, resulting in transactions that re-
vert without providing a reason. It later became apparent that transactions reverted
on chained proxies because of how the Proxy Contract tried to load the target ad-
dress for the delegatecall. The Proxy Contract was itself delegatecalled by the
CollateralManager, and thus the target address in the Proxy Contract (which was
used as a logic layer in this case) was being loaded from CollateralManager con-
tract, which was the storage layer in this case. The target contract address that was
read from memory was probably zero (i.e. the null address) or some other random
address. And because that address was not a deployed contract (and thus had no
fallback function), sending ETH to it would revert the transaction without a reason.

Parallel to Imperative Programming. Chaining delegatecalls can partially be com-
pared to nesting function calls in an imperative programming language like C. In the
EVM, there is no programmable global memory, as is the heap memory in C. All state
is stored ”locally” in smart contracts, like in the stack frames of C. The delegatecall

works like a function A calling function B without creating a new stack frame for
function B. The code of function B is still loaded from the text segment of memory,
but all reads and writes interact with the stack frame of A. Without careful mem-
ory management, the code of B could perform an out-of-bounds memory access or
an invalid memory dereference, both of which are undefined behaviour in C. There
is no undefined behaviour in Solidity/the EVM, but such memory mismanagement
caused transactions to revert without a reason during the chained proxy call.

50

5.4. FINAL IMPLEMENTATION

5.4 Final implementation

5.4.1 Changes from the previous version

The final solution simplifies the previous one by completely eliminating Collateral
Manager contracts and replacing the delegatecall with a regular call. As Fig-
ure 5.6 shows, the UserProxy now directly calls contracts in target protocols. Target
protocols no longer need to remove collateralisation checks from their code. Instead,
they need to slightly update these checks, by multiplying whatever collateralisation
ratio an action has with the aggregated User Factor (UF) returned by the Web Of
Trust contract. To know how much liquidity was ”unlocked” for a user in a proto-
col, we calculate the value of (1 - UF) × UTVL , where UTVL is a User’s Total Value
Locked in a target protocol [71].

In this implementation, LBCR contracts are configured by protocol governance,
although they are not deployed by it. Updates to LBCR configuration create a new
version of that LBCR. Versioning is introduced to prevent malicious updates from
impacting the security of other protocols in Byzantic. If Protocol A’s governance
is overtaken by a malicious actor who sets new LBCR parameters, other protocols
would be affected by exaggerated reputations. Through versioning, protocols gain
the option to set the default compatibility score with new LBCR versions of the other
protocols. For instance, Protocol B may have set a compatibility score of 0.2 with
Protocol A for the current LBCR version, but the default compatibility score for fu-
ture versions is 0. This means that Protocol B governance has to manually ”trust”
every Protocol A LBCR update.

Moreover, a moving average that tracks transaction volumes is added in this Byzantic
implementation. It dynamically scales the curation interval in case of exceptional
events where volumes rise quickly, such as a price crash.

5.4.2 Architecture

Diagram Components. We describe how each component in Figure 5.6 changed
from the first implementation (Section 5.3) and why.

Web of Trust. No functionality changes.

UserProxy Factory. No functionality changes.

Alice’s UserProxy. Instead of calling the Collateral Manager contract of the target
protocol, it now calls Protocol A contracts directly.

LBCR. A moving average that tracks transaction volumes is introduced, to dynam-
ically scale the curation interval. Previous LBCR implementations would only pro-
mote or demote users one layer at a time this version replaced that strategy with

51

5.4. FINAL IMPLEMENTATION

Figure 5.6: Final system architecture of Byzantic. Contracts with dashed borders are
managed by their corresponding protocol governance.

two new ones: Layer Jumping and Asymmetric Promotion.

Protocol A Proxy. No functionality changes.

Protocol A CollateralManager. This protocol was removed because delegatecall

was not modifying the storage of Protocol A, rendering the Collateral Manager inef-
fective.

Protocol A. Updates collateralisation checks by multiplying the collateralisation fac-
tor with the agent discount from Byzantic.

Alice. No changes.

5.4.3 Interaction Flow

When a new agent (Alice) starts using Byzantic:

1-5 The first five steps are identical to the second implementation (Section 5.3.4).

6 Alice’s UserProxy performs a low-level call to Contract T in Protocol A, using
the abiEncoding from step 5.

52

5.4. FINAL IMPLEMENTATION

7 Contract T of Protocol A queries the Web of Trust contract in Byzantic, which
aggregates the reputation of Alice from all protocols, to retrieve her collateral
reduction. If Alice does not have enough collateral even after the reduction,
the call is reverted.

8 If the call succeeds, Alice’s score is updated in the LBCR of Protocol A.

5.4.4 Challenges and Solutions

Gas costs of LBCR versioning. There were two options available to implement
LBCR versioning. One was to use mapping types, from version number to the data
structures of versioned parameters. The other was to use two identical data struc-
tures for every versioned parameter: one storing the current version in use, and one
storing the latest version (whose values are still being updated and has not been
”published”); when the latest version is ”published”, the new parameters are copied
from one data structure to the other.

”Big O” Complexity Analysis of Gas Cost. To properly compare these two methods,
their gas cost must be taken into account. The costliest part of both implementations
is writing the new configuration parameters to storage. However the methods dif-
fer in that the first one always writes to uninitialized memory (that was previously
zero), and the second always writes over previously initialised memory (except for
the first version). The gas cost of writing a word to uninitialized storage is 20,000
gas, while writing a word to initialized storage costs 5,000 gas [98]. Given that the
configuration size of a single version is identical in both protocols (the same number
of layers and corresponding parameters), the number of operations to write a con-
figuration to storage can be abstracted away. What differs is that the second method
first writes to one set of data structures and then copies all of those values to another
data structure. Thus, storage is written to for storing the new configuration, then it
is read from and written to again, to update to a new version. Reading from stor-
age only costs 200 gas, so in total the second method has a complexity of roughly
O(10,000 gas), while the first method has one of O(20,000 gas).

Example. There are four configuration data structures: action scores, lower and up-
per layer score bounds and layer factors. Assuming there are 5 layers and 6 actions
(inspired from SimpleLending), there are 5 × 3 + 6 = 21 uint256 writes to storage,
or 21 words. Currently, cost of gas is 60 gwei [99]. Thus, the cost of method 1 is
20, 000 × 21 × 60 = 25, 200, 000 gwei ≈ 10 dollars [100]. The cost of the second
method is half of that, so about 5 dollars.

Picking an option. Given LBCR versions are likely to change very rarely and a
difference of 5 dollars is not much, we decided to choose the first implementation,
as it is easier to understand and debug.

53

5.5. GENERAL IMPLEMENTATION CHALLENGES

5.5 General Implementation Challenges

Lack of Buidler Mainnet Forks. This missing feature was a significant obstacle to
integrating with real protocols like Aave. With mainnet forks in the Buidler EVM, log
statements and stack traces could have been used to more easily debug the Solidity
code. The only debugging solution that offers mainnet forks is Truffle. However,
the problem with the Truffle debugger was that it did not allow external (on-chain)
contracts to be stepped through. An issue on the Truffle GitHub [101] suggested
that including an on-chain contract in the project and compiling it to the same byte-
code would help the debugger notice and step through it. However, following those
instructions was unsuccessful. After looking through Truffle’s code to see what is
wrong, we observed that the bytecode of the on-chain contract was slightly different
from the bytecode of the same contract in our project: their metadata differed (such
as the project path at compilation time). But since the metadata is irrelevant to Truf-
fle Debug’s ability to step through the code, we changed the bytecode-match check
such that the metadata-specific portion would be ignored. As a result, Truffle Debug
is recognising the locally included on-chain contracts and, even with the occasional
crashes, most transactions could be stepped through. The Truffle developers have
added this missing feature in the meantime, but their solution is slow and and still
crashes [102].

54

Chapter 6

DejaVu Design Pattern
Implementation

6.1 Architecture

Components

Alice. An off-chain user that can prove ownership over a Byzantic identity.

Forward-Deployed Account. An on-chain account that Alice controls. It is the iden-
tity of this account that Alice can use by sending authenticated anonymous transac-
tions from off-chain.

Trusted Relay. Either an single miner that relays off-chain transactions, or a net-
work of such miners that is organised like The Onion Router in order to preserve
privacy (see Section 2.3.3). In case there is a single relayer, it needs to be trusted
not to expose the identity of off-chain users.

ZkIdentity. Smart contract that implements proof of preimage verification in zero
knowledge by integrating with the validator contract generated by ZoKrates.

IdentityFactory. Simple factory contract that generates identities for the Forward-
Deployed Accounts.

Identity. Smart contract that works just like the UserProxy in Byzantic (Section 5.3.3),
calling DeFi protocols on behalf of the identity it corresponds to.

Protocol A. DeFi protocol that Byzantic has integrated with

Event Flow

1. The Forward-Deployed Account (FDA) controlled by Alice registers with the
DejaVu Identity Factory

55

6.1. ARCHITECTURE

Figure 6.1: DejaVu pattern for anonymously building a transaction history. It uses both
off-chain components (relays) and on-chain components (mixers and zero-knowledge
proofs), providing k-anonymity guarantees.

56

6.2. GENERATING ZERO-KNOWLEDGE PROOFS

2. The Identity Factory deploys an Identity contract for the FDA

3. The FDA deposits funds to the Identity contract. Later, these funds will be
coupled with incoming data calls and forwards as ”full” transactions to DeFi
protocols

4. This step can happen in two ways:

(a) The FDA sends a transaction to the Identity contract. It does not need to
provide a zk-proof, because it is the owner of the identity

(b) i. Alice, who is off-chain, produces a zk-proof that shows she controls
the Identity contract and abiEncodes a call for Protocol A. She sends
these two pieces of data as a single call, to the Trusted Relay to for-
ward to the Identity contract

ii. The Trusted Relay sends Alice’s transaction using its own Ethereum
account

iii. The Identity contract calls ZkIdentity to Validate the proof. If this step
fails, the transaction is reverted

iv. The Identity contract sets a new secret for the FDA identity, using data
from Alice’s call

5. The identity contract calls Protocol A using the abiEncodeing received in the
previous step

6.2 Generating Zero-Knowledge Proofs

High-level ZoKrates programs have a .zok extension. To embed proof verification
on-chain, the verifier needs to run the following commands.

1. Compile the .zok verification program to an arithmetic circuit:

zokrates compile -i hashPreimage.zok

2. Using the generated arithmetic circuit, the verifier can run a ”trusted setup”
and generate a verification key and a proving key. If there is more than one
verifier, this stage is susceptible to attacks, because other verifiers need to trust
the verifier running the trusted setup not to tweak the keys. In such a scenario,
the setup needs to be performed via Multi-Party Computation, where one hon-
est participant is enough to guarantee the security of the setup [103]. Fortu-
nately, Byzantic has a single verifier, the ZkIdentity contract, so the trusted
setup is not an issue. The following command needs to be run:

zokrates setup

3. To generate the verifier contract that will be deployed on-chain, the following
command must be run in the same directory as the verification key:

zokrates export-verifier

57

6.3. CHALLENGES

4. When a user wants to generate a hash pre-image proof, the need to generate
a witness (the computation that will be verified on-chain by the ZK-SNARKs).
From the witness, the user can generate the proof that must be sent to the
verifier smart contract. The hash pre-image does not appear in the proof due
to ZK-SNARKs properties (Section 2.3.1). The following commands must be
run in the same directory as the proving key:

zokrates compute-witness -a 0 0 0 5

zokrates generate-proof

6.3 Challenges

It is critical that users of DejaVu try to blend-in with ”the crowd” as much as possi-
ble, by transacting with very popular amounts (e.g. 0.1 ETH), at common times of
the day, performing transactions that are not too sophisticated. Otherwise, they risk
having their activity traced back to them.

If ZKPs may be sent to more than one verifier contract, a trusted setup must be
organised, usually through a multi-party ceremony that succeeds if at least one par-
ticipant is honest [104]. However, there is no need for a multi-party ceremony as
there is a single verifier in DejaVu.

58

Chapter 7

Simple Lending Protocol

To test that Byzantic properly aggregates reputation, it was necessary to integrate
it with at least two protocols. Since Truffle’s debugging capabilities leave much to
be desired, it was much more practical to write my own simple lending protocol
(called SimpleLending) and run everything locally. By running everything locally,
we could take advantage of the Buidler EVM, which sped up development compared
to the previous stages of the project. Another advantage of having written my own
protocol is that it can be cloned an arbitrary number of times with slightly different
configurations, for testing purposes.

Given that the use case of Byzantic is collateral reduction, this solution only applies
to protocols where users perform some kind of lending - a very broad subset of
DeFi protocols. Examples include derivatives protocols, where users mint new assets
by depositing a different kind of assets as collateral. Throughout the lifetime of
derivatives, minters incur debt - which makes the minting process identical to a
loan [8]. Stablecoins such as Dai can also be considered derivatives, both from a
regulatory perspective [105] and from analysing their minting process. Thus, the
scope of SimpleLending is broad enough to cover all collateral use cases, and its
uncomplicated nature does not stand in the way of analysing how agent reputation
evolves over time.

7.1 Features

7.1.1 Deposit

SimpleLending users can deposit Ether and any other ERC-20 token that stores value.
No price feed oracles are used, as they are costly to use. In the context of security
analysis for Byzantic, it is not relevant if prices in Byzantic match those in real mar-
kets. Section 7.2 details how exchange rates are calculated.
To keep track of deposits, SimpleLending uses a nested mapping, userDeposits,
from the (user, reserve) pair to the amount. Furthermore, with every deposit, a
mapping that tracks liquidity in the protocol, reserveLiquidity, is updated.
Deposits to not accrue interest, in an attempt to avoid implementation complexity.

59

7.1. FEATURES

The impact of this function on Byzantic reputation is positive, as it increases liquidity.

7.1.2 Computing borrowable amount

The base collateralisation rate of SimpleLending is 150%. To compute the borrow-
able amount from a reserve, the entire value of a user’s deposits is computed, in
Ether. The value of the loan is also converted to Ether, and the proportion between
these two values is checked to ensure it is greater than a threshold. The threshold
is calculated by multiplying the base collateralisation rate with the aggregate user
factor in Byzantic. If the user is not in Byzantic, their aggregate factor is 1.0 by
default.

7.1.3 Borrow

Borrows can be made in any reserve whatsoever, as long as there is enough liquidity
and the user is properly collateralised. If a borrow is successful, SimpleLending up-
dates a nested mapping, userLoans, from the (user, reserve) pair to the borrowed
amount. It also decreases the reserveLiquidity accordingly.
Loans are interest-free, in an attempt to avoid implementation complexity.
The impact of this function on Byzantic reputation is negative, as it decreases liquid-
ity.

7.1.4 Repay

The repay function is used to clear loans in a certain currency. Even if several loans
were made from the same reserve, they can all be repaid at once. Users can repay
arbitrary amounts, and they can do so on behalf of other users. onBehalf is a repay

function parameter, and when repaying their own loans, users should assign their
Byzantic UserProxy address to onBehalf.
A successful call to repay will decrease the userLoans of onBehalf by the repaid
amount. It will also increase the reserveLiquidity by the repaid amount.
The impact of this function on Byzantic reputation is positive, as it increases liquidity.

7.1.5 Liquidate

The process of liquidation is the most complex aspect of SimpleLending. This func-
tion is meant to be called on a borrower that has become undercollateralised. The
liquidator can repay some of the borrower’s loans, such that the borrower becomes
properly collateralised again. For doing so, the liquidator is rewarded with a liqui-
dation discount, which means that the liquidator receives the borrower collateral in
exchange for repaying the loan, at a price that is 10% better than the exchange rate
in SimpleLending.
Through liquidation, SimpleLending avoids being exposed to too much default risk,
liquidators make a profit by taking advantage of arbitrage, and the borrowers are
punished by losing 10% of the liquidated amount. In order for liquidation to be an

60

7.1. FEATURES

Figure 7.1: Loan liquidation process in the Simple Lending protocol. The first step illus-
trates the 150% ratio between values of the loan and its collateral. Then, a depreciation
of the collateral assets may lead to the loan no longer being collateralised above the
150% threshold. As a result, liquidators can repay part of the loan on behalf of the
borrower, in exchange for collateral at a better rate than the market’s. In this example,
the liquidated amount is ”sold” at a 10% discount, which means that liquidators receive
an additional 11.1% (100/90) of the collateral assets than they would receive on the
market in exchange for the repaid loan amount.

efficient risk lowering mechanism, it is essential that the liquidation discount (10%)
is lower than 1 − 1

collateralisationRatio
. Otherwise, the liquidated will never pass the

collateralisation threshold. The liquidation mechanism is not guaranteed to guard
SimpleLending against sharp price drops in the value of collateral, which is why in
most DeFi protocols liquidation can happen as soon as a user falls below the 150%
threshold. It only becomes convenient for users to default on their loan after their
collateralisation rate falls below 100%, but arbitrage is likely to occur well before
that.

7.1.6 Redeem

This function can be used to withdraw deposits from SimpleLending. Users cannot
redeem funds from a reserve they have not deposited to - they cannot withdraw
from other users’ balance. The only scenario where users are not able to withdraw
the entire amount they deposited is if they were liquidated.

A successful call to redeem will decrease the reserveLiquidity and the userDeposits
of the caller by the amount redeemed.

The impact of this function on Byzantic reputation is negative, as it decreases liquid-
ity.

61

7.2. EXCHANGE RATES

7.2 Exchange rates

The exchange value between two currencies is set based on their liquidity in Sim-
pleLending. As liquidity is tracked using the reserveLiquidity mapping (Sec-
tion 7.1.1), the conversion rate between asset A and asset B is:

reserveLiquidity[B]

reserveLiquidity[A]
(7.1)

The conversion rate formula was developed independently, but was afterwards com-
pared with the approach of Uniswap, a decentralized exchange, and was found to
be identical [106].
If the reserve of asset A is empty, the conversion rate returned is 2200, to represent
infinity. Attempts to borrow asset A would fail anyways, but returning 2200 is meant
to act as an indication for users to smart contracts not to spend gas on a borrow
transaction that will revert.

7.2.1 Example

Suppose that in SimpleLending there are 2 units of ETH and 600 units of Dai. Ac-
cording to the formula, the conversion rate from ETH to Dai is 600

2
= 300. To see if

the formula obeys supply and demand laws, the price of Dai should drop if Dai liq-
uidity increases, all else being kept the same. Thus, assume there are now 900 units
of Dai in SimpleLending. The conversion rate from ETH to Dai becomes 900

2
= 450;

using 1 ETH one can buy more Dai than before, which means Dai depreciated.

7.2.2 Challenges and Solutions

Issues with floating point numbers

Many conversions end up being smaller than 1 (for instance, Dai to ETH). This prob-
lem is made worse by ETH being stored as wei, which is 1018 times more fine-grained
than ETH. To tackle this issue, divisions are always preceded by multiplying the nu-
merator with 1025. Instead of dividing by that offset number after the calculation is
done, functions in SimpleLending return a (number, decimals) tuple, representing
the result and the power of 10 it should be divided by (10decimals).
In case a multiplication between numbers represented this way occurs, the fractional
part of the result (the mantissa) becomes 50 digits long. In Solidity, the uint type
stores numbers as large as 2256, or approximately 1077. This leaves only 27 digits for
the rest of the number, which may become a problem. A potential solution is dividing
the smaller number by 1025, to lose as little ”information” as possible. Nonetheless,
no such multiplication occurs in SimpleLending.
Another issue with the tuple representation of floating point numbers is that clients
should be aware of this ”layout” when parsing the results. In JavaScript, the most
common client for interacting with the Ethereum blockchain [92], the maximum
safe size of numbers is 253 or about 1015. This is significantly smaller than the 1077

62

7.2. EXCHANGE RATES

in Solidity, so issues can arise when deserializing responses. JavaScript does provide
the BigInt class for manipulating arbitrarily large numbers, but it is an additional
hurdle to development. Another downside to using BigInt is that, like in Soldiity,
fractional results are truncated. To represent a number literal as BigInt, the ”n”
character must be appended at its end (e.g. ”10n” instead of ”10”).

”Hacking” the exchange rate

The exchange rate formula above is susceptible to transaction reordering within the
same block. The vulnerability can be exploited when the miner has large reserves of
a particular asset, or there is low liquidity in SimpleLending. If there is an incoming
deposit transaction in ETH, the miner can short ETH, add the deposit transaction to
deflate ETH price, and then repay the short position. Such an exploit can even be
crafted in a single transaction with the help of flash loans, as has already happened
in DeFi [107].
As a solution, Uniswap v2 are using an oracle that returns the exchange rate mea-
sured at the beginning of the block/end of the previous block. Miners are only able
to manipulate this oracle if they mine consecutive blocks, which is less likely than
reordering transactions. Nonetheless, manipulating price oracles could still be used
as a way to increase selfish mining profits (see Section 2.7.3). If the miner fails to
successfully propagate two consecutive blocks, even if they manipulate the price at
the end of the one block, their arbitrage attempt could be taken advantage of by
someone else. This security improvement was not used in SimpleLending, because
oracles are expensive and increase solution complexity.

63

Chapter 8

Behavioural Analysis of DeFi
Protocols

Exploring the behaviour of DeFi users is helpful in modelling the impact of Byzan-
tic. As such, we analysed transaction data from Compound, Aave and Synthetix.
Three dimensions were considered: Action Ratio, Volumes and Interaction Fre-
quency. Based on this data, we built user profiles that enabled us to approximate
how the collateral reduction offered by Byzantic evolves over time, as explained in
Chapter 9. The contracts analysed are Compound’s cTokens and cETH, Aave’s Lend-
ingPool and Synthetix’ Proxy SNX Token Contract, as shown in Table A.1.

8.1 Action Ratio and Volumes

8.1.1 Approach

We counted the occurrence of every action that users performed in 30 minute inter-
vals. This provided us with information not only about volumes, but also about the
ratio of the actions performed.
The source of the data was the Ethereum dataset in Google Cloud BigQuery, which
was queried using the following SQL statement:

SELECT

EXTRACT(YEAR FROM block_timestamp) AS dateyear,

EXTRACT(MONTH FROM block_timestamp) AS datemonth,

EXTRACT(DAY FROM block_timestamp) AS dateday,

EXTRACT(HOUR FROM block_timestamp) AS datehour,

ROUND(EXTRACT(MINUTE FROM block_timestamp) / 30) AS dateminute,

SUBSTR(input, 0, 10) AS method_selector,

COUNT(*)

FROM ‘bigquery-public-data.crypto_ethereum.transactions‘

WHERE

DATETIME(block_timestamp) >= "2019-12-31T23:30:00"

AND DATETIME(block_timestamp) <= "2020-04-08T10:00:00"

64

8.1. ACTION RATIO AND VOLUMES

AND

(

to_address="contract1_address"

OR to_address="contract2_address"

...

)

GROUP BY

dateyear,

datemonth,

dateday,

datehour,

dateminute,

method_selector

ORDER BY

dateyear ASC,

datemonth ASC,

dateday ASC,

datehour ASC,

dateminute ASC

When a function is called in a smart contract, the signature of that function is hashed
using the Keccak-256 algorithm and the first four bytes of the result are included in
the msg.data of the transaction. The hashed function signature is the first piece of
information included in the msg.data, which is why the method selector field in
the SQL statement takes a substring of the first 10 characters from the field input

(which is the msg.data itself). Although the method identifier is only 4 bytes long,
it is represented as 8 characters in its hexadecimal representation (a byte stores 32
bits, while a hexadecimal digit stores 16 bits). To those 8 characters, 2 additional
characters are prepended: ”0x” - hence the value of 10 to the parameter of the
SUBSTR SQL function.
While smart contracts are immutable once deployed, protocols often route transac-
tions through proxies that decide the destination of a call a transaction time (as ex-
plained in Section 2.2). This way, protocols can deploy new contracts and re-route
traffic to those, without overwriting old contracts. After such an update happens,
there is often ”leftover” traffic that still goes to the old contract and can skew the re-
sults of analysis not carried out carefully. Fortunately, no such updates happened in
the period shortly preceding the ”Black Thursday” crash, but Synthetix did migrate
to a new contract on the 10th of May [108].

8.1.2 Results

As an example of the information gathered, Figure 8.1 illustrates user activity in
Aave from the 5th to the 21st of March. The red color coding signifies borrowing or
its equivalent, while yellow color coding signifies repayments. Since the proportion
of repayments and liquidations increases and borrowing decreases during the price

65

8.2. INTERACTION FREQUENCY

Figure 8.1: Action volumes in Compound, Aave and Synthetix before, during and after
the ”Black Thursday” price crash. Not only did volumes increase overall, but the ratio of
loan repayments and liquidations also increased.

crash, we consider these two actions to be the main components of calculating rep-
utation, along with liquidation. We speculate that the increased deposit numbers
are due to users providing additional collateral so as not to be liquidated, while re-
payments are aimed at clearing debt. Interestingly, in Synthetix, liquidation (with
method identifier 0xe6203ed1) does not occur at all, probably of its collateralisation
rate of 750%, compared to 150% in Compound and Aave.

8.2 Interaction Frequency

8.2.1 Approach

The interaction frequency distribution was measured in percentiles, such that users
were placed into ten ”buckets” according to their average interaction frequency. To
compute the results in Figure 8.2, Google Cloud BigQuery was queried using the fol-
lowing SQL statement, assuming that a block is mined every 15 seconds in Ethereum:

SELECT

PERCENTILE_CONT(avg_time_period, 0.1) OVER() AS percentile10,

PERCENTILE_CONT(avg_time_period, 0.2) OVER() AS percentile20,

PERCENTILE_CONT(avg_time_period, 0.3) OVER() AS percentile30,

PERCENTILE_CONT(avg_time_period, 0.4) OVER() AS percentile40,

PERCENTILE_CONT(avg_time_period, 0.5) OVER() AS median,

PERCENTILE_CONT(avg_time_period, 0.6) OVER() AS percentile60,

PERCENTILE_CONT(avg_time_period, 0.7) OVER() AS percentile70,

PERCENTILE_CONT(avg_time_period, 0.8) OVER() AS percentile80,

66

8.2. INTERACTION FREQUENCY

PERCENTILE_CONT(avg_time_period, 0.9) OVER() AS percentile90

FROM (

SELECT transactions.from_address, COUNT(*) AS tos_count,

(

MAX(transactions.block_number)

-

MIN(transactions.block_number)

) / COUNT(*) * 15 / (60 * 60 * 24) AS avg_time_period

FROM ‘bigquery-public-data.crypto_ethereum.transactions‘ AS transactions

WHERE

(

transactions.to_address="contract1_address"

OR transactions.to_address="contract2_address"

...

)

GROUP BY transactions.from_address)

LIMIT 1

The SQL subquery measures the average time between transactions, for every ad-
dress interacting with a contract. It considers the distance in blocks between the
first and the last transaction, which is divided by the total number of transactions
originating from the caller. Then, that number is multiplied by 15, to get the average
interaction time in seconds, which is then scaled to days.
A drawback of this approach is that it does not consider individuals using more than
one unique address, and thus the results may be biased. A thorough analysis of
linkability and traceability should be performed to ensure results are as accurate as
possible [109].

Outlier Elimination

Plotting the resulting distributions helped outline that the tail of the distribution is
very long - there are many users who very rarely interact with protocols. We consid-
ered this category unhelpful in modeling agent behaviour, so we decided to perform
outlier elimination.

As an initial data cleansing procedure, agents who only interacted once with a pro-
tocol were no longer considered. This is because they have an interaction frequency
of zero, since the distance between the first and the last transaction block is zero.

The next outliers to eliminate were those who do interact with the protocols, but do
so very seldom. To decide which portion of the data are outliers, we took inspira-
tion from the approach used in box-and-whiskers plots [110]. Such plots consider
outliers all data that fall outside the interval [Q1 − 1.5 × IQR,Q3 + 1.5 × IQR],
where Q1 and Q3 are the first and third quartiles respectively (i.e. the 25th and the
75th percentiles), and IQR is the interquartile range (i.e. Q3 − Q1). To better suit

67

8.3. RELATIONSHIP TO MARKET CYCLE PSYCHOLOGY

the data we had already gathered, we only considered outliers those greater than
Q3 + 1.2× IQR, so as to simply discard the 90th percentile.

8.2.2 Results

Figure 8.2 displays the distributions of interaction frequencies after eliminating ”zero-
frequency” accounts, but includes the 90th percentile. Table 8.1 displays the Median
Interaction Frequency (MIF) before and after outlier elimination, as well as the in-
teraction frequency of the most active 10%.

Figure 8.2: Percentiles of user interaction frequency for Compound, Aave and Synthetix.

Protocol MFI Before OE
(days)

MFI After OE
(days)

10th Percentile IF
(minutes)

Compound 4.8 2.81 24.12
Aave 1.57 1.23 7.12
Synthetix 4.9 4.04 8.37

Table 8.1: Summary Statistics of Interaction Frequency in Compound, Aave, Synthetix

8.3 Relationship to Market Cycle Psychology

During the crisis, users were indeed repaying their debt more than usual, reflecting
the anxiety observed in traditional markets [111]. However, the ”aftershock” on the
16th of March, when the price dropped again, still caught users by surprise. This
can be observed in Figure 8.1 in Aave on the 16th, in Synthetix on the 18th and in
Compound on the 19th of March. It was only on the following price drop, on the
21st of March, that users seem to have been prepared for. The data shows that users
were refusing to believe the price had actually crashed (i.e. they were in ”denial”).
This outlines the ”fear of missing out” prevalent in DeFi due to its early stage [112].

68

Chapter 9

Evaluation: Economic Stress-Testing

This chapter evaluates the stability of Byzantic in the face of price shocks by simu-
lating the system on real data.

9.1 Stress-Testing Framework

To ascertain whether DeFi protocols are vulnerable to exogenous price shocks, Gud-
geon et al. [5] adapted the stress-testing methodology used by central banks, which
measures the impact of ”black swan” events [113] on the financial system. By
taking inspiration from their approach, we created a Python package that simu-
lates Ethereum blockchain conditions on Byzantic, to help protocol governance se-
curely configure their LBCR. More specifically, we analysed the effect of the ”Black
Thursday” Ethereum price crash on Compound, Aave and Synthetix and present se-
cure parameter examples. The analysed parameters are described in Sections 9.1.1
and 9.1.2.

9.1.1 LBCR Parameters

Observation. In the current implementation, there is a fixed reward per action, re-
gardless of the funds involved. We considered this simplification good enough, since
the high transaction fees in DeFi discourage users from performing the same action
multiple times with small values, rather than once with the ”full” asset amount. An
ideal LBCR contract would use an action reward function rather than fixed scores.
Protocol governance would set a (baseScore, baseTransactionAmountInETH) pair
for each action, defining the standard reward. At transaction time, the value of
transacted assets is converted to ETH and the aforementioned pair is used to estab-
lish the reward score. A complication of this solution is the need to have reliable
exchange rates between assets. Fortunately, Byzantic is aimed at lending protocols,
all of which already need to track exchange rates.

69

9.1. STRESS-TESTING FRAMEWORK

Parameter Description
Layer Factors The factor of every layer specifies the collateral reduction (CR)

users in that layer receive. The higher the layer, the higher the
layer factor.

Number of layers Assuming the highest layer factor is kept constant, this parameter
only impacts the granularity in collateral reduction.

Layer Promotion
Thresholds

This parameter is an array with length numberOfLayers, which
specifies the minimum score an agent needs to have achieved in
a round to be eligible for each layer.

Curation Interval A layered-registry round ends when curationPeriod blocks have
been mined since the round started. The LBCR brings an improve-
ment to this concept by also considering the change in transaction
volume. The LBCR computes a moving average of transaction vol-
umes and uses the ratio between it and the current round volume
to scale the curation period. Naturally, higher than usual transac-
tion volumes shrink the curation period, to promptly adjust CRs
in case of a price crash. A longer curation period allows users to
perform more actions and potentially achieve better score.

Window size of the
transaction volume
moving average

Denotes how many previous rounds should be used to compute
the moving average.

Layer Jumping (LJ) LJ is a strategy used for LBCR layer mobility. At the end of each
round, users are assigned to the highest layer whose Lower Bound
is met by their score.

Asymmetric Promo-
tion (AP)

AP is similar to LJ, but upwards mobility only happens one layer
at a time, so it is a more conservative strategy. The higher the
number of layers, the harder it is for agents to reach and maintain
maximum reputation

Action Rewards A mapping from actionID to the fixed score an agent gains or
loses as a result of performing the action.

useTimeDiscounting Boolean value specifying whether reputation should incorporate
LBCR layer positions from previous rounds. If this parameter is
set to true, another two parameters need to be set, expressed as
percentages that add up to 100%: the weighting of last round’s
reputation (w1), and the weighting of the current layer position
(w2). Using these two parameters, current reputation is com-
puted as: lastReputation × w1 + currentLayerPosition × w2.
If useTimeDiscounting is false, the current reputation is simply:
currentLayerPosition.

Table 9.1: LBCR Parameters

70

9.2. SIMULATION APPROACH

9.1.2 Web Of Trust Parameters

Parameter Description
Compatibility Score with
Protocol A

A value between 0 and 100 representing how much weight-
ing is assigned to Protocol A in the reputation-aggregating
function.

Reputation-Aggregating
Function

A parameter that specifies which function should be used to
aggregate reputation. It can take two values.

1. Weighted Average. Uses the compatibility score as a
weighting to compute the average reputation of the
user in all Byzantic protocols. Even if the aggrega-
tion does not include zero-reputation protocols (those
a user has not interacted with), this approach still un-
fairly penalizes users for trying out a protocol, without
gaining much reputation. Thus, this function encour-
ages the concentration of transactions to a small num-
ber of protocols. The compatibility scores must add up
to 100, which means that the more weighting is given
to foreign protocols, the less weighting remains for the
current protocol.

2. Reputation Maximiser. In this function, the com-
patibility score indicates the maximum amount (ex-
pressed as a percentage) of reputation in Protocol A
that can be used in the current protocol. The actual
percentage that will be used varies between 0 and
compatibilityScore. The higher the reputation in
protocol A, the more of its reputation will be used. If
the current protocol assigns 100% compatibility score
with every protocol it integrates with, then the aggre-
gated user reputation will consist of the best reputa-
tion in any single protocol, reused in its entirety. Com-
patibility scores can add up to more than 100, as only
the reputation forming the ”best 100” is selected.

Table 9.2: Web of Trust Parameters

9.2 Simulation Approach

We performed two kinds of simulations. One does not involve any price feeds, but
relies exclusively on user profiles from the behavioural analysis of DeFi (Chapter 8)
to simulate the Byzantic collateral reduction during the first quarter of 2020. The
other combines the results of the first simulation with the ETH/DAI price to show
the impact of the ”Black Thursday” price crash on the collateral margin of Aave,

71

9.2. SIMULATION APPROACH

Figure 9.1: Simulation of a Byzantic
configuration where only the most active
users benefit from Collateral Reductions
(CRs). The figure shows the reputation
evolution of the top 10%, top 10-20% and
top 20-30% most active users.

Figure 9.2: Simulation of a Byzantic con-
figuration where the top 10-20% most ac-
tive users achieve an average of 5% Col-
lateral Reduction (CR) before the crash.
During the crash, the most active users
still benefit from high discounts, placing
protocols at high default risk. The figure
shows the reputation evolution of the top
10%, top 10-20% and top 20-30% most
active users.

with and without Byzantic. We used the most active 10% of users as a reference
for all simulations, who perform at least 85% of all activity in Compound, Synthetix
and Aave (see Figure 8.2). This is because configuring Byzantic such that less active
agents can get high discounts exposes protocols to additional default risk, as Fig-
ures 9.1 and 9.2 illustrate. The aim of this project is to maintain a low default risk at
all times, and the only way to achieve this is by only allowing the most active users
to benefit from discounts. We used the arbitrary value of 10% maximum collateral
reduction for most simulations.

9.2.1 Simulating System Parameters

This simulation investigates the integration of Byzantic with Compound, Aave and
Synthetics from the 1st of January 2020 to the 8th of April 2020, to determine secure
Byzantic system parameters. Its aim is first to minimise risk during downturns and
then to maximise agent utility during upturns and periods of stability. The specific
actions agents perform and their frequency are simulated with user profiles from
Chapter 8. For every half hour interval, we simulated 120 blocks, assuming a new
block is mined every 15 seconds. The simulator was configured to use 50 users in
Aave, 100 in Compound, 30 in Synthetix - proportional to the volumes we observed
during the simulated time period. The results of this simulation are presented in
Sections 9.3.1 and 9.3.2 and we propose examples of secure configurations for Com-
pound, Aave and Synthetix in Section 9.3.3.

72

9.3. SYSTEM PARAMETER RESULTS

Figure 9.3: Average Collateral Reduction
(CR) of the most active 10% of users in
Compound using Layer Jumping (LJ) and
Asymmetric Promotion (AP)

Figure 9.4: Action rewards analysis. The
input values are, in order, the rewards for:
deposit, borrow, repay, liquidate, flash
loan. Average Collateral Reduction (CR)
of the most active 10% of users in Aave,
varying the Action Rewards array R

9.2.2 Simulating Collateral Requirements

Based on the estimated evolution of Byzantic collateral discounting from the first
simulation, Section 9.4 details the impact of the ETH/DAI price crash on a loan of
200 DAI. The ETH/DAI pair was selected over others because in March 2020 DAI
was the most commonly used cryptocurrency in DeFi [114]. The main use of over-
collateralised loans is gaining more exposure to the price of the asset used as collat-
eral [115]. For instance, traders use ETH as collateral to borrow DAI, which is then
exchanged for ETH, such that they gain more exposure to ETH. Thus, the fluctuation
of collateral requirements can impact trading patterns, indirectly affecting the price
of DeFi assets.

9.3 System Parameter Results

9.3.1 LBCR Parameters

Layer Jumping and Asymmetric Promotion

As Figure 9.3 illustrates, AP prevents brief behavioural volatility during the crash
from destabilizing reputation. LJ offers overall higher reputation at the expense of
increased risk of default during a downturn. However, overall higher reputation
with no additional risk can be achieved simply by lowering the Layer Promotion
Thresholds.

Action Rewards

Figure 9.4 shows how different action rewards impact reputation. The input values
are, in order, the rewards for: deposit, borrow, repay, liquidate, flash loan. They

73

9.3. SYSTEM PARAMETER RESULTS

were chosen such that if actions were to occur with uniform probability, user score
would be zero on average. The most interesting lines of the graph are the the orange
and the red one, which reward borrowing and repayments respectively and are neg-
atively correlated. It seems like borrows are a good indicator of an economic upturn,
while repayments indicate downturns.

Other Parameters

Figure 9.5: Number of layers analysis.
Average Collateral Reduction (CR) of the
most active 10% of users in Aave using
Asymmetric Promotion (AP) and varying
the number of layers L.

Figure 9.6: Layer factors analysis. Aver-
age Collateral Reduction (CR) of the most
active 10% of users in Aave, varying the
maximum and intermediate discounts.

Figure 9.7: Layer promotion thresholds
(LB) analysis. Average Collateral Re-
duction (CR) of the most active 10% of
users in Aave, varying the layer promotion
thresholds.

Figure 9.8: Curation interval analysis.
Average Collateral Reduction (CR) of the
most active 10% of users in Aave, vary-
ing the Curation Interval (CI), measured
in blocks.

74

9.3. SYSTEM PARAMETER RESULTS

Figure 9.9: Analysis of window size for
moving average. Average Collateral Re-
duction (CR) of the most active 10% of
users in Aave, varying the window size
for the moving average (MW). This value
impacts how quickly the curation period
ends.

Figure 9.10: Time discounting analysis.
Average Collateral Reduction (CR) of the
most active 10% of users in Aave, with
and without Time Discounting (TD). This
value makes discount evolution smoother,
slowing down the response to the price
crash. To penalise undesirable behaviour
from the past, the Asymmetric Promotion
strategy is a better pick, since it does not
slow down reputation adjustment during
downturns.

9.3.2 Web of Trust Parameters

Inter-Protocol Compatibility Scores

Figures 9.11 and 9.12 show that compatibility scores (CS) should be carefully se-
lected, based on protocol usage pattern. Moreover, the ”self” CS should always be
set to 1, but it was set to 0.5 in both simulations to illustrate its impact. Aave user
activity is stable, so it allows the formation of long lasting reputations. However, be-
cause the ”self” CS is set to only 0.5, agents lose utility unnecessarily if user activity
in other protocols is erratic. An example of ”bursty” user activity is Synthetix, where
it is important that overall high CS scores are used. Even in this case, the ”self” CS
should be set to 1, as the ”compatibility maximiser” aggregation function will com-
pute the maximum possible reputation. The ”bursty” activity pattern in Synthetix
suggests that Aave should not use a high CS for it.

75

9.3. SYSTEM PARAMETER RESULTS

Figure 9.11: Aave compatibility scores
analysis. Aggregated Average Collateral
Reduction (CR) of the most active 10% of
users in Aave. The aggregation function
used is ”Reputation Maximiser”. The rep-
utation in Aave is aggregated with the one
in Compound and Synthetix, with com-
patibility scores 0.5 for its own reputation,
0.4 for Compound reputation and 0.4 for
Synthetix Reputation.

Figure 9.12: Synthetix compatibility
scores analysis. Aggregated Average Col-
lateral Reduction (CR) of the most active
10% of users in Synthetix. The aggre-
gation function used is ”Reputation Max-
imiser”. The reputation in Synthetix is ag-
gregated with the one in Compound and
Aave, with compatibility scores 0.5 for its
own reputation, 0.4 for Compound repu-
tation and 0.4 for Aave Reputation.

Reputation-Aggregating Function

Simulation results show that if Asymmetric Promotion is used as a strategy for curat-
ing layers, the reputation maximiser aggregation function provides discounts almost
as low as the weighted average function (Figures 9.13 and 9.14). During market
upturns, the reputation maximiser function gives agents better utility.

Figure 9.13: Weighted average aggrega-
tion function, applied to Compound. The
compatibility scores used are 0.6 (self),
0.3 (Aave), 0.1 (Synthetix).

Figure 9.14: Reputation maximiser ag-
gregation function, applied to Compound.
The compatibility scores used are 1 (self),
0.4 (Aave), 0.3 (Synthetix).

76

9.3. SYSTEM PARAMETER RESULTS

9.3.3 Example Secure LBCR Configurations

Even if compatibility scores remain to be decided by protocols depending on the
available integrations with Byzantic, we present example secure configurations in
Table 9.3. These values have been picked based on simulation results from Sec-
tion 9.3.1.

Protocol Parameter Value

Compound

Action Rewards (mint cToken, mint
cETH, borrow, repayBorrowBehalf, re-
payBorrow, liquidate)

[2, 2, 25, -15, -15, -20]

Number of layers 5
Layer promotion thresholds [0, 10, 20, 29, 37]
Layer factors [0, 0.03, 0.06, 0.09, 0.1]
Curation interval 6000
Window size for moving average 15
Layer Jumping or Asymmetric Promo-
tion

Asymmetric Promotion

useTimeDiscounting False

Aave

Action Rewards (deposit, borrow, re-
pay, liquidate, flash loan)

[3, 25, -15, -20, 3]

Number of layers 5
Layer promotion thresholds [0, 12, 22, 31, 40]
Layer factors [0, 0.03, 0.06, 0.09, 0.1]
Curation interval 7200
Window size for moving average 40
Layer Jumping or Asymmetric Promo-
tion

Asymmetric Promotion

useTimeDiscounting False

Synthetix

Action Rewards (issueMaxSynths, is-
sueSynths, burnSynths)

[20, 20, -15]

Number of layers 5
Layer promotion thresholds [0, 10, 20, 29, 37]
Layer factors [0, 0.03, 0.06, 0.09, 0.1]
Curation interval 7000
Window size for moving average 15
Layer Jumping or Asymmetric Promo-
tion

Asymmetric Promotion

useTimeDiscounting False

Table 9.3: Secure LBCR configurations for Compound, Aave and Synthetix

77

9.4. COLLATERAL REQUIREMENTS RESULTS

9.4 Collateral Requirements Results

Finally, using the secure Byzantic configuration for Aave from Section 9.3.3, we
present a comparison between the evolution of required collateral (ETH) to borrow
200 DAI during the ”Black Thursday” price crash, with and without Byzantic. The
results are displayed in Figure 9.15, showing that Byzantic unlocks 30% liquidity
during stable market conditions, yet collateral discounts drop to less than 3% during
price crashes.

Figure 9.15: Evolution of collateral requirements for Aave users during the ”Black
Thursday” price crash. The blue line shows the evolution of ETH/DAI price. The green
and yellow lines show the amount of ETH collateral required to borrow 200 DAI at 150%
over-collateralisation rate, with and without collateral discounts from Byzantic. Before
the market crash, Byzantic users achieve a collateral reduction of about 30%. During
the crash, the change in their behaviour causes collateral reductions to drop to 3%. The
reputation used to compute Byzantic discounts is the average of the top 10% most ac-
tive agents in Aave, aggregated with reputation from Compound and Synthetix as well.
There are more data points during the crash because transaction volumes increased rel-
ative to the moving average and this downscaled the curation interval.

78

Chapter 10

Evaluation: Solidity Implementation

This chapter evaluates the security of Byzantic using unit testing, a generic Lending
Protocol implementation and two static analysers. Anonymity is evaluated using
unit testing and by assuming the underlying components of the DejaVu pattern work
as desired.

10.1 Testing

Testing was performed on two ”instances” of SimpleLending, such that reputation
could be aggregated. For each of the two SimpleLending protocols, there was a
deployment of:

• the SimpleLending core contract (with features such as borrow, liquidate)

• an LBCR configuration

• the SimpleLendingProxy contract (Protocol A Proxy in Figure 5.6), used to
update the LBCR after each action

Two of the twenty accounts in the default configuration of the Buidler EVM were
used. To initialize SimpleLending, one of the accounts would deposit assets such
that their exchange rate would be at the desired value. The assets used were ETH
and DaiMock, a simple implementation of an ERC-20 token.
Five integration tests were used, that encompass the entire functionality of Byzantic
and SimpleLending. The tests check:

1. Depositing to SimpleLending through Byzantic

2. Depositing, borrowing, and repaying to SimpleLending through Byzantic

3. Depositing, borrowing, and being liquidated by a non-Byzantic agent

4. Depositing, borrowing, and being liquidated by a Byzantic agent

5. Depositing to SimpleLending and SimpleLendingTwo in different amounts, to
gain different reputation and aggregate it

79

10.1. TESTING

Figure 10.1: Coverage report generated by solidity-coverage

Measuring Test Coverage. In the remainder of this section we present details about
how test coverage was determined.

To measure coverage, the tool solidity-coverage came in very handy. The tool’s
development was still very actively ongoing during this thesis project [116], and sev-
eral bugs are still unresolved issues on GitHub. The novelty of solidity-coverage
shows how lacking blockchain tooling still is. The tool neatly generates a visual in-
terface that displays code not covered directly by calls from external clients (i.e.
JavaScript). So, a drawback is that the SimpleLending functions called by the
SimpleLendingProxy contract were not considered covered, because those functions
were not called directly from the TypeScript tests.

Fortunately, solidity-coverage already has a Buidler plugin, so changing existing
tests was not necessary. The plugin adds a Buidler ”task” to the existing suite (every-
thing Buidler runs, such as compile, test, is called a task). Besides the plugin, all
that was needed was adding a custom network named coverage in the Buidler con-
figuration. solidity-coverage launches its own Ganache server to measure cover-
age of the instrumented smart contracts, and the custom server points Builder to that
Ganache instance. Instrumentation happens at compile-time, because EVM bytecode
is not expressive enough to infer line numbers. This was another issue that came up
while debugging the Truffle debugger (Section 5.5). The command to run coverage
analysis simply used the new network added to the Buidler config:
npx buidler coverage --network coverage

Compile-time instrumentation is a great choice for code analysis tools on Ethereum.
All source code is public. Smart contract code can be found on Etherscan), but more
often than not the GitHub repositories of DeFi tools are public too. This means
that anyone can run coverage analysis of smart contracts using the test suite created
by smart-contract authors. This is in contrast with traditional software engineer-
ing, where code is compiled to binaries, which are difficult to reverse engineer. On
Ethereum and blockchains in general, reverse engineering is not necessary.

80

https://etherscan.io/

10.2. STATIC ANALYSIS

Because everything is publicly accessible anyways, OpenZeppelin, a firm creating
standards and tools for Ethereum, have taken even more steps towards transparency.
They made coverage analysis, which runs as part of their continuous integration
pipeline, public too [117].

Figure 10.2: Coverage analysis generated by solidity-coverage. It shows how many
times each line has been covered and highlights lines of code that were not directly
called from JavaScript.

As Figure 10.2 shows, tests cover over 90% of the code in the project. The code
not covered typically consists of getter functions or fallback functions. In fact, not
covering fallback functions can be considered a good thing, showing that every call
to the contract was successful.

10.2 Static Analysis

Byzantic needs strong security guarantees in order to safely reduce collateral. Static
analysis usually has no false negatives, so if an implementation vulnerability (as op-
posed to a logic vulnerability) exists, it will be reported. Static analysis can uncover
vulnerabilities such as reentrancy, division by zero, and improper use of low-level
calls.

81

10.2. STATIC ANALYSIS

Figure 10.3: Bug types tracked by Ghaleb and Pattabiraman 2020 [118]: ”*” means
that the tool can detect the bug type

Although static analysis has no false negatives in theory, in practice it has been shown
that no Solidity static analyser is free of false negatives [118]. To have as few false
negatives as possible, Byzantic code was analysed by tools with complementary false
negative bug categories.
Ghaleb and Pattabiraman 2020 [118] have evaluated smart contracts injected with
bugs, using the most popular static analysis tools: Oyente [119], Securify [120],
Mythril [121], SmartCheck [122], Manticore [123], Slither [124]. Slither was used
by default in this project, because it is actively maintained and setup is straightfor-
ward. The tool is also recommended by ConsenSys [10], one of the most popular
companies in the DeFi space. However, Slither does not detect Transaction Order
Dependency (TOD) bugs, which can be exploited by reordering transactions within
the same block (see Section 7.2.2). To compensate for Slither’s inability to detect
TOD, we had to pick between the two tools that do detect it: Oyente and Secu-
rify2 (see Figure 10.3). Securify2 was considered over Securify, because the lat-
ter has been deprecated. TOD bugs were considered more important than integer
overflow/underflow, as the latter is prevent by the usage of the SafeMath library in
Byzantic.
Oyente and Securify2 are able to identify the TOD bugs because they use symbolic
execution: if two branches in the symbolic execution tree cover the same code, but
the transaction amount in one branch differs from the transaction amount in the
other only because of transaction order, then a TOD bug was found.

10.2.1 Oyente

Since Oyente ticked more boxes than Securify2 for bug types Slither cannot find
(Figure 10.3), it seemed the natural choice. Upon running the example analysis, a
warning was issued:
WARNING:root:You are using solc version 0.4.21, The latest supported

version is 0.4.19

82

10.2. STATIC ANALYSIS

The Solidity version of this project is 0.5.x, so the warning renders Oyente un-
usable. After trying to run the latest version of Oyente from an Ubuntu image in
Docker, the compiler failed to parse the code, confirming that this tool cannot be
used in Byzantic.

Figure 10.4: Error thrown when running Oyente on Byzantic, confirming that the tool
is incompatible with Solidity versions newer than 0.4.x.

10.2.2 Securify2

Since Oyente could not be used to identify TOD bugs, Securify2 was the only tool left.
Securify2 is, in fact, better at finding true positives than Oyente and Mythril [120],
which also use symbolic execution. The increased accuracy of Securify2 is due to its
better symbolic state coverage.
The setup was very similar to Oyente, in that it is easiest to run from a Docker image.
Building the Docker image is quite time consuming (takes about 5 minutes), and this
is another reason why Slither is much better for performing quick analysis.
The tool was run using:

docker run -it -v /path/to/Byzantic/contracts:/share securify

/share/combined.sol

The flags in the command above are:

• -it: Short for --interactive and --tty, which run a terminal session within
the container and keep I/O interactive. It was useful because it ensured Secu-
rify2 output was printed to stdout

• -v: Short for --mount, it mounts a volume named share in the container,
whose memory is read from and written to the directory at
/path/to/Byzantic/contracts. In this case, it is the way Byzantic contracts
are passed to the Securify2 executable at the end of the command: securify

/share/combined.sol

Results

Indeed, Securify2 reported potential TOD bugs (Figure 10.5), as well as other bugs
(Figure 10.6). The TOD warning is indeed a bug, as the exchange rate in Simple-
Lending can be manipulated based on when Ether is sent to its contract. However,

83

10.2. STATIC ANALYSIS

this is a bug in SimpleLending which has been discussed in 7.2.2, even if the line
that triggers it is in Byzantic.

Figure 10.5: Critical-severity warning produced by Securify2

Figure 10.6: High-severity warning produced by Securify2

Challenges

Securify2 runs solc with a very strict value for the allow-paths flag: ”/”. Since most
contracts import other contract in order to compile, especially npm-imported con-
tracts, which are in an entirely different directory, the only solution was to combine
all Byzantic contracts in a single contract.
To merge all contracts, sol-merger was an option. However, files had to be manually
appended to a new contract from the command line, instead of the tool parsing the
files for imports and merging them ”intelligently”. As a result, the contracts were
merged manually.

10.2.3 Slither

Slither also produced warnings we had not noticed in the code (Figure 10.7), and
helped remove vulnerabilities from Byzantic.

84

https://github.com/RyuuGan/sol-merger

10.3. GAS COSTS

Figure 10.7: Extract from static analysis report generated by slither

10.3 Gas Costs

To measure gas costs, we used the eth-gas-reporter plugin, which has a Buidler
integration. After installation, all that needs to be done is including the library in
the project configuration. The results of running eth-gas-reporter on a deposit

call to Simple Lending are visible in Figure 10.8, and are as follows, ignoring the set
up calls.

• Direct call to Simple Lending: 49637 gas, or 3.93 Euro.

• Call to Simple Lending through Byzantic: 122453 gas (22758 + 99695), or
9.7 Euro.

• Call to Simple Lending through Byzantic and DejaVu: 430594 gas (22758 +
407836), or 34.17 Euro.

Thus, compared with a direct call to Simple Lending, using Byzantic costs 247%
more gas. Using both Byzantic and DejaVu costs 867% more gas.

10.4 Challenges and Solutions

There are three challenges that have no immediate solution:

• Testing is slower than in non-blockchain programming languages. Partly, it
is because the solc compiler is slower. However, the blockchain itself also
has lower throughput than traditional computer memory or even centralised
networked systems.

• solidity-coverage is both slow and inaccurate. It is slow because it does
not seem to use cache: it downloads the solidity compiler and recompiles the
contracts every time it is run. It is inaccurate because it does not track how
calls to smart contracts ”propagate” to other smart contracts, so every smart
contract function needs to be called directly from the off-chain client.

85

10.4. CHALLENGES AND SOLUTIONS

Figure 10.8: Gas cost of depositing to the Simple Lending protocol di-
rectly (SimpleLending: deposit), through Byzantic (UserProxy: depositFunds,
SimpleLendingProxt: deposit), and through DejaVu and Byzantic (UserProxy:
depositFunds, SimpleLendingProxy: depositPrivately).

• Static analysis, although safer than dynamic analysis, yields many false posi-
tives that slow down development. The false positives are due to
over-approximations of the smart contract runtime, made to keep the tools
time-efficient.

Hard to Test Features. Furthermore, we detail challenges difficulties encountered
when testing certain features.

The most challenging features to test were reputation aggregation in Byzantic and
liquidation in SimpleLending. The former was greatly aided by the ability to clone
SimpleLending, but developing the protocol in itself was no simple feat. The latter
was achieved by using the core property of liquidity: when liquidity is low, even
transacting a small amount will significantly change asset price [125]. Steps to test
liquidation:

1. Agent A ”initialises” SimpleLending with only 3 ETH and 684 newly minted
DaiMock. This sets the exchange rate at 228 DaiMock per ETH, while ensuring
low liquidity.

2. Agent B deposits 2 ETH (to act as collateral) and takes out a loan of 150
DaiMock.

3. Agent A redeems 50 DaiMock, causing a drop in ETH-DAI exchange rate. There
are 5 ETH in SimpleLending (3 from Agent A, 2 from Agent B), and 484
DaiMock (684 minus the 150 loan, minus the 50 redeem). The exchange rate
is now 96.8 DaiMock per ETH, meaning that Agent B’s debt is now below the
150% collateralisation rate, at 129%. It is still not convenient for Agent B to
default on their loan.

4. Agent B liquidates 46 DaiMock of Agent A’s debt in exchange of 0.52 ETH
(bought at the rate 96.8 with a 10% liquidation bonus). Agent A is now
left with 104 MockDai loaned and 1.48 ETH as collateral. The exchange

86

10.4. CHALLENGES AND SOLUTIONS

rate is 106 DaiMock per ETH, and Agent B’s collateralisation rate becomes
106× 1.48/104 = 150%.

87

Chapter 11

Byzantic Adoption

The aim of this project is to show that reputation can make a significant positive
impact in DeFi. We intend to bring this Dapp to market, to reduce collateral and
unlock liquidity. For this project gain popularity, it must be as easy as possible for
protocols to integrate with Byzantic. To this end, Section 11.1 describes how we
automatically generate a documentation using the expressive comments feature of
Solidity.

11.1 Automatically generating the documentation

11.1.1 NatSpec

Solidity allows developers to include expressive annotations in the form of com-
ments, that can act as documentation. Such comments are named Ethereum Natural
Language Specification Format (NatSpec) [126].
Compiling Solidity smart contracts includes NatSpec annotations in the resulting
bytecode, such that certain annotations may be rendered by client software.
It is a recommended coding practice that Solidity smart contracts contain NatSpec
that at least documents the publicly available functions. Such comments greatly
helped in debugging the double delegatecall, as Figure 5.5 shows.

Figure 11.1: NatSpec tags documenting a function in Byzantic

11.1.2 solidity-docgen

OpenZeppelin created a tool that automatically generates files based on NatSpec and
Handlebars templates, named solidity-docgen. Due to the Handlebars, the output
format of the documentation is highly customizable. Handlebars compiles templates

88

11.1. AUTOMATICALLY GENERATING THE DOCUMENTATION

into functions, and as a result it can generate documentation files from multiple files
very quickly.

The command to generate documentation files is:

solidity-docgen --solc-module ./node modules/solc -t docs -s readmes -x adoc

-o docs/modules/ROOT/pages

The flags in the command above are:

• --solc-module: path to the solc compiler, used convert smart contracts to
bytecode and easily extract NatSpec comments

• -t: path to directory with Handlebars template files

• -s: how contracts should be structured into documentation files. The default
value is contracts, but it produces hard to decipher documentation files. In-
stead, we opted for readmes, which seems to be what OpenZeppelin are using
as well and creates less cluttered files and can be easily parsed by Antora (Sec-
tion 11.1.3).

• -x: extension of documentation files. adoc stands for AsciiDoc and is a stan-
dard markup language for software documentation. OpenZeppelin use this ex-
tension to generate documentation, and we aimed to use the same workflow.
AsciiDoc is also particularly easy to convert to a website page.

• -t: output directory for documentaiton files.

11.1.3 Antora

Antora [127] is the final step of the documentation generation workflow. It gener-
ates static websites from AsciiDoc files, and can combine files coming from multiple
repositories. In this case, the tool was run locally, but is otherwise suitable for usage
in continuous integration pipelines. The default User Interface template is visually
appealing and navigation intuitive (Figure 11.2), but can be changed as needed. Af-
ter writing an Antora configuration, generating a documentation website is as easy
as running:

antora antora-playbook.yml

89

11.2. AAVE GRANT APPLICATION

Figure 11.2: Documentation website generated by Antora from the adoc file produced
by solidity-docgen

11.2 Aave Grant Application

We applied to Aave’s second round of grants with Byzantic, suggesting that besides
unlocking liquidity, our project can be used to improve Aave’s new Credit Delegation
feature. The new feature works by allowing an agent A to give a part of their balance
in Aave to an agent B, for use as collateral. We suggested adding credit scoring
to different parties using Byzantic, such that agents who do not know each other
can still collaborate based on their reputation. Unfortunately, Aave rejected our
application, mentioning that both Byzantic and their Credit Delegation feature were
to early on in their development. However, the rejection will not affect our chances
of receiving future grants. Aave’s response is presented in Figure B.1.

90

Chapter 12

Conclusion

Byzantic is a privacy-preserving reputation system for DeFi that is applied to re-
ducing over-collateralisation requirements in lending protocols. It is blockchain-
agnostic, so the model can be used regardless of where DeFi is implemented. This
thesis explored collateral reductions of up to 30% in a protocol with 150% over-
collateralisation, Aave (Section 9.4), only requiring users to provide security de-
posits of 105% of the borrowed value. Lending protocols in DeFi account for 77% of
locked-in collateral, which, if reduced by 30%, would create 1.5B USD of additional
liquidity as of August 2020. The liquidity created would improve the resiliency of
DeFi against future price drops [5].

To the best of our knowledge, this work is the first to propose a configurable repu-
tation system applied to blockchain-wide collateral reduction. It is also the first to
use DejaVu, a novel blockchain design pattern for anonymously building reputation
(Chapter 4.5).

We have implemented Byzantic in Solidity (Chapter 5) and verified its correctness
with smart contract auditing tools (Chapter 10). To encourage adoption, we show
examples of how to stress-test different configurations (Chapter 9) and provide an
automatically generating documentation (Chapter 11).

12.1 Future Work

Many future opportunities remain for the current project.

• Under-collateralised loans. Byzantic currently applies reputation to trans-
forming over-collateralised loans into fully collateralised ones. The next step
is going beyond that, by creating a standard Byzantic configuration to be used
as a credit scoring system.

• Real protocol integration. We plan to get in touch with protocols and inte-
grate them with Byzantic, so that our project actually makes a positive impact
in DeFi.

91

12.1. FUTURE WORK

• Credit delegation. Aave allows users to delegate their balance so that some-
one else can use it as collateral [128]. Right now, users need to trust each
other informally, but Byzantic reputation could be used to allow strangers to
collaborate this way.

• Dynamic action rewards. Computing action rewards based on the transacted
amount is likely to bring collateral reduction during crises closer to zero.

• Benefit analysis for less active users. An analysis of gas costs and user be-
haviour can be conducted to identify the percentage of users that can benefit
from Byzantic beyond the most active 10%.

92

Appendix A

On-chain contracts analysed

Protocol Address Description

Compound

0x6c8c6b02e7b2be14d4fa6022dfd6d75921d90e4e cBAT Token
0x5d3a536e4d6dbd6114cc1ead35777bab948e3643 cDAI Token
0x158079ee67fce2f58472a96584a73c7ab9ac95c1 cREP Token
0xf5dce57282a584d2746faf1593d3121fcac444dc cSAI Token
0x39aa39c021dfbae8fac545936693ac917d5e7563 cUSDC Token
0xf650c3d88d12db855b8bf7d11be6c55a4e07dcc9 cUSDT Token
0xc11b1268c1a384e55c48c2391d8d480264a3a7f4 cWBTC Token
0xb3319f5d18bc0d84dd1b4825dcde5d5f7266d407 cZRX Token
0x4ddc2d193948926d02f9b1fe9e1daa0718270ed5 cETH Token

Aave 0x398ec7346dcd622edc5ae82352f02be94c62d119 LendingPool
Synthetix 0xc011a72400e58ecd99ee497cf89e3775d4bd732f SNX Token Tracker

(now obsolete)

Table A.1: Contracts whose transactions were inspected as part of the behavioural anal-
ysis in Chapter 9

93

Appendix B

Aave Grant Application Response

94

Figure B.1: Aave response to our grant application

95

Bibliography

[1] “The Traditional Financial Institutions”. In: How to DeFi. 2020, pp. 4–10.

[2] Timothy C Earle. “Trust, confidence, and the 2008 global financial crisis”. In:
Risk Analysis: An International Journal 29.6 (2009), pp. 785–792.

[3] Brenda Reddix-Smalls. “Credit Scoring and Trade Secrecy: An Algorithmic
Quagmire or How the Lack of Transparency in Complex Financial Models
Scuttled the Finance Market”. In: UC Davis Bus. LJ 12 (2011), p. 87.

[4] Adrian Zmudzinski. Joseph Lubin on Ethereum 2.0: ETH to Become 1,000
Times More Scalable Within 24 Months. May 2019. URL: https://cointelegraph.
com/news/joseph-lubin-on-ethereum-20-eth-to-become-1-000-times-

more-scalable-within-24-months.

[5] Lewis Gudgeon et al. “The Decentralized Financial Crisis: Attacking DeFi”.
In: arXiv preprint arXiv:2002.08099 (2020).

[6] Kalin Nikolov. “A model of borrower reputation as intangible collateral”. In:
(2012).

[7] George Lukyanov. Collateral and Reputation in a Model of Strategic Defaults.
Tech. rep. working paper, 2018.

[8] Synthetix Litepaper. URL: https://www.synthetix.io/uploads/synthetix_
litepaper.pdf.

[9] DeFi Pulse: The DeFi Leaderboard: Stats, Charts and Guides. URL: https://
defipulse.com/.

[10] The Q1 2020 Ethereum DeFi Report. URL: https://consensys.net/blog/
news/the-q1-2020-ethereum-defi-report/.

[11] Dominik Harz et al. “Balance: Dynamic adjustment of cryptocurrency de-
posits”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2019, pp. 1485–1502.

[12] Binance Academy. The Psychology of Market Cycles. Jan. 2020. URL: https:
//academy.binance.com/economics/the-psychology-of-market-cycles.

[13] R Houben and A Snyers. Blockchain: Legal context and implications for finan-
cial crime, money laundering and tax evasion. 2018.

[14] Anand Ranganathan and Roy H Campbell. “What is the complexity of a dis-
tributed computing system?” In: Complexity 12.6 (2007), pp. 37–45.

96

https://cointelegraph.com/news/joseph-lubin-on-ethereum-20-eth-to-become-1-000-times-more-scalable-within-24-months
https://cointelegraph.com/news/joseph-lubin-on-ethereum-20-eth-to-become-1-000-times-more-scalable-within-24-months
https://cointelegraph.com/news/joseph-lubin-on-ethereum-20-eth-to-become-1-000-times-more-scalable-within-24-months
https://www.synthetix.io/uploads/synthetix_litepaper.pdf
https://www.synthetix.io/uploads/synthetix_litepaper.pdf
https://defipulse.com/
https://defipulse.com/
https://consensys.net/blog/news/the-q1-2020-ethereum-defi-report/
https://consensys.net/blog/news/the-q1-2020-ethereum-defi-report/
https://academy.binance.com/economics/the-psychology-of-market-cycles
https://academy.binance.com/economics/the-psychology-of-market-cycles

BIBLIOGRAPHY

[15] Difference Between a Blockchain and a Database. Mar. 2020. URL: https :

//www.ibm.com/blogs/blockchain/2019/01/whats-the-difference-

between-a-blockchain-and-a-database/.

[16] Bitcoin P2P e-cash paper: Satoshi Nakamoto Institute. URL: https://satoshi.
nakamotoinstitute.org/emails/cryptography/1/.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech. rep.
Manubot, 2019.

[18] Blockchain Principles and Applications. URL: https://www.cs.colostate.
edu/~cs481a3/#/.

[19] Arvind Narayanan et al. Bitcoin and cryptocurrency technologies: a compre-
hensive introduction. Princeton University Press, 2016.

[20] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[21] Markus Jakobsson and Ari Juels. “Proofs of work and bread pudding proto-
cols”. In: Secure information networks. Springer, 1999, pp. 258–272.

[22] Kyle Croman et al. “On scaling decentralized blockchains”. In: International
conference on financial cryptography and data security. Springer. 2016, pp. 106–
125.

[23] Rafael Pass, Lior Seeman, and Abhi Shelat. “Analysis of the blockchain pro-
tocol in asynchronous networks”. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer. 2017, pp. 643–
673.

[24] Arthur Gervais et al. “On the security and performance of proof of work
blockchains”. In: Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security. 2016, pp. 3–16.

[25] Mauro Conti et al. “A survey on security and privacy issues of bitcoin”. In:
IEEE Communications Surveys & Tutorials 20.4 (2018), pp. 3416–3452.

[26] Massimo Bartoletti and Roberto Zunino. “BitML: a calculus for Bitcoin smart
contracts”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 2018, pp. 83–100.

[27] Binance Academy. Turing Complete - Definition. May 2019. URL: https://
academy.binance.com/glossary/turing-complete.

[28] What’s the Maximum Ethereum Block Size? Sept. 2019. URL: https://ethgasstation.
info/blog/ethereum-block-size/.

[29] CoinCulture/evm-tools. URL: https : / / github . com / CoinCulture / evm -

tools/blob/master/analysis/guide.md.

[30] Daniel Perez and Benjamin Livshits. “Broken Metre: Attacking Resource Me-
tering in EVM”. In: arXiv preprint arXiv:1909.07220 (2019).

[31] Ethereum. URL: https : / / www . sciencedirect . com / topics / computer -

science/ethereum.

97

https://www.ibm.com/blogs/blockchain/2019/01/whats-the-difference-between-a-blockchain-and-a-database/
https://www.ibm.com/blogs/blockchain/2019/01/whats-the-difference-between-a-blockchain-and-a-database/
https://www.ibm.com/blogs/blockchain/2019/01/whats-the-difference-between-a-blockchain-and-a-database/
https://satoshi.nakamotoinstitute.org/emails/cryptography/1/
https://satoshi.nakamotoinstitute.org/emails/cryptography/1/
https://www.cs.colostate.edu/~cs481a3/#/
https://www.cs.colostate.edu/~cs481a3/#/
https://academy.binance.com/glossary/turing-complete
https://academy.binance.com/glossary/turing-complete
https://ethgasstation.info/blog/ethereum-block-size/
https://ethgasstation.info/blog/ethereum-block-size/
https://github.com/CoinCulture/evm-tools/blob/master/analysis/guide.md
https://github.com/CoinCulture/evm-tools/blob/master/analysis/guide.md
https://www.sciencedirect.com/topics/computer-science/ethereum
https://www.sciencedirect.com/topics/computer-science/ethereum

BIBLIOGRAPHY

[32] Petar Maymounkov and David Mazieres. “Kademlia: A peer-to-peer informa-
tion system based on the xor metric”. In: International Workshop on Peer-to-
Peer Systems. Springer. 2002, pp. 53–65.

[33] Seoung Kyun Kim et al. “Measuring ethereum network peers”. In: Proceed-
ings of the Internet Measurement Conference 2018. 2018, pp. 91–104.

[34] Yue Gao et al. “Topology Measurement and Analysis on Ethereum P2P Net-
work”. In: 2019 IEEE Symposium on Computers and Communications (ISCC).
IEEE. 2019, pp. 1–7.

[35] Santiago Palladino and OpenZeppelin. Proxy Patterns. Mar. 2020. URL: https:
//blog.openzeppelin.com/proxy-patterns/.

[36] Tornado Cash. Introducing Private Transactions On Ethereum NOW! Apr. 2020.
URL: https://medium.com/@tornado.cash/introducing-private-transactions-
on-ethereum-now-42ee915babe0.

[37] Khaled El Emam and Fida Kamal Dankar. “Protecting privacy using k-anonymity”.
In: Journal of the American Medical Informatics Association 15.5 (2008),
pp. 627–637.

[38] Petar Popovski and Hiroyuki Yomo. “Physical network coding in two-way
wireless relay channels”. In: 2007 IEEE international conference on communi-
cations. IEEE. 2007, pp. 707–712.

[39] Andreas M Antonopoulos and Gavin Wood. Mastering ethereum: building
smart contracts and dapps. O’reilly Media, 2018.

[40] Hannah Murphy. ’DeFi’ movement promises high interest but high risk. Dec.
2019. URL: https://www.ft.com/content/16db565a-25a1-11ea-9305-
4234e74b0ef3.

[41] Lisa Cornish. Insights from the World Bank’s 2017 Global Findex database.
Apr. 2018. URL: https://www.devex.com/news/insights- from- the-

world-bank-s-2017-global-findex-database-92589.

[42] Kyle J Kistner. How Decentralized is DeFi? A Framework for Classifying Lending
Protocols. May 2020. URL: https://hackernoon.com/how-decentralized-
is-defi-a-framework-for-classifying-lending-protocols-90981f2c007f.

[43] Financial Services Compensation Scheme. URL: https://www.bankofengland.
co.uk/prudential-regulation/authorisations/financial-services-

compensation-scheme.

[44] Amitanand S Aiyer et al. “BAR fault tolerance for cooperative services”. In:
Proceedings of the twentieth ACM symposium on Operating systems principles.
2005, pp. 45–58.

[45] Collateralized Loans in DeFi. Nov. 2019. URL: https : / / defirate . com /

collateralized-loan/.

[46] Saint Fame. URL: https://www.saintfame.com/.

98

https://blog.openzeppelin.com/proxy-patterns/
https://blog.openzeppelin.com/proxy-patterns/
https://medium.com/@tornado.cash/introducing-private-transactions-on-ethereum-now-42ee915babe0
https://medium.com/@tornado.cash/introducing-private-transactions-on-ethereum-now-42ee915babe0
https://www.ft.com/content/16db565a-25a1-11ea-9305-4234e74b0ef3
https://www.ft.com/content/16db565a-25a1-11ea-9305-4234e74b0ef3
https://www.devex.com/news/insights-from-the-world-bank-s-2017-global-findex-database-92589
https://www.devex.com/news/insights-from-the-world-bank-s-2017-global-findex-database-92589
https://hackernoon.com/how-decentralized-is-defi-a-framework-for-classifying-lending-protocols-90981f2c007f
https://hackernoon.com/how-decentralized-is-defi-a-framework-for-classifying-lending-protocols-90981f2c007f
https://www.bankofengland.co.uk/prudential-regulation/authorisations/financial-services-compensation-scheme
https://www.bankofengland.co.uk/prudential-regulation/authorisations/financial-services-compensation-scheme
https://www.bankofengland.co.uk/prudential-regulation/authorisations/financial-services-compensation-scheme
https://defirate.com/collateralized-loan/
https://defirate.com/collateralized-loan/
https://www.saintfame.com/

BIBLIOGRAPHY

[47] Colin Harper. People Are Tokenizing Themselves On Ethereum; Why ”Personal
Tokens” Raise Red Flags. May 2020. URL: https://www.forbes.com/sites/
colinharper/2020/05/06/people- are- tokenizing- themselves- on-

ethereum-why-personal-tokens-raise-red-flags/#5526b7306680.

[48] Sablier Streams. URL: https://docs.sablier.finance/streams.

[49] Trent McConaghy. The Layered TCR. Aug. 2019. URL: https://blog.oceanprotocol.
com/the-layered-tcr-56cc5b4cdc45.

[50] Ariah Klages-Mundt and Andreea Minca. “While Stability Lasts: A Stochastic
Model of Stablecoins”. In: arXiv preprint arXiv:2004.01304 (2020).

[51] Compound. URL: https://compound.finance/.

[52] Aave. URL: https://aave.com/.

[53] Maker. URL: https://makerdao.com/en/.

[54] Uniswap V1. URL: https://uniswap.org/docs/v1/.

[55] Decentralised synthetic assets. URL: https://www.synthetix.io/.

[56] Audun Jøsang, Roslan Ismail, and Colin Boyd. “A survey of trust and reputa-
tion systems for online service provision”. In: Decision support systems 43.2
(2007), pp. 618–644.

[57] Secure Collateral Reduction for Many Protocols (trusty). Oct. 2019. URL: https:
//ethresear.ch/t/secure-collateral-reduction-for-many-protocols-

trusty/6377.

[58] D Harrison McKnight and Norman L Chervany. “The meanings of trust”. In:
(1996).

[59] Paul Resnick et al. “Reputation systems”. In: Communications of the ACM
43.12 (2000), pp. 45–48.

[60] Eric J Friedman* and Paul Resnick. “The social cost of cheap pseudonyms”.
In: Journal of Economics & Management Strategy 10.2 (2001), pp. 173–199.

[61] John Kennes and Aaron Schiff. “The value of a reputation system”. In: Eco-
nomics working paper archive at WUSTL (2002).

[62] Bernardo A Huberman and Fang Wu. “The dynamics of reputations”. In:
Journal of Statistical Mechanics: Theory and Experiment 2004.04 (2004),
P04006.

[63] Jordi Sabater and Carles Sierra. “Review on computational trust and repu-
tation models”. In: Artificial intelligence review 24.1 (2005), pp. 33–60.

[64] Audun Jøsang and Simon Pope. “Semantic constraints for trust transitivity”.
In: Proceedings of the 2nd Asia-Pacific conference on Conceptual modelling-
Volume 43. 2005, pp. 59–68.

[65] Jordi Sabater and Carles Sierra. “REGRET: reputation in gregarious soci-
eties”. In: Proceedings of the fifth international conference on Autonomous
agents. 2001, pp. 194–195.

99

https://www.forbes.com/sites/colinharper/2020/05/06/people-are-tokenizing-themselves-on-ethereum-why-personal-tokens-raise-red-flags/#5526b7306680
https://www.forbes.com/sites/colinharper/2020/05/06/people-are-tokenizing-themselves-on-ethereum-why-personal-tokens-raise-red-flags/#5526b7306680
https://www.forbes.com/sites/colinharper/2020/05/06/people-are-tokenizing-themselves-on-ethereum-why-personal-tokens-raise-red-flags/#5526b7306680
https://docs.sablier.finance/streams
https://blog.oceanprotocol.com/the-layered-tcr-56cc5b4cdc45
https://blog.oceanprotocol.com/the-layered-tcr-56cc5b4cdc45
https://compound.finance/
https://aave.com/
https://makerdao.com/en/
https://uniswap.org/docs/v1/
https://www.synthetix.io/
https://ethresear.ch/t/secure-collateral-reduction-for-many-protocols-trusty/6377
https://ethresear.ch/t/secure-collateral-reduction-for-many-protocols-trusty/6377
https://ethresear.ch/t/secure-collateral-reduction-for-many-protocols-trusty/6377

BIBLIOGRAPHY

[66] Jordi Sabater. “Evaluating the ReGreT system”. In: Applied Artificial Intelli-
gence 18.9-10 (2004), pp. 797–813.

[67] Jiangshan Yu et al. “Repucoin: Your reputation is your power”. In: IEEE
Transactions on Computers 68.8 (2019), pp. 1225–1237.

[68] Matt Blaze, Joan Feigenbaum, and Jack Lacy. “Decentralized trust manage-
ment”. In: Proceedings 1996 IEEE Symposium on Security and Privacy. IEEE.
1996, pp. 164–173.

[69] Taher Elgamal and Kipp EB Hickman. Secure socket layer application program
apparatus and method. US Patent 5,657,390. Aug. 1997.

[70] Tyrone Grandison and Morris Sloman. “A survey of trust in internet applica-
tions”. In: IEEE Communications Surveys & Tutorials 3.4 (2000), pp. 2–16.

[71] DeFi Pulse: The DeFi Leaderboard: Stats, Charts and Guides. URL: https://
defipulse.com/.

[72] What Is Liquidity And How Does It Affect Prediction Markets?: Cultivate Labs
Blog. URL: https://www.cultivatelabs.com/posts/what-is-liquidity-
and-how-does-it-affect-prediction-markets.

[73] Miles Brundage et al. “The malicious use of artificial intelligence: Forecast-
ing, prevention, and mitigation”. In: arXiv preprint arXiv:1802.07228 (2018).

[74] Chris Burnett, Timothy J Norman, and Katia Sycara. “Bootstrapping trust
evaluations through stereotypes”. In: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010).
International Foundation for Autonomous Agents and Multiagent Systems.
2010.

[75] Xin Liu et al. “Stereotrust: a group based personalized trust model”. In: Pro-
ceedings of the 18th ACM conference on Information and knowledge manage-
ment. 2009, pp. 7–16.

[76] Taha Gunes, Long Tran-Thanh, Timothy Norman, et al. “Identifying vulner-
abilities in trust and reputation systems”. In: (2019).

[77] Don Ross. Game Theory. Mar. 2019. URL: https://plato.stanford.edu/
entries/game-theory/.

[78] Ittay Eyal and Emin Gün Sirer. “Majority is not enough: Bitcoin mining is
vulnerable”. In: International conference on financial cryptography and data
security. Springer. 2014, pp. 436–454.

[79] Philip Daian et al. “Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges”. In: arXiv preprint (2019).

[80] ConsenSys. Known Attacks. URL: https://consensys.github.io/smart-
contract-best-practices/known_attacks/#forcibly-sending-ether-

to-a-contract.

[81] William Foxley. Everything You Ever Wanted to Know About the DeFi ’Flash
Loan’ Attack. Feb. 2020. URL: https://www.coindesk.com/everything-
you-ever-wanted-to-know-about-the-defi-flash-loan-attack.

100

https://defipulse.com/
https://defipulse.com/
https://www.cultivatelabs.com/posts/what-is-liquidity-and-how-does-it-affect-prediction-markets
https://www.cultivatelabs.com/posts/what-is-liquidity-and-how-does-it-affect-prediction-markets
https://plato.stanford.edu/entries/game-theory/
https://plato.stanford.edu/entries/game-theory/
https://consensys.github.io/smart-contract-best-practices/known_attacks/#forcibly-sending-ether-to-a-contract
https://consensys.github.io/smart-contract-best-practices/known_attacks/#forcibly-sending-ether-to-a-contract
https://consensys.github.io/smart-contract-best-practices/known_attacks/#forcibly-sending-ether-to-a-contract
https://www.coindesk.com/everything-you-ever-wanted-to-know-about-the-defi-flash-loan-attack
https://www.coindesk.com/everything-you-ever-wanted-to-know-about-the-defi-flash-loan-attack

BIBLIOGRAPHY

[82] Solidity Documentation. URL: https://solidity.readthedocs.io/en/v0.
6.8/.

[83] Weiqin Zou et al. “Smart contract development: Challenges and opportuni-
ties”. In: IEEE Transactions on Software Engineering (2019).

[84] Xuejun Yang et al. “Finding and understanding bugs in C compilers”. In:
Proceedings of the 32nd ACM SIGPLAN conference on Programming language
design and implementation. 2011, pp. 283–294.

[85] The GNU Debugger. URL: https://www.gnu.org/software/gdb/.

[86] Buidler. URL: https://buidler.dev/.

[87] What is CI/CD? URL: https://www.redhat.com/en/topics/devops/what-
is-ci-cd.

[88] The Lean Startup Methodology. URL: http://theleanstartup.com/principles.

[89] Benedikt Bünz et al. “Zether: Towards privacy in a smart contract world”.
In: International Conference on Financial Cryptography and Data Security.
Springer. 2020, pp. 423–443.

[90] Zachary J Williamson. The aztec protocol. 2018. URL: https://github.com/
AztecProtocol/AZTEC.

[91] ZK Proof Community Reference. URL: https://docs.zkproof.org/reference#
latest-version.

[92] Ethereum for Developers. URL: https://ethereum.org/en/developers/.

[93] New York Blockchain Week. URL: https://gitcoin.co/hackathon/new-

york-blockchain-week/?org=aave&tab=hackathon:20.

[94] Truffle Suite. Ganache. URL: https://www.trufflesuite.com/ganache.

[95] Ethereum API: IPFS API Gateway: ETH Nodes as a Service. URL: https://

infura.io/.

[96] Aave LendingPoolAddressesProvider. URL: https://docs.aave.com/developers/
developing-on-aave/the-protocol#lendingpooladdressesprovider.

[97] Vitalik Buterin. EIP 7: DELEGATECALL. Nov. 2015. URL: https : / / eips .

ethereum.org/EIPS/eip-7.

[98] djrtwo/evm-opcode-gas-costs. URL: https : / / github . com / djrtwo / evm -

opcode-gas-costs/blob/master/opcode-gas-costs_EIP-150_revision-

1e18248_2017-04-12.csv.

[99] ETH Gas Station. URL: https://ethgasstation.info/.

[100] Gwei to USD Conversion. URL: https://www.cryps.info/en/Gwei_to_USD/.

[101] Trufflesuite. Truffle debug with external contracts · Issue 2970 · trufflesuite/truffle.
URL: https://github.com/trufflesuite/truffle/issues/2970.

[102] Trufflesuite. Enhancement: Allow debugger to download and debug external
sources off Etherscan by haltman-at · Pull Request 3085 · trufflesuite/truffle.
URL: https://github.com/trufflesuite/truffle/pull/3085.

101

https://solidity.readthedocs.io/en/v0.6.8/
https://solidity.readthedocs.io/en/v0.6.8/
https://www.gnu.org/software/gdb/
https://buidler.dev/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
http://theleanstartup.com/principles
https://github.com/AztecProtocol/AZTEC
https://github.com/AztecProtocol/AZTEC
https://docs.zkproof.org/reference#latest-version
https://docs.zkproof.org/reference#latest-version
https://ethereum.org/en/developers/
https://gitcoin.co/hackathon/new-york-blockchain-week/?org=aave&tab=hackathon:20
https://gitcoin.co/hackathon/new-york-blockchain-week/?org=aave&tab=hackathon:20
https://www.trufflesuite.com/ganache
https://infura.io/
https://infura.io/
https://docs.aave.com/developers/developing-on-aave/the-protocol#lendingpooladdressesprovider
https://docs.aave.com/developers/developing-on-aave/the-protocol#lendingpooladdressesprovider
https://eips.ethereum.org/EIPS/eip-7
https://eips.ethereum.org/EIPS/eip-7
https://github.com/djrtwo/evm-opcode-gas-costs/blob/master/opcode-gas-costs_EIP-150_revision-1e18248_2017-04-12.csv
https://github.com/djrtwo/evm-opcode-gas-costs/blob/master/opcode-gas-costs_EIP-150_revision-1e18248_2017-04-12.csv
https://github.com/djrtwo/evm-opcode-gas-costs/blob/master/opcode-gas-costs_EIP-150_revision-1e18248_2017-04-12.csv
https://ethgasstation.info/
https://www.cryps.info/en/Gwei_to_USD/
https://github.com/trufflesuite/truffle/issues/2970
https://github.com/trufflesuite/truffle/pull/3085

BIBLIOGRAPHY

[103] Sean Bowe, Ariel Gabizon, and Ian Miers. “Scalable Multi-party Computation
for zk-SNARK Parameters in the Random Beacon Model.” In: IACR Cryptol.
ePrint Arch. 2017 (2017), p. 1050.

[104] Yuval IshaiAll author posts et al. Zero-Knowledge Proofs from Information-
Theoretic Proof Systems - Part I. Aug. 2020. URL: https://zkproof.org/
2020/08/12/information-theoretic-proof-systems/.

[105] SUMMARY OVERVIEW OF STABLECOINS AND THE LAW REGARDING STA-
BLECOINS. 2019. URL: https://www.cftc.gov/media/2731/TAC100319_
Stablecoins/download.

[106] Uniswap Whitepaper. URL: https://uniswap.org/whitepaper.pdf.

[107] Will Heasman. Are the BZx Flash Loan Attacks Signaling the End of DeFi? Feb.
2020. URL: https://cointelegraph.com/news/are-the-bzx-flash-loan-
attacks-signaling-the-end-of-defi.

[108] Garth Travers. Proxy contract cutover on May 10. May 2020. URL: https:

//blog.synthetix.io/proxy-contract-cutover-on-may-10/.

[109] Andrew Miller et al. “An empirical analysis of linkability in the monero
blockchain”. In: arXiv preprint arXiv:1704.04299 (2017).

[110] Jiawei Han, Mieheline Kamber, and J Pei. Data mining techniques and con-
cepts. 2006.

[111] Nathan Harness and Lloyd Alty Luke Goldsmith. The psychology of stock
market cycles. URL: https://www.delawarefunds.com/insights/the-

psychology-of-stock-market-cycles.

[112] How to Deal with Cryptocurrency FOMO. URL: https : / / vocal . media /

theChain/how-to-deal-with-cryptocurrency-fomo.

[113] Terje Aven. “On the meaning of a black swan in a risk context”. In: Safety
science 57 (2013), pp. 44–51.

[114] Why Dai is the Most Used Cryptocurrency in the DeFi Space. Aug. 2020. URL:
https://blog.makerdao.com/why-dai-is-the-most-used-cryptocurrency-

in-the-defi-space/.

[115] Alejandro MiguelAlejandro is a New-Zealand based trader, writer who has
been involved in the cryptocurrency, and blockchain space since early 2016. Be-
ing extremely passionate about this emerging technology. ETH Lending FAQ.
Mar. 2020. URL: https://defirate.com/eth/.

[116] Sc-Forks. sc-forks/solidity-coverage. URL: https://github.com/sc-forks/
solidity-coverage.

[117] Test Coverage History and Statistics. URL: https://coveralls.io/github/
OpenZeppelin.

[118] Asem Ghaleb and Karthik Pattabiraman. “How Effective are Smart Contract
Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug
Injection”. In: arXiv preprint arXiv:2005.11613 (2020).

102

https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://www.cftc.gov/media/2731/TAC100319_Stablecoins/download
https://www.cftc.gov/media/2731/TAC100319_Stablecoins/download
https://uniswap.org/whitepaper.pdf
https://cointelegraph.com/news/are-the-bzx-flash-loan-attacks-signaling-the-end-of-defi
https://cointelegraph.com/news/are-the-bzx-flash-loan-attacks-signaling-the-end-of-defi
https://blog.synthetix.io/proxy-contract-cutover-on-may-10/
https://blog.synthetix.io/proxy-contract-cutover-on-may-10/
https://www.delawarefunds.com/insights/the-psychology-of-stock-market-cycles
https://www.delawarefunds.com/insights/the-psychology-of-stock-market-cycles
https://vocal.media/theChain/how-to-deal-with-cryptocurrency-fomo
https://vocal.media/theChain/how-to-deal-with-cryptocurrency-fomo
https://blog.makerdao.com/why-dai-is-the-most-used-cryptocurrency-in-the-defi-space/
https://blog.makerdao.com/why-dai-is-the-most-used-cryptocurrency-in-the-defi-space/
https://defirate.com/eth/
https://github.com/sc-forks/solidity-coverage
https://github.com/sc-forks/solidity-coverage
https://coveralls.io/github/OpenZeppelin
https://coveralls.io/github/OpenZeppelin

BIBLIOGRAPHY

[119] Loi Luu et al. “Making smart contracts smarter”. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. 2016,
pp. 254–269.

[120] Petar Tsankov et al. “Securify: Practical security analysis of smart contracts”.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security. 2018, pp. 67–82.

[121] ConsenSys. ConsenSys/mythril. URL: https : / / github . com / ConsenSys /

mythril.

[122] Sergei Tikhomirov et al. “Smartcheck: Static analysis of ethereum smart con-
tracts”. In: Proceedings of the 1st International Workshop on Emerging Trends
in Software Engineering for Blockchain. 2018, pp. 9–16.

[123] Mark Mossberg et al. “Manticore: A user-friendly symbolic execution frame-
work for binaries and smart contracts”. In: 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE. 2019, pp. 1186–
1189.

[124] Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: a static analysis
framework for smart contracts”. In: 2019 IEEE/ACM 2nd International Work-
shop on Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE. 2019, pp. 8–15.

[125] Jim Mueller. Learn about Financial Liquidity. Jan. 2020. URL: https://www.
investopedia.com/articles/basics/07/liquidity.asp.

[126] NatSpec Format. URL: https://solidity.readthedocs.io/en/v0.5.10/
natspec-format.html.

[127] OpenDevise Inc. URL: https://antora.org/.

[128] Credit Delegation. URL: https://docs.aave.com/developers/developing-
on-aave/the-protocol/credit-delegation.

103

https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://www.investopedia.com/articles/basics/07/liquidity.asp
https://www.investopedia.com/articles/basics/07/liquidity.asp
https://solidity.readthedocs.io/en/v0.5.10/natspec-format.html
https://solidity.readthedocs.io/en/v0.5.10/natspec-format.html
https://antora.org/
https://docs.aave.com/developers/developing-on-aave/the-protocol/credit-delegation
https://docs.aave.com/developers/developing-on-aave/the-protocol/credit-delegation

	1 Introduction
	1.1 Motivation
	1.2 Proposed Solution
	1.3 Objectives
	1.4 Contributions
	1.5 Limitations
	1.6 Ethical Considerations
	1.7 Legal Considerations

	2 Background
	2.1 Blockchain
	2.1.1 Bitcoin
	2.1.2 Liveness, Consensus and Proof of Work
	2.1.3 Consistency, Forks and Double-Spending

	2.2 Ethereum
	2.2.1 The Ethereum Virtual Machine
	2.2.2 Contracts and Accounts
	2.2.3 Communication Protocols
	2.2.4 Upgradeability Proxy Design Pattern

	2.3 Privacy
	2.3.1 Zero-Knowledge Proofs
	2.3.2 Mixers and k-anonymity
	2.3.3 Relay Networks and Tor

	2.4 Decentralized Finance (DeFi)
	2.4.1 Dapps and Custody
	2.4.2 Trust and Collateral
	2.4.3 Main Applications

	2.5 DeFi Protocols
	2.5.1 Balance
	2.5.2 Compound
	2.5.3 Aave
	2.5.4 Maker
	2.5.5 Uniswap
	2.5.6 Synthetix

	2.6 Trust and Reputation Systems
	2.6.1 Trust
	2.6.2 Reputation
	2.6.3 Decentralized Trust Management

	2.7 Security
	2.7.1 DeFi Vulnerabilities
	2.7.2 Verification Methods
	2.7.3 Attacks Relevant to Byzantic

	2.8 Technology
	2.8.1 Solidity
	2.8.2 Challenges

	3 System Overview
	3.1 Description
	3.2 Actors
	3.3 Requirements
	3.4 Assumptions

	4 Byzantic
	4.1 Main Components
	4.1.1 Layered Behaviour-Curated Registry
	4.1.2 Web of Trust

	4.2 Initial Implementation Approach
	4.3 Second Implementation Approach
	4.4 Final Implementation Approach
	4.5 DejaVu Design Pattern for Anonymity
	4.5.1 Transaction Authentication with Zero-Knowledge Proofs
	4.5.2 Tornado Cash

	5 Byzantic Implementation
	5.1 Technology Choices
	5.1.1 Truffle
	5.1.2 Buidler
	5.1.3 TypeScript

	5.2 Initial Implementation
	5.2.1 Architecture
	5.2.2 Interaction Flow
	5.2.3 Integration with Aave
	5.2.4 Challenges

	5.3 Second implementation: Exploring chained delegatecalls
	5.3.1 Changes from the previous Byzantic version
	5.3.2 Chaining delegatecalls
	5.3.3 Architecture
	5.3.4 Interaction Flow
	5.3.5 Trying to integrate with Aave
	5.3.6 Challenges

	5.4 Final implementation
	5.4.1 Changes from the previous version
	5.4.2 Architecture
	5.4.3 Interaction Flow
	5.4.4 Challenges and Solutions

	5.5 General Implementation Challenges

	6 DejaVu Design Pattern Implementation
	6.1 Architecture
	6.2 Generating Zero-Knowledge Proofs
	6.3 Challenges

	7 Simple Lending Protocol
	7.1 Features
	7.1.1 Deposit
	7.1.2 Computing borrowable amount
	7.1.3 Borrow
	7.1.4 Repay
	7.1.5 Liquidate
	7.1.6 Redeem

	7.2 Exchange rates
	7.2.1 Example
	7.2.2 Challenges and Solutions

	8 Behavioural Analysis of DeFi Protocols
	8.1 Action Ratio and Volumes
	8.1.1 Approach
	8.1.2 Results

	8.2 Interaction Frequency
	8.2.1 Approach
	8.2.2 Results

	8.3 Relationship to Market Cycle Psychology

	9 Evaluation: Economic Stress-Testing
	9.1 Stress-Testing Framework
	9.1.1 LBCR Parameters
	9.1.2 Web Of Trust Parameters

	9.2 Simulation Approach
	9.2.1 Simulating System Parameters
	9.2.2 Simulating Collateral Requirements

	9.3 System Parameter Results
	9.3.1 LBCR Parameters
	9.3.2 Web of Trust Parameters
	9.3.3 Example Secure LBCR Configurations

	9.4 Collateral Requirements Results

	10 Evaluation: Solidity Implementation
	10.1 Testing
	10.2 Static Analysis
	10.2.1 Oyente
	10.2.2 Securify2
	10.2.3 Slither

	10.3 Gas Costs
	10.4 Challenges and Solutions

	11 Byzantic Adoption
	11.1 Automatically generating the documentation
	11.1.1 NatSpec
	11.1.2 solidity-docgen
	11.1.3 Antora

	11.2 Aave Grant Application

	12 Conclusion
	12.1 Future Work

	A On-chain contracts analysed
	B Aave Grant Application Response

