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Abstract

Controllers for autonomous systems are commonly synthesised from specifications
written in GR(1) form, a subset of Linear Temporal Logic. These specifications have
an assume-guarantee structure, where the controller must satisfy its guarantees if
the environment satisfies the assumptions. At runtime, the assumptions written by
a designer may not exactly reflect the environment’s actual behaviour, meaning that
the controller is not required to accomplish its tasks. Limited automated support ex-
ists for updating erroneous assumptions at runtime, meaning that specifications usu-
ally must be modified by hand. Nonmonotonic inductive logic programming (ILP)
systems provide a complete and consistent method for modifying formulae such as
assumptions, but by themselves may not produce an appropriate output. We desire
that revised specification be acceptable - a new controller can be synthesised from
it and the assumptions correctly reflect the environment’s behaviour - and if pos-
sible optimal - meaning that the assumptions describe as great a range as possible
of environment behaviours while remaining close to the designer’s original intent.
The search space for such solutions is large, and while we can set parameters for
nonmonotonic ILP systems to restrict this search space, it is not always clear what
these parameters should be. Settings that are too restrictive may mean a solution
cannot be found, while those that are too broad may make the search intractable;
the optimal setting is also likely to vary by context.

Our key contribution is a reinforcement learning (RL) agent that learns a domain-
dependent policy for setting the ILP system’s parameters to guide the search towards
revised specifications that have our desired qualities. By allowing the agent to ex-
plore the search space at design time, we enable it to converge on a policy for find-
ing appropriate revisions in few attempts upon deployment; the settings it applies
should also be sufficiently narrow that the ILP revision system does not take too long
to compute the revision at runtime. In this way, our contribution also demonstrates
more generally the usefulness of RL agents in restricting the hypothesis space of ILP
systems in a context-specific fashion.

The code from the implementation of our framework can be cloned from our GitLab
repository if desired: https://gitlab.doc.ic.ac.uk/phb19/raspal-test.git.
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Chapter 1

Introduction

1.1 Motivation

Controller synthesis is the construction of a model of an autonomous software com-
ponent’s desired behaviour [1]. The controller and the environment in which it oper-
ates are together often known as the system. Various techniques have been proposed
for reactive synthesis, the task of automatically building a provably correct controller
from a formal logical specification [2, 3, 4]. A controller can be found, which we re-
fer to as the specification being realisable, if there are no ways the environment can
act which prevent the controller from fulfilling its goals (often called its guarantees).

In order to cut out the obstructive environment behaviours and thereby make the
specification realisable, designers must describe the range of environment behaviours
within which the controller is expected to fulfil its guarantees. Only when these
descriptions - known as assumptions - hold, must the controller work towards its
objectives. If a greater range of behaviours falls within the descriptions, we say the
assumptions are weaker. We usually want to find the weakest set of assumptions
that leaves the specification realisable, compelling the controller to satisfy its guar-
antees in as many situations as possible. A designer normally presumes that the
assumptions will hold the majority of the time, and they serve to rule out the rarer
obstructive behaviours.

At runtime, we may discover that the environment is acting differently than antici-
pated by the designer (or its behaviour may evolve over time), such that the assump-
tions are not always satisfied [5, 6]. If this is the case, we say that the environment
is violating one or more of the assumptions, which we refer to as being erroneous,
leading to the undesirable situation of the controller not being obliged to carry out
its tasks. We would like to update the assumptions to be more reflective of the envi-
ronment’s behaviour, while leaving the specification realisable, and preferably also
as weak and similar to the designer’s original specification as possible.

Techniques have been developed that can, to a certain extent, gracefully handle vi-
olated assumptions, which we discuss further in Chapter 7 [7, 8, 9, 10]. However,
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1.1. MOTIVATION Chapter 1. Introduction

very limited support exists for automatically updating assumptions at runtime; usu-
ally the system must be shut down and the specification modified manually by a
designer. We propose a framework that attempts to correct violated assumptions at
runtime, in such a way that the updated specification is not just realisable and re-
flective of the environment, but also exhibits the preferences mentioned above; our
framework additionally seeks to find this optimal solution as quickly as possible.

Revision of assumptions can be achieved using nonmonotonic inductive logic pro-
gramming (ILP), a field of symbolic artificial intelligence that learns general rules
from observations, or revises rules with respect to observations. We use this method
in the implementation of our framework to enjoy the benefits of nonmonotonic ILP
theory revision systems, which include their completeness, consistency, capacity to
enact complex semantic changes, and ability to be augmented with various other
methods for ensuring the preferred solution is found [11, 12]. Indeed, the space of
possible revised assumptions is large, so it may be expensive at runtime for a revi-
sion engine alone to search for solutions; moreover, since revision systems usually
seek to enact as few changes as possible, the returned specification may not exhibit
the qualities we require, such as realisability. The search space for the revision can
be restricted and guided by setting parameters for the ILP system, such as the num-
ber and length of the rules it includes in its hypotheses. However, the appropriate
parameters to be applied are not always known, and it may be especially difficult to
find them when trying to trade off various requirements and preferences like weak-
ness and realisability.

Our key contribution is our framework’s exploitation of reinforcement learning (RL),
a machine learning paradigm that sees an agent seeking to learn a policy for the best
actions to perform in given situations. Our RL agent selects an array of parameter
values to be provided to the theory revision system, a task for which RL is partic-
ularly suitable for several reasons. Firstly, as already mentioned, it is not always
clear to humans how to find within the space of possible revised assumptions those
that we consider acceptable (reflective of the environment and leading to a realis-
able specification), and of these, the ones that we consider optimal. Fortunately, RL
agents do not need to be explicitly instructed how to achieve their task; we simply
give them an indication of the quality of their performance via a reward/penalty,
and they learn through training which actions lead to the highest reward, and con-
sequently the best solution.

Secondly, different initial sets of assumptions may need updating in different ways
to maintain realisability. Different environments may also necessitate different types
of updates, to ensure that the new assumptions are indeed reflective of all of that en-
vironment’s behaviours, rather than only the particular violating behaviour that was
observed. The policy that a RL agent learns is domain-dependent, allowing us to find
the acceptable and optimal solutions for different contexts. Thirdly, the agent con-
verges on its policy by conducting extensive trial-and-error during the many training
‘episodes’ to which we subject it before deployment. At runtime, the policy is ready
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Chapter 1. Introduction 1.2. APPROACH AND CONTRIBUTIONS

to enact, meaning that the agent can perform the optimal actions for correcting the
specification with as little disruption as possible to the controller’s progress.

1.2 Approach and contributions

Our proposed approach involves a RL agent receiving information about the current
set of assumptions, such as their weakness and quantity, as well as about the vio-
lated ones in particular. Given this information, it selects a parameter combination
with which to guide the revision system’s search. We also provide some domain-
dependent meta-constraints to ensure the semantic correctness of the revised as-
sumptions. We conduct various checks on the revised specification produced by the
revision engine, to see whether it is realisable, reflective of the environment, and the
extent to which it adheres to our other quality preferences. We then provide rewards
and penalties to the RL agent to inform it about the suitability of its selected param-
eters with respect to the resulting assumptions. After a certain number of training
episodes, the RL agent converges on a domain-dependent policy for selecting, in as
few attempts as possible, parameter combinations that revise different starting sets
of assumptions in appropriate ways.

Our key contributions are the following:

• The demonstration of the use of RL for selecting appropriate parameters for
ILP systems.

• The application of RL to guiding the search for acceptable and optimal sets of
revised assumptions.

• The specification of domain-dependent meta-constraints to ensure the seman-
tic correctness of revised assumptions.

1.3 Scope

The formal specifications from which controllers are synthesised are most commonly
represented in temporal logic due to their expressiveness, of which Linear Tempo-
ral Logic (LTL) is considered to be the most popular [1, 2]. Synthesis of a controller
from an LTL specification has doubly exponential complexity, whereas synthesis with
a subset of LTL known as Generalized Reactivity of rank 1 (GR(1)) has lower, polyno-
mial time complexity [2, 4]. Work on synthesis problems has therefore increasingly
been restricted to GR(1) specifications, which will consequently also be the focus
of this work, so that it can be applied to real-world controllers as they are com-
monly found and therefore be a useful contribution to ongoing efforts in the field
[1, 13, 14, 15, 16, 17]. Most specifications used by controllers can be translated into
GR(1) form [4].

3



1.4. ETHICAL CONSIDERATIONS Chapter 1. Introduction

As explained in 2.1.2, GR(1) assumptions are split into initial conditions, single-
state and transition invariants, and fairness conditions. We focus on the revision of
single-state and transition invariants. While our framework is capable of modifying
initial conditions, we assume that these are easier for an analyst to specify correctly
at design time, and for a user to update if desired upon deployment. Violations to
fairness conditions are harder to detect at runtime and seeking to do so might be
time-consuming, which might outweigh the benefits of conducting the check. Nev-
ertheless, our framework could be extended in future work to allow revisions to
fairness conditions for which the violation checks are conducted less frequently than
those for violations to invariants, reducing the cost.

The framework is aimed at assumptions the correctness of which is in doubt, mean-
ing that the assumptions are rarely likely to be satisfied and are therefore considered
deserving of revision. In other words, we are bringing erroneous assumptions in
line with the actual, enduring environment behaviour. Users are unlikely to want to
modify acceptable assumptions to reflect anomalous environment behaviour, and do-
ing so could lead to flip-flopping once the normal environment behaviour resumes,
which may itself violate the revised assumptions. We therefore assume that our sys-
tem is only executed in response to a user-defined number or pattern of repeated
violations, which we propose to detect by conducting a satisfiability check at each
timestep over the assumptions and the observed values of the variables V that ap-
pear in the specification. Our framework also allows the user to distinguish between
assumptions that may be updated and those that are considered correct and should
therefore not be revised if violated.

1.4 Ethical considerations

In consultation with the provided Ethics Checklist [18], we have concluded that our
work does not present any serious ethical, legal or professional concerns. Controllers
for autonomous systems have a very wide range of applications, and are likely to be
increasingly present in industrial, commercial, domestic and other civilian applica-
tions. Autonomous systems can also have military uses, and controllers are notably
used in drones [19], though these can also provide a range of essential nonmilitary
functions, such as search-and-rescue missions.

While most autonomous systems can have military or other controversial uses, our
work does not directly or in the short- to medium-term have any such function.

4



Chapter 2

Background

We provide here the preliminaries for our framework, which can be grouped into the
representations and qualities of specifications; logic-based learning; and reinforce-
ment learning.

2.1 Specifications

2.1.1 Linear Temporal Logic

LTL is an extension of propositional logic with temporal operators [20]. Its syntax
is defined over a countable set V of propositional variables, the logical constants
true and false, Boolean connectives and several temporal operators, by the following
grammar shown in Backus–Naur form [4, 13]:

φ ::= true | false | p | ¬φ | φ ∧ φ | Xφ | φUφ.

where p ∈ V. This can be expanded with the following [2]:

• ¬(¬φ ∧ ¬φ) is represented by φ ∨ φ.

• ¬φ ∨ φ is represented by φ→ φ.

• trueUφ is equivalent to Fφ.

• ¬F¬φ is equivalent to Gφ.

Satisfaction of LTL formulae is usually defined with respect to ω-words, which are
infinite sequences of truth assignments of the variables in V, where ω = ω0, ω1, ω2...
In the context of controllers, each sequence describes a possible evolution of the
controller and its environment, with each position in the sequence indicating what
is true at a particular discretised timestep or state; we usually refer to them as exe-
cution traces [13]. In our problem we consider finite traces π, also known as finite
words, which do not satisfy a given assumption formula; we often refer to this as
the trace violating the assumption. The following is an example of a finite trace in
the representation we use in our implementation. fardistance, liftcommand, drop-
command, gocommand and idlecommand are Boolean variables in V, borrowed from
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2.1. SPECIFICATIONS Chapter 2. Background

our case study in Chapter 5. The header→ State: 1.1← introduces the truth values
of the variables in position 1 of trace 1, and End indicates the end of the trace:

→ State: 1.1←
fardistance = TRUE
liftcommand = TRUE
dropcommand = FALSE
gocommand = FALSE
idlecommand = FALSE
→ State: 1.2←
fardistance = TRUE
liftcommand = FALSE
dropcommand = FALSE
gocommand = FALSE
idlecommand = TRUE
End

The satisfaction of an LTL formula by a finite word is defined over positions i in the
trace, with 0 ≤ i ≤ last, where last is the final position in the word. The word is
said to satisfy a formula φ at position i (represented by π, i � φ) according to the
following rules [21]:

π, i � true always
π, i � false never
π, i � p iff p ∈ π(i), meaning p is true at the first position in the sequence
π, i � ¬φ iff π, i 2 φ
π, i � φ ∧ ψ iff π, i � φ and π, i � ψ
π, i � Xφ iff i < last and π, i+ 1 � φ
π, i � φUψ iff ∃j where i≤ j ≤ last such that π, j � ψ and ∀k where i≤ k ≤ j π, k � φ
π, i � Fφ iff ∃j where i ≤ j ≤ last such that π, j � φ
π, i � Gφ iff ∀j where i ≤ j ≤ last π, j � φ

As such:

• Xφ means that φ is true at the next valuation in the sequence;

• φUψ means that φ remains true until ψ becomes true;

• Fφ means that φ eventually becomes true; and,

• Gφ means that φ remains true until the end of the word.

In our implementation we define the satisfaction of a formula by a finite trace slightly
differently, as explained in the section below.
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Chapter 2. Background 2.1. SPECIFICATIONS

2.1.2 Generalized Reactivity of rank 1

The GR(1) subset of LTL is defined by its restricted syntactic structure [13]. The set
of variables V is divided into the set of input variables X controlled by the environ-
ment, and the set of output variables Y controlled by the controller [4, 13]. A GR(1)
formula has the form φE → φS , where φE represents a conjunction of subformulae
called the assumptions, and φS represents a conjunction of subformulae called the
guarantees. The assumptions include one or more of the following [13]:

• Initial conditions - a formula ϕE
init in the form B(X ), where this signifies a

Boolean formula over the variables appearing in X ;

• Invariants - a set of LTL formulae ϕE
inv of the form GB(V ∪XX ); and,

• Fairness conditions - a set of LTL formulae ϕE
fair of the form GFB(V).

The guarantees include one or more of the following [13]:

• Initial conditions - a Boolean formula ϕS
init in the form B(V);

• Invariants - a set of LTL formulae ϕS
inv of the form GB(V ∪XV); and,

• Fairness conditions - a set of LTL formulae ϕS
fair of the form GFB(V).

The initial conditions describe the starting state of the environment and system;
single-state invariants (those without the X operator) describe what must always be
true at any given timestep; transition invariants (those with the X operator) describe
what must be true at the next timestep given what is true at the current timestep;
and fairness conditions describe what must become true infinitely many times in an
execution trace [2]. Traces satisfy GR(1) formulae according to the same rules as
general LTL [13].

We focus on revising invariants in our framework, and we restrict these to the form
G (

∧
ai → b) and G (

∧
ai → Xb). In our implementation, we define a finite trace as

satisfying a transition invariant if the antecedent holds at the last timepoint. In the
definition given in the previous section, the antecedent must hold at the penultimate
timepoint and the consequent must hold at the last timepoint.

2.1.3 GR(1) games and realisability

The implication structure (φE → φS) of GR(1) specifications means that in order to
be satisfied, whenever the assumptions are satisfied by the environment, the con-
troller must satisfy the guarantees. As such, we can conceive of a two-agent game,
whereby the environment chooses truth valuations for the input variables that sat-
isfy the assumptions but tries to force a violation of the guarantees. In turn, the con-
troller chooses assignments for the output variables to ensure that the guarantees
remain satisfied [2, 22]. A GR(1) specification is said to be realisable if a controller
can be synthesised with a winning strategy that allows it to continue satisfying the
guarantees for any of the environment’s chosen inputs. If no such controller exists,

7



2.1. SPECIFICATIONS Chapter 2. Background

the specification is unrealisable, in which case the environment has a counterstrat-
egy by which it can satisfy the assumptions and force a violation of the guarantees
[13, 17, 23]. A GR(1) specification is strictly realisable if and only if the following
LTL formula is realisable [24]:

ϕsr = (ϕE
init → ϕS

init) ∧ (ϕE
init → G((HϕE

inv)→ ϕS
inv)) ∧

(ϕE
init ∧ G ϕE

inv→ (
∧

i∈1..nGFϕE
fair i →

∧
j∈1..mGFϕS

fair j))

A counterstrategy can be represented by a labelled transition system (LTS) that, for
every state, chooses environment input that from its winning state for all output
choices by the controller lead to computations satisfying ¬ϕsr. The counterstategy
LTS ensures ¬ϕsr is satisfied either through forcing the controller to a deadlock by
violating a system initial condition or system invariant, or through satisfying all the
environment fairness conditions ϕE

fair but preventing at least one system fairness
condition from ever being satisfied [24].

In many cases, a designer will be able to intuit at least some of the types of assump-
tion that are required for their specification to be realisable, and will add them them-
selves. Techniques also exist for making realisable a specification that remains unre-
alisable; these involve adding assumptions that preclude the environment behaviour
exhibited by the counterstrategy. The updated GR(1) specification then requires
the controller to satisfy the guarantees only when the more restrictive assumptions
are satisfied. The assumptions are added iteratively: a counterstrategy is found; a
new assumption is generated in response to the counterstrategy; the specification is
checked again and a new counterstrategy will be found if the specification is still un-
realisable. Each iteration can be called a strengthening step, in that the restrictions
on the environment are strengthened, and the approaches are often referred to as
counterstrategy-guided assumption refinement [15, 25, 26, 24, 13].

Of these techniques, the most recent and automated is [13], which uses Craig in-
terpolants to derive from the counterstrategy an assumption that directly targets a
so-called unrealisable core. This approach of iteratively added assumptions can be
seen as forming a tree of possible refinements. The root of the tree is the empty
set of assumptions, the branches represent different possible sequences of iterative
refinements (at each point an unrealisable specification might be able to be refined
in several different ways, so the branches split further), and realisable specifications
form the leaves. Figure 2.1 illustrates how a simple refinement tree with three levels
of strengthening might look. Analysis of the realisable leaves of such a tree con-
tributed to our definition of how the RL agent should restrict the search space in
3.3.

2.1.4 Weakness

As described in the section above, a certain number of assumptions are usually re-
quired for a given specification to be realisable. On the other hand, if the environ-
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Figure 2.1: A refinement tree with three levels of refinement

ment’s permitted behaviour is unnecessarily limited, the structure of GR(1) speci-
fications is such that there are fewer situations in which the controller is required
to satisfy the guarantees, whereas the user would intuitively want the goals to be
fulfilled in as many circumstances as possible. Consequently for a realisable spec-
ification, we desire that the assumptions are as weak as possible, meaning that an
environment satisfying the assumptions has a greater degree of freedom over its be-
haviours [14, 27, 28]. As such there is a trade-off to be found whereby assumptions
are strong enough for the specification to be realisable, without being any stronger
than necessary.

A number of definitions have been proposed for the weakness of assumptions. Ear-
lier understandings centred on logical implication, whereby “a formula φ1 is weaker
than a formula φ2 if φ2 →φ1 is valid” ([14]) [25, 28]. However, [14] highlights
examples of assumptions that refer to different subsets of variables such that one as-
sumption does not imply the other, and yet one intuitively permits more behaviours
than the other: consider the fairness conditions GF(r1) and GF(r2 ∧r3).

[14] instead proposes a quantitative measure for weakness that is more closely
aligned with permissiveness than the earlier definitions, and which we outline here.
An ω-language is a set of ω-words; a regular ω-language is one that is accepted by
a deterministic Muller automaton, a type of ω-of which the acceptance condition
is that the set of all state visited infinitely often is one of the sets in the accep-
tance collection. L(ϕ) denotes the regular ω-langauge satisfying a formula ϕ. The
Hausdorff dimension is a measurement of the degrees of freedom of an ω-language,

9



2.1. SPECIFICATIONS Chapter 2. Background

conducted by quantifying the number of different evolutions that are permitted to
an ω-word once its run remains in a set within the Muller automaton’s acceptance
collection [29]. The weakness of a GR(1) formula ϕ = (ϕinit ∧ ϕinv

∧
i∈1..nϕ

i
fair) is

a pair (d1(ϕ),d2(ϕ)), where d1(ϕ) is the Hausdorff dimension of L(ϕ), and d2(ϕ) is
the Hausdorff dimension of L(ϕinit ∧ ϕinv ∧

∨
i∈1..n¬ ϕi

fair). We extract d1(ϕ) as our
value for the weakness of a set of assumptions in our implementation [14].

Minimality of assumptions

A concept closely related to weakness is that of the minimality of a set of assump-
tions, which we define as being when the set contains no more assumptions than
are needed for realisability [2]. When iteratively adding assumptions as per the
counterstrategy-guided approaches described in 2.1.3, assumptions added in later
iterations may make those generated earlier redundant, that is, they may be suf-
ficient for realisability without needing all of the assumptions added earlier. This
means that the final set of assumptions is not minimal, and the unnecessary assump-
tions mean that the set is not as weak as possible. [2] proposes an algorithm that
removes redundant assumptions during the refinement process.

2.1.5 Similarity and coverage

When bringing erroneous assumptions in line with the environment’s true behaviour,
we wish to do so in a way that does not change their syntax more than is necessary,
and which respects as far as possible the behaviours permitted by the original as-
sumptions. Even if the original assumptions are not exactly correct for the given
environment, a designer may still desire that the overall patterns of their assump-
tions remain the same, as they may have had in mind the general circumstances in
which they want their system to fulfil its goals. Equally, whether the original as-
sumptions were specified by a designer or added in a refinement procedure or some
of both, it is undesirable for the revised assumptions to permit a significantly differ-
ent set of behaviours. This is especially true if other assumptions are later found to
be erroneous or the environment’s behaviour subsequently changes. We want the
situations in which the controller respects its guarantees to remain as constant as
possible, to prevent it from flip-flopping between doing so and not doing so and
from other undesirable behaviours.

Previous works have used so-called witness traces as a way to measure and enforce
coverage of desired behaviour [30, 31, 32, 33]. Model checkers are able to generate
execution traces that satisfy a given temporal formula and are as such a witness to its
satisfaction. We can use the number of witness traces of a given set of assumptions
which also satisfy another set of assumptions as a measure of the extent to which
the sets permit similar behaviour.
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2.2 Logic-based learning

2.2.1 Inductive logic programming

Inductive logic programming (ILP) is a field of symbolic artificial intelligence that
uses logic programming to represent existing knowledge, and seeks to learn general
rules from observations [34, 35, 36, 37]. ILP systems are presented with a back-
ground knowledge, and their goal is to find hypotheses that entail all of a given set
of positive examples and none of a set of negative examples (logical entailment of
consequences from premises occurs if and only if every truth valuation of variables
that satisfies the premises also satisfies the consequences).

Monotonic ILP systems explore the solution space in the form of a lattice of hypothe-
ses ordered by generality, where a general hypothesis explains more observations
than a specific one [38, 39]. Such a system traverses the lattice by taking generalis-
ing steps to explain more of the positive examples, or restricting steps to entail fewer
negative examples. Some implementations generalise from a more specific starting
point in a bottom-up approach, while others search from the more general to the
more specific in a top-down manner [38]. Nonmonotonic ILP introduces negation as
failure represented by the symbol not, allowing reasoning with incomplete knowl-
edge. Nonmonotonic ILP systems therefore use ‘normal clauses’ which are of the
form h← p1, ... pm, not n1, ..., not nm, where each pi is a positive literal and each ni

is a negative literal [11].

A nonmonotonic ILP task can be formalised as the tuple 〈B,LH , E〉. B is the back-
ground theory consisting of a set of normal logic clauses, and E is a set of ground
literals that comprise the observations {e1, ..., em, not em+1,..., not en}, including the
positive examples {e1, ..., em} and the negative examples {em+1,..., en} [38]. The
language bias LH reduces the search space by defining the types of normal clauses
that will constitute the hypotheses, and is most commonly expressed as a set of mode
declarations [11]. Mode declarations refer either to the head or body literal of a rule,
and are respectively of the forms modeh(s) and modeb(s). The schema s is a literal
with argument placeholders of the form ‘+type’, ‘-type’ or ‘#type’, where type is the
argument’s type, ‘+’ denotes an input variable, ‘-’ denotes an output variable, and ‘#’
denotes a constant. An output variable is a free variable in a body literal, while an
input variable in a body literal must have either appeared as an input variable in the
head of the clause or as an output variable in a preceding body literal in the clause
[38]. A clause is compatible with the mode declarations if [12]:

• its head is compatible with the schema of a head mode declaration;

• every body literal is compatible with the schema of a body mode declaration;
and,

• the variables obey the link constraints indicated by the input and output place-
holders.
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The set of clauses compatible with these mode declarations is RM. A hypothesis H is
a solution to the ILP task if it consists of normal clauses from RM, B∪H is consistent,
and

• B∪H � ei for every positive example ei; and,

• B∪H 2 ej for every negative example ej [38].

Here � denotes brave induction [40], meaning that if B∪H is consistent, there is at
least one minimal model of B∪H that covers the example [38].

In addition to the language bias we can set parameters for the ILP task, expressing
restrictions on the nature of the hypothesis. Common parameters include the num-
ber of rules that are present in the hypothesis, the number of times a body literal is
used in a rule, and the total number of body conditions appearing in each rule; we
can even specify different numbers of conditions for rules depending on their head
literal.

2.2.2 ILP tasks as abductive search

[41] proposes a nonmonotonic ILP system called the top-directed abductive learn-
ing approach (TAL). It improves on monotonic approaches by translating the ILP
task into a semantically equivalent abductive (ALP) task [42], which seeks to ex-
plain observations by assuming ground facts called abducibles [38]. An ALP task is
defined by the tuple 〈B,A, IC,O〉, where B is the set of normal clauses constituting
the background knowledge, A is the set of literals that can be abduced, IC is a set
of integrity constraints expressed as normal denials, and O is the observation. A
solution ∆ to this task is a subset of A such that ∆ is consistent with B, B ∪∆ � O
and B ∪∆ � IC. TAL creates a meta-level encoding of the clause space RM of the ILP
task by flattening each clause into an atom. These atoms comprise the abducible
set A of the ALP task, such that the abductive solutions of the ALP correspond to the
inductive hypotheses of the ILP task [38]. (In fact, the meta-level encoding uses Rr

M ,
the canonical representation of RM, where each clause in Rr

M represents the set of
clauses inRM that are equivalent except for the ordering of body literals that are not
affecting by the link constraint over input and output variables - this allows TAL to
avoid replication of hypotheses [38, 11]).

Answer set programming for ILP

Answer set programming (ASP) is a knowledge representation technique based on
the stable model semantics and used for declarative problem solving [43]. Solutions
to ASP problems are in the form of models of the program, and several fast ASP
solvers have been designed based on satisfiability solving [11].

[44] presents ASPAL, a method for solving ILP tasks by encoding them as an ALP
task in ASP. ASPAL encodes the nonmonotonic ILP task 〈B,M,E〉 (where M is the
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mode declarations) as follows. The function id assigns a unique identifier to each
clause ri in Rr

M hi ← bi, where bi is the list of body literals for the rule ri. For
every ri in Rr

M , the so-called top theory > includes hi ← bi, rule(id(hi ← bi), C),
where C is a list of the constant arguments in ri. The set of abducibles A> includes
rule(id(hi ← bi), C) for each ri. The ILP task 〈B,M,E〉 is translated into the ALP
task 〈B′, A>, IC,O〉, where B’ = B ∪> ∪ {examples ← ∧e∈Ee}, IC includes the con-
straint {⊥← notexamples} and the observation is empty. The constraints guarantee
that all answer sets that are solutions to the task cover all the positive and none
of the negative examples. The unique identifier of each abducible is used to trans-
late an abductive solution ∆ back into its equivalent inductive hypothesis H [38, 12].

Modern ASP solvers such as clingo, which we use in our implementation, allow the
user to specify preferences over the computed answer sets, which constitute param-
eters for the ILP system [45]. For each abducible ai, the user can specify a weight wi.
An optimisation statement is of the form #optimise[ai = wi, ..., an = wn], where opti-
mise is either maximise or minimise. The weights of all the abducibles in each answer
set are summed; a minimisation statement considers answer sets with the lowest to-
tal weights to be optimal, while the opposite is true for a maximisation statement.
ASPAL assigns the length of the rule represented by each abducible as the abducible’s
weight, and employs a minimisation statement to favour shorter hypotheses. clingo
also supports aggregates of the form min{a1, ..., an}max. The user can specify min
≥ 0 and max to define the minimum and maximum number of abducibles that can
appear in any answer set [44].

2.2.3 Theory revision

While early applications of ILP focused on learning hypotheses from scratch, the field
was expanded to include methods for refining existing theories in various ways [46].
Of the types of theory refinement, theory revision involves modifying a given theory
to change its consequences such that, together with a background knowledge, the
revised theory entails a set of positive examples and not a set of negative examples
[46, 38, 11]. The theory is usually revised to cover all of the positive examples and
none of the negative ones, but, as with traditional ILP tasks, provisions can be made
to allow for noise. The task can be formalised as the tuple 〈B,R, R,E〉, where B
is the background theory that is fixed, R is the rule space, R ⊆ R is the revisable
theory, and E is the set of examples. A revised theory R’ is a hypothesis for this task
if and only if R’ ⊆ R and B ∪ R’ � E [11].

Early methods for theory revision usually iteratively adjusted the theory using vari-
ous operators to generalise and specialise over the hypothesis lattice, centring around
the deletion and addition of clauses and literals within clauses [46, 47]. At each it-
eration a locally greedy search is conducted for the best operator to apply, and the
iterations terminate when the required example coverage is achieved [11].

An important consideration when applying these revision operators is the concept
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of the minimality of the revision, in that it is usually preferred that the revised
theory is as similar as possible to the original theory [11]. Minimality has been
defined in various ways, but it is usually understood in terms of the number of
revision operators applied, though different types of operator can also be weighted
differently [46, 11, 47].

Theory revision through nonmonotonic ILP

[11] proposes that theory revision can be achieved through nonmonotonic ILP, whereby
semantically correct inductive hypotheses are computed that prescribe which set of
revisions should be applied to change the existing theory syntactically; the revision
system is implemented as RASPAL [38]. These changes consist of the addition or
deletion of whole rules, or of the body literals of existing rules. Doing so overcomes
the issue of iteration-based techniques that may miss non-atomic or otherwise more
complex revisions that are not locally optimal, while being complete and guaran-
teed to be consistent with the examples. This approach uses mode declarations to
define the rule space R, so the theory revision task is formalised instead as the tuple
〈B,M,R,E〉 where R,R’ ⊆RM. The mode declarations define which literals can form
the heads of new rules, and which can be included in the bodies of new or revised
rules [11].

This method consists of a pre-processing stage, a learning stage and a transforma-
tion stage. While the revision operation of adding a new rules corresponds to the
ILP task of learning a clause, in order to include the other revision operators in
the hypothesis, the mode declarations are extended in the pre-processing stage with
modeh(extension(#rule id, +vars)) and modeh(delete(#rule id, #body id)). The ar-
gument #rule id refers to an existing clause in the revisable theory in which a body
literal is to be added or removed, and vars identifies the list of variables in that clause
which are involved in the revision operation [38]. Also in the pre-processing stage,
further rules are added for every normal clause hi ← bi,1, ..., bi,n in the revisable the-
ory R. We provide here the rules added as in [38], which implements the learning
stage in terms of ASPAL, though [11] specifies that any nonmonotonic ILP system
can be employed and different versions of these rules can be added:

• hi ← try(i, 1, vars(bi,1)),...,try(i,n,vars(bi,n)),extension(i,vars(ri));

• try(i,j,vars(bi,j))← bi,j, not delete(i,j), for each try(i,j,vars(bi,j));

• try(i,j,vars(bi,j))← delete(i,j), for each try(i,j,vars(bi,j));

• ⊥← delete(i,j), {extension(i,vars(ri))}0, for each delete(i,j).

The indices i and n respectively identify each clause in the revisable theory and
the conditions in each clause; vars(ri) is the list of variables in ri; and vars(bi,j) is
the list of variables in bi,j. Each try clause checks whether the condition bi,j should
be kept in the revised version of the ith clause of the revisable theory, otherwise
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the relevant delete(i,j) is learnt for the inductive hypothesis. Following the ASP ag-
gregate encoding, {extension(i,vars(ri))}0 indicates that there are no instances of
extension(i,vars(ri)), such that the constraints on each delete(i,j) mean that a dele-
tion of a condition can only be learnt if the clause in which the condition appears
remains in the revised theory [38].

For the augmented revisable theory R̃ and the extended mode declarations M̃, the
theory revision task is formalised as the nonmonotonic ILP task 〈B ∪ R̃, M̃ , E〉. The
inductive hypothesis H is the set of operations that must be applied to the original
revisable theory R in the postprocessing stage to reach the revised theory R’. This
set can include delete facts, new clauses compatible with the mode declarations, or
clauses with an extension literal as the head. R’ is semantically equivalent to R ∪
H and is therefore consistent with E [11]. The revised theory is derived from the
revisable theory and the inductive hypothesis as follows [38]:

• For each pair ri ← b1,...,bn from the revisable theory and extension(ri, vars(ri))
← bn+1,...,bm from the inductive hypothesis, the revised theory includes the
clause ri ← b1,...,bn,bn+1,...,bm.

• For every delete(i,j) in the hypothesis, the condition bi,j is deleted from the
clause ri that has been retained in the revised theory.

• Any clause in the hypothesis that does not have delete or extension as its head
literal, and was not in the revisable theory, is added to the revised theory.

• Any clause in the hypothesis that does not have delete or extension as its head
literal and does not have an associated extension in the hypothesis is not in-
cluded in the revised theory.

The notion of minimality provided by a given ILP system also ensures the minimality
of the theory revision; in the case of ASPAL, this can be provided by a minimisation
statement concerning the abducible revision operations [11].

2.2.4 Learning with hypothesis constraints

In the background discussion thus far, we have mentioned that some hypotheses
within the space of possible solutions to a given learning task may be preferred over
others. These preferences have so far been expressed as the language bias that de-
fines the literals that can appear in the heads or bodies of clauses; the complete
coverage of the examples by the hypotheses or the allowance for some noise; the
common, but not universal, preference for more compressed hypotheses; and, in the
ASPAL implementation of an ILP task, the ability to specify maximum and minimum
numbers of rules to be abduced. [12] proposes a method called constraint-driven
bias, which allows a user to specify further domain-dependent preferences over the
computed hypotheses, such as the structure of the rules and which literals should ap-
pear in which patterns. These preferences are expressed as denials over the search
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space, such that computed hypotheses must also respect these constraints.

[12] proposes that literals compatible with the mode declarations be referenced with
labels. The label of such a literal consists of its predicate name and constant ar-
guments, and, in the case of a negated literal, the predicate name is prefixed with
“not ”. [12] gives the example of the body mode declaration modeb(not p(+int,#int,-
int)) and the compatible literal not p(X, 2, Z); this will be given the label not p(2).
Depending on the user’s needs, the labels can be ground in the top theory or left un-
ground (in this example, not p(X)) to be instantiated with respect to the computed
hypotheses. Variables of which the type is head label can be denoted Lh, while those
of body label type can be denoted Lb.

Implementation in ASPAL

[12] proposes several templates for possible domain-dependent constraints and im-
plements them by extending ASPAL, both because constraints already form an es-
sential consideration of any ALP task [42, 48], and because the meta-level encoding
of the hypothesis space that is conducted in the TAL approach lends itself to the
deployment of meta-constraints over hypothesis structures. The encoding of the
constraints requires the following meta-predicates, where the learning system auto-
matically generates for each clause and condition in RM the unique clause identifier
R and body literal position I:

• is rule(R,Lh) denotes that there is a clause with identifier R and head literal
labelled Lh; and,

• in rule(R,Lh,Lb,I) denotes that the clause with identifier R and head literal
labelled Lh has a body literal labelled Lb at position I in the clause.

For a rule r = h ← b1,...,bn with identifier Rid in the hypothesis H, [12] specifies
that the associated meta-level information is encoded as the set of ground literals
{in rule(Rid,Lh, Lb1,1), ..., in rule(Rid,Lh, Lbn,n), is rule(Rid,Lh)}. For an ASPAL task
extended with constraint-driven bias, the top theory >M is constructed from >∪M,
where > is the conventional top theory of the ASPAL task, and M is generated as
follows. For each rule h ← b1, ..., bn, rule(id(h ← b1, ..., bn), C) in >, M includes
the following rule with an aggregate head to map each rule in RM to its meta-level
information:

n + 1{is rule(i(C),lh), in rule(i(C),lh(Ch),lb1(Cb1),1), ...,
in rule(i(C),lh(Ch),lbn(Cbn),n)} n + 1← rule(id(h← b1, ..., bn), C)

If rule(id(h← b1, ..., bn), C) is abduced, the mapping forces the meta-level informa-
tion for the rule r to be inferred. The meta-constraints over this meta-level infor-
mation therefore mean that only rules satisfying the constraints can be abduced and
form part of the inductive hypothesis.
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As such, [12] implements a learning task 〈B,M,E, IC〉, where IC is the constraint-
driven bias, as the abductive task 〈B̃, A>, Ĩ , O〉, where the observation O is empty,
the background theory B̃ = B ∪ >M ∪ {examples ← ∧e∈Ee}, A> is the same set of
abducibles as in the conventional ASPAL task, and Ĩ = {⊥← not examples} ∪ ICt,
where ICt is the ASP encoding of the domain-dependent constraint-driven bias IC.
The inductive hypotheses are derived by applying the reverse translation to the rule
encodings of the abductive solution [12].

2.3 Reinforcement learning

Rather than being explicitly instructed how to achieve their objectives, RL agents
are given an indication of how well they are fulfilling or progressing towards their
goals in the form of a reward function. Agents learn the optimal policy through
trial and error over a multitude of training episodes, in which they experiment with
actions and find out the usefulness of performing a given action in a given state
by discovering the reward they receive. In some cases, RL agents are designed to
evolve their policy at runtime, by balancing continued exploration of alternative
actions with the exploitation of the existing policy.

2.3.1 Environment

A RL agent interacts with a dynamic environment that is at least partially observ-
able. The agent must be able to observe the current state of the environment in the
form of, for example, sensor readings or symbolic representations, and take one of
a number of problem-specific actions that affect its environment [49]. The agent
then receives a new observation about the subsequent state of the environment in
response to its action, and possibly also a reward.

The agent’s environment might be physical, digital or of some other nature, such as
symbolic. We highlight here the distinction between the environment of a controller
and that of a RL agent. While these two types of agent can indeed function in the
same type of environment, in our problem they are separate. Our RL agent acts
within a symbolic environment, where its objective is to help find assumptions that
reflect the controller’s physical or digital environment.

2.3.2 Reward function

The reward function determines the reward presented to the RL agent for reaching
a new state by taking a particular action in a given state. The agent must seek to
maximise its cumulative reward over the entire episode, while also taking into ac-
count a discount factor, that may weight rewards received at all timesteps equally,
or may place greater importance on near-term rewards over those received further
in the future. With a full discount, the agent is only concerned about its immediate
reward.
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Reward functions are defined on a case-by-case basis, to incentivise the agent to
learn to accomplish the specific task at hand; we detail our implementation in 4.4.4.
Depending on the problem, the agent might only receive a reward for reaching cer-
tain desirable states such as the terminal state. Equally, the agent may be presented
with a negative reward, also called a penalty, for reaching undesirable states, or it
may receive a penalty for every action that does not take it to the goal state, to
encourage the agent to reach the goal as quickly as possible.

2.3.3 Policies and value functions

The policy of a RL agent is a mapping from each state to the action to be taken in
that state; an optimal policy indicates what action should be taken in a given state so
as to maximise the cumulative rewards received by the agent during the remainder
of the episode. The policy is both determined by, and itself determines, the so-called
state values in some algorithms, or the state-action pair values in approaches such as
Q-learning, a model-free RL method that we employ. The Q-value of a given state-
action pair is the sum of the rewards that will be received by the agent if it follows a
policy beginning from taking that action in that state [49].

In approaches dealing with state values, an optimal policy means that in each state,
the action is chosen that is most likely to bring the agent to the state with the highest
value of the subsequent possible states; in Q-learning, the action with the highest Q-
value for that state is chosen. The learning process involves the agent experimenting
with different actions to explore the average rewards received after taking given ac-
tions in given states, which allows the agent to update the values, and thereby also
its policy. Early approaches used tabular methods for storing and updating these
values, but states and actions are usually very numerous if not also continuous, so it
is rarely possible to explore the search space exhaustively, nor to store such a large
table. This means that the value function, which maps a state or state-action pair
to its value, must be approximated. Recent developments have seen deep neural
networks employed to this end, creating the field of deep RL [49, 50].

A deep Q-network is a neural network used to approximate the Q-value function.
The state observations are given as inputs, and the outputs are the Q-values for all
possible actions. The action with the highest value according to the network’s output
is chosen to be enacted in each state. The loss between the predicted Q-value and the
Q-value observed through the agent’s experimentation is backpropagated through
the network to update its parameters. The network should eventually converge to
define an optimal policy, as long as it does not get trapped in a local minimum [51].
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Framework

3.1 Introduction

We seek to update violated assumptions in such a way as to permit as similar be-
haviours as possible to the original ones while also reflecting the environment, with
the objective of enabling the controller to fulfil its guarantees with as little inter-
ruption as possible. Crucially, the revised assumptions should also find an optimal
balance between weakness and realisability. If the assumptions are too weak, the
specification may not be realisable and so the guarantees will not be achieved until
a series of strengthening steps is carried out, which may both be costly and move the
specification too far from the designer’s original intent. On the other hand, insuf-
ficiently weak assumptions mean that a narrower range of environment behaviours
respect the assumptions, which are consequently more likely to be violated again.
If our framework needs to be executed in response to a runtime violation, a bench-
mark for success would be that it quickly revises the assumptions in such as way
that the framework needs to be executed as little as possible afterwards, because the
improved assumptions are subject to few subsequent violations.

Our framework consists of several phases, which together work to ensure that the
assumptions are modified so as to give a solution that is acceptable (realisable and
reflective of the environment’s behaviour), and as close as possible to optimal (weak
and similar to the original set). Our most significant contribution is the RL phase,
which we propose is suited to accomplishing the trade-offs due to its ability to learn
a domain-dependent policy without the need for an explicit model of its operating
environment [52]. The sections below discuss the various considerations behind the
key phases of our approach, and Chapter 4 describes which elements of our general
framework we have implemented for our proof of concept, and how we have done
so. Figures 3.1 and 3.2 respectively illustrate the main interactions between core
components of our framework, and the system’s usage at runtime.
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Figure 3.1: Interactions between the core components of the framework

3.1.1 Toy example

We introduce here a toy example that we use later in the chapter for illustrating
considerations relating to revisions. We have also used this example for testing our
implementation, but we introduce in Chapter 5 a different, more realistic specifi-
cation for experiments on our proof of concept. The toy example consists of two
doors, each of which can be hit or have its doorbell pressed. The true environment
behaviour dictates that these events are respectively accompanied by a knocking
sound or a ringing sound. The controller’s guarantees are that if a door gives a
knocking or ringing sound it should be answered. We can formalise this as follows:

Input variables X = {onebellpressed, twobellpressed, onebellrings, twobellrings,
onedoorhit, twodoorhit, oneknocksound, twoknocksound}

Output variables Y = {onedooranswered, twodooranswered}

System invariants ϕS
inv =

{G ( onebellrings→ onedooranswered ),
G ( oneknocksound→ onedooranswered ),
G ( twobellrings→ twodooranswered ),
G ( twoknocksound→ twodooranswered )}

Initial system conditions ϕS
init = {(¬onedooranswered & ¬twodooranswered)}

The designer has correctly specified the initial environment conditions and one en-
vironment invariant for each door, but has made a mistake with the other invariant
for each door. The correct assumptions are as follows:
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Figure 3.2: The usage of our framework at runtime

Initial environment conditions ϕE
init = {(¬onebellrings & ¬onedoorhit &

¬onebellpressed & ¬oneknocksound & ¬twobellrings & ¬twodoorhit &
¬twobellpressed & ¬twoknocksound)}

Environment invariants ϕE
inv =

{G ( onebellpressed→ onebellrings )
G ( twodoorhit→ twoknocksound )}

The erroneous assumptions that need correcting at runtime with respect to the ac-
tual environment behaviour are:

ϕE
inv =
{G ( onedoorhit→ onebellrings )
G ( twobellpressed→ twoknocksound )}

3.2 Updating specifications by theory revision

[? ]
We believe that viewing the update of assumptions as a theory revision task is a
particularly suitable approach to our problem, and specifically a theory revision task
conducted through nonmonotonic ILP. We highlight below the key reasons for this
being the case. It is also of note that earlier works have approached similar problems
as theory revisions tasks. These include the modification of the rules that constitute
normative frameworks to bring them in line with violating event traces [11, 53], and
the modification of guarantees with respect to counterexample or execution traces
[30, 12]. As described in 4, we base the implementation of our assumption revision
engine on a similar engine built for revising guarantees in [30].
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3.2.1 Similarity and coverage

Facing a violation of one or more assumptions, one response could be to learn from
scratch new assumptions consistent with the observed environment behaviour: [8]
proposes a comparable method as described in Chapter 7. However, we believe it is
preferable instead to correct the existing assumptions, which is the promise offered
by theory revision systems [11].

A freshly discovered set of assumptions may not be similar to the original set, where
similarity refers to both the syntax of the formulae, and the range of behaviours that
they permit. Given that we probably do not have issue with assumptions that are
not violated by the observation trace, our desire for behaviour coverage described in
2.1.5 dictates that we would prefer these to remain constant. The various notions of
the minimality of revisions which can be incorporated into theory revision systems
helps to ensure that the syntax of assumptions is not changed more than is neces-
sary, while the RL component of the framework can provide support for ensuring
behavioural coverage, as described later. Moreover, theory revision systems allow us
to choose whether to add some or all the assumptions to the revisable theory, or only
the violated assumptions, with the remainder left in the fixed background theory.

3.2.2 Realisability

We presume that the original set of assumptions was both minimal and as weak
as possible while achieving realisability, meaning that all of the assumptions were
necessary for realisability. If one of the assumptions is erroneous, it is feasible that
the remainder of the specification remains close enough to realisability that only a
small number of modifications are required to reach a new realisable specification.
This may allow us to maintain the assumptions at a similar weakness and number as
they were in the original specification. Conversely, learning a new weak and minimal
specification from scratch, possibly involving refinement steps to reach realisability,
may be more time-consuming.

3.2.3 Consistency and completeness

Using a theory revision system means that the modified assumptions are guaranteed
by construction to be consistent with the violating traces provided as examples. This
means that the assumptions are certain to accurately reflect this observed behaviour
(if not all of the environment’s possible behaviours). Such a system also ensures that
the modified assumptions remain semantically and syntactically coherent, which is
essential for the specification to be able to give rise to a synthesisable controller.

Nonmonotonic ILP systems are also complete. This ensures that a revision is con-
ducted whenever one is possible, and therefore additionally that the optimal revision
(regardless of how we define optimality) is found [11].
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3.2.4 Complex changes

To find a realisable and minimal revised specification, unviolated assumptions may
need to be updated alongside the violated ones. A nonmonotonic ILP system, which
can execute complex semantic changes over the theory, might be better suited to
this task than traditional operator-based theory revision systems, which use logical
entailment to guide monotonic changes to the consequences of the theory [11].

3.2.5 Flexibility

Theory revision systems, and particularly those employing nonmonotonic ILP, can
be adapted and augmented in several ways that are desirable for our problem. For
example:

• We can require the revised theory to cover all or only a certain proportion of
the provided examples by allowing specifiable levels of noise. This is useful for
our proposed method for ensuring coverage described in 3.3.3.

• Most theory revision systems seek some notion of the minimality of the changes,
which is useful for ensuring the syntactic similarity of the updated assumptions
with respect to the original specification. Additionally, some engines, includ-
ing nonmonotonic ILP-based systems, can be adapted to find solutions that
are not categorically the most minimal, but involve as few changes as possible
while respecting some other optimality criteria. For instance, we can restrict
the search space for hypotheses using meta-constraints, which is essential for
ensuring the semantic integrity of assumptions in our implementation of the
revision (see Chapter 4). Equally we can guide the search space using the ag-
gregates detailed in 2.2.2; setting the maxima and minima of these aggregates
are some of the actions of our RL agent.

• As already mentioned, theory revision systems allow the user to define which
rules should be included in the revisable theory and which should be kept fixed.

3.2.6 Further thoughts

For the reasons outlined above, a theory revision system forms the core phase of
our framework for updating specifications. The background knowledge B includes
assumptions we do not wish to update and other fixed information; the mode dec-
larations M define the syntax of the revised assumptions; the revisable theory R
contains the assumptions to be updated; and the examples E consist of the violating
execution trace, as well as possibly other traces to aid with coverage and realisabil-
ity, as we explain later. A revision task for guarantees would be similar, but with the
revisable theory containing the incorrect goals, as well as other guarantees that may
need updating.

The main consideration of an elementary theory revision system is ensuring that the
required proportion of examples is covered by a revised theory that is reached by
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minimal revisions; there may be a number of possible solutions that satisfy these cri-
teria. Such concerns, however, form only some of the considerations relevant for our
revised set of assumptions, which need to be optimal also in terms of their weakness
and whether they produce a revisable specification.

In addition to this phase, therefore, we propose the addition of other methods not
just to eliminate some of the possible solutions of the theory revision task, but ac-
tually to guide the revision engine to areas of the hypothesis space that may not
be reached by minimal revisions but are nevertheless preferable given our multiple
quality criteria. We explain the implementation-specific meta-constraints we use for
ensuring the semantic correctness of revised assumptions in Chapter 4, and intro-
duce the general considerations relating to RL element of our framework below.

3.3 RL

3.3.1 Introduction

RL approaches allow us to specify what we want the system to achieve without hav-
ing to explicitly instruct the system how to achieve it. This means that we can build
systems that are able to accomplish tasks that we may not know how to complete
ourselves, and also which can accomplish these tasks in different ways depending
on the context.

Both of these advantages are beneficial in an approach to our problem. We hope that
somewhere in the space of possible revised assumptions exist those that contribute
to a realisable specification, while also being as weak and similar to the original
assumptions as possible, both syntactically and in terms of behaviour coverage. Pa-
rameters can be used to guide the ILP system’s search for these solutions, but since
our requirements are complex, and may require trade-offs between countervailing
preferences, it is not necessarily clear what these parameters should be. One ex-
plicit way to achieve the trade-off between weakness and realisability could be to
remove the violated assumption and then conduct a counterstrategy-guided refine-
ment process to find a weak and minimal set of assumptions that ensure realisability
(see 2.1.3), but doing so might be costly at runtime and not reflect the specification
designer’s general intent. While this method might still be required if our approach
is not able to find a realisable specification, we hope to be able to circumvent it by
having the RL system learn which parameter settings correctly restrict the hypothesis
space.

There are likely to be more than one set of assumptions that satisfy our criteria.
The second advantage of RL mentioned above, the fact that it can learn a domain-
dependent policy, means that we can train a system that is able to find the ap-
propriate sets of assumptions that are most likely to reflect a given environment’s
behaviour. By way of illustration, we note that invariants usually describe a rela-
tion between two or more variables, in the form G(a ∧ b → c). For a specification

24



Chapter 3. Framework 3.3. RL

containing several single-state invariants, in one environment the assumptions may
be violated because the relations assumed at design-time are incorrect, so we would
want the RL system to learn, for example, to find a realisable specification with dif-
ferent consequents in the assumptions, as in G(a ∧ b→ d). In another environment,
the assumed relationships may be correct, but the environment may evolve more
slowly that expected, such that it makes better sense for the RL agent to narrow
the hypothesis space down to assumptions that are transition invariants that other-
wise contain the same variable relationships, as in G(a ∧ b → Xc). At runtime, we
want to be able to bring erroneous assumptions in line with environment behaviour
in as few attempts as possible. Having a system that has learnt at training-time a
context-specific policy for updating assumptions should help us to do this.

3.3.2 Guiding the search

We have designed our framework to try to restrict the search space directly to re-
alisable revised specifications. We provide some justification here for not instead
following approaches focused on removing violated assumptions or finding an ap-
propriate weakening of the assumptions that could then be strengthened into a re-
alisable specification.

Removing only the violated assumption

We have already mentioned that the approach of removing a violated assumption
and then refining the specification as necessary may be costly at runtime. A further
issue with this technique is that the assumption that is removed may not have been
the final assumption added in the refinement process. Removing an assumption that
was an intermediate refinement would mean that an unknown number of strength-
ening steps would be required to reach a new realisable specification. This may also
mean that the other assumptions added in the original refinement process after the
one that has now been removed, may been redundant, as explained in 2.1.4, thus
unnecessarily constraining the environment.

Removing a whole refinement branch

A conceivable way around this problem could be to remove as well as the violated as-
sumption, all assumptions added in subsequent refinement steps along that branch.
In real-world applications, assumptions are unlikely to be labelled with the order in
which they were added to the specification. We might then hope to be able to train a
RL system to recognise which assumptions form a branch that must be pruned when
the base assumption of that branch is violated. We might even hope that the system
can prune the branch to a point from which only a smaller number of refinement
steps are required to reach a new specification.

To assess the feasibility of such an approach, we analysed the refinement tree pro-
duced by the interpolation-based refinement procedure proposed in [13] (see 2.1.3).
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We were not able to intuit any features of assumptions to indicate which assump-
tions were added in subsequent refinement steps, and the authors of [13] confirmed
to us that there do not appear to be features of an unrealisable set of assumptions to
indicate the length of any refinement branches stemming from this point.

We could also remove the redundant assumptions by a method such as the one
proposed in [2]. By any approach, though, removing a significant quantity of now-
redundant assumptions might make the new specification too different from the
designer’s original intent.

Jumping directly to a new realisable specification

We instead propose a RL system that is able to restrict the search space to allow
for jumping directly across from the original specification to another realisable one,
rather than weakening upwards along the refinement branch. The system may be
able to do this on a first attempt, but will otherwise try to do this in as few attempts
as possible. This allows us to avoid strengthening steps where possible and thereby
reduce the number of realisability checks, giving a speed-up in repairing an erro-
neous specification at runtime.

The agent may even be able to learn to enact the equivalent of a refinement step if
there are no other realisable specifications with the current number of assumptions,
by adding one or more new assumptions consistent with the traces. However, we
need to test this hypothesis with more complex specifications in future work.

3.3.3 Core features and actions

We discuss here the state features and revision operations that are relevant for a
system seeking to bring one set of assumptions directly to a similar realisable spec-
ification. We have identified these by analysing once again the refinement trees
produced for [13], to discern similarities between neighbouring leaves, in the hope
that if one leaf is violated the system will be able to jump to a nearby leaf that would
not have been affected by the violation. While not all refinement techniques form
a tree in this way, and the assumptions in our problem may have been specified
by a designer rather than added through refinement steps, this analysis nonetheless
provided an insight into the types of revision that might be required to adjust the
original set of assumptions into another realisable specification that is not too differ-
ent from the designer’s original intent.

While all RL agents learn what action to take in light of the features of the current
state, the nature of our objective is such that the relationship between features and
actions is semantically even tighter than usual. This is because we have observed
that nearby leaves are similar in the patterns and length of their assumptions, mean-
ing that we can infer from features of the violated set assumptions the features that
might be present in a neighbouring leaf, and take actions accordingly to revise the
assumptions from one to the other. Equally, we propose that a RL agent might be
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able to learn enough about the internal structure of the sets of assumptions of a
given group of realisable specifications to be able to restrict the space of revisions
such that it jumps directly from one set to another, even when the difference be-
tween them is more significant (though we intend to test this hypothesis further
with larger specifications in future work). In this sense too, the RL system’s ability to
learn a domain-dependent policy is important. The RL agent not only learns about
the structure of the sets of assumptions of a group of related realisable specifications,
it also learns which of these are most likely to be violated by a specific environment.
Of the various unviolated sets, we additionally design the agent to choose the weak-
est set that is most similar to the original set of assumptions.

A limitation of our tree analysis is that it is much easier to see similarities between
leaves that share a common immediate ancestor, i.e. where the specifications only
differ in the assumption added in the final refinement, as these final assumptions
are usually correlated in the ways we describe below. This means that we are again
focusing on violations of the last added assumption rather than those added in in-
termediate refinements, which we noted was a shortcoming of other approaches.
Nevertheless we believe that the reward function of our agent, which we describe
in 3.3.4 and which incentivises the agent to find realisable sets of assumptions, will
be able to encourage the agent to learn about the structure of assumptions even in
leaves that do not have a common immediate ancestor with the original set. The
analysis below of immediately neighbouring leaves gives an insight into the reason-
ing behind the features and actions which we believe are also relevant for our agent
to be able to discover a policy for jumping between more distant realisable sets.

Revision operations

In our framework, for the majority of the identified operations the RL agent does not
directly decide which one to apply. Instead these operations are undertaken by the
ILP revision system, and the RL agent’s domain-dependent policy sets parameters for
the number of each different type of operation that the ILP system is able to use.

Given an assumption of the form G(a ∧ b ∧ c→ z), it is clear that any operation that
strengthens the assumption would give an assumption that is also violated, meaning
we cannot do any of the following (each with an illustrative example of the result
of applying the operation):

• Remove any of the variables from the antecedent: G(a ∧ b→ z).

• Add a disjunct to the antecedent: G(a ∧ b ∧ (c ∨ d)→ z).

• Add a conjunct to the consequent: G(a ∧ b ∧ c→ (z ∧ y)).

We are therefore left with the following possible options for revisions; the ones we
allow in our proof of concept are reviewed in 4.4.2:

1. Replace one or more of the variables in the antecedent: G(a ∧ b ∧ d→ z).
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2. Add a conjunct to the antecedent, which equates to weakening the assumption:
G(a ∧ b ∧ c ∧ d→ z).

3. Replace one or more of the variables in the consequent: G(a ∧ b ∧ c→ y).

4. Add a disjunct to the consequent, which again equates to weakening the as-
sumption: G(a ∧ b ∧ c→ (z ∨ y)).

5. Turn the single-state invariant into a transition invariant, or vice versa: G(a ∧
b ∧ c→ Xz).

We reproduce here the erroneous assumption that needs correcting for Door 1 in the
toy example introduced at the beginning of this chapter:

G ( onedoorhit→ onebellrings )

A trace might be observed that violates this erroneous assumption with the following
truth values at timestep S1:

{onedoorhit = TRUE
oneknocksound = TRUE
onebellpressed = FALSE
onebellrings = FALSE
twodoorhit = TRUE
twoknocksound = TRUE
twobellpressed = FALSE
twobellrings = FALSE
onedooranswered = TRUE
twodooranswered = TRUE}

The revision engine, seeking to apply a minimal number of revision operations,
might update the erroneous assumption by applying operation 2, requiring only the
addition of a body condition. This might give rise to the following updated assump-
tion:

G ( onedoorhit & ¬oneknocksound→ onebellrings )

While this is a logical revision for the ILP system to make, we can see intuitively
that this is an incorrect update given the environment’s true behaviour. The benefit
of our framework is that the RL agent should learn a domain-dependent policy for
applying revisions that reflect the ground-truth behaviour. In this case, the correct
revision is not the most minimal one as far as the ILP system is concerned; it is in-
stead revision 3, which requires onebellrings to be deleted from the consequent, and
oneknocksound to be added in its place, to give the correct assumption:

G ( onedoorhit→ oneknocksound )
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The RL should therefore learn to set the ILP system’s parameters such that in this sit-
uation a consequent variable must be deleted and another added; the policy should
set the maximum number of additions to antecedents to be zero.

Relevant features

We discuss here the features that are relevant for the RL agent to decide which revi-
sion operations to allow through its parameter selection.

Any operation that weakens the assumptions could make the specification unrealis-
able, so we might only want to take actions 2 or 4 if the current assumptions are not
considered too weak, making the weakness of the original set of assumptions an
important feature.

The replacement operations 1 and 3 are only possible if there are variables not al-
ready appearing in the formula which can be used for the substitution. An indicator
for whether a replacement is possible is therefore the proportion of the total ob-
servable variables that appear in the violated assumption. A similar effect can be
achieved by counting the number of variables that appear in the antecedent and
consequent of the assumption; the more variables already appearing, the less likely
it is that there remain unused variables for a substitution.

The added benefit of the length counting method is that it can also indicate which
of the weakening actions 2 and 4 might be preferred. During our analysis of the
refinement trees we observed that the final assumptions of neighbouring leaves are
often in some way counterpoints to each other, such that if one has a longer an-
tecedent and shorter consequent, the other may exhibit the reverse. As such, the
longer the antecedent of a violated assumption, the more likely it is that a disjunct
should be added to the consequent; if an assumption has a shorter antecedent but
already several disjuncts in the consequent, we are more likely to add a conjunct to
the antecedent.

If both antecedent and consequent are long, this might indicate that a weakening
action is not possible, just as this information might indicate that a replacement ac-
tion is not possible. This might point to action 5, the addition or removal of a next
X operator. This requires the RL agent to know whether such an operator is already
in place, so we propose that the presence or number of X operators also be a state
feature for the agent; fewer X operators make it more likely that one should be
added. If none of the above actions are possible for reaching a realisable specifica-
tion, this may indicate that a new assumption should be added.

As already mentioned, when updating a violated assumption that was added in an
intermediate refinement step, we may also need to revise the assumptions added
later in the refinement process. It is therefore useful to have as a feature the total
number of assumptions, as an indicator for how many overall changes need to be
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made.

To summarise, an implementation of our framework is likely to include many if not
all of the following features for the RL agent; the ones we use in our proof of concept
are detailed in 4.4.3:

• the weakness of the original set of assumptions;

• the proportion of the total observable variables that appear in the (violated)
assumptions;

• the number of variables that appear in the antecedent and consequent of the
(violated) assumptions;

• the number of transition invariants among the (violated) assumptions; and,

• the total number of (violated) assumptions.

Number of examples to cover

There are several other possible features and actions that an implementation of our
proposed RL agent might be desired to include, in addition to setting parameters for
the number of the revision operations discussed above which the ILP system can use.
Our proof of concept detailed in Chapter 4 only implements the parameter selection
actions.

One way for the RL system to favour revisions with greater behavioural coverage (as
defined in 2.1.5) is through the reward function, which we discuss further in 3.3.4.
The pursuit of coverage can also be implemented as an action as follows. We have
assumed that all of our invariants are of the form G (

∧
ai → b) or G (

∧
ai → Xb).

Of the various possible combinations of truth values of antecedent and consequent
for a formula of this form, the formulae is only violated if the antecedent is satis-
fied and the consequent is not - if the antecedent is not satisfied, it does not matter
whether or not the consequent is true. This means that for any invariant subject to
a violating execution trace, we can generate at least three witness traces that testify
to the assumption being satisfied. We can generate further such traces for each of
the correct, unviolated assumptions that may need to be updated.

In addition to the violation trace that we provide as an example to the theory revi-
sion system, we could provide witness traces to ensure that the revised assumptions
still allow the unviolating behaviour permitted by the original assumptions. Forcing
the coverage of all the witness traces might mean no hypothesis exists; since cover-
age is a preference rather than a requirement, it would be better to be able to vary
the number of traces to satisfy through an action by the RL agent, so as to force as
much coverage as possible without preventing realisability.
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One way of implementing such an action could be the choice of how many witness
examples to provide (with the revision system insisting on the coverage of all pro-
vided examples). However, this would mean that the selection of which examples
to give is random, and this arbitrariness could have negative effects: it might be
possible to find a solution only covering two of the three witness traces, but setting
the number of traces to provide as two might mean that the non-coverable trace still
gets given. Nevertheless, theory revision systems also permit noise in the examples
by allowing the coverage of only a certain number of the provided examples to be
required. Setting the number of provided traces to be covered would be a more
sensible action for the RL agent, as it would delegate the identification of which ex-
amples can be covered to the revision engine.

This might mean, though, that the revision engine ends up not covering the violation
trace, which would undermine the point of our system. Nonmonontic ILP systems
that employ ASP, such as ASPAL, can make use of the weights and optimisation
statements described in 2.2.2 to overcome this issue. If all examples are considered
equally important, the weight penalty for not covering each of them can be the same.
However, we could also set the penalty for not covering the violation trace as infinite,
meaning it must be covered, while the penalty for not covering the witness traces is
some smaller positive integer.

Selection of variables to be used in revisions

A violating trace contains truth values for all of the system’s observable variables at
each timestep. Some of these variables relate to specific components of the environ-
ment and system, and only make sense semantically when grouped together. In our
toy example, we would only want to update the assumptions pertaining to Door 1
with variables describing Door 1; since the functioning of each door is not related,
it does not make sense to have assumptions describing Door 1 using observations of
Door 2. We give here again Door 1’s erroneous assumption, and the variable truth
values at violating timestep S1:

G ( onedoorhit→ onebellrings )

S1 =

{onedoorhit = TRUE
oneknocksound = TRUE
onebellpressed = FALSE
onebellrings = FALSE
twodoorhit = TRUE
twoknocksound = TRUE
twobellpressed = FALSE
twobellrings = FALSE
onedooranswered = TRUE
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twodooranswered = TRUE}

Even if the RL agent has correctly learnt to set the parameters to ensure that the
consequent is modified, the revision system may attempt to update the assumption
with any of the variable valuations it observes in the trace, even if this is not correct
in the real world. For example, it could update the assumption to G ( onedoorhit→
twoknocksound ) or G ( onedoorhit→ twodoorhit ).

To make sure that the correct update is achieved, we could extend our agent’s ac-
tions to allow the provision of only a certain subset of V to be used for the update.
The agent may decide that for certain entities, only the variables describing that
entity may be used to revise the entity’s violated assumptions. If the agent only
provides the subset {onedoorhit, oneknocksound, onebellpressed, onebellrings}, the
revision engine is far more likely to reach the correct assumption G ( onedoorhit
→ oneknocksound ). The problem of incorrect updates can also be reduced by the
provision of witness traces, described above, and subsequent violation traces, as dis-
cussed in 3.3.4.

3.3.4 Reward function

Even after the meta-constraints have restricted the solutions that the revision system
can return, there are likely to be numerous possible sets of updated assumptions, of
which some are more desirable than others. The RL agent’s reward function is what
assesses the quality of computed revision, and this feedback is used by the agent to
learn about the effects of its actions, so that at runtime it will employ the actions
most likely to achieve an optimal revision. The reward function must therefore
not just take into account the various quality criteria of a revised specification, but
also be able to make a sensible trade-off between our preferences when necessary.
Several of our requirements and preferences for the updated assumptions are subject
to a predominance hierarchy which must additionally be reflected in the reward
function. We discuss the considerations affecting the preferences in the order they
appear in this hierarchy, beginning with the most important. We give the finer details
of the reward function that we implemented for our proof of concept in 4.4.4.

1. Realisability

The overall aim of our assumption updating system is to have the controller’s guar-
antees fulfilled in as many circumstances as possible. The two issues that prevent
the guarantees being fulfilled are if the assumptions are not satisfied or if the spec-
ification is unrealisable. The revision system brings the assumptions in line with
the environment’s behaviour so that they are more likely to remain satisfied by the
environment, but the goals will still go unsatisfied unless the revised specification is
realisable, making this the key quality criterion for the various possible revisions. If
the specification is not realisable, none of our other preferences are relevant.

32



Chapter 3. Framework 3.3. RL

Updating assumptions in light of violating behaviour may weaken them, rendering
the specification unrealisable. We therefore want to favour revisions that leave the
specification realisable, or, if this is not possible, that will not require too many ex-
pensive strengthening steps to return to realisability. An ideal implementation of the
reward function might therefore take into account not just whether the new spec-
ification is realisable, but also, in the cases where it is not realisable, how many
strengthening steps are required, with more steps earning a smaller reward.

Conversations with the authors of [13] indicated that there are not currently known
to be features of unrealisable specifications that identify how many strengthening
steps are required before realisability is reached. One way to discover the number
of steps is therefore actually to carry out the strengthening process and count the
steps. We believe that doing so is undesirable for two reasons.

• After each step, the refined specification must be checked for realisability,
which can be time consuming; in some application domains, strengthening to a
realisable specification can take several hours [13]. Conducting this procedure
on every unrealisable specification produced by the revision engine for which
we want this information as part of the reward might make the RL agent’s
training process intractable, given the large number of training episodes.

• Even if we did wish to allow the training process to run for the amount of time
required to compute the number of realisability steps, it is unlikely that this
element of the reward function would materially affect the learnt policy. Since
the number of strengthening steps that will be required is not known to be
determined by any features of the set of assumptions, it is unclear that the RL
agent would be able to learn to take actions that give rise to sets of assumptions
that, if unrealisable, require as few strengthening steps as possible.

A possible way around the time-consuming process of counting the actual number
of strengthening steps might be the use of a heuristic for ‘closeness to realisability’.
We explored a potential such heuristic for use as part of the reward function. For
a given unrealisable specification, [17] proposes the computation of a environmen-
tal counterstrategy that prevents the specification from being fulfilled. A counter-
trace, that is, a single input trace demonstrating unrealisability, may be derived from
the counterstrategy, and [17] then displays the counterstrategy or countertrace as
a graph. We discussed with the authors of [13] the possibility of using the entropy
of this graph as a heuristic for closeness to realisability. A greater entropy would
indicate more possible behaviours by which the environment can prevent the spec-
ification from being realised, and therefore more strengthening steps required to
restrict these behaviours before realisability is achieved. The entropy could be cal-
culated from the maximum eigenvalue of the adjacency matrix of the graph.

Nevertheless, research has not yet been carried out to ensure that the counterstrat-
egy graph’s entropy is indeed an accurate and admissible heuristic for the number
of strengthening steps required for realisability, and to the extent of our knowledge
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there are not pre-existing algorithms for obtaining the maximum eigenvalue of the
counterstrategy graph’s adjacency matrix. In the absence of evidence for the ben-
efit of including this procedure as part of the reward function, we decided not to
implement and test this component due to the time constraints of our project, but
recognise that doing so may be a valuable piece of future work.

Due to these challenges in identifying a specification’s ‘distance from realisability’,
we have opted to include in our current version of the framework only a compo-
nent that gives a penalty if a realisable specification cannot be found after a certain
number of attempts; we do not attempt to make unrealisable specifications close
to realisability. We can increase the likelihood that a realisable specification is in-
deed found within the specified number of attempts as follows. Certain realisability
checkers, such as RATSY [16], produce a counterstrategy demonstrating why a given
specification is unrealisable. Whereas counterstrategy-guided refinement techniques
use such information to direct the addition of an assumption in a strengthening step
(see 2.1.3), we propose instead to provide this counterstrategy as a negative exam-
ple for the theory revision system for its next attempt. On this subsequent attempt,
the possible sets of revised assumptions are restricted further to those not satisfied
by the countertrace, meaning that the problematic behaviour is excluded.

2. Correctness of assumptions

Our reward function thus far has incentivised the revision system to find a realisable
set of assumptions that respect the original violating trace. Given that the system
has only seen one environment behaviour trace, the changes enacted may not have
brought the assumptions in line with all of the environment’s possible behaviours,
meaning that they remains erroneous. We give here again Door 1’s erroneous as-
sumption, and the variable truth values at violating timestep S1:

G ( onedoorhit→ onebellrings )

S1 =

{onedoorhit = TRUE
oneknocksound = TRUE
onebellpressed = FALSE
onebellrings = FALSE
twodoorhit = TRUE
twoknocksound = TRUE
twobellpressed = FALSE
twobellrings = FALSE
onedooranswered = TRUE
twodooranswered = TRUE}

If we have not implemented the variable subset selection action suggested in 3.3.3,
the assumption might still be updated to, for example, G ( onedoorhit→ twoknock-

34



Chapter 3. Framework 3.3. RL

sound ) or G ( onedoorhit → twodoorhit ). Even with the implementation of the
variable selection action, assumptions can be updated in other ways that give real-
isable specifications but do not reflect the environment’s true behaviour, and might
therefore be violated again.

To encourage the RL agent to learn the true behaviour of the environment, it is
necessary to give via the reward function a penalty if the realisable specifications
produced by the revision engine continue to be violated in the simulated training
executions. This way, at runtime, our framework will be more likely to revise the
assumptions to reflect the environment’s behaviour in one attempt, rather than the
framework needing to be launched persistently in response to continued violations.
As with the penalty discussed in the previous subsection for repeated unrealisable
outputs, we can increase the likelihood that the framework will produce realisable
assumptions that are not violated within the specified number of attempts by not
just testing for a violation with subsequent traces, but adding the new violating
trace at each attempt as an additional example for the revision system. Doing so
means that the revised assumption will satisfy more of the behaviours exhibited by
the environment, thus reflecting it more accurately.

3. Weakness and coverage

Realisability and correctness with respect to the environment are the required qual-
ity criteria of all revised specifications. Of the probably numerous possible solutions,
the preference that is likely most importance is the weakness of the updated assump-
tions. Weaker assumptions will be satisfied by a greater range of environment be-
haviour, so the guarantees will be fulfilled in more circumstances. The reward func-
tion should therefore contain a component that gives a greater reward for weaker
solutions.

A reward function may also be desired to include a component that favours solutions
with greater coverage of behaviours permitted by the new and original assumptions.
As introduced in 2.1.5, coverage can be measured by the number of witness traces
satisfying the old assumptions which also satisfy the updated set.

Weakness and coverage may be contradictory qualities, and there is not an obvious
trade-off to be found between them. While we presume that most users would favour
weakness (permissability of more behaviours) over coverage (similarity to existing
behaviours), there may be cases in which a user wants as much as possible of the
original design of the assumptions to be retained. To make the trade-off between
these criteria, which are preferences rather than requirements, less arbitrary, the re-
spective values of rewards for these criteria can be defined differently for alternative
implementations of our framework.
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4. Number of attempts

Since the reward function incentivises the agent to find the weakest possible real-
isable specification, it may make several attempts in which the specification is too
weak and therefore not realisable, before finding the correct balance. At runtime,
we want the framework to find this balance in either one attempt or as few tries as
possible. Moreover, we have made it easier for the agent to find the correct assump-
tions during training by adding additional violating traces as examples. At runtime
it may also be necessary to continue gathering execution traces so as to correctly
model the environment, but it is preferable for the correct assumptions to be found
immediately. To speed up the execution of our framework at runtime and reduce
the number of times it needs to be launched, we must use the reward function to
incentivise the RL agent to find the optimal revision in as few attempts as possible.

3.4 Review

In this chapter we have surveyed the general considerations and variety of compo-
nents that an instantiation of our framework might be hoped to include. The core
framework consists of a revision engine, for which the hypothesis space is constricted
by meta-constrains. An RL agent additionally sets parameters for the revision engine
to guide the search towards to the solutions we consider acceptable and optimal.
It learns the policy for doing this through its reward function, which quantifies the
quality of revised assumptions and how quickly they were produced. The agent’s
actions and reward calculation can be augmented in a variety of ways to help ensure
that the best revised specifications are found.
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Implementation

4.1 Introduction

We instantiate our proposed framework to update assumptions written in the Spectra
specification language [54], using the tools highlighted in this chapter for the theory
revision system, RL implementation and realisability checks. Our proof of concept
includes the majority of the elements that we have indicated an instantiation of
our framework might be hoped to have; though we have not implemented some of
the supplementary actions proposed for the RL agent, nor the check for subsequent
violations or coverage. We intend to incorporate and test these elements in future
work.

4.2 Theory revision

We have modified the theory revision system built for adapting requirements mod-
els in [30] to update assumptions, and also with permission borrowed their parsers
and translators for reading between different specification languages and data rep-
resentations. Their revision system employs RASPAL [11, 38], the revision engine
implemented in terms of ASPAL [11, 38], using clingo as the ASP solver [45]. There
are several reasons that we have made this choice for our implementation:

• Adapting requirements with respect to execution traces is very similar to modi-
fying assumptions, so building upon the existing code avoids unnecessary repli-
cation of labour. Having the existing revision system as the base layer of our
framework also means that we can test the use of RL for revising guarantees
in future work.

• RASPAL brings the benefits of nonmonotonic ILP systems highlighted in ??,
such as completeness and consistency. A drawback of RASPAL is that with
larger programs, the computation can take a large amount of time (over ten
minutes, if not significantly more). As described in 4.4.4, we consequently
have had to introduce a timeout for occasions when the revision computation
takes more than a certain number of minutes, so that training does not become
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intractable. This means that some potentially viable solutions may be lost. A
new, faster revision system is due to be released coinciding with the end of this
project, which may help to overcome the training problem and speed up the
execution of our framework at runtime. We intend to test our implementation
with this new engine as part of future work.

• RASPAL and clingo provide support for two other key elements of our imple-
mentation, namely meta-constraints (2.2.4) and min/max aggregates (2.2.2).
clingo is an efficient solver whose scalability is comparable to SAT solvers; the
computation of answer sets is very fast for smaller programs, but can become
intractable as the search space grows [30].

4.2.1 Formalisation

Rules

Similarly to earlier works involving learning with LTL specifications [30, 12, 55],
the syntactic formulation of the assumptions and guarantees is represented through
normal logic programs and an Event Calculus formalism [56]. Each assumption is
represented by three rules, with head literals named current holds, target holds and
theta holds. The bodies of these rules respectively indicate which variables appear in
the antecedent of the assumption; which variables appear in the consequent of the
assumption; and whether the assumption is a single-state or transition invariant. A
variable a that is true at timepoint T1 in trace S is represented by a fluent (a condi-
tion that can change over time) thus: holds at(a,T1,S). If it is false at that timepoint,
it is represented instead by the fluent not holds at(a,T1,S). As such an assumption
labelled firstassumption with formula G(doorhit → bellrings) is represented by the
following three rules:

current holds(firstassumption,T1,S):-
holds at(doorhit,T1,S),
timepoint(T1),
trace(S).

target holds(firstassumption,T2,S):-
holds at(bellrings,T2,S),
timepoint(T2),
trace(S).

theta holds(firstassumption,T1,T2,S):-
timepoint(T1),
timepoint(T2),
trace(S),
eq(T1,T2).
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If the fluent holds at(doorhit,T1,S) is true at a certain timepoint in a trace, then the
antecedent of sillyassumption is satisfied at that timepoint, represented by the head
literal current holds(sillyassumption,T1,S) being true. target holds(sillyassumption,T2,S)
captures similar information for the consequent. The literal eq(T1,T2) in the rule
with head theta holds(sillyassumption,T1,T2,S) indicates that sillyassumption is a single-
state invariant. If this rule instead contained the literal next(T2,T1,S), it would mean
that the assumption is a transition invariant, i.e. G(doorhit→ Xbellrings).

This representation means that the holds at or not holds at literals that appear in
the body of a rule with head target holds represent a conjunction of variables in the
consequent of the assumption. Using RASPAL’s extension and delete mode declara-
tions (see below) we can either add or remove literals in these rules, that is, we can
only add conjuncts to the consequent and not disjuncts. As explained in 3.3.3, how-
ever, we never wish to add conjuncts to the consequent. We therefore prevent our
revision engine from doing this by techniques explained later; we also assume a pre-
processing step that transforms all assumptions into a form with only one variable in
the consequent. The weakness of this approach is that, given the formalisation, our
present implementation can only handle transition invariants with one next vari-
able. It also means that we cannot use the number of variables in the consequent as
a feature, nor the addition of disjuncts to consequents as an action, as suggested in
3.3.3.

Background theory

The background theory includes the following:

• A set of domain-independent axioms for determining whether assumptions are
satisfied by a trace, and facts indicating which timepoints are equal or sequen-
tial;

• Facts indicating which variables are input or output variables, and which can
be used in a revision (see 3.3.3);

• The guarantees and initial assumption represented by Event Calculus rules as
above.

In our implementation, the revisable theory consists of all the assumptions rather
than only the violated ones, as we assume that the violation detection component
only indicates that a violation occurred, rather than which invariants in particular
were violated. Additionally, even unviolated assumptions may need to be updated
to reach a realisable leaf. If this were not the case, rules representing the unviolated
assumptions could instead be added to the background theory.

Mode declarations

The mode declarations are as follows; RASPAL extends them with extension and
delete mode head declarations (see 2.2.3):
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modeh(current holds(assumption, +timepoint, +trace)).
modeh(target holds(assumption, +timepoint, +trace)).
modeh(theta holds(assumption, +timepoint, +timepoint, +trace)).
modeb(holds at(usable atom, +timepoint, +trace)).
modeb(not holds at(usable atom, +timepoint, +trace)).
modeb(eq(+timepoint, +timepoint)).
modeb(next(+timepoint, +timepoint, +trace)).

Examples

Traces provided as examples are translated into fluents indicating which variables
are true at each timepoint. For example, if at timepoint 1 in a trace called firsttrace
we have

S1 =

{doorhit = TRUE
knocksound = TRUE
bellpressed = FALSE
bellrings = FALSE
dooranswered = TRUE}

this would be represented as:

holds at(doorhit, 1, firsttrace).
holds at(knocksound, 1, firsttrace).
not holds at(bellpressed, 1, firsttrace).
not holds at(bellrings, 1, firsttrace).
holds at(dooranswered, 1, firsttrace).

4.3 Meta-constraints

Meta-constraints are added to this base layer of the revision engine. We detail here
the constraints required to ensure the semantic correctness of revised assumptions,
all of which have been decomposed into the three separate Event Calculus rules.
The same denials with different, relevant labels are added to ensure that any new
assumptions added to the revisable theory, like the revised existing assumptions,
obey these constraints. In the following, w in rule(R, H, B) is defined by the rule

w in rule(R, H, B) :- in rule(R, H, B, I), b index(I).

where b index(I) indicates the position of the literal in the clause.

The first three constraints are borrowed from the implementation of adaptations to
requirements models in [30].
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:- 0 {w in rule(ID, H, B)} 0, is rule(ID, H).

This forces all rules to contain at least one literal. Without it, the revision engine
simply removes the consequent of violated assumptions without trying to replace it,
as encouraged by the in-built minimality of the revision approach, implemented as
a clingo minimisation statement.

:- assumption(A), atom(F),
w in rule(ID, current(A), holds at(F)),
w in rule(ID, current(A), not holds at(F)).

:- assumption(A), atom(F),
w in rule(ID, target(A), holds at(F)),
w in rule(ID, target(A), not holds at(F)).

These two constraints indicate that a variable cannot be both true and false in the
antecedent or consequent, e.g. we cannot have G(a ∧ ¬a→ b).

We have added the following meta-constraints ourselves for ensuring the correct se-
mantics of revised assumptions.

:- assumption(A), atom(F),
w in rule(ID, current(A), holds at(F)),
w in rule(ID2, target(A), holds at(F)), w in rule(ID3, theta(A), eq).

:- assumption(A), atom(F),
w in rule(ID, current(A), not holds at(F)),
w in rule(ID2, target(A), not holds at(F)), w in rule(ID3, theta(A), eq).

These two constraints avoid vacuous assumptions by ensuring that no variable can
be true (or false) in both the antecedent and consequent of a single-state invariant,
e.g. we cannot have G(a→ a).

:- assumption(A),
w in rule(ID, current(A), next).

:- assumption(A),
w in rule(ID, current(A), eq).

:- assumption(A),
w in rule(ID, target(A), next).

:- assumption(A),
w in rule(ID, target(A), eq).
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The above four assumptions indicate that antecedents and consequents cannot con-
tain the literals that indicate whether the assumption is a single-state or transition
invariant.

:- assumption(A),
w in rule(ID, theta(A), holds at( )).

:- assumption(A),
w in rule(ID, theta(A), not holds at( )).

Similarly, these two constraints ensure that the theta rules can never contain the lit-
erals meant to appear in the antecedents and consequents.

:- assumption(A),
w in rule( , theta(A), next),
w in rule( , theta(A), eq).

This ensures that an invariant can only ever either be either single-state or transition.

:- assumption(A),
w in rule( , target(A), C1),
w in rule( , target(A), C2), C1!=C2.

We use this constraint to ensure that only one variable can ever appear in the conse-
quent of revised assumptions, as per 3.3.3.

:- assumption(A), output literal(Body),
w in rule(ID, current(A), Body),
w in rule(ID, theta(A), eq).

The realisability checkers RATSY and Spectra, the latter being the tool we use for our
realisable checks, assume that the environment makes its play before the controller
in the context of the GR(1) games introduced in 2.1.3. They therefore do not accept
output literals appearing in the antecedents of assumptions unless they are transition
invariants; the constraint above ensures that this is true of our revised assumptions.
:- assumption(A), output literal(Body),
w in rule(ID, target(A), Body).

This constraint ensures that output variables never appear in the consequents of as-
sumptions, given both the reasoning for the previous constraint and the definition
of environment invariants given in 2.1.2: GB(V ∪XX ).

For each assumption with name thisassumption, we also automatically generate the
following six constraints:
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:- is rule(ID, current(thisassumption)), is rule(ID2, current(thisassumption)), ID !=
ID2.
:- is rule(ID, target(thisassumption)), is rule(ID2, target(thisassumption)), ID !=
ID2.
:- is rule(ID, theta(thisassumption)), is rule(ID2, theta(thisassumption)), ID != ID2.

:- 0 {is rule(ID, current(thisassumption))} 0.
:- 0 {is rule(ID, theta(thisassumption))} 0.
:- 0 {is rule(ID, target(thisassumption))} 0.

The first three ensure that no rules are ‘extended’ into the revisable theory more
than once, and that new assumptions always use fresh names. The latter three
constraints force the inclusion in the revised theory of the three rules required by
the semantics of each assumption. A possible downside of doing this is that we
can never remove an erroneous assumption entirely and must always try to correct
it. However, since the objective of our framework is to find another realisable leaf
(see 3.3.2), rather than to move up a refinement branch by removing a violated
assumption, we consider this not to be a concern.

4.4 RL agent

4.4.1 Overview

Our agent is used to direct the search for optimal revisions by restricting the space
of possible hypotheses further than the meta-constraints already have done. As de-
tailed below, the search space is restricted through setting several parameters for the
RASPAL layer, meaning that each of the agent’s actions is one possible combination
of values for the parameters. Consequently each action is taken as a single attempt
at finding an acceptable revision, the quality of which is evaluated by the reward
function, before another attempt is made if necessary - if the learnt policy is optimal,
only one action (i.e. one attempt) will need to be applied during an execution of the
RL system. Since the agent is seeking the best action to apply for a given violated set
of assumptions, information regarding which contributes to the ‘state’ of the agent’s
‘environment’, Q-learning is an appropriate RL algorithm to employ. Moreover, given
the very large number of possible actions (combinations of parameters) and states
(the weakness component of which is continuous), we have opted to use a deep q-
network to approximate the Q-value function.

We have implemented our system using TF-Agents [57], a deep RL library based
on TensorFlow, a widely used machine learning library [58]. The TF-Agents library
provides a ready-to-use deep q-network, offers tutorials to help with the set-up of the
basic framework, and is considered well supported [59]. However, the library also
has some limitations that we discuss in 4.4.2, and which mean that, when scaling
up the framework in future work, we are likely to use a different library or build the
system from scratch.
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4.4.2 Actions of agent

We have implemented the core actions discussed in 3.3.3, and not the supplementary
actions that we propose could be used for augmenting the framework. There are
three sets of actions, each implemented differently.

Number of deletions

As described in 2.2.3, RASPAL computes the operations that must be applied to the
revisable theory to reach the revised set of assumptions. It does so by encoding
each possible operation rule as a fact rule(id(hi ← bi), C) that can be abduced.
clingo allows us to place each abducible ai in an aggregate min{a1, ..., an}max. We
create a separate aggregate for deletions applied to each of current, theta and target
rules, and have six parameters that the RL agent can set, each of which indicate the
minimum and maximum permitted numbers of each type of deletion. Deletions of
body literals of current (resp. target) rules indicate that variables in the antecedents
(resp. consequents) of assumptions must be replaced; deletions of body literals
of theta rules indicate that the assumption should be turned from a single-state to
transition invariant, or vice versa.

Number of body literal additions

When generating its top theory, RASPAL iteratively adds to each rule as many body
literals as are permitted by the mode declarations. We have extended the existing
code from [30] to allow separate limits on the number of body literals that can
be added to existing current, theta and target rules, and also the number of con-
ditions that can appear in the three rules representing any new assumptions that
are included in the revised theory. We set hard limits of one body literal for new
and existing theta and target rules. This is because, as already mentioned, we only
want one variable appearing in consequents, and each assumption can only be ei-
ther a single-state or a transition invariant. The number of variables appearing in
antecedents are not subject to such limits, so the maximum numbers of conditions
appearing in new current rules and in extensions of existing current rules are two
parameters that can be set by the RL agent. This gives the agent control over how
many variables to add or substitute in antecedents.

Number of new assumptions

The ninth parameter settable by the agent in our implementation is the number of
new assumptions that must be added to the revised specification. Names and the
necessary constraints are generated for the chosen number of assumptions, which
are then abduced by RASPAL according to the mode declarations. The length of
these new rules is guided by the parameter in the previous subsection.
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Application of actions

To summarise the above, we have an array of nine parameters that can be set by the
agent:

1. Minimum number of deletions of variables appearing in antecedents;

2. Maximum number of deletions of variables appearing in antecedents;

3. Minimum number of transformations of single-state invariants to transition
invariants, or vice versa;

4. Maximum number of transformations of single-state invariants to transition
invariants, or vice versa;

5. Minimum number of deletions of variables appearing in consequents;

6. Maximum number of deletions of variables appearing in consequents;

7. Maximum number of new variables to be added to the antecedents of existing
assumptions;

8. Maximum number of variables to be included in the antecedents of new as-
sumptions; and,

9. The required number of new assumptions.

Ideally, at each timestep, the agent would directly choose a value within a certain
range for each parameter in the array. A limitation of the TF-Agents library for our
purposes is that it cannot handle multi-dimensional actions of this type; actions for
the deep q-network can only be encoded as a single discrete value, which can be
interpreted in different ways depending on the environment. While we intend to
seek an alternative solution to this issue in future work, we have implemented the
following workaround for this proof of concept.

Our agent is allowed to choose as its action any integer between 0 and 19,682. We
convert this number into base 3, and, if necessary, add preceding zeroes to ensure
that the number always consists of nine numerals. Transforming the action in this
way allows us to represent values in the range 000000000 to 222222222. From each
numeral, we extract a setting for each of the nine parameters.

The major downside of this technique is that we can only set each parameter in the
range 0 to 2. For larger specifications than our toy examples and relatively small case
study, we are likely to want a significantly larger range to allow the update of more
assumptions at a time. If applying our framework to the revision of guarantees, we
are even more likely to want to apply numerous modifications at a time to ensure
the correctness of the goal model. However, TF-Agents’ deep q-networks, which map
state observations to Q-values for each possible action, have limited dimensions,
meaning the actions cannot exceed a certain value [57]. To have parameters up to
even 333333333, when converted from base 4 to base 10, would require 262,144
actions; 19,682 suffices for our small test cases.
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4.4.3 State observations

Unlike its actions, TF-Agents does allow an array of observations, which in our case
consist of the following:

1. The weakness of the existing set of assumptions, represented as a value be-
tween 0 and 1. A weakness of 0 means there is only one trace that satisfies the
formulae, i.e. the environment is very restricted; a weakness of 1 means the
formulae are equivalent to true, i.e. the assumptions are very weak. The value
is taken from the entropy of an automaton representing the assumptions; with
permission we use code built for the implementation of [14].

2. The number of assumptions in the original set.

3. The average number of variables in the antecedents of assumptions.

4. The lowest number of variables in the antecedents of assumptions.

5. The highest number of variables in the antecedents of assumptions.

6. The number of transition invariants in the set.

The observations above are all collected automatically in our implementation.

7. The number of violated assumptions.

8. The average number of variables in the antecedents of violated assumptions.

9. The lowest number of variables in the antecedents of violated assumptions.

10. The highest number of variables in the antecedents of violated assumptions.

11. The number of violated transition invariants.

In the above we count only the number of variables in antecedents, since in our
representation we only ever have one variable in the consequent of assumptions.
Observations 7-11 are hard-coded for the examples in our proof of concept, though
we intend to automate their collection in future work. After a violation is initially
detected by model checking all the assumptions and the execution trace, we could
identify which specific assumptions are violated by model checking each one indi-
vidually.

For the smaller examples with which we test our proof of concept, we suppose that
observations 7-11 are more useful for the agent than 2-6, as usually only the violated
assumptions need to be updated. Larger specifications may require the modification
even of unviolated assumptions, as discussed in 3.3.2 and 3.3.3, heightening the
need for observations 2-6. Revisions of goal models will similarly require informa-
tion about all of the guarantees.

We also include the following “meta-observations”, which do not relate to the nature
of the revisable theory. They are instead used to quantify the RL agent’s attempts to
find an acceptable solution, as explained in 4.4.4:
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12. A count of the number of sequential failures of the revision system to find any
solution.

13. A count of the number of sequential attempts that resulted in the revised spec-
ification being unrealisable.

14. A count of the number of sequential attempts that resulted in the revised spec-
ification being realisable, but violated by another execution trace, i.e. still not
reflective of the environment’s behaviour.

15. A count of the total number of attempts that were unsuccessful for any reason.

4.4.4 Episode structure, action evaluation and reward function

Ideally, our agent would always find in a single attempt a realisable specification that
reflects the environment, and which we additionally hope has optimal weakness and
coverage. In reality, this may take multiple attempts, each of which constitutes one
step in the agent’s episode of activity, but we must set limits so that the number of
attempts is finite and the episode terminates. We detail here our algorithm for ensur-
ing this, and for assigning the reward given at each step (i.e. the reward function).
We have not set a discount for the weighting of the agent’s future rewards, meaning
it seeks to maximise its cumulative rewards over the entire episode rather than just
the immediate reward for each action.

Timeout

The agent selects an action value that we process into the array of parameters as
explained in 4.4.2. The parameters are passed to the revision engine which attempts
to find a solution within those parameters. We found during training that for cer-
tain combinations RASPAL’s computation could not terminate within a reasonable
time. To allow training to continue, we instigated a timeout and give the agent a
large penalty (-1000) if the timeout is reached and end the episode immediately. By
ending the episode the agent learns that no future rewards can ever be achieved by
taking this action, so we encourage the agent to avoid the actions that cause train-
ing to halt. Setting a time limit of course means that some possible solutions may
not be found, but we set the time limit high to try to avoid this. In any case, if the
subprocess cannot terminate, we never find these possible solutions anyway nor any
others, so we consider the time limit an acceptable workaround, given that we are
able to find alternative specifications.

No output

For certain parameter combinations RASPAL cannot compute a revised theory, as
there are no answer sets satisfying those parameter settings. While this constitutes
a failed attempt, it is not critical, as the agent must be allowed to explore to find
an optimal solution, and the fruitless combination may have been ‘wrong’ by only a
small number of parameter values. We therefore do not give a penalty for every such
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failure, as with an undiscounted future reward, the agent may try to end the episode
quickly rather than risk accumulating penalties for every failed attempt. Conversely,
we want to incentivise the agent to continue trying to find a solution.

Notwithstanding this, the agent must learn that parameters that return no solution
are undesirable, so after ten such attempts we provide a penalty of -100 and end the
episode. The penalty here is smaller than that for a timeout, so the agent learns that
it is preferable to give a best effort by making ten attempts that give no solution, than
seeking to end the episode immediately through a timeout. For training purposes,
those ten failed attempts are informative about the effects of those ten actions; the
agent learns much less by conducting a single action that does not terminate. We
implement the ten-attempt limit through state feature number 12 from 4.4.3, where
this value begins the episode at 0 and is incremented by 1 for each void output; if
the value reaches 10, the penalty is given and the episode ended. If the revision
engine at any point does manage to find a solution, this value is reset to zero. We
keep track of the total number of reattempts by incrementing also feature 15; this
value does not get reset during the episode.

The benefit of including the number of empty solutions as a feature, as with the
other “meta-features” 13 and 14 detailed below, is that it provides the agent with an
indication of how many more attempts it can make before the episode is terminated
with a penalty, rather than with a reward for an acceptable solution (see below).
This allows the learner to experiment with new parameters that might, for example,
give a weaker realisable specification than the ones it is already able to produce.
If it is unsuccessful and observes that it is nearing its final permitted attempt, it
can resort to an action that it knows will return a realisable specification, albeit a
stronger one than might be optimal. This way, we can aim for optimality whenever
possible; if this hopeful attempt results in failure, we can still receive a suboptimal,
but nevertheless acceptable, solution.

Unrealisable solution

For any solution that is returned, we test its realisability using the Spectra realis-
ability checker [54]. As above, we do not immediately penalise unrealisable speci-
fications, but instead give a penalty of -10 if such solutions are produced five times,
implemented by incrementing the values of features 13 and 15, and end the episode.
Feature 13 is reset to 0 if a realisable specification is found. Again, the penalty is
smaller than that given at previous stages, so that the agent learns that it is preferable
to produce five unrealisable specifications than ten empty solutions or a timeout. We
want to incentivise the agent to continue trying to make progress towards an optimal
solution while it seeks to maximise its future cumulative reward. We allow only five
such attempts rather than ten, as the revision engine returns empty solutions more
quickly than populated ones, so at runtime we can afford a greater number of the
former type of failure. Nevertheless, these limits are somewhat arbitrary - a certain
user may believe that a realisable solution always exists and it is preferable for the
agent always to keep seeking it at runtime rather than giving up. In this case, the
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limit may be considerably higher, or there may be no limit at all.

In future work, we intend to experiment also with the checker RATSY, using which
we can extract a countertrace that demonstrates unrealisability [16]. As described in
3.3.4, we could add each countertrace as a negative example for RASPAL, so that on
the subsequent attempt, if there is one, the revision system is more likely to produce
a realisable solution.

Erroneous solution

Our implementation gives room for testing whether a realisable revised specification
is in fact correct with respect to the environment, by checking for further violations.
Some of the components required for performing this were not ready to include for
our proof of concept, but incorporating this step will be an important element of
future work.

A new controller is synthesised from the realisable updated specification, likely using
the Spectra synthesis tool, which is relatively fast [54]. Spectra’s creators have built
simulators for several of the specifications they provide [60]; if we test our frame-
work on one of these specifications, we can stop the execution of the new controller
if the new assumptions are violated again by the environment’s behaviour. We can
then extract the new violation trace from the simulator and provide it as an addi-
tional example for the RASPAL revision system.

Similarly to the realisability check above, we propose to give a (in this case smaller)
penalty of -1 and end the episode if a correct set of updated assumptions cannot be
found within 5 attempts, measured by incrementing features 14 and 15. The reason
for the decreasing penalty is the same as for the previous checks.

Optimality

Any realisable set of revised assumptions that is not violated by another execution
trace is an acceptable solution, in response to which we end the episode; ideally
every episode would end in this way after one step. We must also give the agent
a reward to indicate that this is the desired outcome, but we vary the size of the
reward depending on the quality of the solution. We have implemented only the
weakness measurement but not the coverage computation, with which we will ex-
periment in future work.

The reward is assigned as follows. As with the original weakness calculation un-
dertaken for the state observation (see 4.4.3), the weakness value is between 0 and
1, with 1 indicating the greatest weakness. We only calculate the weakness of ac-
ceptable specifications, as this value is otherwise irrelevant; conducting unnecessary
calculations would needlessly increase computation time. From the weakness value,
we subtract the value of state feature 15, namely the total number of attempts that
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were unsuccessful for any reason. This means that the reward is inversely propor-
tional to the number of attempts that were required to reach an acceptable solution,
incentivising the agent to find this as quickly as possible; the weakness value encour-
ages the the solution not just to be returned quickly, but also to be optimal.

We so far have reward = weaknessValue - totalFailures. To this value we add a con-
stant that is equal to (or greater than) the maximum number of unsuccessful at-
tempts. With our limits, this is 36 with no check for subsequent violations, or 144
with this check. We ensure by this constant that an acceptable solution, even if it
required the maximum number of tries, is preferable to ending the episode with an
unacceptable solution. Without this constant, the agent would learn that it is prefer-
able to terminate the episode through some kind of failure than to keep seeking a
solution for as long as permitted, since the penalty for ending in failure might be
less than the subtracted value for the number of attempts.
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Chapter 5

Experimental Results

5.1 Case study

We have tested our framework using a specification similar to one offered by the
creators of Spectra, which describes the activities of an automated forklift [61]. The
forklift can either be far away or nearby, and at each timepoint, it chooses one ac-
tion out of staying in position, changing position, lifting an object or dropping an ob-
ject. We have converted the original specification’s enumeration variables to Boolean
form and named the assumptions and goals. To maintain the integrity of the original
enumeration variables, we have added domain-dependent constraints to ensure that
only one of the command variables can be true at any one time. The ‘correct’ version
of our specification, with no erroneous assumptions, is as follows, given in the Spec-
tra specification language; Spectra uses a next operator to indicate the X symbol we
have been using previously:

——————————————————–

module ForkLift

env boolean fardistance ;
sys boolean liftcommand ;
sys boolean dropcommand ;
sys boolean gocommand ;
sys boolean idlecommand ;

assumption – idle far
G (idlecommand=true & fardistance=true→ next( fardistance=true ) );

assumption – idle close
G (idlecommand=true & fardistance=false→ next( fardistance=false ));

assumption – go close
G (gocommand=true→ next( fardistance=false ) );
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assumption – close nolift
G (fardistance=false & liftcommand=false→ next( fardistance=false ) );

assumption – close withlift
G (fardistance=false & liftcommand=true→ next( fardistance=true ) );

guarantee – s init
liftcommand=true;

guarantee – s 11
G (fardistance=true→ next( dropcommand=false ) );

guarantee – s 12
G (fardistance=false→ next( gocommand=false ) );

——————————————————–

From this we have created four test cases, each by making one of the assumptions
erroneous in a different way with respect to the true environment behaviour. In all
cases, the specification remains realisable, as it would be for a specification written
by a designer with erroneous assumptions.

——————————————————–

Case 1:
assumption – go close
G (gocommand=true→ fardistance=false);

Case 2:
assumption – idle far
G ( dropcommand=true & fardistance=true→ next( fardistance=true ) );

Case 3:
assumption – idle far
G (idlecommand=true & fardistance=true→ next( fardistance=false ));

Case 4:
assumption – close nolift
G ( fardistance=true & liftcommand=false→ next( fardistance=false ) );

——————————————————–

For each case, we have written an execution trace that:

• satisfies all of the guarantees and correct assumptions;
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• violates only the erroneous assumption; and,

• demonstrates the true behaviour that should be reflected in the updated as-
sumption.

We give the trace for Case 2 by way of illustration:

——————————————————–

→ State: 1.1←
fardistance = TRUE
liftcommand = TRUE
dropcommand = FALSE
gocommand = FALSE
idlecommand = FALSE
→ State: 1.2←
fardistance = TRUE
liftcommand = FALSE
dropcommand = FALSE
gocommand = FALSE
idlecommand = TRUE
→ State: 1.3←
fardistance = TRUE
liftcommand = TRUE
dropcommand = FALSE
gocommand = TRUE
idlecommand = FALSE
→ State: 1.4←
fardistance = FALSE
liftcommand = TRUE
dropcommand = FALSE
gocommand = FALSE
idlecommand = FALSE
→ State: 1.5←
fardistance = TRUE
liftcommand = FALSE
dropcommand = TRUE
gocommand = FALSE
idlecommand = FALSE
→ State: 1.6←
fardistance = FALSE
liftcommand = FALSE
dropcommand = FALSE
gocommand = FALSE
idlecommand = TRUE
End
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——————————————————–

In all the experiments, steps in which no solution was found by the revision engine
took one or two seconds. Steps that did produce a revision usually took up to a
minute, though in some cases lasted up to our timeout for RASPAL of two minutes.

5.2 Experiment 1

We want to test whether the agent is able to converge to a policy that generalises
to unseen violations, since at runtime the assumptions that turn out to be erroneous
may be different from the ones that were incorrect during training. The agent should
be able to learn to perform similar corrective actions in similar, though different, sit-
uations.

Test cases 2 and 4 are similar, in that they both involve an incorrect literal in an
antecedent containing two literals; they therefore give rise to identical state features
aside from, possibly, the weakness of the assumptions. Our first experiment there-
fore used one of these cases for training, and the other for evaluation; we ran this
same experiment twice. Four evaluation episodes were run for every 100 training
steps, and the average reward on the evaluation episodes calculated. On each occa-
sion, the experiment was left running for approximately 10 hours.

Figures 5.1 and 5.2 plot the average reward on the evaluation case against the num-
ber of training steps. We have plotted the timeout penalty as -120 rather than -1000
so that more of the curve can be seen as the agent learns to find the optimal realis-
able solution in fewer attempts. As it converges on such a policy, the average reward
increases by only 1 or 2, after having jumped up from the penalties. As explained in
4.4.4, a reward of over 36 indicates that the solution was found on the first attempt.

5.2.1 Run 1

As illustrated in Figure 5.1, on the first run of the experiment the agent converged
on an ‘optimal’ policy after about 3,400 training steps, such that it was able to find
a realisable specification with weakness value 0.7169914246 after only one attempt
on the evaluation case. The policy revised assumption silly idle far to

G ( dropcommand=true & fardistance=true→ next( fardistance=false ) );

It changed the truth value of the consequent rather than replacing dropcommand in
the antecedent with idlecommand, as we would desire given the ground truth as-
sumption in the original specification. While this revision is consistent with the trace
and gives a realisable specification, the assumption remains erroneous. This demon-
strates the importance of implementing the further violation checks in our agent in
future work, to ensure the updated assumption actually reflects the environment’s
behaviour.
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Figure 5.1: Experiment 1, run 1

5.2.2 Run 2

Figure 5.2 shows that on the second run of the experiment, the learner converged on
a timeout policy for the evaluation environment. While this appears on the surface
to be problematic, the same policy was producing a realisable specification after two
attempts in the training environment, and we believe that this would also have been
true of the evaluation environment if the timeout had been set slightly higher (with
further training, the learner would also probably have converged on a policy that
found the acceptable solution in one attempt rather than two). Equally, if the time-
out had been set lower, the learner would likely have converged on an alternative
policy in the training environment, such as the one seen in the first run of this exper-
iment. Either way, this demonstrates the benefit to be derived from a faster revision
engine than RASPAL, such as the one under development currently, for ensuring that
acceptable solutions are not lost.

The action that caused the timeout in the training environment, when tested sepa-
rately without the timeout, found the correct revision to the erroneous assumption.
However, it also incorrectly removed the liftcommand=true variable from the an-
tecedent of the assumption close withlift. Again, this illustrates the need for the
subsequent violation checking phase to ensure that realisable solutions are correct
for environment behaviours other than that seen in the initial violation trace.

5.3 Experiment 2

We also want to test whether the agent is able to broaden its range of actions so
that it can correct erroneous assumptions that have similar state features but which
are violated in different ways. Case 3 has the same features as Cases 2 and 4, apart
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Figure 5.2: Experiment 1, run 2

from possibly the weakness, but the consequent needs updating rather than one of
the variables in the antecedent. We left Case 2 as the evaluation case, but alternate
between training on Case 3 and Case 4 for each episode.

Figures 5.3 and 5.4 show that the agent was able to converge on a policy for finding
an optimal solution on the first attempt within only 500 steps on the first run, but
took slightly longer on the second run. In both cases, convergence occurred signifi-
cantly faster than in Experiment 1, meaning that training only took up to three hours.
However, as in Run 1 of Experiment 1, the policies incorrectly modified the conse-
quent rather than the antecedent, meaning that we have not been able to show the
agent responding differently to different violations of assumptions that share similar
features. However, we do not consider this a failing of our agent: implementing the
further violation checks in future work should remedy the issue of incorrect updates,
which should force the policy to be more diverse as necessary.

5.4 Experiment 3

Our third experiment tests whether our system might be scalable. The setup is as for
Experiment 2, but training now alternates between Cases 1, 3 and 4. The erroneous
assumption in Case 1 lacks the next operator that it should contain to be correct,
meaning that the state features observed for this case are different, as is the neces-
sary revision to be executed. By adding this case to the others on which the RL agent
is trained, we are testing that it is able to handle a greater range of state observation
values, and that it can vary its actions for different observations.
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Figure 5.3: Experiment 2, run 1

Figures 5.5 and 5.6 show that on both runs, the agent quickly converged on a pol-
icy for finding a solution in one or two attempts, with training taking less than two
hours. On the second run, as with many of the previous experiments, the revision
updated the consequent rather than the dropcommand variable in the antecedent as
we would have desired. On the first run, the policy additionally deleted the fardis-
tance variable from the antecedent, to give

G ( dropcommand=true→ next( fardistance=false ) );

which is further from what we consider to be the correct assumption. The policy
also added an unnecessary new assumption, which was identical to the existing
assumption go close.

5.5 Evaluation

The experiments show that in all cases, aside from one affected by the designated
timeout, the learner converged on a policy for finding an acceptable revision within
only one or two attempts. The RL system is able to train on multiple sets of erroneous
assumptions with related violation traces, which is promising for the scalability of
our system, since we want our agent to have a policy for dealing appropriately with
a range of different violations to different sets of assumptions. In fact, the exper-
iments appear to indicate that convergence occurred faster with training on more
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Figure 5.4: Experiment 2, run 2

environments. This finding seems counterintuitive so must be subjected to further
experimentation in future work. We suggest that it may be related to having a greater
range of feature observations, since each different set of starting assumptions shows
slightly different feature values to the agent.

In many cases, the revision enacted by the agent was not the one we consider to
be correct with respect to our knowledge of the environment’s behaviour, though it
was nevertheless a logical update for the revision engine to have made. As noted
throughout, this highlights the importance of checking the update for further vi-
olations to make sure the revised assumptions correctly reflect the environment.
Equally, providing longer example traces to the revision engine, which would con-
tain more information about the environment’s actual behaviour, would help make
sure the updates are sensible.

We note that we have not observed any penalties of -10 when testing our imple-
mentation. This penalty was to be applied when an unrealisable specification was
produced five time, causing the episode to terminate. Instead, either a realisable
specification was produced within a certain number of attempts, or penalties were
given for a timeout or no output by RASPAL. The lack of -10 penalty might be related
to the size and complexity of the specifications on which we have tested the frame-
work; with more complex specifications, we might be more likely to see revisions
being produced that do not give rise to a realisable specification.
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Figure 5.5: Experiment 3, run 1

Figure 5.6: Experiment 3, run 2
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Discussion

6.1 Limitations

We review here the various limitations of our framework and implementation which
we have highlighted in the chapters above, and point to possible solutions to these
issues.

6.1.1 Different performance on training and evaluation cases

It may sometimes occur that the policy learnt during training fails on the evaluation
case, which is a situation we want to avoid when applying our framework to real-
world runtime situations. For example, the second run of Experiment 1 showed that
a policy that appeared to be optimal on the training case led to a timeout on the
evaluation case. The likelihood of this occurring can firstly be reduced by training
on more cases, so the agent learns about the effects of its actions in a broader range
of situations, and improves its policy in response.

We might also hope to remedy this by more closely integrating the evaluation episodes
with the training. In our current setup, there is no feedback between the average
reward received on the training environment and the policy learnt by the agent,
allowing it to converge on a policy during training that fails at runtime. In the sit-
uation we saw in the second run of Experiment 1, an alternative implementation
might have allowed the timeout to be decreased reactively, making the policy learnt
during training no longer optimal. The agent would then have to seek a new policy,
that would hopefully mean a solution could be found on the evaluation case. Simi-
larly, we might vary the amount of exploration conducted by the agent, to ensure its
learnt policy is not only locally optimal. Just as it would be better to train on more
cases, evaluating on more examples would similarly help to avoid the learnt policy
inadvertently failing at runtime.
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6.1.2 Scalability of system

As explained in 4.4.2, the TF-Agents library that we have used for our implemen-
tation of the RL agent does not accept multi-dimensional actions, and the deep Q-
network can only hand uni-dimensional actions of a limited size. This means that
the range of the parameters that we ask the agent to set for the revision system is re-
stricted. More complex specifications might require more assumptions to be updated
at a time, or greater numbers of conditions to be added and deleted. For our frame-
work to be able to handle this, in future work we intend to experiment with different
RL libraries and with implementing the agent from scratch to improve scalability.

6.1.3 Representation of assumptions

In 4.2.1 we explained that, given our representation of assumptions as three normal
clauses, and in order to prevent the revision system from strengthening assumptions
by adding conjuncts to the consequent, we have had to prevent consequents from
containing more than one variable. However, in this representation, the variables
that a transition invariant indicates are to be true at the next timestep must also
appear in the consequent. This means that our system is limited to dealing with
transition invariants with only one next variable, whereas real-world specifications
often contain assumptions with more such variables.

A solution to this obstacle might require a different formalisation of the assumptions,
where a preprocessing step could remove the next operator and label the variables
that appeared after it. For example, G (a→ X(b ∨ c)) might instead be represented
as G (a ∧ ¬ bx→ cx). This would also necessitate a broader set of mode declarations,
to allow the revision system to use each variable with either its usual or its ‘next’
meaning.

6.1.4 Failure of framework to find a solution

When experimenting with our proof of concept on small example specifications and
traces, the learnt policy was always able to find acceptable or optimal solutions
within a small number of attempts. It is unclear whether this will be the case with
more complex specifications, for which it might be more difficult to find solutions;
on the other hand, larger specifications usually consist of large numbers of short
assumptions that might still be relatively easy to fix. The objective of training is to
allow the agent to explore the search space at design time, so that at runtime only a
small number of attempts are required to find a solution. If at runtime, in an unseen
environment, the agent is still not able to find a solution within the specified number
of attempts, we might consider incrementing the limit, if the user would rather the
agent continue trying to find an appropriate revision, rather that trying to update
the specification by hand.

We consider a greater obstacle to be the necessity of a timeout for the revision en-
gine’s computation. Again, during training the agent should be able to find a pol-
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icy that sets the revision engine’s parameters so that the search space is restricted
enough that solutions can be returned before the timeout is reached. Nevertheless,
our experiments have shown that a policy that returns a solution within the timeout
on a training example might not be able to do so on the runtime environment. We
might therefore consider increasing the timeout at runtime, presuming that the user
would rather the agent continue trying to compute a solution, which might be less
expensive than the controller’s task being abandoned and the specification repaired
manually. We also hope to reduce this problem in future work by using new, faster
revision systems than RASPAL. Adding only the violated assumptions, or a subset of
the total assumptions, to the revisable theory might similarly help with scalability,
since larger programs lead to longer computation times.

There may remain situations in which our framework is incapable of correctly updat-
ing the assumptions, regardless of the permitted time or number of attempts. This
should not necessarily be the case, given that if a solution exists, the agent should
be able to alter the parameters until the solution is eventually found. As we have
already mentioned, we can increase the probability of this result by adding further
violation traces as positive examples for the revision system, and traces demonstrat-
ing unrealisability as negative examples. Nevertheless, if our framework does not
appear to be having any success, a user might have to resort to existing techniques
for the controller gracefully failing the task, and the specification might have to be
rewritten by hand and counterstrategy-guided refinement methods for reaching re-
alisability.

6.2 Alternative implementation of reward function

A possible alternative to our implementation of the RL agent’s reward function might
give a penalty for every unsuccessful attempt, even those which do not terminate the
episode; the penalty could increase with each subsequent attempt, with the aim of
encourage the agent to find an acceptable solution more quickly. However, if the
agent receives a penalty for every step of the episode, it is likely to seek to terminate
the episode in failure sooner rather than risk further penalties, as already mentioned.
We could get around this by applying a full discount to future rewards, so that the
agent would only seek to maximise its immediate, rather than cumulative return.

We believe this may lead to undesirable effects, as the agent is discouraged from
exploring for more optimal solutions. After a certain amount of training, the agent
may have learnt that a particular action produces an acceptable solution for which
it receives a reward, but this solution does not exhibit particularly good weakness
or coverage. Nevertheless at each timestep the agent, seeking to maximise its im-
mediate reward, would prefer to receive its suboptimal reward than a penalty for an
unsuccessful attempt, especially if the penalty increases with each step. On the other
hand, our implementation encourages the agent to search for higher quality specifi-
cations when possible, but allows an acceptable suboptimal solution to be returned
otherwise.
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6.3 Applicability to other problems

Our framework could be used with little modification for revising requirements mod-
els. This can be necessary when the goals are found to be incorrect, or the assump-
tions on which they rely change [12, 30]. We discuss here some of the considerations
that might be necessary when adapting our framework for goal revision.

6.3.1 Goal models and revision

The field of requirements engineering refines the high-level goals of a specification
into sub-goals that, if their conjunction is satisfied, mean also that their parent goal
is satisfied. In this way, goals and their refinements (sub-goals) form directed graphs
wherein refinements are mutually dependent for the satisfaction of their parent [12,
62]. This graph must be:

• complete - the sub-goals and the environment assumptions must satisfy the
parent goals;

• consistent - the sub-goals and the environment assumptions must be consis-
tent; and,

• minimal - the set of sub-goals necessary for satisfying a parent goal must be
minimal [30].

If the goals are found to be incorrect or the environment assumptions change, the
goals must be revised. Here the aim is not to ensure realisability and weakness, as
with assumptions, but instead completeness, consistency and minimality. The local-
ity of changes, and coverage in the sense of behavioural similarity, are also preferred
[12, 30].

[12] borrows a simplified example from [63] of an automated aeroplane landing
system with the high-level goal G(MovingOnRunway → XReverseThrustEnabled).
This is refined into the left sub-goal G(MovingOnRunway→WheelsTurning) and the
right sub-goal G(WheelsTurning → XReverseThrustEnabled). Figure 6.1 illustrates
this model. At runtime it may transpire that the runway is slippery, so the plane is
able to move without the wheels turning, but we still want the reverse thrust to be
activated. We therefore need to update the child goals such that the parent remains
satisfied.

6.3.2 Existing approaches for revising goals

[30] has demonstrated the use of RASPAL for revising requirements. A nonmono-
tonic ILP system is particularly appropriate for this task, as it allows more complex
semantic changes to be executed than might be possible with revision engines that
use only atomic operators [11]. This is helpful given the need to maintain correct
goal models: changes to one goal might necessitate complex modifications also to
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Figure 6.1: Simple aeroplane goal model [12]

its siblings, children or parents [12, 30].

[12, 30] have shown the use of meta-constraints for preserving the semantics of the
goal model. A revision system that is only guided by the minimality of the revision
might replace the antecedent of the right child with a propositional atom that is ob-
served in the violating execution trace such as WheelsPulseOn, giving G(WheelsPulseOn
→ XReverseThrustEnabled). However, it may neglect to revise the other child goal
in such a way as to preserve the correctness of the goal model; meta-constraints
allow us to ensure that the hypothesis space is restricted to only such acceptable
revisions. A meta-constraint that forces any variable that appears in the antecedent
of the right sub-goal to appear also in the consequent of the left sub-goal would
result in a semantically correct revision of the left child: G(MovingOnRunway →
WheelsPulseOn).

6.3.3 Using RL for revising guarantees

Adding our RL method to the existing approaches for revising goals is likely to be
beneficial for guiding the search space towards acceptable and optimal solutions. A
reward function for this agent would be designed to ensure the necessary and pre-
ferred qualities of a revised goal model which we mentioned in 6.3.1.

We suggest here a number of additional supplemetary features and actions for the RL
agent that may be useful in the context of guarantee revision, but are less relevant
for updating assumptions. When revising assumptions in complex specifications, it
is conceivable that several may need to be revised at a time, possibly including unvi-
olated ones, to reach a realisable specification and remain minimal in the number of
assumptions. On the other hand, whenever a guarantee is modified, it is highly likely
that other guarantees will also need changing to preserve the correctness of the goal
model. Whereas it may be unclear which unviolated assumptions need updating
when a violated one is modified, it is likely to be more obvious which guarantees
in the goal model are related, as parent, child and sibling guarantees will by their
nature share some variables.

For assumptions, therefore, especially in larger specifications, we are likely to want
to include all the assumptions in the revisable theory, unless some are specifically not
desired to be changed. However, an action for a RL agent that is updating guarantees
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could be the choice of which guarantees to include in the realisable theory. This
would necessitate it receiving as observations which variables appear in the incorrect
guarantees, so it can include in the revisable theory other guarantees containing
these variables. More guarantees in the revisable theory might also mean the agent
acts to ensure more witness traces are covered as examples. The agent could also
select, as an additional action, the types of meta-constraint that might be required
for ensuring the correctness of the goal model, based on which guarantees are going
to be revised.
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Related work

Previous works have recognised that assumptions made about the environment at
design time may be violated at runtime, and numerous methods have been proposed
for automatically dealing with this uncertainty about the environment’s behaviour.
These methods generally do not involve the production of new assumptions or re-
synthesis, which until now has usually been triggered by a human-in-the-loop.

One approach that does attempt to modify erroneous assumptions at runtime is [8],
extended in [64]. This work updates the assumption by incrementally adding dis-
juncts representing the observed, violating behaviour to the existing assumption.
While tailoring the assumption update in this way does ensure coverage 2.1.5, it
may also lead to overly specific and complex assumptions. Assumptions that are
weakened in this way are also likely to result in the specification becoming unre-
alisable, which the authors of [8] seek to remedy at runtime by asking the user to
provide additional liveness assumptions. Our contribution is a framework that may
avoid these issues.

7.1 Coping with environment uncertainty

Other techniques for dealing with environmental uncertainty can be roughly split
into building in resilience at design time; responding to violations at runtime without
re-synthesis; and learning more accurate environment models.

7.1.1 Built-in resilience

[7] presents a method for synthesising controllers that are robust to possibly inaccu-
rate models of the environment. The controllers are designed to be correct not just
for the assumed environment model, but also for a family of models that include it,
thereby giving room for divergence. However, the controller is as such robust only to
certain violations, so there may still be unforeseen situations in which it is required
to update assumptions and conduct re-synthesis. The same can be said of the work
in [65], which proposes the formation of a robust winning strategy from the combi-
nation of separate strategies, each of which is tolerant to certain unexpected events.
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Likewise, [8] adds so-called fall-back transitions during synthesis such that the robot
may be able to preserve its safety requirements when assumptions are violated and
proceed towards its goals if and when the violation ends. When this is not possible,
the assumption is updated by the weakening method described above.

In a similar vein, the framework in [9] enables the synthesis of controllers that can
cope with intermittent violations of assumptions, as long as the violations are sep-
arated by periods in which the controller can recover. Again, this is not sufficient
for cases in which the violations are not limited and temporary, so the need remains
for our method for updating assumptions that are more enduringly erroneous. Like-
wise, the algorithm in [66] addresses the synthesis of controllers from safety spec-
ifications, but does not tackle situations in which the assumptions are found to be
erroneous.

7.1.2 Runtime responses without re-synthesis

[1] highlights the importance of describing environmental assumptions explicitly, as
erroneous implicit assumptions can mean that the guarantees are not satisfied, and
the specification is therefore not realisable. [10] builds on this observation by offer-
ing a method for monitoring assumptions at runtime, to ensure that the guarantees
are not left unsatisfied due to silent assumption violations. Specifications of the as-
sumptions are used to synthesise monitors that use Stream Runtime Verification, a
form of runtime verification that can handle continuous data inputs rather than only
Boolean observations. The reactions to detected violations consist of logging for of-
fline analysis, or otherwise remediatory planning by the controller to gracefully fail
the mission or to attempt to satisfy the guarantees in spite of the violations.

[67] extends other studies in runtime verification and assurance, such as [68], by
offering a programming framework that allows for two controller modes. The ad-
vanced controller mode gives high performance for a robot operating under nominal
conditions, while the lower performance safe controller mode is used to keep the
robot operating safely when monitors detect that an assumption violation is pos-
sible. While beneficial in some circumstances, this approach does not address the
need for updating erroneous assumptions when required. [69] presents a parallel
methodology for self-adaptive systems, wherein a tiered framework of operational
strategies, each based on different assumptions, allows the system to transition be-
tween models when the assumptions of higher tiers are broken.

7.1.3 Updating environment models at runtime

Another avenue of research seeking to address the problem of inaccurate or incom-
plete understandings of environment behaviour is based around non-RL methods
for updating environment models at runtime. While the proposed methods are not
used to modify the assumptions based on the updated models, it is feasible that this
extension could be applied. However, the benefit of our RL approach is that assump-
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tions can be modified in accordance with the learned policy without the need for an
explicit model.

The work in [70] uses stochastic gradient descent to estimate observation proba-
bilities for rules from execution traces at runtime; the new rules are then added to
the existing model. [71] similarly uses probabilistic rule learning to update models.
These algorithms are implemented for self-adaptive systems, which make use of an
environment model that may need updating. [72] likewise proposes a procedure for
self-adaptive systems that builds controllers that allow the system either to proceed
towards its goals, or else to learn more about the environment. As this approach
is aimed at self-adaptive systems, its major weaknesses in our setting are two-fold.
The environment must be able both to report a current state ID and to be reset if the
goals are found to be unsatisfiable with the current behaviour, in order to allow the
system to make use of its new knowledge on another attempt. Neither of these two
requirements are applicable to our problem, where an agent operating in a continu-
ous environment needs to be able to handle violations in real time.

[73] defines a fragment of LTL to describe a mission for a robot incrementally to
learn a model of the environment. While the algorithm is complete, the task is
executed in infinite time, which is again not appropriate for our purposes of reacting
to violations as they arise.

7.2 Current uses of RL in similar problems

Our use of RL to determine parameters for ILP systems and to modify assumptions
is a novel contribution. Nevertheless, RL has been used for similar problems, which
we survey below.

7.2.1 RL in self-adaptive systems

Autonomic/self-adaptive systems respond to changes in the environment by select-
ing an appropriate action for reconfiguring themselves in some way. Due to the
complexity of the systems, the space of possible actions is often very large and the
optimal adaptation may be domain-dependent, suggesting a parallel with our prob-
lem. Moreover, as with our problem, the best adaptation can depend on numerous
quality criteria to be maximised and traded off against one another, such as service
times and quality.

RL algorithms have been implemented to find an optimal adaptation policy for self-
adaptive systems such as news web applications [74], virtual machines [75] and
other software systems [76, 77] subject to varying workloads; robots with changing
priorities [78, 79]; as well as for evolving the possible adaptation actions themselves
[80]. [81] proposes that the space of adaptation actions be structured as a feature
model in order to speed up the convergence of learning at runtime, while [82] pro-
poses a model-based approach for RL in self-adaptive systems for the same reason.
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However, in our problem the training takes place at design time, as is also the case
for the self-adaptive system RL agent in [74], meaning that the speed of convergence
is less of a concern. Equally, our model-free RL approach is able to guide the revision
engine to acceptable solutions while avoiding the need for an explicit model of the
environment’s behaviour.

7.2.2 Other related uses of RL

RL algorithms have also been used in settings that are arguably more closely related
to our problem than are self-adaptive systems, but in ways that are less reflective of
our proposed approach.

[83] shares the objective of the works in 7.1.1 for seeking to synthesise controllers
with a degree of robustness to environmental uncertainty, but uses RL in its method.
RL is used to learn control policies for Markov Decision Processes with unknown
stochastic behaviour, such that the policy maximises the probability of satisfying the
given LTL specification. However, it does not enable responses to assumption viola-
tions at runtime.

[84] uses RL to accelerate falsification of cyber-physical systems through a reward
function that seeks to minimise a robustness value of properties, in a comparable
way to our own use of preferences in our reward function. However, here the prop-
erties are in STL rather than LTL. Correspondingly, in [85] RL is employed to speed
up the search for violating inputs while conducting fuzz testing for networking de-
vices. However, we intend to use RL in the response to violations rather than in their
generation.

[86] demonstrates the application of RL to symbolic reasoning, but it is used here
to learn heuristics for solving quantified Boolean formulae. We instead use RL to
restrict the search space for our symbolic reasoning component.
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Chapter 8

Conclusion

8.1 Achievements

We have designed a RL agent that can learn a context-specific policy for setting
parameters for a nonmonotonic ILP theory revision system. Doing so restricts the
system’s search for revised sets of assumptions to those that produce a realisable
specification that correctly reflects the environment’s behaviour. The framework can
also be used to favour updates that give weak assumptions that permit similar envi-
ronment behaviours to the designer’s original intent.

We have instantiated the key elements of our framework as a proof of concept. Our
implementation demonstrated the ability of the RL agent to converge, within an ac-
ceptable amount of training time, on policies that could update different violated
assumptions appropriately in a single attempt at runtime. This contribution is sig-
nificant for both the formal methods and ILP communities.

8.2 Future work

There are numerous possible avenues for continuing our research, which we intend
to pursue in future work. These relate to addressing the limitations of our current
implementation; implementing the supplementary elements of our proposed frame-
work, and subjecting it to further testing and evaluation.

8.2.1 Addressing limitations

The two most significant limitations of our current implementation relate to the scal-
ability of our system. Firstly, the RASPAL revision engine can be slow when tackling
larger programs, and the timeout we have introduced to mitigate this can mean that
suitable solutions are not found. We intend to instantiate our framework on a soon-
to-be-released ILP revision system that may provide quicker updates.

The TF-Agents library we have used to build our agent limits the number and type of
actions with which we can equip our agent. We will explore other implementations
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of the RL system to allow a greater range of parameter values to be offered to the
ILP system, allowing it to revise larger and more complex specifications.

8.2.2 Augmenting the implementation

There are a number of components of our proposed framework that we have not yet
implemented, as well as other ways in which we hope to extend it. Mostly notably,
our experiments demonstrated the necessity of further violation checks for ensur-
ing that the revised assumptions correctly reflect the true environment behaviour.
Spectra’s tool for generating traces automatically will significantly aid this process.
Equally, we wish to include the addition of counterstategies as negative examples to
facilitate our system’s search for realisable specifications.

While RASPAL’s favouring of minimal revisions helps to an extent with ensuring
syntactic similarity with the original assumptions, we have not yet implemented
our proposals for seeking behavioural coverage either by the RL agent’s actions or
reward function. We might also augment our current implementation by extending
our parsers to handle more of the Spectra specification language.

8.2.3 Further evaluation

We intend to conduct further experiments on our system to evaluate both the quality
of its revisions and its scalability. We wish, for example, to test whether the revised
assumptions are generally weaker than those produced by other approaches, such
as the counterstrategy-guided refinement techniques. Moreover, it will be important
to compare the quality and speed of revisions produced by our framework and a
revision system without the help of an RL agent, to demonstrate the benefit of our
proposal.

We will also experiment with larger and more complex case studies, a greater variety
of training examples, to gain an insight into the applicability of our framework for
real-world use. We also wish to test it on other problems, such as adaptations of
requirements.
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