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Abstract

Text summarization has been a key language generation task within Natural Language Pro-
cessing (NLP) for over 60 years. The field has advanced tremendously during the past
two years, benefiting from the proliferation of neural networks across NLP, and in partic-
ular, the Transformer. The recent advances have focused primarily on short documents;
long documents are the focus of this thesis. We investigate two promising areas: 1) iden-
tifying a superior automatic evaluation metric, and 2) creating and experimenting with
novel Transformer-based long document summarization models. There are several key find-
ings in this thesis. Regarding the evaluation metrics, we test eight metrics on five exper-
iments spanning three datasets. We develop a novel evaluation metric, BARTScore, and
find this metric correlates twice as well with human judgement as the prevailing ROUGE

metrics, and often was the strongest performer of every metric we considered. We estab-
lish a set of four evaluation metrics, BARTScore, BERTScore, Mover-1 and Mover-2, each
of which consistently outperform the ROUGE metrics. Regarding the novel architectures, we
experiment with the Longformer Encoder Decoder (LED) a Transformer model designed
for long documents. We demonstrate state of the art performance on one dataset, beat-
ing the incumbent by over one ROUGE. We also show that approximate self-attention lay-
ers perform comparably to dense self-attention layers for summarization while being much
more memory-efficient. These efficiencies allow us to fine-tune summarization models us-
ing 2.5x longer sequences on standard hardware. The accompanying code can be found at
https://github.com/alexgaskell10/nlp_summarization.

https://github.com/alexgaskell10/nlp_summarization
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1 INTRODUCTION

1 Introduction

This thesis seeks to contribute to the existing literature on automatic text summarization.
This field has recently undergone rapid and substantial progress, driven by the success of se-
quence to sequence (seq2seq) modelling in NLP. However, the research emphasis has focused
on developing architectures suitable for short, single documents and has neglected long and
multi-document summarization. The ultimate goal for this field is to develop a framework
which can produce high quality summaries independent of the source document lengths,
whether it is a single or multi-document task and agnostic over domain and whether the
lexicon is technical or colloquial.

Given the impressive recent progress seen in short document summarization, the next
frontier is to replicate the results using long documents. The focus of this thesis is therefore
on advancing the literature in long document summarization. We identify the evaluation of
summaries and architectures for long document summarization as two particularly impor-
tant areas and these are the central themes of this thesis.

Regarding the evaluation metrics, we rigorously test eight evaluation metrics for their
correlation with human judgement when scoring summaries, their ability to detect semantic
equivalence and their sensitivity to artificial corruption. It will be seen that a set of four
novel, model-based evaluation metrics considerably outperform the prevailing evaluation
metrics. It will be argued that these are well-placed to become the new primary evaluation
metrics for text summarization research. Considering the architectures angle, we experiment
using the LED, a Transformer Encoder Decoder (TED) well-suited to long document summa-
rization. By facilitating the summarization of longer documents, we will demonstrate that
the LED performs near or at state of the art levels on long document summarization tasks.
The key findings of this thesis are as follows:

• We achieve state of the art text summarization performance on the arXiv dataset, beat-
ing the incumbent, PEGASUS, by over one ROUGE1. This is in spite of our modest com-
putational resources

• We develop a novel evaluation metric, BARTScore. This correlates approximately 2x
better with human judgement than ROUGE2. Often performed best of all metrics we
tested

• We establish a superior set of model-based evaluation metrics, consisting of BARTScore,
BERTScore, Mover-1 and Mover-2. All shown to outperform ROUGE on five tasks span-
ning three datasets

• Demonstrate that sparse self-attention performs comparably to dense self-attention for
summarization. This allows 2.5x longer sequences to fit onto standard hardware3

This thesis is structured as follows: section 2 provides the essential background for this
project, including the architectural building blocks in section 2.3 and an overview of relevant

1 PEGASUS was state of the art at the time of writing. Since then, Zaheer et al. [2020] have released Big Bird,
an adaptation for PEGASUS for long document tasks. This has set a new state of the art on the arXiv dataset and
our results do not beat these.

2 See section 6.1.2.
3 See section 6.2.2.
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1.1 Ethical, Legal and Environmental Considerations 1 INTRODUCTION

approaches in section 2.5. We outline the datasets used in this study in section 3 followed
by the design details of our evaluation metrics and model architectures in section 4. We
motivate and outline our experimental methodology in section 5, followed by corresponding
results in section 6. We provide some additional analysis in section 7 before offering some
concluding thoughts in section 8. The accompanying code can be found at https://github.
com/alexgaskell10/nlp_summarization.

1.1 Ethical, Legal and Environmental Considerations

GDPR We have included the Ethics Checklist as provided by the Imperial Department of
Computing in tables F.1 and F.2. “Section 4: Protection of Personal Data” is most pertinent
to this thesis, specifically the use of the CNN/DailyMail dataset (See et al. [2017]) as this
contains articles published on individuals including celebrities and politicians. According to
Art.(4)(1) and Art.(4)(2) of the General Data Protection Regulation (GDPR)4, by storing and
training our models on this data we are “processing” the “personal data” of “data subjects”.
The CNN/DailyMail dataset contains articles reporting on the personal data of data subject
including celebrities and politicians. Given that these contains information on data subjects’
political beliefs and sexual orientation, this data qualifies as special category data under
Art.(9)(1) of the GDPR, and is thereby prohibited unless one of the exemptions listed in
Art.(9)(2) apply. As we are conducting scientific research and we assess that this “processing
is necessary for archiving purposes in the public interest, scientific or historical research
purposes or statistical purposes”, the exemption from Art.(9)(2.j) applies. We therefore
believe we are in compliance with the GDPR when processing the special category data
within the CNN/DailyMail dataset in this thesis.

Plagiarism Looking beyond the Ethics Checklist, there is a risk that users of our code could
unknowingly commit plagiarism. Summarizing a document without providing the source is
plagiarism5, therefore any content generated using a summarization model must cite the
author of the original article appropriately. For example, using our model to write a blog
post including summaries of the latest research in a field would be plagiarism if there is no
citation. This fact is little-known and could easily catch users of our code unaware.

Environmental footprint The leading models in text summarization and NLP have be-
come larger and increasingly data-hungry since the development of the Transformer. The
NLP community is becoming more cognisant of the environmental impacts of training these
models, which frequently require days of energy-intensive GPUs for a single training cycle
(Strubell et al. [2019]). Using the Weights & Biases compute tracker, we estimate that we
have used approximately 300 days of GPU compute for our experiments in this thesis. Using
the MLCO2 machine learning emissions calculator6, this equates to over 1.5 tonnes of CO2
emissions. This is similar to the emissions cost of a flight to New York from London7. We
did not conduct any pre-training of models in this thesis conscious of the cost of doing so
(both economically and environmentally). Despite this, we have still been responsible for
considerable CO2 emissions and this is becoming an increasingly problematic issue for the
NLP community.

4https://gdpr-info.eu/art-4-gdpr/
5See https://academicintegrity.uoguelph.ca/plagiarism/paraphrasing-and-summarizing.
6https://mlco2.github.io/impact/#compute
7https://www.carbonfootprint.com/calculator.aspx
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2 BACKGROUND

2 Background

2.1 Overview of Text Summarization

Summaries play a key role in communicating written information. Defined as a document
reduced only to its essential content, a summary helps readers to understand material more
easily and quickly. In a digital world with ever-increasing volumes of writing available on-
line, summaries are playing a central role in synthesising information into a digestible for-
mat for readers. For example, between the onset of Covid-19 in January and early May 2020
there were an estimated 23,000 research papers published on the virus with the number
doubling every week8. For medical researchers to distil useful information from this volume
of publications a comprehensive toolkit aiding with information processing and condensing
is a necessity; an automatic summarizer could become a central component of such a toolkit.

Summarization is interesting from a research perspective for several reasons: first,
it mas myriad academic and commercial applications. Consider research literature surveys,
summaries of the outcomes of legal verdicts or legislative bills in the legal sector, daily market
summaries in the finance sector or general message reading for enterprise workers (which is
estimated at costing 2.6 hours per day9); a tool able to perform human-quality summariza-
tion but with digital speed would be valuable. Second, it provides a challenging extension
to other seq2seq natural language tasks. Viewed alongside machine translation for example,
text summarization inherits the difficult task of producing a coherent and informatically ac-
curate output, with the additional challenges of distilling the salient points. The asymmetric
lengths of inputs and outputs in this task also poses engineering problems owing to model
capacity issues and these will be a focus of this study. Finally, evaluating text summarization
is an interesting sub-problem due to the intra-observer variability of summaries, meaning
there potentially several valid summaries for each source document. Taken together, these
reasons justify the substantial research attention that has recently been paid to automatic
summarization and explain why it was considered one of the top AI research priorities for
202010.

Figure 2.1: Illustration of the sub-fields within text summarization. Source: Chauhan [2018].

8Source: ScienceMag.org https://tinyurl.com/ybmmdjkl. Visited on 28/05/2020.
9Source: Harvard Business Review https://tinyurl.com/y89fxw6r. Visited on 28/05/2020.
10https://blog.deeplearning.ai/blog/the-batch-happy-new-year-hopes-for-ai-in-
2020-yann-lecun-kai-fu-lee-anima-anandkumar-richard-socher
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2.2 A Brief History of Text Summarization 2 BACKGROUND

As shown in Figure 2.1, the field of text summarization can be split based on input doc-
ument type, output type and purpose. Regarding output type, text summarization dissects
into extractive and abstractive methods. Extractive forms the output summary by selecting
and arranging sentences from the source document, while abstractive generates new content
for the output summary. As the more desirable approach with greater potential, research in-
terested has switched from initially focusing on extractive to abstractive methods in recent
years, and this study will follow this lead. The following section provides some historical
context to text summarization, leading into the technical building blocks and successful im-
plementations which comprise the remainder of this section.

2.2 A Brief History of Text Summarization

Research into automatic text summarization dates back to over 60 years ago (Saggion and
Poibeau [2013]). Automatic summarization first caught the scientific community’s atten-
tion in the 1950s, focusing on technical domains (Luhn [1958]). The AI community began
showing interest in the 1980s (Lehnert and Ringle [1982]) believing that this task was an
challenging test of AI systems’ natural language capabilities. Several summarization-focused
conferences were established in the 2000s, such as the Document Understanding Confer-
ences and Text Analysis Conferences (Over et al. [2007], Ji and Grishman [2011]), con-
tributing to further research interest.

During this period, the leading contemporary approaches divided into statistical and
knowledge-based (Saggion and Poibeau [2013]). Statistical approaches looked at extractive
summarization as a binary classification problem for each sentence in the source document;
i.e. should a sentence appear in the output summary or not. Features were extracted from
each sentence and fed into a classifier on this basis. One such approach used rules to high-
light salient excerpts within the text, such as the title or sentences containing specific cue-
words such as “in conclusion” or “to summarize”. Features were then extracted by comparing
each sentence in the document to these flagged passages and these were fed into a classifier
(Edmundson [1969]).

In contrast, knowledge-based approaches attempted to incorporate semantic knowl-
edge and sophisticated lexical resources within the summarization process. One prominent
approach was the Fast Reading and Understanding Memory Program (FRUMP, Lehnert and
Ringle [1982]), used for automatically summarizing news articles. FRUMP used rich data
structures called scripts which provided a detailed description of a generic event occurring
over time. The summaries were produced using a top-down approach by mapping news ar-
ticles to these structures (Copeland [2015]). However, these approaches required the costly
manual encoding of world knowledge into the model, preventing their widespread adoption.

Until recently, extractive summarization took precedence over abstractive because of
its greater simplicity. This changed in 2014 with the advent of seq2seq neural methods which
rendered abstractive summarization viable (see section 2.3.1). Since this time, both extrac-
tive and abstractive methods have undergone rapid and consistent progress, driven initially
by the use of Recurrent Neural Networks (RNNs). The pace of progress accelerated after the
development of the Transformer (Vaswani et al. [2017]) and this architecture has come to
dominate state-of-the-art approaches. These architectures will be explained in section 2.3,
followed by some of the leading relevant methods in section 2.5.

4



2 BACKGROUND 2.3 Building Blocks

2.3 Building Blocks

2.3.1 Sequence to Sequence

Deep Neural Networks (DNNs) have risen to prominence on the back of impressive perfor-
mance across a wide range of domains (e.g. Krizhevsky et al. [2012], Devlin et al. [2018],
He et al. [2015]). However, DNNs are normally restricted to problem formulations where the
input and output dimensionality can be specified a-priori. This proved an early impediment
to their widespread adoption for natural language tasks as many of these are sequential by
nature; letters make up words, which make up sentences, which make up documents. Such
tasks include machine translation, question answering, speech recognition and text summa-
rization.

The development of seq2seq models (Sutskever et al. [2014]) was a landmark moment.
Early approaches used an RNN, (Rumelhart et al. [1986]) to encode the intput sequence
into a single vectorial representation, and then used a separate RNN to extract the target
sequence from this vector. The canonical seq2seq problem is formalized below, following the
lectures from Specia et al. [2020]:

Source sequence: X = {x1, ...,xS} (2.1)

Target sequence: Y = {y1, ...,yT} (2.2)

Encoder: E() (2.3)

Decoder: D() (2.4)

Training corpus: C = {(Xi,Yi)}Ni=1 (2.5)

Optimization procedure The standard training procedure for seq2seq models uses maxi-
mum likelihood. This means that we are trying to find a set of model parameters θ which
maximise the likelihood function L(X,Y):

θ∗ = argmaxθL(X,Y) = argmaxθ
N∏
i=1

P(Xi,Yi) (2.6)

= argmaxθ
N∑
i=1

logP(Xi,Yi) (2.7)

This makes the standard assumption that the training data are independent and iden-
tically distributed (IID), followed by taking logs. Equation 2.7 is the standard supervised
learning objective function, saying that the optimal set of parameters are those which make
the model best fit the training data. Adapting this for seq2seq problems:

θ∗ = argmaxθ
N∑
i=1

T∑
t=1

logP(yit|yi<t,Xi) (2.8)

This equation adapts Equation 2.7 to conditional language generation problems, whereby
the objective is to generate a word conditioning on a set of words. This equation can be read
as using the entire input sequence Xi and all previous ground-truth tokens {yi0,y

i
1, ...,y

i
t−1}

5



2.3 Building Blocks 2 BACKGROUND

to maximise the probability of predicting token yt. P(yit|yi<t,Xi) is a distribution over the
vocabulary, and is the conditional distribution we are trying to model. Assuming the input
sequence X is encoded into a vectorial representation v then Equation 2.7 becomes:

θ∗ = argmaxθ
N∑
i=1

T∑
t=1

logP(yit|yi<t,vi) (2.9)

The model is trained end-to-end using source-target sequence pairs until convergence
is reached.

From Equation 2.9 we can see an issue with this framework: the model is trained by
predicting a token conditioned on the previous tokens in the sequence, known as teacher-
forcing (Williams and Zipser [1989]). At inference-time however, the ground-truth is not
available so the previously sampled tokens are fed back in instead. This makes the model
auto-regressive (Graves [2013]) at inference time but not training time. As the model con-
ditions on its previously generated token, the model samples from the joint distribution over
the sequence during inference. This creates exposure bias (Keneshloo et al. [2018]) and can
lead to poor model performance as the conditioning context at inference time diverges from
that seen at training time (Lamb et al. [2016]).

2.3.2 Recurrent Neural Networks

The first generation of seq2seq models used RNN-based architectures. This section provides
a general overview of the RNN, some powerful extensions and their applicability to seq2seq
modelling11.

Overview of RNNs Feedforward DNNs are powerful function approximators and can learn
useful representations in high dimensions. However, one drawback is that they have no form
of memory so inputs are processed independently at each time step. This is problematic for
sequential tasks such as text summarization, as the network would not be able to relate what
it learned in the introduction to the methodology section, for example. The RNN is a variant
of the DNN with loops so the output from a neuron can be fed into a neuron in the same or
previous layers, permitting memory through information persistence.

Figure 2.2: A vanilla RNN. Source: Olah [2015].

Figure 2.2 shows a vanilla RNN. A is the network, which takes some input X and
outputs a hidden state. As the input is sequential, this occurs for each time step, t. The loop

11This explanation follows Olah [2015].
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2 BACKGROUND 2.3 Building Blocks

means that the hidden state from the previous time step, ht−1, is also used as an input for
the following step. Conceptually, an RNN can be envisaged as copies of a single feedforward
network with each network able to pass a message to the next. This loop enables memory
within the network as inputs early in the sequence (e.g. x0) can persist through the hidden
state and influence the outputs later in the sequence (shown as ht). The recurrence formula
is:

ht = tanh(Whht−1 +Wxxt +b) (2.10)

As shown, the hidden state is computed by projecting the previous and current hidden
states through a tanh activation function. The projection matrices Wh and Wx contain the
parameters learned by the network. The network is then trained using Back-Propagation
Through Time, BPTT (Werbos [1988]), a generalisation of Back-Propagation to cover se-
quential networks.

LSTM The vanilla RNN described above is useful for situations where sequences are short.
However, this simple architecture struggles to learn long distance dependencies (Hochreiter
et al. [2001]). One reason is that RNNs suffer from the vanishing and exploding gradients
problem (Bengio et al. [1994]) resulting from repeated matrix multiplication of the hidden
state. This hinders BPTT for words early in the sequence.

The LSTM (Hochreiter and Schmidhuber [1997]) addresses this issue. The core idea
behind the LSTM is the use of gating to regulate the information flow, giving the cell con-
trol over what information is retained or forgotten. This requires a more sophisticated unit,
shown in Figure 2.3.

Figure 2.3: The LSTM with its equation system. Source: Ismail et al. [2018].

The LSTM outputs a cell state, ct, in addition to the hidden state. The cell state has
few interactions and makes information retention simple. Gating provides the means for
adding or removing information from the cell state. These are the input, forget and output
gates, it, ft and ot respectively. The forget gate first determines how much information is
removed from the cell state, ct−1. The input gate then combines information from xt and ht−1
into “new candidate information” c̃t and determines how much should be written to the cell
state. This addresses vanishing/exploding gradients as the repeating module now contains
additive and multiplicative operations, rather than exclusively multiplicative operations as
for the vanilla RNN. The output gate determines how much of the new cell state ct should be
outputted as the new hidden state ht. Comparing Figure 2.3 to Equation 2.10 we see that the
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LSTM has quadruple the number of parameters as the vanilla RNN (two projection matrices
per gate), and therefore is able to model more complex, longer-distance dependencies.

Other Variants Myriad variants of the RNN exist. This section explores bidirectional RNNs
and deep RNNs as two powerful examples. One drawback of the RNN above is that context
can only be included from left to right. Considering summarization for example, it might
be useful to refer back to the introduction after reviewing the experimental results. Bidi-
rectional RNNs, BRNN (Schuster and Paliwal [1997]), address this by using two RNN units
and feeding the sequence forwards through one unit and backwards through the other, as
illustrated in Figure 2.4. This modification tends to improve performance for tasks which
benefit from using context from both sides.

Figure 2.4: A bidirectional RNN. Source: missinglink.ai12.

Deep RNNs (Tutschku [1995]) are another modification. These are formed by stacking
multiple RNN units vertically so that the hidden state from one layer is the input for the
subsequent layer, analogous to stacking layers in a multi-layer perceptron. Each layer adds
another RNN unit, increasing the learnable parameters and power of the network. These
modifications can be combined to create a deep BRNN as shown in Figure 2.5. When used
in conjunction with powerful LSTM units, these variants can make large recurrent models
able to learn complex functions.

Figure 2.5: A deep, bidirectional RNN. Source: missinglink.ai13.

RNNs for seq2seq The seq2seq paradigm began with Sutskever et al. [2014]. Their en-
coder, a four-layer uni-directional LSTM, reads the input sequentially to form a single vecto-

12https://tinyurl.com/ycg6rlsz. Visited on 23/05/2020.
13https://tinyurl.com/ycg6rlsz. Visited on 23/05/2020.
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rial representation encoding. The decoder (also a four-layer uni-directional LSTM) extracts
the output sequence by conditioning on the hidden state and the previous ground truth to-
kens.

Figure 2.6: An example of using RNNs for seq2seq modelling. Source: Sutskever et al. [2014].

Figure 2.6 illustrates the encoder decoder structure: the input sequence, consisting of
{A, B, C}, is encoded sequentially. The first decoder step is conditioned on the encoded
vector (and a token “<EOS >” designating the beginning of the decoding sequence), and
each subsequent decoding step conditions on the decoder hidden state and the previously
generated token. The output P(yt|y<t,v) as shown in Equation 2.9 is a softmax over the
possible output tokens (the vocabulary for language tasks) and the token with the highest
probability is selected. This continues until the decoder produces the “<EOS >” token,
indicating the end of the sequence. This structure can therefore handle inputs and outputs
of arbitrary lengths, making it suitable for sequential tasks.

2.3.3 Attention

In section 2.3.2 we described several flavors of RNNs and how these models could be used
for seq2seq tasks. In this section we outline attention and how it aids RNNs for seq2seq
modelling.

Issues with RNNs for seq2seq Despite the enhancements highlighted in section 2.3.2, the
RNN still faced several challenges when applied to seq2seq tasks. First, the input sequence
must be encoded to a single vector of fixed dimension irrespective of the input size. This
creates a bottleneck in the encoder output. Second, this structure struggles learning long
distance dependencies as gradients must flow through every hidden state, creating vanishing
or exploding gradients again. This mean that the encoder is often under-trained for words
early in the source sequence.

The Attention Mechanism Attention offers a solution to both of these issues. The idea
behind attention, shown in Figure 2.7, is to allow the decoder to focus on some encoded
words more than others during the decoding process. The attention mechanism computes a
dynamic context vector ct using all encoder hidden states, H = {h0,h1, ...,hs} and the current
decoder hidden state, dt, at each decoder time step.

The first stage of the attention mechanism computes a similarity score si between the
decoder hidden state and each encoder hidden state. The two main variants for computing
si are MLP attention (Bahdanau et al. [2014]) and Dot attention (Luong et al. [2015]),
described as follows:

9
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Figure 2.7: An illustration of an RNN with attention. Here the model is at the second decoding
time step. Source: See et al. [2017]

Dot attention: si = hT
i dt (2.11)

MLP attention: si = aT tanh(Wddt +Whhi) (2.12)

The main difference is that MLP attention learns a vector of weights aT while dot
attention only takes dot products. As dot attention is more popular, we will focus on this
hereon in. The si ’s are normalised using a softmax, creating a set of weights:

{α0,α1, ...,αs} = softmax{s0, s1, ..., ss} (2.13)

The context vector ct is then computed as an average of the encoder states weighted
by the softmax scores:

ct =
S∑
i=1

αihi (2.14)

The context vector is concatenated with the decoder hidden state dt to produce the
attentional hidden state, h̃t (Luong et al. [2015]). This vector is projected through a softmax

layer to produce the output distribution over the vocabulary:

p(yt|y<t,v) = softmax(Wsh̃t) (2.15)

Using attention, the decoder sees a different encoded representation at each time step
as ct is dynamic. This tackles the bottleneck issue, increasing the capacity of the network for
longer sequences. In addition, gradient flow through the network is improved by providing a
more direct route for gradients to flow from the decoder to the encoder via the context vector.
This can be seen in Figure 2.7: gradients can flow from the output vocabulary distribution
to each of the encoder hidden states via the attention computation. This alleviates explod-
ing/vanishing gradients as this path requires fewer multiplicative operations, also helping
the network to learn longer distance dependencies. This demonstrates clear advantages for
using attention with RNNs for seq2seq tasks.
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2.3.4 Transformers

The next stage in the evolution of seq2seq modelling came with the development of the
Transformer (Vaswani et al. [2017]). RNNs are sequential models by nature as they process
the input one token at a time, limiting their capacity to be parallelized. The Transformer is
designed to be easily parallelized and suitable for pre-training on large datasets by discard-
ing recurrence and primarily using attention. Transformer-based architectures have come to
dominate the state-of-the-art approaches in seq2seq tasks including text summarization. This
section explains the TED following Rush [2018].

Figure 2.8: Schematic of a TED showing (left to right): self-attention, multi-head attention and
the overall architecture. Source: Vaswani et al. [2017]

Self-attention The key component within the Transformer is self-attention. This allows
the network to use context by relating each token to every other token in the sequence.
Formally, self-attention uses a query Q and a set of key-value pairs, {K,V}. The output is a
weighted sum of the values, where the weights are computed using a compatibility-function
of the query with the keys. The compatibility-function used in Vaswani et al. [2017] was
Scaled Dot-Product Attention. This is illustrated in Figure 2.8 and computed as follows14:

Attention(Q,K,V) = softmax(
QKT
√
dk

)V (2.16)

Multi-Head Attention The above computation comprises a single head; multi-head at-
tention computes h versions of this in parallel and concatenates and projects the result.
This allows the network to learn different representations where each input attends dif-
fering amounts to other tokens in the sequence. This computation is show below, with
WQ

i ,W
K
i ,W

V
i and WO being the learnable weight matrices.

MultiHeadAttn(Q,V,K) = Concat(head0,head1, . . . ,headh)W
O (2.17)

14This formula divides by
√
dk , the dimensionality of the keys/query, as otherwise the variance of the dot product

would increase linearly with the dimensionality, pushing the softmax into regions with negligible gradients.
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with headi = Attn(QWQ
i ,KWK

i ,VWV
i ) (2.18)

Transformer Architecture The complete TED architecture is illustrated in Figure 2.8. The
left half is the encoder and the right half is the decoder. The encoder consists of N (six in
the paper) stacked blocks, each block containing a multi-head attention layer (eight heads)
and a feedforward layer. The feedforward layer comprises of two projections with a ReLU
activation function nested between. Each layer uses residual connections and are followed
by a normalisation layer. Positional encodings are added to the input embeddings to capture
the order of words in the sequence as attention is order-agnostic.

The decoder stack is equivalent to the encoder stack except with an additional multi-
head cross attention layer inserted between the first multi-head attention layer and the MLP
layer. This allows the decoder to attend to the encoder output vector. The decoder stack
output is projected through a softmax layer to generate the distribution over the vocab-
ulary, p(yt|y<t,v). As for seq2seq RNNs, the decoder is auto-regressive as it consumes its
previously generated tokens as inputs for generating subsequent tokens. To maintain the
auto-regressive property, future tokens must be masked from the decoder. This is done by
setting the values of illegal positions within the decoder to −∞, preventing the decoder from
drawing on information from later positions in the sequence.

Complexity A primary motivation for the Transformer was to create a non-sequential ar-
chitecture suitable for seq2seq, enabling greater parallelization during training. Moving from
a recurrent network to an attention-based network has implications for computation com-
plexity, with the cost of a single layer of each being O(nd2) and O(n2d) respectively, with
sequence length n and embedding dimensionality d (Vaswani et al. [2017]). For the major-
ity of seq2seq tasks, d > n, hence Transformers are a more efficient option. However, we
are interested in long sequences, where n > d15. This proves a bottleneck as the complexity
scales quadratically, meaning the memory requirement quickly becomes too large to train
models on current GPUs. Section 2.5 presents some potential workarounds to this problem.

2.4 Evaluation

Performing evaluation for seq2seq tasks is challenging given there is no ground truth. For text
summarization, there may exist two equally good summaries for a single document which
focus on different content and are lexically diverse. This section outlines the ROUGE package,
discusses its flaws and proposes a set of alternative metrics based on contextualised word
embeddings.

2.4.1 ROUGE

The Recall-Oriented Understudy for Gisting Evaluation (Lin [2004]), ROUGE, is the most
widespread summarization evaluation metric. Despite its shortcomings (to be discussed), it
is the yardstick decreeing which approaches are considered state-of-the-art. ROUGE performs
evaluation by comparing the candidate summary to a set of human-produced reference sum-
maries, specifically by computing the co-occurrences of n-grams between the candidate and
each reference. ROUGE is a package containing several metrics; for this study we report

15By convention, d is normally not larger than 1024. In later chapters we will test the LED-4096 which uses
inputs with n = 4,096.
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ROUGE-1, ROUGE-2 (both instances of ROUGE-N) and ROUGE-L as these are most prevalent in
the literature.

ROUGE-N computes the recall of n-grams between an output text and a set of reference
texts as follows:

ROUGE-N =

∑
S ∈ {Ref erences}

∑
gramn ∈ S

Countmatch(gramn)∑
S ∈ {Ref erences}

∑
gramn ∈ S

Count(gramn)
(2.19)

Here, n is the length of the n-gram and Countmatch(gramn) is the number of n-grams
which co-occur in the candidate text and the set of references. The denominator counts the
number of n-grams available on the reference side, hence this metric measures recall. This is
closely related to the BLEU (Papineni et al. [2002]) metric for evaluating machine translation
quality, the main difference being that BLEU is a precision metric so counts n-grams on the
candidate side in the denominator16.

We also consider ROUGE-L, measuring the longest common subsequence17 between two
texts. This measure has two advantages in that it does not require words to be consecutive
provided they occur sequentially, meaning it is more robust to meaning-invariant lexical
permutations. Also, it automatically includes the longest sequence length so does not require
explicitly stating the n-gram length as for ROUGE-N. The metric is an F-measure computed as
follows:

Rlcs =
LCS(X,Y )

m
(2.20)

Plcs =
LCS(X,Y )

n
(2.21)

Flcs =
(1+ β2)RlcsPlcs
Rlcs + β2Plcs

(2.22)

Herem and n are the lengths of textsX and Y respectively, Plcs is the precision measure,
Rlcs is the recall measure and β specifies the weighting (usually β is set very large meaning
that only Rlcs is considered).

Shortcomings of ROUGE ROUGE has contributed substantially towards the field of text
summarization by enabling benchmarking and comparison of models. However, it has a
number of shortcomings. As explained earlier, ROUGE is designed to compare a candidate
against a set of reference summaries; in practise, rarely do multiple summaries exist for a
single text. ROUGE correlates well with human judgement when averaged over a set of refer-
ences (Louis and Nenkova [2013]) but performs poorly with a single reference, so much so
that it struggles to distinguish between good and bad summaries for the same source docu-
ment (Böhm et al. [2019]). As ROUGE is computed using n-gram statistics, it only performs a
surface-level comparison and penalises lexical and compositional diversity even if the output

16As precision-based metrics favour shorter translations, BLEU adds a brevity penalty to penalise short candidates.
17Formally, a sequence Z = [z0, z1, ..., zn] is a subsequence of Y = [y0, y1, ..., yn] if there is a strictly increasing

sequence indices I = [i0, i1, ..., ij ] such that for all ik ∈ I , yik = zk (Cormen et al. [2001]).
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is semantically analogous to the reference. With this in mind, this study interprets ROUGE as
a necessary but not sufficient condition; high scores do not necessarily mean the model is
producing strong summaries but low scores are a red flag.

2.4.2 Human Evaluation

Human evaluation is viewed as the gold standard in text summarization. Small-scale experi-
ments using human evaluators are often used to supplement the reporting of ROUGE scores in
the literature (Zhang et al. [2019a], Böhm et al. [2019], Yoon et al. [2020]), as experimen-
tal evidence comparing a model to its peers using human assessors is the most conclusive
evidence as to the performance of a model. However, these experiments are costly and
impractical, especially on longer and technical datasets such as arXiv and PubMed as used
in this study (see section 3). Furthermore, because of budget limitations, experiments are
normally small-scale and compare to only a subset of the rival architectures. This makes it
difficult to perform benchmarking of different models using only human evaluations.

2.4.3 Model-Based Metrics

One drawback of ROUGE is it cannot account for lexical diversity between texts as it is based
on n-gram overlaps. Some recent approaches have investigated using word embeddings as
a means to analyse the semantic similarity of two texts (Zhao et al. [2019]). This section
highlights several examples.

BERTScore BERTScore uses BERT (Devlin et al. [2018]) to perform the automatic evalua-
tion of two texts by comparing the weighted cosine similarities of their embedded represen-
tations. Figure 2.9 outlines the computation of the recall metric, RBERT. The first stage is
to feed the candidate x̂ = {x̂1, ..., x̂k} and reference summary x = {x1, ...,xm} through BERT18 to
obtain the embedded sequences x̂ = {x̂1, ..., x̂k} and x = {x1, ...,xm} respectively.

Figure 2.9: The computation of the BERTScore recall metric, RBERT. Source: Zhang et al.
[2019b]

The authors use cosine similarity of the embeddings as a distance measure of the two
texts’ embeddings. This is computed for each candidate-reference token pair as follows:

Cos-Sim =
x>i x̂j
‖xi‖ ‖x̂j‖

(2.23)

18The authors used twelve variants of BERT from the huggingface transformers library (Wolf et al. [2019]).
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From here, greedy matching is used to compare each token to the most similar token
in the other sequence. A recall, precision and F1 measure are computed as follows19:

RBERT =
1
|x|

∑
xi∈x

maxx̂j∈x̂ x
>
i x̂j (2.24)

PBERT =
1
|x̂|

∑
xi∈x

maxx̂j∈x̂ x
>
i x̂j (2.25)

FBERT = 2
PBERT ·RBERT
PBERT +RBERT

(2.26)

There is an additional (optional) phase to the computation using inverse document
frequency (idf) as a form of importance weighting20. The authors include this as previous
studies indicate that rare words are more useful for comparing similarities between texts
than common words (Banerjee and Lavie [2005]). Assuming a set of M texts {x(i)}Mi=1, the
idf for each token w is computed as follows:

idf(w) = − log 1
M

M∑
i=1

I [w ∈ x(i)] (2.27)

Here I [·] is an indicator function representing the presence of w in text x(i). Combining
Equation 2.24 and Equation 2.27, the importance weighted recall measure is computed as:

RBERT =

∑
xi∈x idf(xi)maxx̂j∈x̂ x

>
i x̂j∑

xi∈x idf(xi)
(2.28)

The authors find that BERTScore correlates better with human evaluation than other
metrics on a machine translation evaluation task21. Furthermore, Li et al. [2019] demon-
strate the potential to use BERTScore to evaluate abstractive summarization by using the
(unweighted) version of FBERT as a reward function to fine-tune a pre-trained summariza-
tion model. They evaluate on the CNN/DailyMail See et al. [2017] dataset and show im-
proved performance using BERTScore to fine-tune their results compared to using ROUGE,
with improved fluency and fewer repetitions. These results show the promise of BERTScore
as an evaluation metric for text summarization.

2.4.4 BLEURT

This paper has already well-documented the impact of Transformers throughout NLP. BERTScore
is one example of using these models for language evaluation. BLEURT (Sellam et al. [2020])
extends this a step further by pre-training BERT to act as an effective evaluator of natural
language which is less susceptible to domain drift. The authors assert that a robust and ex-
pressive evaluation metric can be trained by leveraging unsupervised pre-training combined

19Using pre-normalized vectors reduces the computation in Equation 2.23 to just the numerator.
20These are computed from the test corpus
21The WMT18 metric evaluation dataset (Ma et al. [2018]), containing translations of 159 different models

spanning 14 languages.
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with fine-tuning on human evaluations.

Assuming a training set of {(xi, x̃i, yi)}Ni=1 with xi, x̃i and yi representing the reference
sequence, candidate sequence and human evaluation score respectively (yi ∈ R), their ob-
jective is to train a model to learn F : (x, x̃) −→ y. The output ratings are given by:

yi = F (x, x̃) =WvCLS +b (2.29)

Here the CLS token from the output of BERT is projected through a linear layer with
weights W and biases b. Both the linear layer and BERT are trained during fine-tuning to
minimize a regression loss function, while only BERT is trained during pre-training.

The main innovation from BLEURT comes from their novel pre-training scheme using a
synthetic dataset tailored to evaluation. They create a dataset of 6.5 million samples, each
containing a sentence extracted from Wikipedia alongside an artificially perturbed version
of that sentence. Their intentions are that via the synthetic perturbations, the model will
be familiar with many of the issues it might encounter between the hypothesis and target
summaries when deployed as an evaluation metric. To produce the dataset they use three
techniques: 1) BERT Mask-filling (mask 15% of tokens and then in-fill these tokens using
BERT, thus introducing lexical diversity without ruining the fluency and grammar of the orig-
inal sentence); 2) back-translation to generate semantic-preserving variants on sentences;
3) word-dropping.

Each sample is then augmented with a set of k signals indicating the similarity between
the two sentences. Each of the k signals correspond to individual tasks and include automatic
metrics such as ROUGE or BLEU or a textual entailment signal indicating if a sentence is en-
tailed by the other22. Their experiments show BLEURT has state-of-the-art performance on
the WMT Metrics Shared Task (2017-2019, to-English pairs, Ma et al. [2018]). BLEURT is an
obvious candidate for us to consider in our search for a better evaluation metric and it will
be interesting to test its generalization to summarization.

2.4.5 MoverScore

MoverScore (Zhao et al. [2019]) was developed contemporaneously to BERTScore and can
be seen as a generalized version of BERTScore combined with Word Mover’s Distance (WMD,
Kusner et al. [2015]). WMD computes the similarity of two documents as the minimum dis-
tance between the embedded representations of two documents. This is an instance of the
widely-studies Earth Mover’s Distance (EMD) transportation problem for which numerous
efficient solvers exist. Their experiments show that MoverScore performs competitively or
state-of-the-art on numerous evaluation tasks including on the 2008 and 2009 TAC (Ji and
Grishman [2011]) summarization datasets.

Here we formally introduce MoverScore. Assume we have a sentence x = (x1, ...,xm),
with xn representing the sequence of n-grams of x (e.g. the sequence of bigrams of x is
x2). Assume that we also have a vector of weights fxn ∈ R

|xn|
+ , where f>xn1 = 1. Defining

22Measured using BERT| fine-tuned on a Natural Language Inference (NLI) dataset, MultiNLI

Williams et al. [2018])
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MoverScore for different n-grams allows for different variants of MoverScore analogously to
the n-gram variants of ROUGE. In this thesis we use the 1 and 2-gram flavours, Mover-1 and
Mover-2.

Solving for the WMD between two n-gram collections (xn,yn) with associated weights
(fxn ,fyn) is akin to solving the following optimization problem:

WMD(xn,yn) := min
F∈R|xn |×|yn |

〈C,F〉, (2.30)

s.t. F1 = fxn , F>1 = fyn (2.31)

Here C is the transportation cost matrix, with the distance between the i-th n-gram of x
and the j-th n-gram of y being Cij = d(xni , y

n
j ). Fij represents the transportation flow between

the between the i-th n-gram of x and the j-th n-gram of y, collected in the transportation
flow matrix F.

The distance function is the Euclidean distance between the two representations in the
embedded space:

d(xni , y
n
j ) = ‖E(x

n
i )−E(y

n
j )‖2 (2.32)

Here E is the embedding function. BERT (Devlin et al. [2018]) is used to compute the
contextual embeddings here23. The n-gram embedding is computed as the weighted sum of
the individual token embeddings. By computing the WMD, MoverScore reflects both where
the candidate and reference document overlap but also where they deviate.

Comparison with BERTScore BERTScore can be viewed as a hard-aligned case of WMD.
BERTScore computes maximum pairwise cosine similarities for each token in the two se-
quences. In the context of WMD, this means that each token travels to the most semantically
similar token in the other sequence, hence there is a hard one-to-one mapping for each token
the sentence pairs. MoverScore uses soft alignments and the mapping across the sentence
pairs is determined by solving the constrained optimization problem in Equation 2.31.

2.5 Leading Approaches to Text Summarization

The leading approaches to text summarization could be grouped into Transformers, RNNs
and Reinforcement Learning (RL). The first generation of abstractive summarization models
used RNNs but have since been overtaken by Transformers (Liu [2019], Zhang et al. [2019a],
Radford et al. [2019], Raffel et al. [2019]). However, as discussed in section 2.3.4, the
self-attention layer is a bottleneck for longer sequences as its memory requirement scales
quadratically with input length, hence requiring modifications for use in long document
summarization. RNNs scale linearly with sequence length so are more easily adapted. This
study investigates some promising approaches to long document summarization and these
architectures are outlined below.

23Any embedding function can be used by the authors’ experiments show that BERT performs best.
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Model Variant Pre-training Obj. Self-Attention Type

BART TED Shuffle & mask spans. n2

PEGASUS TED Gap-Sentence Prediction n2

ProphetNet TED Future n-gram prediction N-stream
Longformer TE N.A.∗ Sliding window
Reformer TE N.A.∗ LSH & local

Table 2.1: Summary table of the Transformer architectures used in this thesis. * pre-training
was not conducted for these models.

2.5.1 TED Architectures

This section introduces the primary TED architectures used in this thesis. These are summa-
rized in Table 2.1.

BART BART (Lewis et al. [2019]) is a leading model for generative tasks including text
summarization. It is a TED24 , which the authors explain is a combination of GPT (Radford
et al. [2019]) and BERT (Devlin et al. [2018]), as shown in Figure 2.10. BERT is pre-trained
using the Cloze task (Taylor [1953]), meaning that tokens are masked at random from the
sequence and the model is trained to predict these tokens. When predicting a target token,
the model can draw on context from before and after the target, hence BERT is bidirectional.
In contrast, GPT is pre-trained to predict the next word in a sequence so can only use context
from the left. This makes GPT more effective for generative tasks as context is only available
from the left when performing these tasks, but less effective for non-generative downstream
tasks as using context from both sides allows BERT to learn more meaningful representations
during pre-training.

Figure 2.10: A schematic comparison of BERT, GPT and BART. BART has a bidirectional encoder
allowing context from both sides, following BERT, and an auto-regressive decoder allowing con-
text only from the left, following GPT. Source: Lewis et al. [2019].

BART (short for Bidirectional and Auto-Regressive Transformers) combines the two
architectures by using a bidirectional encoder and an auto-regressive decoder, as seen in
in Figure 2.10. This architecture broadens the scope of possible noising transformations
that can be applied to the input sequence during pre-training, including modifications to
the sequence length. The authors experiment with numerous pre-training objectives and
find a combination of randomly shuffling the order of the input sequence and masking sub-
sequences of tokens of random length with a single mask token to be the most successful. By

24The main architectural difference to the original TED is that the activation functions are changed from ReLUs
to GELUs (Hendrycks and Gimpel [2016])
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altering the lengths of sequences during pre-training, the model learns to reason over longer-
range dependencies and overall output length. This makes BART’s pre-training regime better
suited for text summarization, resulting in new state-of-the-art performance.

PEGASUS BART demonstrated the effectiveness of the TED architecture for summarization.
Subsequently, Zhang et al. [2019a] developed PEGASUS as an alternative TED model for
summarization. The main difference between PEGASUS and BART is the choice of pre-training
objective: Zhang et al. [2019a] introduce Gap Sentence Generation, GSG, a novel pre-
training objective whereby entire sentences are masked and the objective is to generate these
conditioned on the remainder of the document. The authors find pre-training using GSG to
be most effective when salient sentences are masked and these are identified by computing
the ROUGE score between each sentence and the remainder of the document.

ProphetNet Yan et al. [2020] introduced ProphetNet as another TED architecture for text
generation tasks. The authors identify a tendency for language models (LMs) to learn biases
through training whereby the model over-fits on local token correlations but under-fits on
global token correlations. This stems from two factors: 1) teacher-forcing means models are
trained to only predict one token ahead and therefore do not learn to plan ahead; 2) signals
from local token correlations (i.e. bi-gram correlations) are normally much stronger than
wider window dependencies.

Figure 2.11: Schematic comparison of ProphetNet’s future bigram prediction compared to the
usual 1-step prediction in LMs. Here the next two tokens are predicted simultaneously at each
training step.

ProphetNet is trained using a novel pre-training methodology, future n-gram

prediction, to counteract these weaknesses. As illustrated in Figure 2.11, during training
the model predicts the next n tokens simultaneously per step. This alters the seq2seq ob-
jective from predicting p(yt |yi<t ,x) into predicting p(yt:t+n−1|yi<t ,x). Figure 2.11 illustrates the
bi-gram case where the model is trained to predict p(yt , yt+1|yi<t ,x). Predicting n tokens ahead
is not possible using the usual Transformer Decoder; the authors modify the decoder to al-
low the model to predict more than one token ahead (N-stream self-attention). At inference
time, the model only predicts the following token as for conventional LMs. This approach
proved successful and, at the time of writing, ProphetNet has state-of-the-art performance
on the CNN/DailyMail summarization task.
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Transformer Decoder Another renowned study approaches the problem of generating
Wikipedia articles as one of multi-document summarization of a set of reference docu-
ments25 (Liu et al. [2018]). Being a multi-document summarization task, the input se-
quences were longer than other contemporaneous approaches. To account for this, the
author used a two-stage approach: 1) use extractive summarization to select a subset of
the input and 2) train an abstractive summarization model to generate the output articles
conditioning on the extracted summary as input. They use a number of methods including
eschewing the encoder and using local self-attention in place of dense self-attention (see
section 2.5.2 for more details). We would have liked to have included this model as a base-
line but the authors have not released pre-trained model weights and we do not have the
hardware available to train from scratch.

2.5.2 Memory-Efficient Transformers

As discussed in section 2.3.4, the attention mechanism is a bottleneck for longer sequences
as its memory requirement scales quadratically with input length. This means that the self-
attention mechanism in TEDs requires modification for their efficient use in long document
summarization. A crude (but common) solution is to truncate the input document and we
will include this as a baseline model. More sophisticated solutions replace the self-attention
layer with a less computationally and memory intensive alternative and we examine the
Longformer and Reformer as two solutions next. These are summarized in Table 2.1.

Longformer Beltagy et al. [2020] design the Longformer as a Transformer Encoder (TE)
suitable for long document tasks. Their solution is to replace the O(n2) attention mechanism
with a sparse attention mechanism which scales linearly with input length, n. This sparsity
is achieved through using “attention patterns” which specify how positions attend to other
positions in the sequence. Consequently, the Longformer has a maximum input size of 4,096
tokens compared with 1,024 for BART; this results in the Longformer being able to read 76%
of PubMed documents and 39% of arXiv documents without truncation, compared to 13%
and 3% respectively for BART.

Figure 2.12 illustrates this schematically: a dense matrix represents “normal” attention
as each position attends every other position. Sliding window attention uses a w-sized win-
dow26, where each token attends to w

2 tokens each side of its position. Drawing from dilated
convolutional neural networks, CNNs, (van den Oord et al. [2016]), each token attends to
every other token on each side when using dilated sliding window attention. Analogously to
CNNs, these layers can be stacked, making a receptive field of size l ∗d ∗w, with l layers and
d dilation.

The final attention pattern is global + sliding window. This allows global attention to
be specified for some (small number) of tokens in the sequence. For example, in classification
tasks, global attention can be specified for the whole sequence [CLS] token (when using
BERT). This means that [CLS] can attend to every token and every token can attend to it,
adding high representational power to select positions within the sequence. The attention
matrix for global + sliding window attention is shown in Figure 2.12. Their model shows

25These consist of articles cited in the Wikipedia document and supplemented by crawled Google web search
results when the article had few citations.

26w << n for efficient implementation.
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Figure 2.12: A schematic comparison of the different attention patterns in the Longformer. n2

attention corresponds to the “normal” dense self-attention. The remaining figures show different
examples of the sparse self-attention introduced in Beltagy et al. [2020]. Source: Beltagy et al.
[2020]

consistent improvement over a baseline obtained using RoBERTa (Liu et al. [2019]) on a
number of long document tasks. As their model is only a TE, it cannot be applied as-is
to text summarization. A drawback of this approach is that the tokens selected for global
attention are task specific and must be manually selected.

Reformer The Longformer (Beltagy et al. [2020]) outlined above is one solution for tack-
ling the quadratic bottleneck of self-attention within Transformers. An alternative architec-
ture tackling the same issue is the Reformer (Kitaev et al. [2020]). The authors question
whether a “lighter” version of the Transformer (Vaswani et al. [2017]) with fewer parameters
and less intensive computation can perform on par with the original. Identifying memory
as the primary bottleneck, they introduce three innovations to reduce the memory require-
ments of the Reformer: 1) an approximate self-attention computation, LSH self-attention, 2)
reversible layers and 3) chunking the feed-forward layers.

The first of these is locality-sensitive-hashing, (LSH) self-attention. Similar to
sliding-window attention for the Longformer, this is an approximation to O(n2) attention,
reducing the complexity to O(n logn). Equation 2.16 displays the self-attention computa-
tion. The main bottleneck is the QK> term. As we are concerned with softmax(QK>) we
only need to compute the largest items as these will dominate the softmax with the re-
maining values near zero. Therefore attention can be approximated by identifying the most
similar keys in K to each query vector qi ∈Q and computing the dot product between these.

Kitaev et al. [2020] also notice that using a shared-QK Transformer, where Q =K does
not reduce performance. This permits bucketing of query vectors with high cosine similari-
ties resulting from the transitivity of the cosine similarity operator: if qi and qj , and qj and
qk have high cosine similarities, then qi and qk also have high cosine similarity. Taking the
softmax of the vectors in each LSH bucket, we can approximate the full softmax computa-
tion with lower cost.

The challenge now is to efficiently bucket the most similar query vectors. This is a
high-dimensional nearest-neighbour problem but using nearest neighbours is too expensive.
The authors approximate this solution using the Angular LSH algorithm, a variant on the LSH

algorithm (Andoni et al. [2015]). This is illustrated schematically in Figure 2.13: the query
vectors are projected onto the unit circle which is divided into a number of regions. The
projected vectors are then subjected to random rotation. This step is repeated several times,
each time recording the region the two points end up in. The logic is that two similar queries
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Figure 2.13: Angular LSH with two dissimilar query vectors. Angular LSH is an approximate
method for solving for nearest-neighbours in high-dimensional space. As two of the three per-
mutations result in the points being in different regions, these two points would not be placed
into the same hash bucket. Source: Dirafzoon [2020].

will end up in the same region lots of times, while dissimilar points will end up in the same
region rarely.

Figures 2.13 and 2.14 illustrate this schematically: in Figure 2.13, the two points are
not similarly located and therefore only end up in the same region once after the random
rotations. In Figure 2.14 the projected points are similar and therefore are in the same re-
gion all three times. Consequently, the queries corresponding to the two projected points in
Figure 2.13 would not share an LSH bucket, while the points in Figure 2.14 would.

In their final model, the authors alternate between LSH self-attention and local self-
attention. Local layers chunk the input and computes dense self-attention on each chunk
separately27. The output is concatenated to form the attention layer output. These layers re-
duce memory consumption fromO(n2) toO(n∗c2), where c is chunk size (von Platen [2020]).

As mentioned, the Reformer also has two additional innovations. These will not fea-
ture in our research so we only touch on them. The first is reversible layers, inspired by
RevNets from Computer Vision (Gomez et al. [2017]). The observation here is that each lay-
ers’ activations can be computed using the previous layers’ activations, and therefore we can
trade speed off for memory consumption by re-computing each layers’ activations prior to
performing backpropagation. This makes memory consumption independent of the number
of layers in the encoder / decoder.

The final innovation is chunking the feedforward module computations following the
self-attention layers. This module consists of two projections with a non-linear activation
function between them, and the projection matrices have dimension dhid x dintermediate and
dintermediate x dhid . Transformers tend to have dintermediate > dhid , which can cause a large

27As this does not allow tokens on the boundary of the chunk to attend to their neighbours across chunks,
this design is relaxed to allow the boundary tokens to attend to their immediate neighbours in the preced-
ing/subsequent chunks.
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Figure 2.14: Angular LSH with two similar query vectors. Angular LSH is an approximate
method for solving for nearest-neighbours in high-dimensional space. These queries would be
placed into the same LSH bucket as they are in the same region after each of the rotations.
Source: Dirafzoon [2020].

memory bottleneck here28. The authors observe that this computation can be performed for
each hidden unit independently, and therefore the computation can be chunked and concate-
nated after being projected back down to size dhid . This avoids having to have to compute
the (large) intermediate tensor in one go and therefore reducing memory consumption. The
authors find that the benefits only manifest when inputs start becoming very long (i.e. over
4K tokens, beyond the range we experiment with) so we do not implement this method.

2.5.3 Using Recurrent Neural Networks

RNNs were overtaken by Transformers as state-of-the-art for text summarization because
of the latter’s greater proficiency with producing fluent and readable summaries. However,
the Transformer cannot be used for long documents without substantial surgery. Given that
RNNs’ memory complexities scale linearly with sequence length, they should provide a com-
petitive baseline without requiring substantial surgery. This section outlines the RNN-based
text-summarization architecture used as baselines for this study.

Pointer Generator Networks In an early pioneering work, See et al. [2017] devised the
Pointer Generator Network (PGN) as a hybrid of Vinyals et al. [2015] Pointer Networks29

and the traditional seq2seq RNN with attention (e.g. Nallapati et al. [2016]). The RNN
seq2seq component of this model follows that outlined in section 2.3.2, using a single layer
bidirectional LSTM as the encoder and a single-layer unidirectional LSTM as the decoder.
This generates Pvocab, the usual distribution over the vocabulary. The main development
with the PGN is that the model can choose to generate words from the vocabulary or copy
tokens from the input via pointing. This modification can be seen by comparing Figure 2.15,
an illustration of the PGN, to the seq2seq RNN in Figure 2.7. The novel section is the pgen
node, a scalar denoting the probability of generating a word. Formally, the final vocabulary

28The large version of BART has dintermediate = 4,096 and dhid = 1,024 (Lewis et al. [2019]).
29This uses attention to select (or “point” to) one of the input tokens as the next output token.
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Figure 2.15: A schematic of the Pointer Generator network. Source: See et al. [2017]

distribution Pf inal is computed with:

Pf inal = pgenPvocab(w) + (1− pgen)
∑
i:wi=w

αi (2.33)

Here αi are the attention weights computed in Equation 2.13 on page 10. This archi-
tecture allows the model to copy from the input, a feature unavailable in contemporaneous
RNNs for seq2seq. The network learns to adjust pgen so it can copy from the source text when
the most appropriate token at the next decoding step exists in the summary or when the
model encounters out-of-vocabulary (OOV) words. When published, this model improved
substantially on the state-of-the-art for the CNN/DailyMail dataset by over 2 ROUGE and is
often used as a baseline for text summarization experiments.

2.5.4 Beyond Maximum Likelihood

The text summarization community has seen an interesting recent shift towards extend-
ing the training optimisation procedure to alternatives to Maximum Likelihood. These ap-
proaches share two common pillars of understanding: 1) Maximum Likelihood training can-
not account for lexical and compositional diversity and therefore is too restrictive as the sole
training method; 2) training using Maximum Likelihood but evaluating on ROUGE creates a
metric discrepancy and calls the training methodology further into question. This section
highlights reinforcement learning as a significant niche within this area.

Reinforcement Learning One approach addressing the above problems involves incorpo-
rating reinforcement learning (RL) into the training pipeline (Böhm et al. [2019], Li et al.
[2019], Pasunuru and Bansal [2018]). In comparison to the Maximum Likelihood paradigm
which pushes the model to reproduce the reference summary exactly, RL optimises the model
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to maximise expected rewards, hence the model is more directly incentivised to produce
higher-quality summaries. In these approaches, the model is usually pre-trained using su-
pervised learning (usually a language modelling task) and RL is used as a fine-tuning step
because of the poor sample efficiency resulting from sole use of RL.

Early approaches (e.g. Pasunuru and Bansal [2018]) used ROUGE directly as the reward
function, addressing the metric discrepancy. However, as discussed in section 2.4.1, ROUGE
has its own shortcomings, so Li et al. [2019] extended this idea to use BERTScore (Zhang
et al. [2019b]; see section 2.4.3) as the reward function30. In a similar vein, Böhm et al.
[2019] learn a reward function with which they fine-tune their summarizer. To train their
reward function they use a dataset consisting of 500 randomly sampled CNN/DailyMail ar-
ticles. For each article they produce five summaries (the reference summary plus four from
different summarization models) and use human evaluators to score the quality of each of
them. They then learn a reward function to best approximate the human scores and find
that using BERT with an multi-layer-perceptron worked best. This model was then used as
the reward function for training their summarizer.

Unsurprisingly, given the modified training objective, these approaches do not com-
pete with leading Transformer summarizers on ROUGE scores. These studies resort to human
evaluation as a means of benchmarking, and their results show improvements in fluency, lex-
ical diversity and read-ability when compared to Maximum Likelihood methods. However,
the major drawback of human evaluation is the inability to compare against models which
were not included within the experiment, and therefore it is difficult to assess the success of
this class of models overall.

2.5.5 Unsupervised Learning

Unsupervised learning has been a key driver for progress in NLP and text summarization in
recent years. The Transformer paradigm relies on unsupervised pre-training on large un-
labeled corpora. The key innovation behind the leading text summarizers was to modify
the pre-training objective to be better suited to generation and summarization (e.g. BART,
section 2.10). The unsupervised learning approach to text summarization seeks to push this
a step further, using summarization as the sole pre-training task on large unlabelled corpus,
presupposing that pre-training using an explicit summarization task will further improve
model performance. This section is less concerned with model architectures; instead it high-
lights lead bias use and “mean review summarization” as two novel tasks which open the
door for pre-training models on large, unlabelled corpora using an explicit summarization
pre-training objective.

Lead Bias It is journalistic convention that news articles follow a structure known as the
“Inverted Pyramid” (Scanlan [2008]), where the most fundamental information is placed
at the beginning of the article followed by background and supporting details. It is well-
understood within the summarization community that the first three sentences of a news
article are actually a strong baseline for a summary and one that summarization models
struggle to beat (See et al. [2017]), a phenomenon known as lead bias. Lead bias is gener-
ally a challenge for the summarization community as the output of summarizers trained on

30They use a seq2seq RNN LM as the backbone and leave analysis of the impact on Transformer-based summa-
rizers to future work.
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3 DATASETS

Dataset
# docs

(K)
Avg. doc
# words

Avg. sum
# words

% over
1,024 toks

% over
4,096 toks Citations Year

CNN 92 656 43 8%∗ 0% 998 2017
DailyMail 219 693 52 8%∗ 0% 998 2017
PubMed 133 3,016 203 87% 24% 81 2019
arXiv 215 4,938 220 97% 61% 81 2019

Table 3.1: Descriptive statistics of the datasets used in this study. The fifth and sixth columns
indicate the share of each dataset that would not fit in BART and LED-4096 models given their
capacities of 1,024 and 4,096 tokens respectively. The number of citations is the Google Scholar
citations from the original papers (Cohan et al. [2018], See et al. [2017]) as of 24/08/2020. ∗

The CNN/DailyMail dataset is 8% overall.

these datasets are inevitably skewed to favour the article lead, meaning the remainder of the
article is neglected and the model fails to learn to distil content as desired.

Zhu et al. [2019] recognise lead bias as an opportunity: by training a model to repro-
duce the first three lines using the remainder of the article, this renders the large quantity
of news articles available online suitable for pre-training models. They amass a corpus con-
sisting of 21.4M news articles, two orders of magnitude larger than the CNN/DailyMail
dataset. Their results show that their model (a TED) outperforms other unsupervised learn-
ing approaches when evaluated on the CNN/DailyMail datasets and is competitive with many
strong supervised learning baselines even without any fine-tuning.

Mean Review Summarization Chu and Liu [2018] examine the problem of unsupervised
multi-document summarization using Amazon and Yelp reviews. Their approach can be used
in situations where multiple reviews exist for a single entity; by encoding these reviews and
averaging in the latent space, they suppose that you reach the “canonical review”. Their
model then decodes this review and attempts to minimize a reconstruction loss between this
review and all of the source reviews (their model is an autoencoder). This is another novel
approach permitting large-scale unsupervised learning.

3 Datasets

This section introduces the datasets which will be used throughout the subsequent chapters.
These can be divided into summarization and evaluation datasets following the work-stream
split of this thesis. These datasets are outlined below.

3.1 Summarization Datasets

The summarization datasets are CNN/DailyMail, arXiv and Pubmed, and these will be the
focus of our architectural analysis in section 5.2. Summary statistics for these datasets can
be found in Table 3.1 and the distributions of document lengths for their respective tests
sets are plotted in Figure 3.1. Sample summaries for each of the datasets can be found in
Appendix A.

CNN/DailyMail Contains articles from the DailyMail and CNN newspapers paired with
summaries (in the form of story highlights) written by the same author, which act as the
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ground truth. This is the most commonly used and reported-on dataset within the text
summarization community. It was first introduced in Hermann et al. [2015], although use
the non-anonymized version from See et al. [2017] following recent convention in the lit-
erature. This dataset is extracted from the raw text files from the original CNN/DailyMail
articles31. Capitalization is preserved and newline characters are removed. The CNN source
articles begin with a “(CNN)” token and we preserve this. We use same train/test/validation
split as See et al. [2017], amounting to 91.4%, 4.0% and 4.6% of the dataset respectively.
This dataset is freely available for commercial use, modification, distribution and private use
under the MIT license32.

Figure 3.1: Histograms showing the distributions of document lengths for the test set of each
dataset. The top figures show for the source document and the bottom figures show for the
target documents. The mean, median, upper and lower quartiles are annotated onto each figure.

arXiv & PubMed Introduced by Cohan et al. [2018] as two long document summarization
datasets. The task is to reproduce the article abstract, which operates as the ground-truth
summary. arXiv.org and PubMed.com are online repositories containing scientific research
papers, primarily from maths, computer science and engineering for the former and biomed-
ical and life sciences for the latter. These datasets can be downloaded and used without a
license as they are open access repositories.

We use the extracted dataset from Cohan et al. [2018]33. This dataset is generated
by extracting raw text files from the articles’ LATEX files using Pandoc34. Sections follow-
ing the conclusion are discarded; the conclusion section is identified by the most common
phraseology for the section header (i.e. concluding remarks, summary or conclusion). The
document is lower-cased, figures and tables are removed, maths formulae are replaced with
“@xmath0” and citations are replaced with “@xcite” tokens. For the summaries, sentence

31Download instructions: https://github.com/abisee/cnn-dailymail
32https://github.com/abisee/cnn-dailymail/blob/master/LICENSE.md
33Link: https://github.com/armancohan/long-summarization
34Link: https://pandoc.org
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Quora Question Pairs

Question 1 Question 2 Equivalent?

Can we ever store energy produced in
lightning?

Is it possible to store the energy of light-
ning?

Yes

What Game of Thrones villain would be
the most likely to give you mercy?

What Game of Thrones villain would
you most like to be at the mercy of?

Yes

Why do some people think Obama will
try to take their guns away?

Has there been a gun control initiative
to take away guns people already own?

No

What are the best YouTube channels to
learn medicine?

What are some of the best YouTube
channels for learning Git?

No

Table 3.2: Two positive and two negative samples from the QQP dataset. The objective is to
ascertain whether the two questions are semantically equivalent and these labels are provided in
the final column.

boundaries are marked using “< S >” and “< /S >” tokens. 3% and 5% of arXiv and PubMed
respectively are used for each of the test and validation sets, with the remainder used for
training (using the same train/test/validation split as in Cohan et al. [2018]). Cohan et al.
[2018] preserve the discourse structure of the documents by keeping section headings but
our models do not utilize this discourse structure so we discard this information. In addi-
tion, some source documents and/or summaries are excessively short; we remove documents
with fewer than 200 tokens or with summaries shorter than 5 tokens following Cohan et al.
[2018]. These account for 0.7% of arXiv and 3.3% of PubMed documents.

3.2 Evaluation Datasets

The evaluation datasets consist of the Quora Question Pairs and annotated CNN/DailyMail
datasets, and these are the focus of the evaluation-metric analysis in section 5.1.

Quora Question Pairs The Quora Question Pairs dataset (QQP, Sharma et al. [2019b])
tests a system’s Natural Language Understanding (NLU)35. The dataset is composed of 404K
pairs of questions published by uses to the question answering forum, www.quora.com. They
span a wide range of topics including common sense, politics and health and medicine.
Many of the questions published to the website are duplicates and the QQP dataset was
designed to train machine learning systems to determine the duplicate questions. Each of
the samples is therefore labelled by human experts as duplicate or distinct. The task is a
binary classification objective of predicting the correct label. 63% of the samples are distinct
with the remaining 37% being duplicates. Several examples are illustrated in Table 3.2.

Annotated CNN/DailyMail Introduced by Chaganty et al. [2018] to assess the degree to
which human evaluator judgement and summarization evaluation metrics’ scores correlate.
This dataset contains 500 random samples from the CNN/DailyMail dataset. They produce
four summaries for each sample using text summarization models36 and tasked human eval-
uators with assigning each of the summaries a score37. Additionally, each sample has the

35Download: https://www.kaggle.com/c/quora-question-pairs
36Specifically using the seq2seq and pointer models from See et al. [2017] and the ml and ml+rl models from

Paulus et al. [2017].
37The score was based on their fluency, lack of redundancy and overall quality
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standard reference summary, meaning the dataset comprises of 500 samples, each with four
scored hypothesis summaries and a reference summary.

3.3 Discussion

As highlighted above, we are using the CNN/DailyMail, arXiv and PubMed datasets as the
primary datasets in this thesis. Another option for long document summarization is the BIG-
PATENT dataset (Sharma et al. [2019a]). This consists of 1.3 million U.S. patent documents.
The target is a human-written abstractive summary. This dataset is advantageous in that
salient information is distributed throughout the document, whereas in academic research
papers or news articles important information is normally highlighted early-on in the docu-
ment. We decided not to use this dataset for two reasons: 1) arXiv and PubMed had more
community recognition at the time of writing. For example, the arXiv/PubMed paper had
over seven times more citations than the BIGPATENT paper38. 2) The computational cost of
running one epoch of BIGPATENT is over six times that of arXiv given their relative sizes. This
would pose problems for fine-tuning the models.

As mentioned in the introduction, multi-document summarization is a prominent un-
solved research goal in this field. We would have liked to address this question in this thesis.
The limiting factor was the dataset: the MultiNews dataset (Fabbri et al. [2019]) is the soli-
tary multi-document summarization dataset at the time of writing. This dataset is relatively
small (44K samples) and primarily uses short documents. These limitations deterred us from
pursuing this path. This is one area where datasets are limiting the progress of Text Sum-
marization. Two other areas similarly constrained by the absence of an adequate dataset are
whole-book summarization and daily financial news generation.

4 Design

4.1 Evaluation Analysis

In this section we outline the set of eight evaluation metrics used in subsequent analysis. A
summary comparison of each of these can be seen in Table 4.1.

4.1.1 Description of Metrics

In section 2.4 we explained the need for an improved set of evaluation metrics and theoret-
ically motivate four model-based candidates. This section outlines the specific metrics used
in our analysis, alongside any required configuration decisions. We also introduce our novel
metric, BARTScore, based on BERTScore but using a TED in place of a TE. A side-by-side
comparison of each of the metrics can be found in Table 4.1.

ROUGE-1, ROUGE-2 & ROUGE-L Computes the lexical overlap between the candidate and
reference summaries39. ROUGE-1 / ROUGE-2 computes the co-occurrences of 1 / 2-grams,
while ROUGE-L measures the longest common subsequence between two texts 40.

38Measured on 24/08/2020; Cohan et al. [2018] and Sharma et al. [2019a] respectively.
39Github repository: https://github.com/google-research/google-research/tree/master/rouge.
40Two flavors of ROUGE-L exist with the two differing on how newlines are treated. The literature generally

reports the variant that treats newlines as sentence boundaries and the longest common subsequence is com-
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Metric Citations Year
Contextual

Embeddings?
Language

Model
n-gram

comparison

BERTScore 94 2019 Yes RoBERTa-lg-MNLI 1-gram
BARTScore N.A. N.A. Yes BART-lg-MNLI 1-gram
Mover-1 26 2019 Yes BERT-base-MNLI 1-gram
Mover-2 26 2019 Yes BERT-base-MNLI 2-gram
BLEURT 3 2020 Yes BERT-lg Entire seq.
ROUGE-1 5,124 2004 No N.A. 1-gram
ROUGE-2 5,124 2004 No N.A. 2-gram
ROUGE-L 5,124 2004 No N.A. Entire seq.

Table 4.1: Side-by-side comparison of each of the evaluation metrics. The fourth and fifth
columns indicate if the metric uses contextual embeddings, and the Language Model used to
compute these if so. The number of citations is taken from the Google Scholar citations of the
original papers introducing the metrics, recorded on 24/08/2020. These papers are: Zhang et al.
[2019b], Zhao et al. [2019], Sellam et al. [2020], Lin [2004].

BERTScore Evaluates two texts based the cosine similarities between their embedded rep-
resentations. Semantically similar texts will have lots of tokens which are co-located in the
embedded space and therefore the pairwise cosine similarities between the two texts will be
high (see section 2.4.3). BERTScore41 (Zhang et al. [2019b]) is best-understood as a variant
of ROUGE incorporating bidirectional context via encoding using a TE LM such as BERT (De-
vlin et al. [2018]). BERTScore can use any TE as the encoder and we provide a comparison
of them in section 6.1.1. We use RoBERTalarge which has 24 layers, 16 attention heads and
1,024 embedding size (Liu et al. [2019]).

BARTScore Analogous to BERTScore except a TED, in this instance BART (Lewis et al.
[2019]), is used as the LM instead of a TE. Aside from this, BERTScore and BARTScore

are identical and BARTScore was implemented following the structure of the BERTScore

API. This might appear a counter-intuitive design choice as architecturally the TED differs
from the TE in that the latter uses bidirectional context whereas the former uses unidirec-
tional context (within the decoder). When encoding a sequence, bidirectional context seems
preferable as the model has a wider perceptive field and is therefore better able to output
meaningful embeddings. This implies the TE should be chosen over the TED. However, in
the BART paper, the authors compare BART with RoBERTa (Liu et al. [2019]) on SQuAD (Ra-
jpurkar et al. [2016]) and GLUE (Wang et al. [2018]) tasks and conclude that uni-directional
context in the decoder does not harm performance.

The potential benefits of using BART stem from it being pre-trained on tasks more
suited to text generation. BARTScore uses the large pre-trained version of BART42. BERT
is trained using Masked Language Modelling, where 15% of tokens are masked and the
objective is to reproduce the original document43. The emphasis when pre-training BERT is
on predicting single tokens independently. In comparison, BART was pre-trained using text
infilling (similar to Masked Language Modelling except spans of tokens are masked rather

puted between each pair of source and target sentences (sometimes called ROUGE-LSum). We follow convention
and report this version.

41Github repository: https://github.com/Tiiiger/bert_score.
4212 layers in the encoder and decoder, 16 heads, and 1024 hidden units (Lewis et al. [2019])
43BERT was also trained using next sentence prediction but this was removed for RoBERTa.
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than single tokens) and sentence permutation (the input document is split according to full
stops and sentences are shuffled). The use of text-infilling places a greater emphasis on
modeling sequence lengths as BART must predict an unknown number of tokens per masked
span. We conjecture that this pre-training emphasis on modeling spans will help BART to form
more meaningful representations of longer sequences and therefore would act as a better
encoder for an evaluation metric. We use bart-large as the LM here. Model specification
can be found in Table D.1.

Mover-1 & Mover-2 These are the 1 and 2-gram variants of MoverScore44 (see section 2.4.5).
Similar to BERTScore, MoverScore computes the distance between the embedded candidate
and reference summaries. However, MoverScore does this by finding the minimum distance
one document must be moved in the embedded space to be transformed into the other doc-
ument (i.e. solving the constrained Word Mover’s Distance optimization problem). To com-
pute word embeddings MOVERSCORE uses bert-MNLI (Devlin et al. [2018]), BERT fine-tuned
on the Multi-NLI dataset (Williams et al. [2018]). This model has 12 layers, 12 attention
heads and 768 embedding size.

BLEURT BLEURT45 is a version of BERT (Devlin et al. [2018]) pre-trained explicitly to act
as an evaluation metric for natural language generation tasks (see section 2.4.4). It can
also be fine-tuned on human ratings to further increase its sensitivity, although we choose
not to do this to preserve comparability with the other metric and over concerns regarding
the generalizability. BLEURT has pre-trained checkpoints for base and large models. We use
the large model with 24 layers, 16 attention heads and 1,024 embedding size (experiments
comparing the models can be found in section 6.1.1).

4.2 Architecture Analysis

This section motivates the primary models used and gives details of their designs and imple-
mentation processes. A schematic comparison of BART, LED and RED is shown in Figure 4.1.

4.2.1 BART

With the architectures workflow of this project, our goal was to determine whether approx-
imate self-attention layers could deliver strong results in Transformer-based summarization
models. This necessitated choosing a reference Transformer model, one that we could adapt
and would provide a performance reference. We used BART as this model.

Motivations There were two compelling reasons to choose BART for this role: 1) at the time
of writing, BART, PEGASUS and ProphetNet were all state-of-the-art summarization models46.
2) BART has the strongest momentum from the summarization community at this time. It is
available through the huggingface transformers library (Wolf et al. [2019]) and has a large
and active user-base meaning it is available with a rich set of useful features. This library
also has implementations and pre-trained weights for the Longformer (Beltagy et al. [2020])
and the Reformer (Kitaev et al. [2020]), which we combine with BART to make our “long-
form” model as will be outlined in the next section. Having all the code and model weights

44Github repository: https://github.com/AIPHES/emnlp19-moverscore
45Github repository: https://github.com/google-research/bleurt
46Using ROUGE metrics and the CNN/DailyMail dataset, these three models score near-identically.
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Figure 4.1: Schematic comparison of the original Transformer/BART, LED and RED architectures.
The LED and RED have different self-attention layers and widened input embedding matrices in
their encoders compared to the original Transformer and BART.

available in one API presented huge implementation efficiency gains and made this library
the obvious choice to proceed with.

Use for long documents As outlined in section 2.5.2, n2 self-attention memory consump-
tion scales quadratically with input length. This makes it expensive to use BART for long
sequences. BART is therefore designed with 1,024-width positional embeddings, meaning
the maximum sequence length it can process is 1,022 tokens47. Although it is straightfor-
ward to adapt BART to use longer sequences by copying and concatenated the positional
embedding matrix, we choose not to do this as the memory cost becomes impractical and
our focus is on using approximate self-attention layers. Thus we simply truncate the input
document by taking the first 1,022 tokens to permit us to use BART on longer sequences.

4.2.2 LED

The Longformer (Beltagy et al. [2020]) offers a solution to the Transformer’s quadratic
memory complexity whereby the self-attention layers (the bottleneck) are replaced with
sliding-window attention. The effect of this is to replace a dense matrix multiplication with a
sparse matrix multiplication, thereby creating linear complexity with respect to input length.
The Longformer was developed as a TE so cannot be used as-is for seq2seq tasks. Beltagy
et al. [2020] begin with a RoBERTa model and replace its self-attention layers with their
sliding window attention in order to create the Longformer. This idea of substituting dense
self-attention layers for sliding-window self-attention is applicable to other Transformer ar-
chitectures, namely the TED. The LED does exactly this, beginning with BART (Lewis et al.
[2019]) and substituting the self-attention layers for sliding-window self-attention.

47Two less than the maximum positional embeddings because of the beginning and end of sequence special
tokens.
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Implementation details The LED is built using the huggingface transformers library (Wolf
et al. [2019]) as this libaray contains implementations of both Longformer and BART. Con-
verting BART to the LED is a two-stage process. First, BART’s encoder must be “widened”
to allow longer inputs to be processed by the model48. This occurs through enlarging the
positional embedding matrix by copying the weights and concatenating the matrices. As
highlighted above, BART has a maximum input length of 1,022 tokens. If we wanted to
process sequences of up to 2,044 tokens, we would copy and concatenate the positional
embedding matrix, making it twice as wide. This method has proved effective at allowing
Transformers to process longer inputs (Zhang et al. [2019a]).

The second step is to replace BART’s self-attention layers with sliding-window self-
attention. Figure 2.8 shows the canonical TED architecture. Attention is used in three
places in the TED: encoder self-attention, decoder self-attention and cross attention. When
performing summarization, the input length (n) is usually (often much) greater than the
output length (m). The primary bottleneck is therefore the encoder self-attention layer as
n2 > n ∗m >m2. The simple implementation of the LED replaces the self-attention layers only
in BART’s encoder. The weights in the query, key and value matrices are then replaced with
the weights from the respective weights matrices from BART for each layer. These steps are
demonstrated schematically in Figure 4.1. We leave implementing sliding-window attention
in the decoder (a straightforward extension) and the cross-attention layers (less straightfor-
ward) to future work.

Concurrent to the development phase of our implementation of the LED, a repository
was published on GitHub containing a parallel implementation49. This was shortly followed
by Beltagy et al. [2020] augmenting the Longformer codebase to add the capability to run
the Longformer as a TED by adapting BART as described above. The Beltagy et al. [2020]
implementation had numerous useful additional features such as gradient checkpointing
(Chen et al. [2016]) and convenient model saving/loading; satisfied that our implementa-
tions matched, we proceeded with the experimentation phase of this project using a combi-
nation of the huggingface and Beltagy et al. [2020] libraries. Our contribution with the LED

is to be the first to systematically benchmark and experiment with this model.

4.2.3 RED

Using the Longformer’s sliding window self-attention in place of regular self-attention is just
one method of reducing the complexity bottleneck of TEDs. Any “approximate” self-attention
layer could perform this job, raising the question of which one is most effective for TED
summarization models. At the time of writing we could not find any evidence of a side-by-
side comparison of approximate self-attention layers in the summarization domain. In this
section we introduce the Reformer Encoder Decoder (RED), analogous to the LED except
we replace BART’s self-attention layers with Reformer self-attention (Lamb et al. [2016])50.

48The decoder does not need to be “widened” for BART as conventionally the model is intialized with a “wide”
decoder. In our version of BART (huggingface’s bart-large-cnn, Wolf et al. [2019]) the decoder “width” is
1,024 tokens which is wide enough for the majority of summarization use-cases.

49Link: https://github.com/patil-suraj/longbart
50See section 2.5.2 for details of Reformer self-attention
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Implementation details Creating the RED follows the same two-step process as creating
the LED: 1) positional embedding matrix of the encoder must be widened to allow longer
inputs, and 2) Reformer self-attention is substituted in for the Encoder’s self-attention lay-
ers. We alternate between local and lsh layers as in the Reformer (see section 2.5.2 for
details)51. As before, we use BART as the base model. These steps are shown schematically
in Figure 4.1. We implement the RED using the huggingface BART-large model and replac-
ing the self-attention layers with the huggingface implementation of the Reformer’s lsh and
local self-attention.

Limitations The Reformer self-attention weight matrices are not compatible with BART’s
self-attention weight matrices as they have different hidden dimension sizes. This means that
we could not begin with using BART’s pre-trained self-attention weights and therefore we had
to begin pre-training the Reformer without pre-trained weights in the attention layers. Our
experimental methodology in light of this is outlined in section 5.2.6.

5 Experimental Methodology

5.1 Evaluation Analysis

This section introduces our experimental design to compare between the relative perfor-
mances of the evaluation metrics outlined in section 4.1.1. These experiments assess how
well the metrics correlate with human judgement, how well they detect the semantic simi-
larity between pairs of questions and how sensitive they are to various forms of corruption
when these are applied to summaries. It will be seen that the model-based metrics outper-
form the ROUGE metrics on almost all tasks.

5.1.1 Preprocessing

ROUGE As ROUGE performs a surface-level comparison of n-gram overlaps between two
texts, the output score is sensitive to the pre-processing pipeline (particularly stop-word re-
moval, stemming, capitalization). Implementing ROUGE for this study was surprisingly prob-
lematic because the official ROUGE package is implemented in perl and is not conducive to
a python workflow. Many unofficial GitHub repositories therefore exist providing python

wrappers or python re-implementations of ROUGE. However, these often handle the pre-
processing pipeline slightly differently (either by using different pre-processing steps or sub-
tle differences between python and perl standard functions), and therefore their outputs
rarely agree.

Following Zhang et al. [2019a], we use the Google Research Rouge implementation.
This is a native python re-implementation of ROUGE and in our tests the outputs matched
the official perl script very closely. As in Zhang et al. [2019a], our pre-processing pipeline
involved tokenizing and stemming but not stop-word removal. The tokenizer is from the
same codebase and is based on the Lin [2004] tokenizer. This involves lower-casing, replac-
ing all non-alphanumeric characters with spaces (and therefore removing punctuation) and

51We experiment with using alternating layers, solely local and solely lsh layers and find alternating performs
best.
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Metric Tokenizer Type Vocab # words

BERTScore RoBERTa BPE 50,000
BARTScore BART BPE 50,000
MoverScore BERT WordPiece 30,000
BLEURT BERT WordPiece 30,000

Table 5.1: The pre-trained tokenizer used by each of the evaluation metrics. See section 5.1.2
for experiment details.

tokenizing based on spaces. The stemmer uses the PorterStemmer from the Natural Lan-
guage ToolKit (NLTK, Bird et al. [2009])52, an implementation of the Porter suffix-stripping
algorithm from Porter et al. [1980].

Model-based metrics An advantage of the model-based metrics is that they use Transform-
ers and each of the models has a paired tokenizer which handles the pre-processing pipeline.
This simplifies the workflow in comparison to ROUGE as the pre-processing reduces to using
the usual pre-trained tokenizers.

Table 5.1 outlines the tokenizers used by each of the evaluation metrics. BERTScore

and BARTScore use the RoBERTa and BART tokenizers respectively, and these are both heavily
based on the GPT-2 tokenizer (Radford et al. [2019]). This uses Byte Pair Encoding (BPE,
Gage [1994]), a method of constructing sub-word vectors adapted from the data compres-
sion algorithm. BPE is a middle-ground between character-level and word-level language
modelling and helps circumvent the issue of unknown words while maintaining the empiri-
cal decoding advantages of word-level tokenization. BPE constructs a vocabulary initially by
splitting words into all combinations of sequences of characters, computing frequency counts
for each character-sequence and filling the vocabulary until the pre-defined limit is reached.
The tokenizer then assigns words the longest character sequence present in that word. This
is repeated recursively until all characters of all words have been encoded. MoverScore and
BLEURT use the BERT tokenizer (Devlin et al. [2018]) which uses the WordPiece model (Wu
et al. [2016]). The WordPiece model is an alternative to BPE for producing sub-word vec-
tors. WordPieces are added to the vocabulary on the basis of increasing the likelihood of the
training data, as opposed to frequency counts as for BPE.

It is important to note that we do not train any part of these metrics. We feel this
is critical as we would like a universally applicable metric “off the shelf”, in the same vein
as ROUGE. However, this presents a potential limitation when it comes to uncommon words,
as would be expected in the arXiv and PubMed datasets. Through the use of sub-word
embeddings as outlined above, the metrics will be able to tokenize and compute embeddings
for rare words; however, there is no guarantee that these representations will be meaningful.
How meaningful these are will depend on the corpus the metrics’ LMs were trained upon
and the overlap in lexicon between the candidate summary and the pre-training corpus.
BERT was pre-trained using 16Gb of text from the BOOKCORPUS (Zhu et al. [2015]) and
WIKIPEDIA. BART and RoBERTa were both trained on the same 160Gb corpus which consists
of the BERT corpus plus CC-NEWS, OPENWEBTEXT and STORIES (Gebhard and Hamborg
[2020], Gokaslan and Cohen and Trinh and Le [2018]). It is likely that the LMs are exposed
to some of the technical lexicon present in the arXiv and PubMed datasets through WIKIPEDIA

52GitHub repository: https://github.com/nltk/nltk
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although it is unclear how often. This is a potential reason why the metrics might not perform
well on the arXiv and PubMed datasets.

5.1.2 Human-Metric Evaluation Correlations

As explained in section 2.4.2, human evaluation is the gold standard in text summarization.
We can therefore compare the relative performances of the evaluation metrics by the degree
to which they correlate with human judgement. For this, inspired by Böhm et al. [2019],
we use the annotated CNN/DailyMail dataset introduced in section 3.2. With this dataset,
we have 500 samples of CNN/DailyMail articles with four summarization-model produced
summaries and the gold standard summary. For each sample we can therefore compute the
correlation between the automatic metric scores for each of our evaluation metrics and the
human evaluator scores to obtain per-sample correlations. We then take the mean over all
samples to obtain performance by metric.

5.1.3 Quora Question Pairs

We would like our evaluation metrics to accurately grasp the semantic similarity between
two texts and this is a NLU question. One dataset testing NLU is the Quora Question Pairs
dataset (QQP, Sharma et al. [2019b]). As explained in section 3, QQP contains pairs of (often
similarly worded) questions and the tasks is to identify if these questions are duplicates
or not. This is a good test of the evaluation metrics’ NLU as performing well in this task
requires the metric to capture the semantic similarities between the pair of questions, rather
than simply measuring the lexical similarities. Evidently, a strong summarization evaluation
metric should outperform a weak one on this task.

5.1.4 Adversarial Analysis

This section describes a series of adversarial tasks we performed to further probe the effec-
tiveness of the metrics. These tasks consist of corrupting a set of summaries and assessing
how well the evaluation metrics can distinguish the un-corrupted from the corrupted sum-
maries. As corrupting the summaries will (most likely) degrade their quality, the uncorrupted
summaries should be awarded higher evaluation scores than the corrupted summaries. By
comparing these on a per-summary basis, we can assess the robustness of our evaluation
metrics to different forms of noise.

Data All of our evaluation metrics operate by comparing a hypothesis to a reference. Ide-
ally we would have access to two reference summaries per sample when performing this
analysis as the higher the quality of summary, the higher the probability that noise will make
it worse. As discussed in section 7.1.3, Zhang et al. [2019a] found that PEGASUS’s summaries
for the test set on the CNN/DailyMail dataset were not significantly worse than the human
written reference summaries. This implies that these can be used as a proxy for the second
set of reference summaries. Therefore, for this analysis we used the CNN/DailyMail test set
with PEGASUS’s summaries acting as the hypothesis summaries. These were then corrupted
to form a corrupted and uncorrupted hypothesis set.

We also repeat this analysis on the PubMed dataset. While there has not been a study
demonstrating statistical parity between PEGASUS’s summaries and the gold standard for
PubMed, qualitatively the summaries are of high quality and we believe that, by and large,
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applying the corruption techniques outlined below will make the summaries worse. In this
thesis we are especially interested in long document summarization and the mean PubMed
summary length is longer than the mean CNN/DailyMail summary length. Therefore it is of
particular interest that we are able to reproduce any findings on the PubMed dataset.

Corruption Methods Our chosen methods of corruption were BERT mask-filling,
word-dropping and word permutation. BERT mask-filling and word-dropping were in-
spired by the synthetic dataset generation process for pre-training BLEURT (Sellam et al.
[2020]) and are outlined in section 4.1. For each of these methods, the input summary was
tokenized and chunked into sequences of length ten and the corruption was performed once
to each of these sequences. This method ensured that the corruption spans sentences and
can be applied to full stops, therefore gauging the sensitivity of the metric to coherence and
grammaticality.

BERT mask-filling is a denoising auto-encoding task whereby some of the input to-
kens are masked and a pre-trained BERT model is used as the decoder to infill these to-
kens. This introduces lexical variety but preserves the fluency and coherence of the doc-
ument53. Word-dropping corrupts the summary by omitting tokens. Sellam et al. [2020]
find this to be useful as it mimics some of the common “pathological” issues encountered
with automatic summarizers (e.g. truncating summaries or incoherent generations). Finally,
word-permutation switches the ordering of two adjacent tokens throughout the summary,
testing the metrics’ sensitivities to syntax. This metric should be biased in favour of the
model-based metrics as contextual embeddings should be more sensitive to lexical ordering
than the ROUGE metrics. Indeed, ROUGE-1 cannot distinguish at all between the corrupted
and uncorrupted summaries here as it is syntax-insensitive.

5.1.5 Benchmarking of Existing Studies

The focus of this section has been on establishing a superior metric for automatically eval-
uating summaries. We conjecture that ROUGE is an insufficient evaluation metric which is
insensitive to lexical and syntactical subtleties, is unable to grasp semantic equivalence and
correlates poorly with human judgement. We test these hypotheses in the subsequent chap-
ters and results can be found in section 6.1. Using a poor evaluation metric can be biased
against better models as it is insensitive to subtle improvements and this acts as a drag on
the rate of progress in text summarization. It is our goal to establish a superior set of metrics.
These can then be used to determine which is the current leading model for text summariza-
tion.

We report results for BART (Lewis et al. [2019]), PEGASUS (Zhang et al. [2019a]),
ProphetNet (Yan et al. [2020]) and PGN (See et al. [2017]). The first three are the current
state-of-the-art approaches to summarization while the PGN was state-of-the-art in 2018 but
is now outdated so is useful as a weaker benchmark. The first three score very similarly using
ROUGE and are difficult to discriminate from human-written summaries (see section 5.1.4);
we conjecture that ROUGE is not sensitive enough to effectively evaluate these models’ sum-
maries.

53Here we used distilroberta-base from the huggingface transformers library Wolf et al. [2019] as it showed
adequate performance and its tokenizer maintained capitalization. The choice of model here is not important
as the objective is to corrupt the document and therefore a particularly strong model was not necessary.
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We report using only the CNN/DailyMail dataset. This is the most-commonly reported
dataset for summarization and is the only dataset for which all of the above models contain
fine-tuned weights. We did not have the hardware available to train these architectures on a
new dataset and therefore leave reporting on an additional dataset to future work.

5.2 Architecture Analysis

This section outlines our experimental methodology for the architectures component of this
thesis. Here we give details on the pre-processing steps, the hyper-parameter search and
experimental design for comparing the LED with BART and assessing the performance of the
LED. We also introduce Random Starts analysis, a method of removing the bias towards
shorter models as salient content is often distributed primarily in the beginning of the docu-
ment.

5.2.1 Preprocessing

The preprocessing steps used to generate the datasets are outlined in section 3. As ex-
plained in section 5.1.1, BART uses the pre-trained BARTTokenizer, which we also use the
BARTTokenizer for the LED. We do not perform any additional preprocessing to maximize
comparability against existing studies.

5.2.2 Hyper-parameter Search

Zhang et al. [2019a] selected the fine-tuning parameters for PEGASUS using a comprehensive
grid-search for each dataset. Given that a single epoch with batch size of one (the largest
batch size that will fit on a 12 Gb GPU) takes between 30-45 hours and lacking the available
hardware to repeat this approach, we used a more focused approach to hyper-parameter
search. Where possible54, we started with the BART hyper-parameters used by Lewis et al.
[2019]. We identified a set of salient hyper-parameters and tested each of these individually.
We conducted a thorough hyper-parameter search using the PubMed dataset and used these
results to inform limited hyper-parameter search on the arXiv and CNN/DailyMail datasets
using only the most significant hyper-parameters (e.g. learning rate). Hyper-parameters
were selected using the validation sets of the respective datasets. We used Weights and
Biases to track our experiments55, a suite of developer visualization and tracking tools which
assist with monitoring machine learning experiments.

5.2.3 LED vs BART

Recent studies comparing self-attention to approximate self-attention layers in Transform-
ers (e.g. Beltagy et al. [2020], Kitaev et al. [2020]) have concluded that the two perform
similarly. However, this hypothesis has not been tested for text summarization. Before pro-
ceeding with subsequent analysis, we must first establish that BART and the LED perform
similarly and this is the focus of this section.

54We used the huggingface transformers library (Wolf et al. [2019]), whereas BART was trained using the fairseq
library (Ott et al. [2019]). Some of the functionality was not available on huggingface during experimentation.

55https://www.wandb.com/
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We begin with the 1,024-width BART model fine-tuned on the CNN/DailyMail dataset,
bart-large-cnn. We modify this to create the 1,024-width LED using the procedure out-
lined in section 4.2.2. We use an attention window of 512 tokens in the LED as this is most
comparable to BART’s n2 self-attention56. The full model configurations are detailed in Ta-
ble D.2. We fine-tune both models for two epochs on the PubMed dataset and for one epoch
on the arXiv and CNN/DailyMail datasets corresponding to the relative sizes of the datasets.
Using a 12 Gb Nvidia GeForce GTX TITAN X GPU (provided by Imperial College London De-
partment of Computing), these runs take 45, 40 and 65 hours respectively. Our strategy for
selecting hyper-parameters is detailed in section 5.2.2.

5.2.4 LED performance

In section 5.2.3 we outlined our methodology for comparing between the LED and BART. We
were also interested in the performance of different configurations of the LED. There are two
hypotheses to test here: 1) using a “longer” model is beneficial for summarizing longer doc-
uments; 2) reducing the attention window size will moderately reduce performance, but not
catastrophically so. To this end, we run two sets of experiments beginning with the LED-1024
model with 512 window size. The first set varies along the model size dimension; the sec-
ond set varies along the window size dimension. These results are displayed in section 6.2.2.

The attention-window experiments were run using the Imperial College London 12
Gb Nvidia GeForce GTX TITAN X GPUs. The input-length experiments experiments exceed
12 Gb of GPU memory so are run using the 24Gb Nvidia RTX6000 GPUs provided by the
Imperial College London High Performance Cluster (HPC). Experiments using the HPC have
a 24 hour time limit so these we only ran these runs for this time57.

LED profiling A key theoretical advantage for introducing the LED was to reduce the com-
plexity in BART’s self-attention layers from quadratic to linear. This will dramatically reduce
the memory consumption for longer sequences. This section describes how we profile the
memory consumption of the LED with respect to the input length and the attention win-
dow, the two primary memory-related configuration decisions. The goal of this analysis is
to confirm that the memory complexity is indeed linear. To profile memory usage we logged
the maximum memory consumption used during fine-tuning for different combinations of
attention windows and input sizes. We used pytorch’s torch.cuda.max memory allocated()
to implement this. These results and discussion can be viewed in section 6.2.3.

5.2.5 Random Starts Analysis

This thesis has focused on the PubMed and arXiv datasets as they are the most studied
long document summarization datasets. We use these datasets to test our hypothesis that
using a “longer” Transformer input length will lead to better performance on long docu-
ments. The rationale being that the longer the model, the less the input document need be
truncated and therefore the summary should capture the salient information throughout the
document. However, this logic implicitly assumes that the salient information is distributed
throughout the document. The arXiv and PubMed datasets may violate this assumption as

56Recall that the attention window is two-sided.
57As the RTX6000 machines are faster than the GeForce GTX TITAN X this normally equated to nearly one epoch.
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they comprise of highly structured academic documents. The canonical skeleton of a scien-
tific research paper consists of an introduction, body and conclusion. The introduction is
ostensibly a summary of the remainder of the paper and therefore likely captures the most
salient information.

The above reasoning casts doubt over whether increasing the input length of the LED

will improve its performance. Conversely, it could actually worsen the model performance
for two reasons: 1) if we assume that the salient information is included within the first 1,022
tokens then, if we use the LED-4096 rather than the LED-1024, this effectively corresponds to
using noisier data; 2) summarizing a longer document is more challenging than summarizing
a shorter document as the information distillation requirements are greater.

Random Starts On the surface, it would seem that using a longer model is advantageous
for longer document summarization. In light of the above reasoning however, there may in
fact be a positive or negative relationship between model length and performance measured
on arXiv and PubMed. To this end, we introduce a novel Random Starts (RS) task. The
remainder of this section explains our methodology for this analysis.

Figure 5.1: Schematic comparison of Beginning Starts versus Random Starts. These refer to
different methods of truncating source documents which are longer then the model length when
performing summarization. The green region is the input sequence for the model while the
red region is truncated and discarded. Beginning Starts is the “normal” case where the input
document is truncated at the end. This is the default case when using LMs for seq2seq With
Random Starts, truncation occurs before and after the input sequence and the starting index is
drawn from a random uniform distribution.

When using arXiv and PubMed, the problem is that the salient information is dis-
tributed at primarily the beginning of the document. RS tackles this by truncating the input
document both at the beginning and the end rather than solely at the end as the conventional
task would. This is illustrated schematically in Figure 5.1: the normal “Beginning Start” case
takes the first L tokens, where L is model length. With Random Starts, any sequence of
L adjacent tokens can be used as the model input, with the starting index S drawn from
a random uniform distribution S ∼ U (0,N − L) and document length N58. This is a crude

58Note that this is only for the source document. If the target summary is truncated, this still occurs only at the
end.
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but effective method of ensuring that longer models have a higher probability of seeing the
salient information than shorter models. Clearly we expect longer models to perform better
on this task.

Algorithm 1: Random Starts Truncation
Result: Set of truncated documents, T = {t1, . . . , tn}
for source document di ∈D do

Tokens to truncate mi = length(di)−model length L
Draw starting position si , si ∼U (0,mi)
ti = di[si : si +L]

end

To implement this we modified the huggingface BARTTokenizer (Wolf et al. [2019])
to create a custom tokenizer. The tokenization process used by our custom tokenizer is de-
scribed in algorithm 1. Applying this to the PubMed dataset, we obtain a distribution over
the starting positions within the document (si in algorithm 1). This distribution is illustrated
in Figure 5.2. The spikes at zero indicate the share of documents which are shorter than
the model length and therefore begin at the first token (i.e. these are not truncated). As
the model length increases it becomes longer than more of the documents and therefore the
spike at zero becomes increasingly dominant. When using the LED-4096, over 65% of the
documents are not truncated as they are shorter than the model, so the Random Starts and
Beginning Starts cases converge as model length rises.

Figure 5.2: Histograms plotting the normalized starting position by model length. The normal-
ized starting position is the starting index of the input sequence divided by document length,
si / length(di). This therefore shows the percentage of the document which is truncated at the
beginning. If a document is shorter then the model, it is not truncated and therefore the (normal-
ized) starting position is zero, hence the spikes at zero. These plots show four different length
versions of the LED| and use the PubMed test set.
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5.2.6 RED vs LED

As mentioned in section 4.2.3, an open research question in text summarization is which ap-
proximate self-attention layer has optimal performance. This section outlines our methodol-
ogy for comparing between the LED and the RED as two candidate approximate self-attention
layers. We explained in section 4.2.3 that BART’s trained self-attention weights are incom-
patible with Reformer self-attention, thus we cannot begin with pre-trained weights in the
RED. This limits the scope of experiments we can perform as pre-training has been shown
to increase model performance when using TED summarization models (e.g. Zhang et al.
[2019a], Lewis et al. [2019]).

We do not have the hardware available to pre-train a set of compatible Reformer self-
attention weights. To make a meaningful comparison between the LED and RED we therefore
randomise the weights of the self-attention layers in the LED. Note that it is only the self-
attention layers in the RED and LED which are randomised; the remainder of the model (e.g.
feedforward layers, the decoder, the positional embedding matrices) still use BART’s pre-
trained weights. We then run fine-tuning using both models for three epochs on the PubMed
dataset. Our final model configurations are in Table D.2 and results in section 6.2.5.

6 Results

6.1 Evaluation Experiments

A key objective of this thesis is to establish a set of new evaluation metrics which are supe-
rior to the ROUGE metrics. We outlined the selection of metrics used in section 4.1 and our
experimental methodologies in section 5.1. Here we present the results from these experi-
ments with corresponding analysis. It will be seen that BERTScore, BARTScore, Mover-1 and
Mover-2 consistently outperform the ROUGE metrics on these tasks and therefore would be
strong candidates to become the new prevailing metrics in text summarization. It will also
be seen that BLEURT performs erratically and hence would not be a strong choice.

6.1.1 Metric Configurations

In section 4.1.1 we outlined each of the evaluation metrics used for this thesis. As discussed,
several of the metrics use Transformer LMs to compute the embeddings which are then used
to score the summary. For BERTScore, BARTScore and BLEURT there are several different
LMs able to perform this role59; here we perform preliminary experimentation to decide
which configuration performs best. We then used the best-performing configuration for all
subsequent analysis in this thesis.

BERTScore & BARTScore The key configuration decision within BERTScore / BARTScore

is the choice of LM to compute the embedded representation. The authors experiment with
twelve BERT TE model flavours and find the 24-layer RoBERTalarge (Liu et al. [2019]) corre-
lated highest with human judgement (on English tasks). Recall in section 5.1.2 we explained
our methodology for computing the correlation between human evaluator judgements and

59While it would be possible to change the LM within Mover-1/2 (Zhao et al. [2019]), this is technically more
challenging than for the above metrics. Moreover, the key innovation with MoverScore is the solving of the
WMD problem to compute the similarity between two texts. We therefore did not experiment with different
LMs for MoverScore.
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Model Name Spearman ρ Pearson r Kendall τ

BERTScore

roberta-large-mnli 0.298 0.337 0.263
roberta-large 0.285 0.299 0.254
albert-xxlarge-v2 0.268 0.291 0.232
albert-xlarge-v1 0.250 0.290 0.215
bert-large-uncased 0.227 0.253 0.198
roberta-base 0.221 0.243 0.197
distilroberta-base 0.174 0.188 0.154

BARTScore

bart-large-mnli 0.308 0.339 0.273
bart-large 0.183 0.200 0.162
bart-large-cnn 0.111 0.130 0.010
bart-large-xsum 0.127 0.163 0.109

Table 6.1: Performance for different configurations of BERTScore and BARTScore on the anno-
tated CNN/DailyMail task. The task assesses how well the scores given by each evaluation met-
ric correlate with scores given by human evaluators. The figures reported are the correlations,
shown for Spearman ρ, Pearson r and Kendall τ (Definitions of each of the correlation metrics
can be found in appendix D). The model names correspond to those from the huggingface trans-
formers library (Wolf et al. [2019]) and can be viewed at: https://huggingface.co/models.
See section 5.1.2 for additional experiment details.

the evaluation metric score for summaries of CNN/DailyMail articles. Using this procedure
we analysed the impact of different LM choices on BERTScore’s ability to evaluate sum-
maries.

The results of this analysis can be seen in Table 6.1. As shown, the bart-large-mnli60

variant of BARTScore correlates best with human judgement. This is narrowly followed by
the roberta-large-mnli version of BERTScore. These configurations were used for all sub-
sequent analyses and latter references in this paper will assume these metrics are configured
as such.

The strong performance of the metrics using models fine-tuned on the MultiNLI dataset
is intuitive. The MultiNLI (Williams et al. [2018]) dataset is a Natural Language Inference
(NLI) task which requires the model to classify whether one sentence entails another. This
task is well-suited to fine-tuning the model within BERTScore as NLI requires strong NLU
for good performance. Equally, a model with strong NLU should serve as a competent eval-
uation metric by grasping the semantic similarities between two texts. The model used for
MoverScore is BERT fine-tuned on the MultiNLI dataset. Given that ourselves and Zhao et al.
[2019] both separately find the MultiNLI dataset to be the most effective fine-tuning task for
evaluation metrics this conclusion would seem robust.

In contrast, fine-tuning using a summarization task would not seem sensible here.
Summarization teaches the model to condense information down to only the essential points
and also to generate an output sequence. This means that the decoder will be trained to gen-
erate text but this is not useful when we want the model to produce a meaningful encoding
of a sequence such that its semantics can be easily compared to another encoded sequence.

60The large version of BART fine-tuned on the MultiNLI dataset (Williams et al. [2018])
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Model Name Spearman ρ Pearson r Kendall τ

bleurt-large-512 0.246 0.274 0.216
bleurt-base-512 0.223 0.241 0.200

Table 6.2: Performance for different configurations of BLEURT. The task assesses how well the
scores given by each evaluation metric correlate with scores given by human evaluators. The
figures reported are the correlations, shown for Spearman ρ, Pearson r and Kendall τ (Definitions
of each of the correlation metrics can be found in appendix D). See section 5.1.2 for experiment
details.

Metric Spearman ρ Pearson r Kendall τ

BARTScore 0.308 0.339 0.273
BERTScore 0.298 0.337 0.263
BLEURT 0.246 0.274 0.216
Mover-2 0.242 0.282 0.209
Mover-1 0.236 0.274 0.203
ROUGE-1 0.171 0.216 0.149
ROUGE-L 0.162 0.191 0.145
ROUGE-2 0.127 0.133 0.115

Table 6.3: Performance on the annotated CNN/DailyMail correlation task by evaluation metric.
The task assesses how well the scores given by each evaluation metric correlate with scores given
by human evaluators. The figures reported are the correlations, shown for Spearman ρ, Pearson
r and Kendall τ (Definitions of each of the correlation metrics can be found in appendix D). None
of the differences between the metrics are statistically significant as the standard deviations of all
metrics were large (approximately 0.5), due to the relatively small dataset size and the volatility
of computing correlations using only four data points. Definitions of each of the correlation
metrics can be found in appendix D.

Additionally, summarization has many opportunities for over-fitting, such as prioritising the
first few sentences of the input document due to lead bias in the case of news articles or
sentences beginning with phrases such as “we conclude that...”. This over-fitting means the
model is unlikely to be transferable to act as an evaluation metric. Therefore, while it might
sound sensible to fine-tune a summarization evaluation metric with a summarization task,
the two tasks are orthogonal and therefore unlikely to yield good performance. This is rein-
forced empirically in Table 6.1 with the variants of BARTScore fine-tuned on summarization
tasks (bart-large-cnn and bart-large-xsum) performing worst.

BLEURT As for BERTScore described above, we ran experiments to compare the relative
performances of configurations. As shown in Table 6.2, the large version correlated bet-
ter with human judgement and therefore we proceeded with using bleurt-large-512 in
subsequent analyses.

6.1.2 CNN/DailyMail Correlation Experiments

The results for the correlation experiments are displayed in Table 6.3. As expected, the
ROUGE metrics correlate poorly with human evaluator scores and perform worse than all of
the model-based metrics. Of the model-based metrics, BARTScore and BERTScore perform
best with BLEURT and MoverScore clustered around the mid-point. This provides strong
evidence in favour of our hypothesis that the model-based metrics will better reflect the true
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Metric
Correlation Binary Classification

ρ r τ Acc. F1

BLEURT 0.492 0.490 0.416 0.725 0.617
Mover-2 0.461 0.455 0.377 0.690 0.542
Mover-1 0.460 0.451 0.375 0.687 0.532
BERTScore 0.450 0.450 0.367 0.688 0.546
BARTScore 0.448 0.443 0.366 0.680 0.525
ROUGE-L 0.376 0.365 0.308 0.651 0.471
ROUGE-1 0.370 0.365 0.303 0.651 0.459
ROUGE-2 0.323 0.270 0.270 0.630 0.338

Table 6.4: Performance on the QQP binary classification task. The task is to determine if two
questions are semantically equivalent or not. The first three columns indicate the correlation
between the metric output score and the ground truth label. The coefficients represent Spearman
ρ, Pearson r, Kendall τ and definitions of each of these can be found in appendix D. The final
two columns correspond to the performance of a decision boundary using only the metric output
as the solitary feature, i.e. how well would a classifier perform on this task if its only feature was
the score given by the evaluation metric. We report the accuracy and F1 score here.

semantic similarity than the ROUGE metrics.

6.1.3 Quora Question Pairs Analysis

Table 6.4 displays the results of the QQP task. The first three columns are correlation coeffi-
cients between the metric output scores and the labels (reported for Spearman ρ, Pearson r,
Kendall τ, see Appendix D for definitions). As an alternative view, we could ask how well a
classifier would perform if it only uses the metric output as its solitary feature (i.e. train a de-
cision boundary or a single feature logistic regression classifier using only the metric score).
To do this, we split the data into 50% training and learned a decision boundary to predict
the class of the remaining 50% test set. These results corresponds to the final two columns of
Table 6.4. As the dataset is imbalanced (one third duplicates), F1 score is reported alongside
accuracy as this is the harmonic mean of precision and recall and so implicitly accounts for
differences in per-class accuracy.

The results in Table 6.4 corroborate our earlier finding that the model-based metrics
outperform the ROUGE metrics. This supports our hypothesis that contextualized embeddings
are beneficial for automatic evaluation metrics as semantic similarity is easier to determine
in the embedded space than by performing surface-level lexical comparisons. Of the model-
based metrics, BLEURT clearly performs the best with the remaining metrics clustered around
the mid-point. BLEURT’s strong performance on this task but average performance on the
CNN/DailyMail correlation task in section 6.1.2 are not consistent and this is the first evi-
dence of BLEURT’s erratic performance across the tasks. This will be seen more in the next
sections.

6.1.4 Adversarial Analysis

Table 6.5 contains the results for the three adversarial tasks described in section 5.1.4. Here
we see that BERTScore and BARTScore are the best-performing metrics across both datasets.
Additionally, by and large all of the model-based metrics outperform all of the ROUGE metrics
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Metric
Word-Dropping (%) BERT Mask-Filling (%) Word Permutation (%)
CNN/DM PubMed CNN/DM PubMed CNN/DM PubMed

BARTScore 94.6 95.5 98.0 98.2 97.6 97.4
BERTScore 92.9 94.8 95.4 95.7 97.8 97.9
Mover-1 86.2 88.6 84.7 88.3 91.9 93.1
Mover-2 83.2 84.6 82.1 85.5 87.7 89.5
BLEURT 70.4 49.8 82.2 86.0 92.8 92.4
ROUGE-1 78.2 78.6 73.5 89.6 00.0 00.0
ROUGE-2 74.4 87.8 65.7 88.8 78.5 90.2
ROUGE-L 77.0 77.3 71.4 85.4 53.8 57.0

Table 6.5: Mean accuracy by metric on the corruption tasks. These tasks apply various forms
of corruption to a set of summaries. Each metric is then used to score the corrupted and un-
corrupted versions of these summaries; the objective is to give the uncorrupted version a higher
score. The results reported therefore shows the accuracy by metric on this task. Scores within 1%
of the maximum score have been bolded. All standard deviations were small (less than 0.3%).
We run experiments using the CNN/DailyMail and PubMed datasets here.

on each of the tasks and both datasets. These results corroborate the findings from sec-
tion 6.1.2. These tasks were designed to test the sensitivity of the metrics to syntax, lexical
discrepancies and other common pathologies present in automatically-produced summaries.
These results indicate the model-based metrics are favourable along these dimensions.

We expressed concern in section 5.1.1 that the model-based metrics might perform
poorly on the PubMed dataset because their LMs were not exposed to the biomedical lexicon
during pre-training. This would prevent the models from forming meaningful embedded
representations of these tokens and therefore the models would perform poorly. This does
not appear to be the case here as the model-based metrics’ performance stays roughly con-
stant across the two datasets.

Of the ROUGE metrics ROUGE-2 performs best, particularly on the PubMed dataset. This
is unsurprising given that PubMed consists of medical research papers containing specific
medical terms. These often span several tokens so large phrases of the summaries will be
extracted directly from the source document. When the corruption is applied to a single to-
ken from one of these medical terms it will disrupt the n-gram sequence and will be detected
by ROUGE-2 (but not necessarily the other ROUGE metrics as they are less sensitive to word
order).

The other notable result here is BLEURT’s poor performance, particularly on the word-
dropping and BERT mask-filling tasks. This is surprising given that these corruption meth-
ods were directly inspired by the methods used to generate the synthetic dataset BLEURT was
trained on. Given the proximity of these tasks to BLEURT’s pre-training, BLEURT was expected
to excel on these tasks. This is another example of BLEURT’s inconsistent performance across
our evaluation experiments.
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Model BA BE M-1 M-2 BLEURT R-1 R-2 R-L

BART
0.608 0.318 0.225 0.286 -0.287 0.442 0.211 0.410
0.07 0.13 0.13 0.12 0.28 0.12 0.13 0.12

PEGASUS*
0.613 0.310 0.217 0.282 -0.215 0.433 0.213 0.403
0.08 0.15 0.15 0.14 0.29 0.14 0.14 0.14

ProphetNet
0.624 0.320 0.227 0.289 -0.263 0.442 0.212 0.411
0.07 0.13 0.14 0.13 0.28 0.13 0.14 0.13

PGN
0.554 0.186 0.117 0.187 -0.340 0.362 0.156 0.333
0.09 0.16 0.14 0.13 0.28 0.13 0.12 0.13

Table 6.6: Reproducing the results from Lewis et al. [2019], Zhang et al. [2019a] and See
et al. [2017] on the CNN/DailyMail summarization task. The mean score is reported with the
standard deviation underneath. BA / BE are BARTScore / BERTScore, M-n is Mover-n and R-n
is ROUGE-n. Scores within 0.01 of the highest score are bold. * Re-eval, results marginally lower
than in Zhang et al. [2019a].

6.1.5 Benchmarking of Leading Architectures

Table 6.6 contains the results of the benchmarking analysis61. We provide boxplots of a
selection of the metrics in Figure 6.1 for additional visibility of the distributions’ statistics.
Full distributions for each of the metrics’ scores for ProphetNet’s summaries are shown in
Figure E.2.

Aside from BLEURT, the model-based metrics unanimously agree that ProphetNet is
the leading approach on the CNN/DailyMail dataset, with split opinions over the relative
performances of PEGASUS and BART. Our goal with this section is to establish a superior set
of evaluation metrics and provide a barometer of the performances of the leading archi-
tectures in the field using these metrics for the CNN/DailyMail dataset. The information
contained within Table 6.6 will serve as a useful reference for future summarization models
to be benchmarked against using a wider range of evaluation metrics than the status quo.

Also notable here is that BLEURT does not rank ProphetNet as the best model con-
trasting with every other metric. This another occurrence of BLEURT’s erratic predictions,
reinforcing the instances seen in throughout this chapter. This will be discussed in further
detail in section 7.1.1.

6.2 Architecture Experiments

This section contains the results of the architectures experiments outlined in section 5.2. We
begin by establishing that the LED and BART perform comparably as anticipated. We then
proceed to analyse in detail the performance of the LED. It will be seen that there is a large
increase in performance of the LED provided using a longer model increases the chance that
the model sees the salient content in the input document.

61There are some minor differences between the reported ROUGE scores here and the scores originally reported
by the authors. These stem from using different ROUGE packages to generate the scores as discussed in sec-
tion 5.1.1.

47



6.2 Architecture Experiments 6 RESULTS

Figure 6.1: Boxplots of the distributions of scores illustrated in Table 6.6. Displayed here are the
distributions of evaluation scores for each of the four architectures of interest. Scores are only
shown for BERTScore, Mover-2 and ROUGE-1 for visibility.

6.2.1 LED vs BART

This section contains our results for the experiments comparing the LED with BART. The
primary results is that the two models perform similarly, hence we conclude that using ap-
proximate self-attention is a viable strategy in text summarization. We elaborate upon these
results in the remainder of this section.

As outlined in section 4.2.2, our hypothesis is that TED models can perform similarly
well when using approximate self-attention layers compared to normal self-attention. We
must first test this hypothesis before proceeding with using the LED on long document sum-
marization tasks. Our experimental methodology was highlighted in subsubsection 5.2.3;
this section contains the results of these experiments.

The results illustrated in Table 6.7 affirm our hypothesis. Here we show a side-by-side
comparison for the LED-1024 and BART for the CNN/DailyMail, PubMed and arXiv datasets.
For each of the datasets and over each metric the mean scores are very similar, with BART

performing better on PubMed and arXiv but the LED outperforms using CNN/DailyMail.

These results are unsurprising: n2 self-attention and sliding window self-attention are
similar when using a 512 window size with 1024 input size62. As shown in Figure 2.12,
sliding window self-attention does not convolve (i.e. the first token only attends to the first
512 tokens; likewise the final token only attends to the final 512 tokens). The 513th token
attends to, and is attended to, by all tokens in the sequence. This makes the BART and the

62Recall that the attention window is double-sided.
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Metric BA BE M-1 M-2 BLEURT R-1 R-2 R-L

CNN/DM

BART
0.597 0.302 0.203 0.268 -0.249 0.425 0.204 0.394
0.08 0.13 0.14 0.12 0.27 0.12 0.13 0.12

LED
0.599 0.303 0.203 0.269 -0.237 0.423 0.201 0.394
0.08 0.13 0.14 0.12 0.27 0.12 0.13 0.13

PubMed

BART
0.606 0.275 0.181 0.237 -0.047 0.437 0.188 0.389
0.01 0.11 0.11 0.10 0.17 0.10 0.13 0.11

LED
0.603 0.270 0.172 0.229 -0.053 0.431 0.184 0.383
0.01 0.11 0.11 0.10 0.17 0.10 0.12 0.11

arXiv

BART
0.597 0.268 0.161 0.217 -0.091 0.444 0.166 0.389
0.04 0.07 0.08 0.07 0.15 0.08 0.07 0.07

LED
0.597 0.265 0.156 0.213 -0.097 0.439 0.165 0.388
0.04 0.08 0.09 0.08 0.16 0.08 0.08 0.08

Table 6.7: Performance for BART and LED-1024 on the summarization task using the PubMed
and CNN/DailyMail datasets. The mean metrics scores for the respective tests sets are reported
with corresponding standard deviations underneath.

LED similar when using 1024 inputs; it is only when we increase the input length further
that the models diverge. This will be explored later in this section.

Here we should highlight that we were unable to reproduce the results from Lewis
et al. [2019] when fine-tuning BART on the CNN/DailyMail dataset ourselves, despite exten-
sive and exhaustive experimentation. This accounts for the scores for BART on the
CNN/DailyMail dataset being higher in Table 6.6 than in Table 6.7. This is because the au-
thors originally fine-tune BART using the fairseq library (Ott et al. [2019]). Several of the
features the authors originally use had not been released on the huggingface library (Wolf
et al. [2019]) at the time of writing (e.g. layer-drop, attention dropout and label-smoothing).
In addition, due to hardware constraints we used a much smaller batch size than the authors.
However, even after including these features it appears there are differences between the un-
derlying code-bases which prevent exact replication of the results using huggingface63. This
likely accounts for our best-performing BART configuration on the CNN/DailyMail dataset be-
ing different to the author’s best performing configuration, as can be seen in tables Table D.1
and Table D.2.

6.2.2 LED performance

In this section we display the results of the set of experiments probing the performance of
the LED. There are two main results here: 1) using a longer version of the LED improves
performance on the arXiv dataset but not using PubMed; 2) reducing the attention window
size by a factor of 8 only reduces the performance of the LED by 3.5% on average. These
results will be elaborated upon in the remainder of this section.

Section 5.2.4 outlined our methodology for assessing the performance of the LED. Here
we examine the impact of changing the input length and the attention window size on the

63This is discussed in the following GitHub issues thread: https://github.com/huggingface/transformers/
issues/5654
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model performance. We provide the reader with samples of the LED-1024 output summaries
for the CNN/DailyMail test set in tables A.1, A.2, A.3, A.4. The corresponding evaluation
scores for each metric are also provided. These contain four sets of samples: those scored
highly by all metrics, those scored poorly by all, those scored well by the model-based metrics
and poorly by ROUGE and vice versa.

Figure 6.2: Analysis of the performance of the LED by model length on a summarization task.
These results have been normalized by standard deviation and indexed for better comparability
of the trends across the different metrics. The top figures show on the PubMed dataset, arXiv
shown below. The left-sided plots show the Beginning Starts case and the Random Starts in the
right-sided plots. The raw version of these results can be seen in tables E.3 and E.4. We exclude
BLEURT to improve visibility.

Performance by input length Results are available in tabular format in Table E.3 and illus-
trated graphically in Figure 6.2. Figure 6.2 shows a side-by-side comparison of input-length
against (normalized) metric scores when using Beginning Starts vs Random Starts (see sec-
tion 5.2.5). on the arXiv and PubMed datasets. Currently we are analyzing the normal case
(i.e. Beginning Starts) so consider only the left panels of Figure 6.2. Here we can see that
there is at best a modest improvement in model performance when using longer model con-
figurations on the PubMed dataset (top-left panel). In section 5.2.5 we hypothesized that
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longer models may not be helpful on the PubMed dataset as the salient information is clus-
tered at the beginning of the document so using a longer input length surmounts to using
noisier data. The results in Figure 6.2 support this hypothesis for the PubMed dataset.

In contrast, there is a stronger positive trend using the arXiv dataset. This suggests that
the salient content is distributed more evenly throughout the documents on this dataset. It
also shows that longer versions of the LED can outperform shorter versions of the model
in some domains. This suggests that the benefits of using a longer context window can
outweigh the increased information distillation challenges from using a longer model. It
should also be highlighted that the LED performed particularly strongly on the arXiv dataset,
surpassing the state of the art approach (PEGASUS) on this dataset. PEGASUS has ROUGE scores
of 0.442/0.169/0.388 whereas our strongest model here, LED-3584, has ROUGE scores of
0.451/0.174/0.400. Recall that we only fine-tune each of the models for a 24 hour period to
fit with the HPC scheduling and preserve comparability across the architectures. Given that
we could likely achieve higher performance given longer training times, the performance of
the LED on this dataset is particularly impressive.

Figure 6.3: Performance of the LED-1024 on the PubMed summarization task by attention win-
dow length. Here the results have been normalized by dividing by standard deviation and re-
based to increase the visibility of the trends across the different metrics. A raw version of this
plot can be seen in Figure E.1. These scores are obtained using the test set after fine-tuning the
models each for 24 hours on the PubMed dataset. These results are displayed in tabular format
in Table E.1.

Performance by attention window These results can be seen in Figure 6.3 or in table for-
mat in Table E.1. As illustrated, reducing the attention window size has a marginal negative
impact on the LED’s performance. Cutting the LED-1024’s attention window from 512 to 64
resulted in between a 1% and 7% fall in performance (metric-dependant). These results
indicate that the model can perform better if the input length is increased while holding
the attention window constant. This also support our hypothesis that the complexity of
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Figure 6.4: Results of profiling the memory consumption of the LED according to input length
and attention window size while performing the PubMed summarization task. These results are
displayed in tabular format in Table E.2.

Transformers’ self-attention layers can be reduced without dramatically harming their per-
formance.

This is significant as it greatly reduces the memory consumption of these models. This
reduces the cost of long document summarization and allows considerably longer sequences
to be used on standard hardware without truncation. For example, with an attention window
of 512 and a batch size of 1, the maximum sequence length that can fit on a 12 Gb GPU is
1,024. With an attention window size of 64, sequence lengths of 2,560 tokens can fit onto
the same hardware.

6.2.3 LED Profiling

In section 5.2.4 we discuss our methodology for profiling the memory consumption of the
LED. Our goal here is to confirm that it does indeed have linear memory complexity. The
results of the profiling analysis are illustrated in Figure 6.4. These results affirms that there
is a linear relationship between the memory consumption and both the input length and the
attention window size as anticipated.

Note that using sliding window attention should theoretically have an equal improve-
ment on the asymptotic execution speed of the model as the self-attention layers also have
quadratic time cost. In recognition of this, Devlin et al. [2018] pre-train BERT using sequence
lengths of only 128 tokens for the first 90% of steps and the 512-length sequences for the
remaining 10% of pre-training steps to speed up training. However, as noted in Beltagy
et al. [2020], pytorch uses a high optimized GPU kernel for dense matrix multiplication.
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This cannot be used for sliding window attention and using a native pytorch implementa-
tion dramatically reduces speed. With this in mind, Beltagy et al. [2020] design a custom
GPU kernel to perform the sliding window attention computation, but this only matches the
speed of the original self-attention computation and does not result in a speed-up. Given that
memory is usually the bottleneck for Transformers rather than speed, this is not a limiting
factor. With this in mind, we chose not to profile execution speed as we would not expect an
improvement.

6.2.4 Random Starts Analysis

This section presents the results of the Random Starts analysis. The primary result here is
that longer forms of the LED perform dramatically better than shorter forms of the LED when
using Random Starts analysis. This is reflected by a 35% and 45% improvement64 using
the PubMed and arXiv datasets respectively. These results will be elaborated upon in the
remainder of this section.

The results of the Random Starts analysis are shown graphically in Figure 6.2 and in
tabular format in Table E.4. Considering Figure 6.2, the left and right panels correspond
to the performance of the LED by input length when using Beginning and Random Starts
respectively. As mentioned above, the top charts display results for the PubMed dataset and
the bottom charts show for arXiv. This figure shows that when using Random Starts, model
performance clearly improves when using longer inputs on both datasets. In contrast, when
using Beginning Starts there is a clear but modest improvement in performance when using
the arXiv dataset and no clear trend when using the PubMed dataset.

This plot provides strong evidence in favor of both of the hypotheses outlined in sec-
tion 5.2.5. We conjectured that using a longer model would improve performance if the
salient information is distributed throughout the document. We also hypothesised that this
may not manifest for the PubMed dataset as the salient information is skewed towards the in-
troduction section, thus biasing in favor of shorter models. Given that the LED only improves
modestly with increasing input length when using Beginning Starts but improves markedly
when using Random Starts, this suggests the above hypotheses are correct for the PubMed
dataset. Using arXiv, we see an upward trend when using Beginning Starts and a strong and
significant upward trend when using Random Starts. There seems clearer benefits to using
a longer model on the arXiv dataset in any scenario, whereas this is only the case when
using Random Starts for PubMed. This is likely due in part to the arXiv documents being on
average 60% longer than their PubMed counterparts.

Note that Figure 6.2 is re-based as this better reflects the trend of input length ver-
sus output scores; it does not represent the differences in absolute performance. In abso-
lute terms, the Beginning Starts case always outperforms the Random Starts case on both
datasets, although the gap closes the longer the input length. This results can be seen using
Table E.3 and Table E.4.

64The improvement is in standardized metric scores. The scores for each metric are standardized by dividing by
the standard deviation to make results comparable across the evaluation metrics.
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Model BA BE M-1 M-2 BLEURT R-1 R-2 R-L

RED
0.582 0.237 0.140 0.201 -0.112 0.408 0.164 0.366
0.06 0.11 0.112 0.10 0.18 0.11 0.12 0.11

LED
0.569 0.213 0.110 0.173 -0.135 0.380 0.126 0.333
0.06 0.10 0.10 0.09 0.18 0.10 0.10 0.10

LED (pre-trained)
0.603 0.270 0.172 0.229 -0.053 0.431 0.184 0.383
0.01 0.11 0.11 0.10 0.17 0.10 0.12 0.11

Table 6.8: Comparison of performance of the LED with the RED on the PubMed summarization
task. The performance of the pre-trained LED is also shown as a benchmark. Shown above is
mean performance by metric on the PubMed test set with corresponding standard deviations
underneath.

6.2.5 RED vs LED

Our methodology for comparing the LED and RED was outlined in section 5.2.6 and the re-
sults are shown in Table 6.8. The key results is that the RED outperforms the LED on all
metrics. Recall that we could not use transfer learning with the RED as the hidden dimension
using the pre-trained models was incompatible with BART. The results therefore compare the
LED and RED both without pre-trained weights in the self-attention layers in their encoders.
The results from the version of the LED using pre-trained weights is also shown as a bench-
mark.

The results show that the RED performs much better then the LED when neither has
pre-trained weights. This holds for all eight of the evaluation metrics and is especially pro-
nounced for some (e.g. over three ROUGE improvement using ROUGE-2). The benefits of
transfer learning are clearly evident here as the pre-trained version of the LED significantly
both models. Clearly we cannot draw any firm conclusions about how well a fully pre-trained
RED model would perform by comparing its performance without pre-trained self-attention
layers; however, this does indicate that different self-attention layers do result in different
performance levels. In section 8.2 we propose several future promising research angles in
text summarization. The analysis here indicates that a systematic comparison of different
self-attention layers is an important and obvious topic to dictate the future research empha-
sis in the field.

7 Analysis

7.1 Evaluation Analysis

This section offers additional analysis to support the conclusions reached in section 6.1. Here
we offer our opinion over the performance hierarchy of the metrics analysed in this thesis.
We profile the metrics to show their run-times and memory usage before discussing some of
the limitations of our analysis and some possible solutions.

7.1.1 Choosing Between the Metrics

Section 6.1 explained the results of the evaluation metric experiments. Here we saw that
the model-based metrics were almost always superior to the ROUGE metrics, making a strong
case to replace the ROUGE metrics with a selection of these model-based metrics. This section
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will address the question of which of the metrics are strongest.

Figure 7.1: Correlation matrix of evaluation metrics’ scores using the summaries produced by
ProphetNet, BART and PEGASUS on the CNN/DailyMail test set.

It was a recurring theme in section 6.1 for BLEURT to behave erratically. It had the
strongest performance on the QQP task from section 6.1.3, moderately performance on the
CNN/DailyMail human correlation experiments in section 6.1.2 and poorly on the adversar-
ial tests in section 6.1.4, surprising given the adversarial tests closely resembled BLEURT’s
pre-training task. Shown in Figure 7.1 is the correlation matrix of the evaluation metrics
scores on the using the summaries produced by ProphetNet, BART and PEGASUS on the
CNN/DailyMail test set. Here we see that in general the metrics’ scores are highly corre-
lated. Notably, BLEURT is the least correlated with every other metric. This reinforces the
result seen in section 6.1.5, where BLEURT was the only metric to not award ProphetNet’s
metrics the highest mean score. While low correlation between all of the other metrics is not
necessarily problematic in isolation, coupled with BLEURT’s inconsistent performance on our
tests it does becoming concerning. We therefore would recommend against using BLEURT in
future research as it has not demonstrated reliably strong performance. This is a surprise as
we expected BLEURT to perform well given its sophisticated and rigorous pre-training proce-
dure.
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Metric Batch Size Run-time (s / 1K) Max Memory (Gb)

BARTScore 64 82 2.68
BERTScore 64 47 1.86
BLEURT 64 122 11.55
Mover-1 64 201 2.31
Mover-2 64 220 2.31
ROUGE-1 N.A. 12 N.A.
ROUGE-2 N.A. 11 N.A.
ROUGE-L N.A. 12 N.A.

Table 7.1: Profiling maximum GPU memory use and run-time for each metric when evaluating
summaries. The summaries are produced by the LED-1024 on the PubMed dataset with a max-
imum length of 200 tokens. Run-time displays the time in seconds to score 1,000 summaries.
Maximum memory use is found using pytorch’s torch.cuda.max memory allocated().

Returning to Figure 7.1, we see that Mover-1 and Mover-2 are almost perfectly corre-
lated with a value of 0.996. This result is not shared across all of the tasks seen in section 6.1
as the metrics do not perform identically on all of these tasks, although it is usually highly
correlated. It therefore seems excessive to use both Mover-1 and Mover-2; given Mover-2

is slightly more correlated with human judgement on the CNN/DailyMail correlation exper-
iments, we recommend this metric. Similarly, BERTScore and BARTScore’s scores are highly
correlated in Figure 7.1. Choosing between them, we would recommend BARTScore as it
performs better on the CNN/DailyMail correlation experiments and the adversarial experi-
ments. We would recommend reporting over all of the metrics bar BLEURT for subsequent
summarization research. However, if a more economical approach is desired, we would
recommend using only BARTScore and Mover-2.

7.1.2 Metrics profiling

In Table 7.1 we profile the run-times and maximum GPU memory usage of each of the
metrics. This is of interest because the model-based metrics use Transformer LMs which
require GPU use (to avoid being excessively slow). This is a limitation of the model-based
metrics when compared to ROUGE as ROUGE runs quickly on CPU. Of all of the metrics BLEURT
has the largest memory requirement. This can be reduced by reducing the batch size but
BLEURT is fundamentally memory-hungry when using the large model configuration. This
memory requirement is another strong reason against using BLEURT as computing BLEURT

scores on validation sets during training will require a substantial chunk of GPU memory be
set aside. In contrast, the memory requirements of MoverScore, BERTScore and BARTScore

are relatively modest. Of each of the metrics, Mover-2 is the slowest. Given there are 6.4K
summaries in the PubMed evaluation set, it takes Mover-2 24 minutes to process one pass, a
notable time cost (although it can easily be reduced via parallelization).

7.1.3 Limitations

The two difficulties automatic evaluation metrics face are domain drift and quality drift (Sel-
lam et al. [2020]). Domain drift refers to when the metric is applied to a different problem
setting or dataset. We have taken steps to address domain drift in this thesis by using three
different datasets (QQP, CNN/DailyMail and PubMed) and a range of tasks. As with all
machine learning, however, results are dataset-dependant hence we cannot conclude that
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these results are repeatable in an entirely different setting, for example the summarization
of entire books. Future work is to extend our experimental regime to other datasets to see
how robust our conclusions are to new domains.

Quality drift refers to results becoming outdated because the underlying summariza-
tion systems improve. Quality drift is problematic in this instance as the models used to
generate the summaries have been surpassed by the latest generation of Transformer-based
summarization models. We mentioned in section 5.1.4 that Zhang et al. [2019a] conduct
human evaluation experimentation and find that their model is not significantly worse than
the reference summary by human evaluators. The premise of the current evaluation proce-
dure is that the reference summary is the gold standard; once the model summaries become
competitive with the reference summary it no longer makes sense to evaluate a model sum-
mary by comparing it to the reference summary.

In section 2.5.4 we highlighted a reinforcement-learning based approach robust to
this issue. Using the Chaganty et al. [2018] dataset we used for our human correlation
evaluation experiments, Böhm et al. [2019] train a reinforcement learning model to learn to
score summaries using the “ground-truth” score provided by human evaluators. This remove
the ceiling of the quality of human produced summaries as model summaries can be scored
higher than the human summary. This approach may become more widespread future text
summarization research, although the lack of suitably scored datasets here is currently an
issue.

7.2 Architecture Analysis

In this section we provide some additional analysis to support the results seen in section 6.2.
We observe the qualitative performance of the models by outlining examples for each dataset.
We show that using approximate self-attention layers in the LED do result in linear space
complexity as expected by profiling the LED’s memory use. And finally we provide an in-
depth analysis into the performance of the LED by model length, giving additional insight
into the conclusions reached in sections 6.2.2 and 6.2.4.

7.2.1 Qualitative Analysis

Section A contains samples of each of the datasets with their corresponding target (gold
standard) summary and generated model summaries. The examples illustrate that each of
the models produce highly coherent and semantically relevant summaries across all three
datasets. The models adjust well to the diverse discourse styles across the three datasets.
Previous studies (Zhang et al. [2019a], Lewis et al. [2019]) have performed blind human
experiments and concluded that their summaries are not significantly worse than the target
summary on the CNN/DailyMail dataset. We judge the LED’s summaries to be of a similarly
high standard.

However, there is a clear quality gap between the human-written abstracts and the
model summaries on the PubMed and arXiv. It is still an open research question of how to
verify the factual authenticity of the generated summaries with erroneous claims being a
widespread problem in the field. These issues are common for all of the models we experi-
mented with on arXiv and PubMed. We conjecture this is in part due to the specific factual
nature and in part due less commonality between the lexicon used in these articles with the
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pre-training corpus for LMs due to the often niche focus of the articles.

Focusing just on the LED, the model struggles to grasp seemingly simple cosmetic fea-
tures of the dataset. For example, every PubMed article begins with a “< S >” token. How-
ever, some of our trained models struggled to reproduce this consistently and would often
start articles erroneously, such as with “<< S >” or “< 15...”. Similarly, in the PubMed and
arXiv target summaries in section A all full stops are succeeded by “< /S > < S >” tokens.
None of the models we experimented with consistently captured these artifacts. We conjec-
ture that Transformers struggle with the sequential element of these particularities as the
major computational components of the Transformer (i.e self-attention or the feedforward
projections) are permutation equivariant. We leave further investigation of this hypothesis
for future work.

7.2.2 Random Starts Discussion

In section 6.2.4 we presented the results of the Random Starts analysis. Here we saw that
using a longer model had a big performance improvement if we use Random Starts. How-
ever, there is a more modest performance improvement from using a longer model when
using Beginning Starts.

One might ask why we are interested in the performance of a model when it is fed an
input from a random position in a document. We would argue that in fact this analysis gives
better insight as to how well a Transformer-based summarization model would perform if
applied to “real-world” long document summarization tasks. In these scenarios it is unlikely
that the salient information would be clustered at the beginning of the document and there-
fore truncating to 1,024 tokens would result in substantial information loss. Using a longer
model would retain more information, but as the input length grows the challenge of dis-
tilling this information into a fixed length summary increases. Because these forces operate
in opposite directions, it was an open research question as to how well long-version Trans-
former summarizers would work. The analysis presented above suggests that they would
work well in practise.

7.2.3 Deep Dive Into Model Performance by Document Length

The Random Starts analysis outlined in sections 5.2.5 and 6.2.4 offers a good opportunity
to gain additional insight into the characteristics of the LED. In this section we provide an
in-depth analysis into the LED’s performance with respect to document length and starting
position within the document when using Random Starts, which we can compare with the
Beginning Starts case. It will be shown that the LED improves equally on longer and shorter
documents as we increase the model length when using the arXiv dataset. However, in-
creasing the model length on the PubMed dataset trades off better performance on longer
documents for worse performance on shorter documents.

Starting position vs model performance Recall in section 5.2.5 we outlined our method-
ology for truncating documents for our Random Starts analysis. We illustrated the resulting
distribution over the normalized starting position by model length in Figure 5.2. The high-
level results from the Random Starts analysis were explained in section 6.2.4. We saw that
there is a strong positive effect of using a longer LED model on performance when using
Random Starts, but a weaker impact when using Beginning Starts. Here we dive deeper into
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these results by analyzing the relationship between the normalized starting position and
model performance to understand the key drivers behind these results.

Figure 7.2: Scatter-plots of the normalized starting position against the evaluation metric score
on the PubMed dataset. The columns display bertscore, mover-1 and ROUGE-1; the rows display
the 1024, 2560 and 4096 length LED models. The Pearson r correlation with associated p-stat is
annotated for each subplot.

Figure 7.2 displays scatter plots of the (normalized) starting position in the source doc-
ument against the metric score for the model’s output summary conditioned upon evaluation
metric and LED model length. Recall from section 5.2.5 that the normalized starting position
indicates the share of the document truncated before the input sequence65. The Pearson r
correlation is annotated for each subplot; a negative correlation here implies that the more
tokens that are truncated from the beginning of the document, the worse the model per-
forms. Given that these are negative for all subplot, this is further evidence in favour of our
hypothesis that the PubMed dataset is biased toward shorter models as the salient content

65I.e. if a document is 2K tokens long and the normalized starting position is 0.25, the input to the model is the
500th - 1,500th tokens (assuming 1K model length).

59



7.2 Architecture Analysis 7 ANALYSIS

congregates at the beginning of documents.

Figure 7.3: Analysis of the LED’s performance on a summarization task when using Random
Starts. The plots show the correlation between output score and normalized starting position for
different length LED models. The top and bottom figures show for PubMed and arXiv respectively.
These plots have been re-based to improve visibility of the trends.

Having established that models perform better if content is truncated at the end rather
than the beginning of the document, we might be interested in how this factor depends on
the model length, i.e. how does this Pearson r value change if we vary the model length.
Intuitively, one would believe that increasing model length would make the model better at
handling longer documents relative to short documents as less content is truncated overall.
However, as the model length rises, the rarer it becomes for the model to encounter docu-
ments during training which have a significant truncation at the beginning66. Hence when

66This is evident from the plots of the distribution over starting positions shown in Figure 5.2: approximately
65% of the source documents do not get truncated for the LED-4096. Of those that do, few samples have long
enough source documents for a significant portion of the introduction to be truncated. For 1K tokens to be
truncated, the document must be at least 5K tokens long and the distribution shown in Figure 3.1 indicate
that few PubMed documents are this long.
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one such document arises at inference time, the produced summary will likely be poor rel-
ative to the non-truncated samples. This implies the negative correlation would strengthen
with longer models. Given that the two hypotheses outlined above oppose one-another, it is
unclear a-priori how this correlation statistic and the model length will interact.

To answer this question, observe the upper plot in Figure 7.3. This aggregates the
Pearson r correlations (between starting position and output score) seen in Figure 7.2, re-
bases them and plots against LED model length. The top panel shows for the PubMed dataset
with arXiv underneath. Here can clearly see the correlation gets stronger as model length
increases. This means that longer models perform relatively worse on documents that are
truncated at the beginning than shorter models do. This suggest the latter of the two hy-
potheses above is likely to be correct; i.e. that longer models see few truncated documents
during training and therefore perform worse on these during inference.

We repeated this analysis using the arXiv dataset and this is shown in the bottom panel
of Figure 7.367. Here we see no clear trend between the model length and the strength of
this correlation. This is to be expected with arXiv as the mean document length is much
longer than in PubMed, and hence the longest models still are exposed to lots of beginning-
truncated documents during training. As displayed in Table 3.1, 61% of arXiv documents
are longer than 4,096 tokens compared to 24% of PubMed samples. Because of this, we do
not find convincing support in favor of either of the two hypotheses outlined above.

Document length vs model performance Parallel to the above analysis, we can observe
the relationship between the input document length and model output scores. As above, we
can inspect how this evolves as we increase model length. This gives us a deeper insight
understanding of the LED’s characteristics with respect to different document lengths across
different datasets.

Figure 7.4 plots the relationship between the LED model length and the correlation
metric. The top plots are for the PubMed dataset with arXiv underneath. Here the corre-
lation metric is between model performance and document length rather than normalized
starting position as above69. We plot a side-by-side comparison for the Beginning Starts vs
Random Starts case. Consider first the upper plots showing the PubMed tests. For the Be-
ginning Starts case there is a weakening of the correlation between document length and
model output score. This implies that longer models are relatively better at summarizing
long document compared to short documents than shorter models are. Note that this only
speaks of the correlation between document length and output score and does not reflect ab-
solute model performance. We saw in Figure 6.2 that there is at best a modest relationship
between the LED model length and absolute metric score on the PubMed dataset. Consider-
ing the arXiv equivalent in the panel below, the correlations are close to zero and there is no
clear trend with respect to model length. This implies that all model lengths find longer and
shorter documents equally difficult to summarize.

67The analogous plot to Figure 7.2 for the arXiv dataset is shown in Figure E.4
68These plots show the raw figures and have not been re-based (as for Figure 7.3, for example). This is because

some metric scores cross the zero boundary therefore re-basing is problematic.
69We described Figure 7.3 as the aggregation of the scatter-plots displayed in Figure 7.2. The corresponding

scatter-plots for Figure 7.4 can be found in Figure E.3.
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Figure 7.4: Plot showing the correlation between output score and document length against
model length. The top plots show for the PubMed dataset, the bottom plots for arXiv. The left-
sided panels illustrate when using Beginning Starts and the right-sided panels show for Random
Starts68.

Consider now the Random Starts experiments in the right-hand panels of Figure 7.4.
We see immediately that all of the correlations are much lower when using Random Starts
than beginning starts. This means that the models struggle relatively more on longer doc-
uments when using Random Starts than Beginning Starts. This is expected as longer docu-
ments are more likely to have salient content truncated than shorter documents when using
Random Starts. We also notice that, on both datasets, this correlation does not exhibit any
obvious trend as we increase model length. This tells us that the improvement seen in longer
models’ performance compared to shorter models when using random start is driven by im-
proving performance across all document lengths, rather than being dominated by shorter
or longer documents.

In this section we have provided an in-depth analysis into the performance of the LED

with respect to document lengths over several dimensions. We have seen that using a longer
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model improves performance on the arXiv dataset across all lengths of documents. This is
likely because salient content is distributed more evenly throughout arXiv documents. How-
ever, there is not a corresponding performance improvement on the PubMed dataset, likely
driven by the salient content being present primarily in the beginning of the document.
Given that longer LEDs is relatively worse on shorter documents than shorter LEDs, this im-
plies that there is a performance cost to using a long LED model if only a short LED is required
to preform effectively on this dataset.

8 Concluding Remarks

8.1 Contributions

This section highlights the key contributions of this thesis. Listed below are the key results
and these are elaborated upon for the remainder of this section.

Key findings

• State of the art text summarization performance on arXiv, beating the incumbent,
PEGASUS, by over one ROUGE70. This is in spite of our modest computational resources

• Develop a novel evaluation metric, BARTScore. Correlates approximately 2x better
with human judgement than ROUGE71. Often performed best of all metrics we tested

• Establish a superior set of model-based evaluation metrics, consisting of BARTScore,
BERTScore, Mover-1 and Mover-2. All shown to outperform ROUGE on five tasks span-
ning three datasets

• Demonstrate that sparse self-attention performs comparably to dense self-attention for
summarization. This allows 2.5x longer sequences to fit onto standard hardware72.

Evaluation metrics We have identified a set of model-based evaluation metrics which out-
perform the prevailing ROUGE metrics for text summarization. This set consists of our novel
metric, BARTScore, as well as BERTScore, Mover-1 and Mover-2, all of which use Trans-
former LMs to compute contextual embeddings for the input sequence. These metrics have
been rigorously tested using three datasets and on a summarization task, a NLU and three
synthetic tasks. Our novel evaluation metric, BARTScore, Correlates approximately 2x better
with human judgement than ROUGE73. We also find that BLEURT often performs erratically and
poorly on these tasks and therefore recommend against using this metric for summarization.
This thesis argues that these metrics should become the prevailing metrics in summarization.
This would benefit the community by providing a more accurate measure of model perfor-
mance and reducing the reliance on human-evaluation trials, in turn reducing the time and
financial cost of running evaluation and increasing comparability between studies.

70 PEGASUS was state of the art at the time of writing. Since then, Zaheer et al. [2020] have released Big Bird,
an adaptation for PEGASUS for long document tasks. This has set a new state of the art on the arXiv dataset
and our results do not beat these.

71 See section 6.1.2.
72 See section 6.2.2.
73See footnote 71.
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LED We motivate the need for approximate self-attention layers Transformers to be suc-
cessfully applied to long document summarization. This because of the O(n2) memory re-
quirement of vanilla self-attention creates a memory bottleneck for long sequences. We
introduce the Longformer Encoder Decoder, LED, as one such solution, combining the
sliding-window self-attention from the Longformer with BART. We profile the model to show
the memory complexity with respect to input length and attention window size is linear. We
use the LED to summarize documents up to 4,096 tokens in length, a 4x increase from BART’s
maximum input length of 1,024 tokens. We also demonstrate that sparse self-attention per-
forms comparably to dense self-attention for summarization. This allows 2.5x longer se-
quences to fit onto standard hardware74.

LED Experimentation We show the LED performs similarly to BART on three datasets. We
then show that using a longer context window is beneficial to model performance one some
tasks. This culminates with state of the art performance using the LED-3584 on the arXiv
dataset, beating the incumbent PEGASUS, (Zhang et al. [2019a]) by over one ROUGE75. Using
a longer context window does not lead to a corresponding improvement on the PubMed
dataset. This is because the salient information on PubMed dataset is displayed in the be-
ginnings of the documents. We show this using our Random Starts analysis, demonstrating
that if the document is truncated before and after the input sequence (as opposed to just
after), then there is a strong advantage to using a longer model. This trend is clear on the
arXiv and PubMed datasets. We therefore conclude that long document summarization can
be improved by using longer inputs for TED summarizers.

RED We introduce a novel model, the Reformer Encoder Decoder, RED, as an alterna-
tive TED architecture for long document summarization. This model replaces BART’s self-
attention with Reformer self-attention, reducing the asymptotic complexity from O(n2) to
O(n logn). The pre-trained weights from BART self-attention layers are not compatible with
Reformer self-attention and hence we cannot being with pre-trained layers as we have for
the LED. We therefore compare this model against a version of the LED with randomised self-
attention weights and show that the RED performs over 3 ROUGE-2 better. This motivates the
need to explore different combinations of base TED models and approximate self-attention
layers in future research, as will be explained in section 8.2.

8.2 Future Work

Performance benchmarking of approximate self-attention layers In this thesis we com-
pared the performance of sliding-window self-attention to dense self-attention using BART as
the base model. We then contrasted sliding-window self-attention to Reformer self-attention
and found they performed differently, albeit we only obtained a partial view because we did
not use pre-trained weights when performing this comparison. In addition to the two men-
tioned above, there are several more approximate self-attention layers which have recently
been released (e.g. Wang et al. [2020], Qiu et al. [2019], Child et al. [2019]). There is also
the option to replace the base model of BART with PEGASUS, the state of the art model on
long document summarization at the time of writing76. This give a wide range of possible

74See footnote 72
75See footnote 70
76It not be possible to use ProphetNet as the base model as it requires n-stream self-attention therefore requiring

the approximate self-attention layers be drastically modified.
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model configurations yet to be systematically explored and benchmarked.

Pre-training using approximate self-attention Section 6.2 showed that the LED performed
similarly to BART on all datasets, and especially well on the arXiv dataset, beating the state
of the art approach PEGASUS. If we had the hardware available, we would have pre-trained
the LED following BART or PEGASUS’s pre-training procedure as we expect there to be a signif-
icant performance improvement. We leave performing the entire pre-training pipeline using
a “long” Transformer model such as the LED or RED to future work.

Additional datasets The conclusions of this thesis could be tested on the BIGPATENT dataset
(Sharma et al. [2019a]), further testing the robustness to domain shift. Our methods could
also be applied to the MultiNews dataset (Fabbri et al. [2019]) to explore their ability to per-
form multi-document summarization. As argued, however, this dataset has weaknesses and
the summarization community lacks an adequate multi-document summarization dataset.
Multi-document summarization could be viewed as the next frontier for the summarization
community; creating an adequate dataset in this area would be valuable.

Use the evaluation metrics as the training objective function In section 2.5.4 we discuss
some of the limitations of the maximum likelihood optimization procedure. In future work
we would like to experiment with a modified fine-tuning objective function better suited to
a summarization objective. This has been applied successfully using Reinforcement Learning
(e.g. Böhm et al. [2019]) but we believe there is potential to use this method with super-
vised learning. This could be attempting to directly optimize the BARTScore score between
the generated and target summaries. Alternatively, a LM could be used to compute embed-
dings for the target sequence, and the loss could be computed in the embedded space. The
drawback of this approach is it is sample inefficient so has a larger compute requirement and
therefore we leave it to future work.

8.3 Conclusion

In this thesis we have explored the summarization and automatic evaluation of long docu-
ments. We have explored a wider set of evaluation metrics to the prevailing ROUGE metrics
and have established superior performance from a number of these. We have also experi-
mented with potential solutions for using Transformers on long documents using approxi-
mate self-attention layers such as sliding window attention. We have shown that the LED

performs comparably to its dense self-attention counterpart, BART, and performs consider-
ably better on the arXiv dataset where a longer context window is beneficial.
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Appendices

A CNN/DailyMail Summaries

Highest-scored summaries
Targets Generations

More details of the so-called ’everyday Amer-
icans’ have been revealed. Gardener Julie
Stauch was state campaign manager for
Wendy Davis. Sean Bagniewski, who appears
with his wife, has campaigned for Clinton.
But he held an event for likely rival O’Malley
days before video’s release.

Julie Stauch, Sean Bagniewski and Vidhya
Reddy all appear in Clinton’s video. They are
part of a diverse group of ’everyday Ameri-
cans’ chosen to show aspirational citizens as
Clinton looks to speak to a wide demographic
of voters. But far from being ’ordinary Amer-
icans’, they are directly involved with the
Democrat party - just like Jared Milrad and
Nate Johnson.

Ellanora Arthur Baidoo has been trying to di-
vorce her husband for several years. Husband
doesn’t have permanent address or permanent
employment. Baidoo is granted permission to
send divorce papers via Facebook.

Ellanora Arthur Baidoo has been trying to
divorce her husband for several years, her
lawyer says. A New York judge says Facebook
is an acceptable way for her to serve her hus-
band with a divorce summons. The couple
never lived together, according to court doc-
uments.

Michael Gridley, 26, was jailed after run-
ning the scam at store in Basildon. Was
sacked from position after supermarket re-
ceived anonymous reports. But he is now
employed as a manager at Lidl supermar-
ket in Romford. Sentenced to 12 months
at Southend Crown Court for leading role in
scam.

Michael Gridley, 26, was jailed for a year at
Southend Crown Court. He stole £15,000
worth of goods from Asda in Basildon, Essex.
Stock including alcohol, cigarettes and DVDs
were taken from the store. Gridley was sacked

Scores
0.615 0.879 0.891 0.894 0.946 0.950 0.949 0.950
0.748 0.823 0.839 0.895 0.936 0.935 0.933 0.935
0.596 0.838 0.853 0.864 0.895 0.896 0.723 0.896

Table A.1: Three examples of highly scored summaries. These were rated in the top 1%
by BARTScore, Mover-1, ROUGE-1 and ROUGE-L. Summaries from the CNN/DailyMail test set
and produced by the LED-1024. The evaluation scores for each of the summaries is shown
below; these correspond to BLEURT, Mover-1, Mover-2, BERTScore, BARTScore, ROUGE-1,

ROUGE-2 and ROUGE-L (in order).
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Lowest-scored summaries
Targets Generations

Kenya’s security has been bogged down by
concerns over civil rights. Kenyan Muslims
have been targeted in raids and robbed, says
Human Rights Watch.

Al-Shabaab killed 147 people at a college
campus in Garissa, Kenya, on Thursday. The
number of people killed is plaguing Kenyans
with self-doubt, CNN’s David McKenzie says.
Kenya’s politicians and public have struggled
with these ideas...

Indiana town’s Memories Pizza is shut down
after online threat. Its owners say they’d
refuse to cater a same-sex couple’s wedding.

Memories Pizza in Indiana is at the center of
the debate over the state’s Religious Freedom
Restoration Act. ”If a gay couple was to come
and they wanted us to bring pizzas to their
wedding, we’d have to say no,” owner says.
Critics say the law

Mohonk Mountain House is a ’castle’ retreat
90 minutes from New York. The hotel sits
blissfully on the banks of Lake Mohonk in the
Hudson Valley. The hotel was originally built
as a drinking inn 145 years ago before Quaker
twins Albert and Alfred Smiley made it a dry
retreat - the bar is now open.

Mohonk Mountain House is a faux-gothic Vic-
torian castle in the heart of the Hudson Valley.
The lake, gardens and trails are a vast adven-
ture playground for all ages. The 360-degree
views are inspirational and the kids’ club is the
best we have

Scores
-0.903 -0.142 -0.051 0.011 0.397 0.051 0.000 0.051
-0.699 -0.083 0.003 0.016 0.436 0.136 0.023 0.091
-0.901 -0.214 -0.102 0.036 0.358 0.070 0.000 0.070

Table A.2: Three examples of poorly scored summaries. These were rated in the bottom 1%
by BARTScore, Mover-1, ROUGE-1 and ROUGE-L. Summaries from the CNN/DailyMail test set
and produced by the LED-1024. The evaluation scores for each of the summaries is shown
below; these correspond to BLEURT, Mover-1, Mover-2, BERTScore, BARTScore, ROUGE-1,

ROUGE-2 and ROUGE-L (in order).
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Highly scored by model-based metrics, poorly scored by ROUGE
Targets Generations

Liverpool scouts have been impressed by Ge-
offrey Kondogbia this season. The midfielder
was one of the most coveted youngsters in
Europe. France international joined Monaco
from Sevilla in 2013 for £17million. Liver-
pool remain in the frame for James Milner and
Danny Ings.

Liverpool are watching Monaco midfielder
Geoffrey Kondogbia. France international has
impressed in Europe and Ligue 1 this sea-
son. Real Madrid, Manchester United, Juven-
tus and PSG were all keen. Brendan Rodgers’
side are also interested in Danny Ings and
James Milner.

Jeremy Trentelman, 36, of Ogden, built fort
for young son and daughter. He received let-
ter one day later saying it violated ordinance
against waste. Father plans on keeping castle
up for 14 days before he receives fine.

Jeremy Trentelman, 36, of Ogden, Utah, last
week built a giant box fort for his son Max,
3, and daughter Story, 2, that included trap
doors and a small slide. The father, who works
as a florist arranging intricate displays...

Sir Bradley Wiggins left Team Sky after Paris-
Roubaix on April 12. Tour de Yorkshire begins
in Bridlington and finishes in Leeds from May
1-3. Wiggins’ eponymous team is completed
by Steven Burke, Mark Christian, Andy Ten-
nant, Owain Doull and Jon Dibben.

Bradley Wiggins will ride for his eponymous
team in the Tour de Yorkshire. The 2012
Tour de France winner was not selected in
Team Sky’s 2014 squad. The Tour begins in
Bridlington and finishes in Leeds on May 3. It
is a legacy of the Grand Depart

Scores
-0.022 0.285 0.346 0.174 0.634 0.356 0.169 0.329
0.057 0.275 0.337 0.435 0.644 0.343 0.206 0.323
0.006 0.372 0.446 0.398 0.649 0.327 0.104 0.327

Table A.3: Three examples of summaries scored well by the model-based metrics but scored
poorly by the ROUGE metrics. These were rated in the top third of all summaries by BARTScore and
Mover-1 but in the bottom third by ROUGE-1 and ROUGE-L. Summaries from the CNN/DailyMail
test set and produced by the LED-1024. The evaluation scores for each of the summaries is shown
below; these correspond to BLEURT, Mover-1, Mover-2, BERTScore, BARTScore, ROUGE-1,

ROUGE-2 and ROUGE-L (in order).
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A CNN/DAILYMAIL SUMMARIES

Poorly scored by model-based metrics, highly scored by ROUGE
Targets Generations

Father-of-three Craig Sytsma was mauled to
death in Michigan last year. Dog owners Se-
bastiano Quagliata and wife Valbona Lucaj
agreed to plea deal Friday to around 15 years
in jail, though judge could add six months.
Sytsma was jogging in July 2014 when the
two cane corsos attacked him. He was bit-
ten almost ten times and was’screaming and
begging’ for help.

Sebastiano Quagliata and wife, Valbona Lu-
caj, pleaded no contest to owning a danger-
ous dog causing death in the fatal mauling last
summer of Craig Sytsma of Livonia, Michigan.
’I’m so sorry,’ Lucaj told Sy...

YouTube user Serpentor filmed his feline
friend in action. Footage shows the tabby pro-
ducing bizarre noises as she is petted.

YouTube user Serpentor filmed his feline
friend in action. Footage shows tabby produc-
ing a range of unusual gurgling noises as she
is petted. Her owners are heard laughing in
the background as they watch her. To date
the clip of her singing has been...

Little Catalina from America was filmed emp-
tying out the contents of the kitchen cup-
boards at home. But when her father tells her
to clean up her mess, she vehemently refuses
with a heated - and rather cute - argument en-
suing.

Catalina from America was filmed emptying
out the contents of the kitchen cupboards at
home. But when her father tells her to clean
up her mess, she vehemently refuses with a
heated - and rather cute - argument ensuing.
’I already cleaned the kitchen, no it...

Scores
-0.516 0.143 0.190 0.210 0.541 0.484 0.247 0.462
-0.358 0.147 0.188 0.282 0.550 0.533 0.273 0.511
-0.510 0.120 0.186 0.199 0.555 0.500 0.184 0.480

Table A.4: Three examples of summaries scored poorly by the model-based metrics but scored
well by the ROUGE metrics. These were rated in the bottom third of all summaries by BARTScore

and Mover-1 but in the top third by ROUGE-1 and ROUGE-L. Summaries from the CNN/DailyMail
test set and produced by the LED-1024. The evaluation scores for each of the summaries is shown
below; these correspond to BLEURT, Mover-1, Mover-2, BERTScore, BARTScore, ROUGE-1,

ROUGE-2 and ROUGE-L (in order).
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B Dataset Samples with Summaries
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CNN/DailyMail

Source: (CNN)Sky watchers in western North America are in for a treat: a nearly five-
minute total lunar eclipse this morning. Here’s how it’s unfolding: . It started
at 3:16 a.m. Pacific Daylight Time, when the moon began moving into Earth’s
shadow. For the next hour and 45 minutes, that shadow will move across the
moon and engulf it at 4:58 a.m. Pacific Time. The total eclipse will only last
four minutes and 43 seconds, and NASA says that makes it the shortest one of
the century. Watch it live on NASA TV . While people west of the Mississippi
River will have the best view, at least a partial eclipse will be visible across the
nation. But sunrise will interrupt the show on the East Coast. Parts of South
America, India, China and Russia also will be able to see the eclipse, but it
won’t be visible in Greenland, Iceland, Europe, Africa or the Middle East. A
lunar eclipse happens when the sun, Earth and moon form a straight line in
space, with the Earth smack in the middle. The sun shines on the Earth and
creates a shadow. As the moon moves deeper into that shadow, it appears to
turn dark and may even appear to be a reddish color. Why red? Because Earth’s
atmosphere is filtering out most of the blue light. Some people have nicknamed
the effect the ”blood moon.” NASA says lunar eclipses typically happen at least
twice a year, but this eclipse is the third in a series of four in a row, known
as a ”tetrad.”. The first was on April 15, 2014. The second was in September
2014, the next is Saturday and there will be one more, on September 28. If
you want to learn more about the eclipse, NASA astronomer Mitzi Adams will
take questions on Twitter ASA Marshall. Did you see the total lunar eclipse?
Share your photos with CNN iReport.

Target: The total eclipse will only last 4 minutes and 43 seconds . People west of the
Mississippi River will have the best view . Parts of South America, India, China
and Russia also will see the eclipse .

LED-1024: A nearly five-minute total lunar eclipse will be visible in western North Amer-
ica. It will only last four minutes and 43 seconds, and NASA says it’s the
shortest one of the century. Parts of South America, India, China and Russia
will also see the eclipse.

BART: The total lunar eclipse started at 3:16 a.m. Pacific Daylight Time. People west
of the Mississippi River will have the best view. Parts of South America, India,
China and Russia also will be able to see the eclipse. It won’t be visible in
Greenland, Iceland, Europe, Africa or Middle East.

PEGASUS: A lunar eclipse happens when the sun, Earth and moon form a straight line
in space . A lunar eclipse is the third in a series of four in a row, known as a
”tetrad”

ProphetNet: it started at 3 : 16 a . m . pacific daylight time , when the moon began moving
into earth ’s shadow . for the next hour and 45 minutes , that shadow will move
across the moon and engulf it . the total eclipse will only last four minutes and
43 seconds .

Table B.1: A sample CNN/DailyMail article with model summaries.
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arXiv

Source: the brain is a computational device for information processing and its flexible
and adaptive behaviors emerge from a system of interacting neurons depicting
very complex networks @xcite . many biological evidences suggest that the
neocortex implements a common set of algorithms to perform “ intelligent ”
behaviors like learning and prediction . in particular , two important related
aspects seem to represent the crucial core for learning in biological neural net-
works : the hierarchical information processing and the abstraction process
@xcite . the hierarchical architecture emerges from anatomical considerations
and is fundamental for associative learning ( e.g. multisensory integration )
. the abstraction instead leads the inference of concepts from senses and per-
ceptions ( fig . [ fig:1]d ) . + specifically , information from sensory receptors
( eyes , skin , ears , etc . ) travels into the human cortical circuits following
subsequent abstraction processes . for instance , elementary sound features (
e.g. frequency , intensity , etc . ) are first processed in the primary stages of
human auditory system ( choclea ) . subsequently sound information gets all
the stages of the auditory pathway up to the cortex where higher level features
are extracted ( fig . [ fig:1]e - f ) . in this way information passes from raw
data to objects , following an abstraction process in a hierarchical layout . thus
, biological neural networks perform generalization and association of sensory
information . for instance , we can associate sounds , images or other sensory
objects that present together as it happens in many natural and experimental
settings like during pavlovian conditioning . biological networks process these
inputs following a hierarchical order . in a first stations inputs from distinct
senses are separately processed accomplishing data abstraction . this process
is repeated in each subsequent higher hierarchical layer . doing so , in some
hierarchical layer , inputs from several senses converge showing associations
among sensory inputs . + recent findings indicate that neurons can perform
invariant recognitions of their input activity patterns producing specific modu-
lations of their synaptic releases @xcite . although the comphrension of such
neuronal mechanisms is still elusive , these hints can drive the development
of algorithms closer to biology than spiking networks or other brain - inspired
models appear to be . + in this work , we propose a learning framework based
on these . . .

Target: < S > the human brain processes information showing learning and prediction
abilities but the underlying neuronal mechanisms still remain unknown. re-
cently, many studies prove that neuronal networks are able of both generaliza-
tions and associations of sensory inputs. < /S > < S > + in this paper, following
a set of neurophysiological evidences, we propose a learning framework with
a strong biological plausibility that mimics prominent functions of cortical cir-
cuitries. < /S > < S > we developed the inductive conceptual network ( icn ),
that is a hierarchical bio - inspired network, able to learn invariant patterns by
variable - order markov models implemented in its nodes. < /S > < S > the
outputs of the top - most node of icn hierarchy, representing the highest input
generalization, allow for automatic classification of inputs. < /S > < S > we
found that the icn clusterized mnist images with an error of 5.73% and usps
images with an error of 12.

Table B.2: A sample arXiv article with model summaries (part 1). The source has been truncated
from 4,522 tokens to 400 for readability.
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arXiv (continued

LED-4096: < S > we propose a general neural learning framework, called inductive con-
ceptual network ( icn ), where biological neurons are individually identified
by nodes and invariant recognition is performed by variable - order markov
models ( vmm ). the icn represents a general biological plausible model of the
learning mechanisms in neuronal networks, and we tested the accuracy of this
network on the mnist and usps datasets. < /S > ¡ s¿ we find that the neural
network exhibits a complex hierarchy of node nodes, which exhibits invariant
pattern recognition by a hidden markov model algorithm implemented into a
set of software libraries specialized in image processing ( hierarchical temporal
memory ( htm ) ) ).

BART: < S > the inductive conceptual network ( icn ) represents a general biological
plausible model of the learning mechanisms in neuronal networks. < /S > < S >
the icn is based on a set of considerations primarily from the memory - predic-
tion framework, which is a generalization of jeff hawkins on intelligence .
we propose a learning framework based on these biological considerations and
we tested the accuracy of this network on the mnist and usps datasets. in this
framework, we find that neural neurons can perform invariant recognitions of
their input activity patterns producing specific modulations of their synaptic
releases, which can drive the development of algorithms closer to biology than
other brain - inspired models appear to

Table B.3: A sample arXiv article with model summaries (part 2).
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PubMed

Source: gossypiboma ( retained surgical sponge ) describes a mass of cotton or sponge that is
left behind in the body cavity during a surgical operation . these foreign bodies can
often mimic tumors or abscesses when detected clinically or with radiation . in fact ,
surgical sponges without opaque markers are the leading cause for the difficulty of a
correct diagnosis . here , we present a case in which a foreign body , gauze without
radiopaque markers , was left behind during a procedure that involved the removal
of an intrapelvic tumor . after a computed tomography ( ct ) scan had revealed in-
formation leading to an inaccurate diagnosis , an accurate diagnosis of gossypiboma
was successfully made using endoscopic ultrasound - fine - needle aspiration ( eus -
fna ) . a 60-year - old female patient was referred with an unexpected detection of
an intrapelvic tumor during a routine ct scan . the patient ’s medical history included
a hysterectomy and a left side ovariectomy at the age of 27 . the ct scan revealed a
45 mm tumor in the patient ’s pelvis [ figure 1a and b ] , which was diagnosed as a
gastrointestinal stromal tumor ( gist ) , a chronic expanding hematoma or leiomyoma
. a forward - view eus ( tgf - uc260j , olympus optical co. , tokyo , japan ) identi-
fied a low echoic lesion when scanned from the sigmoid colon . fna was performed
with a 22-gauge needle ( ezshot2 , olympus optical co. , tokyo , japan ) by using the
forward - view eus [ figure 2 ] . examination of the fna specimen revealed a foreign
body ( string of gauze ) displaying macrophage cells and necrotic tissue [ figure 3 ;
hematoxylin and eosin , original magnification 40 ] . during the surgery , histological
examination of the tissue adjacent to the foreign body revealed granuloma formations
with fragmented silken threads [ figure 4 ; hematoxylin and eosin , original magnifi-
cation , 100 and 200 ] . a : sagittal section ( black arrow ) ; b : horizontal section (
black arrow ) . endoscopic ultrasound ( eus)-fine - . . .

Target: < S > gossypiboma is a term used to describe a foreign mass within the body that is
composed of a cotton matrix. < /S > < S > gossypiboma can cause infection or abscess
formation from an early stage, or it can remain clinically silent for many years. < /S >
< S > gossypiboma can be diagnosed using several methods including abdominal x
- ray films, us of the abdomen, contrast - enhanced computed tomography of the
abdomen, and during surgery. < /S > < S > however, the variable appearance of
gossypiboma can lead to diagnostic misinterpretations. here, we report a successful
diagnosis of gossypiboma using a novel method, that is, endoscopic ultrasound - fine
- needle aspiration. < /S >

LED-
4096:

< S > gossypiboma ( retained surgical sponge ) describes a mass of cotton or sponge
that is left behind in the body cavity during a surgical operation. here, we present a
case in which a foreign body, gauze without radiopaque markers, was left behind dur-
ing a procedure that involved the removal of an intrapelvic tumor. after a computed
tomography ( ct ) scan had revealed information leading to an inaccurate diagno-
sis, an accurate diagnosis of gossiopiboma was successfully made using endoscopic
ultrasound - fine - needle aspiration ( eus - fna ). < /S >

BART: < S > a gossypiboma, also called textiloma, literally means retained surgical sponge
and is derived from the latin word ” gosspium ”, which means ” cotton, ” and ” boma
” in kiswahili, ” ” place of concealment ”. ” it is difficult to diagnose ” textilomas ”
in the neck ” because of its rarity, various symptoms, and non - specific radiologic
findings. ” ” ” < /S > ” furthermore, it can be misinterpreted as malignancy ” and
finally diagnosed from a histopathological examination of the surgical specimen after
unwarranted radical surgery. ” to our knowledge ”, ” text

Table B.4: A sample PubMed article with model summaries. The source has been truncated from
717 to 350 tokens for readability.
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C Correlation Metric Definitions

The correlation between two variables, x and y, specifies the strength and direction of these
variable’s bi-variate relationship, given in the range [−1,+1]. Following the WMT18 guide-
lines (Ma et al. [2018]) we report three measures of correlation: Pearson’s r, Spearman’s ρ
and Kendall’s τ. Here we define these metrics.

Pearson’s r Measures the linear relationship between two variables (Magiya [2019]). This
assumes that the data is normally distributed, has no outliers, the two variables’ relationships
are linear, the data is complete and homoskedastic. The formula is shown in Equation C.3.

r =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(C.1)

x̄ =
1
n

n∑
i=1

xi ȳ =
1
n

n∑
i=1

yi

Kendall’s τ A non-parametric test comparing the degree of similarity to which two vari-
ables rank data. This is useful if the data fails any of the assumptions for using Pearson’s r
and requires data to be ordinal. This is computed as follows:

τ =
c − d
c+ d

(C.2)

Here c is the number of concordant pairs and d is the number of discordant pairs. A
concordant pair means that (y2−y1) has the same sign as (x2−x1), otherwise it is discordant.

Spearman’s ρ Similar to Kendall’s τ, Spearman’s ρ is a measure of the association between
two sets of ranked data (GmbH [2011]). It is computed by taking the ranks of the variables
(Si = rank(y) and Ri = rank(x)) and applying the Pearson formula to the ranked data. The
formula is as follows:

r =
∑n
i=1(Ri − R̄)(Si − S̄)√∑n

i=1(Ri − R̄)2
√∑n

i=1(Si − S̄)2
(C.3)

R̄ =
1
n

n∑
i=1

Ri = S̄ =
1
n

n∑
i=1

Si =
n(n− 1)

2
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D MODEL CONFIGURATIONS

D Model Configurations

Parameter PEGASUS-LG ProphetNet-LG BART-LG

Attention type n2 n2 n2

Max. encoder input length
- CNN/DM 1024 512 2048
- PubMed 1024 N.A. N.A.
- arXiv 1024 N.A. N.A.
Max. decoder input length
- CNN/DM 128 110 142
- PubMed 256 N.A. N.A.
- arXiv 256 N.A. N.A.
Beam size 8 5 5
Length penalty 0.8 1.2 2.0
Num. of heads 16 12 16
Num. layers 16 12 12
Hidden layer dim. 1024 1024 1024
Batch size 256 512 256
Activation function ReLU ReLU GeLU
Optimizer Adafactor Adam Adam
Learning rate 5e-5 1e-4 3e-5
Label smoothing 0.1 0.1 0.1
Dropout 0.1 0.1 0.1

Table D.1: Side-by-side comparison of the configurations of BART, PEGASUS and ProphetNet.
Sources: Lewis et al. [2019], Zhang et al. [2019a], Yan et al. [2020].
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Parameter BART-LG LED RED

Attention type n2 Window-512 Alternating LSH & local

Max. encoder input length
- CNN/DM 1024 1024∗ N.A.∗∗

- PubMed 1024 4096 4096
- arXiv 1024 4096 N.A.∗∗

Max. decoder input length
- CNN/DM 142 142 142
- PubMed 200 200 200
- arXiv 200 200 200
Beam size 4 4 4
Length penalty 2.0 2.0 2.0
Num. of heads 16 16 8
Num. layers 12 12 12
Hidden layer dim. 1024 1024 1024
Batch size 1 1 1
Activation function GeLU GeLU GeLU
Optimizer AdamW AdamW AdamW
Learning rate 3e-5 1e-5 1e-5
Label smoothing 0.1 0.0 0.0
Dropout 0.1 0.1 0.1
Chunk size (local)∗∗∗ N.A. N.A. 64
Chunk size (LSH)∗∗∗ N.A. N.A. 64

Table D.2: Model configurations of our best-performing variants of each model after performing
hyperparameter search. * We did not use a longer version of the LED for the CNN/DailyMail
dataset as the articles are short. ** We only experimented with the RED on the PubMed dataset.
*** RED-specific arguments.
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E Supporting Results

Attn Window BA BE M-1 M-2 BLEURT R-1 R-2 R-L

512
0.599 0.264 0.167 0.224 -0.055 0.428 0.176 0.383
0.06 0.11 0.11 0.10 0.17 0.00 0.00 0.00

256
0.594 0.256 0.156 0.215 -0.078 0.416 0.170 0.367
0.06 0.11 0.11 0.10 0.18 0.00 0.00 0.00

128
0.597 0.260 0.163 0.220 -0.066 0.423 0.172 0.375
0.06 0.11 0.11 0.10 0.17 0.00 0.00 0.00

64
0.593 0.254 0.155 0.214 -0.080 0.416 0.168 0.368
0.06 0.11 0.11 0.10 0.17 0.00 0.00 0.00

Table E.1: LED-1024 performance on a summarization task by attention window size. Scores
reported are the mean metric scores with the standard deviation underneath. These scores are
obtained using the PubMed test set after fine-tuning the models for one epoch on the PubMed
dataset. These results are displayed graphically in Figure 6.3.

Model Length
Attention window

512 256 128 64

1024 9.81 9.11 8.75 8.58
1536 11.23 10.18 9.64 9.39
2048 12.63 11.23 10.52 10.16
2560 14.04 12.31 11.43 10.99
3072 15.48 13.39 12.33 11.78
3548 16.89 14.44 13.20 12.60
4096 18.30 15.50 14.09 13.39

Table E.2: Maximum memory consumption (Gb) of fine-tuning the LED by attention window
size and model length. These results are shown graphically in Figure 6.4.
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Model Length BA BE M-1 M-2 BLEURT R-1 R-2 R-L

PubMed

1024
0.596 0.262 0.159 0.217 -0.068 0.423 0.174 0.375
0.06 0.11 0.11 0.10 0.17 0.10 0.11 0.10

1536
0.595 0.259 0.165 0.224 -0.071 0.422 0.176 0.375
0.06 0.11 0.11 0.10 0.18 0.10 0.12 0.11

2048
0.592 0.254 0.157 0.217 -0.080 0.416 0.169 0.367
0.06 0.11 0.11 0.10 0.18 0.10 0.12 0.11

2560
0.591 0.256 0.159 0.217 -0.070 0.421 0.174 0.372
0.06 0.11 0.11 0.10 0.18 0.10 0.12 0.11

3072
0.598 0.268 0.171 0.229 -0.054 0.428 0.178 0.380
0.06 0.10 0.10 0.10 0.17 0.10 0.11 0.10

3584
0.599 0.267 0.171 0.229 -0.061 0.426 0.177 0.377
0.06 0.11 0.11 0.10 0.17 0.10 0.12 0.10

4096
0.596 0.267 0.170 0.227 -0.060 0.429 0.179 0.380
0.06 0.11 0.11 0.10 0.17 0.10 0.12 0.10

arXiv

1024
0.597 0.265 0.156 0.213 -0.097 0.439 0.165 0.388
0.04 0.08 0.09 0.08 0.16 0.08 0.08 0.08

1536
0.597 0.269 0.164 0.221 -0.094 0.439 0.165 0.389
0.04 0.08 0.08 0.08 0.16 0.08 0.08 0.08

2048
0.601 0.276 0.170 0.226 -0.080 0.448 0.173 0.397
0.04 0.08 0.09 0.08 0.16 0.08 0.08 0.08

2560
0.594 0.264 0.158 0.216 -0.098 0.436 0.162 0.384
0.04 0.07 0.08 0.07 0.16 0.08 0.08 0.08

3072
0.601 0.274 0.171 0.227 -0.084 0.448 0.174 0.396
0.04 0.08 0.09 0.08 0.16 0.08 0.08 0.08

3584
0.602 0.276 0.175 0.231 -0.074 0.451 0.174 0.400
0.04 0.08 0.08 0.08 0.16 0.08 0.08 0.08

4096
0.602 0.277 0.174 0.230 -0.073 0.451 0.174 0.399
0.04 0.08 0.09 0.08 0.16 0.08 0.08 0.08

Table E.3: LED performance on a summarization task by model length with a 512 attention
window (using Beginning Starts, PubMed and arXiv test sets). Scores reported are the mean
metric score with the standard deviation underneath. These results are displayed graphically in
Figure 6.2 (left-sided panels).
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Model Length BA BE M-1 M-2 BLEURT R-1 R-2 R-L

PubMed

1024
0.577 0.231 0.121 0.184 -0.105 0.385 0.128 0.336
0.05 0.09 0.09 0.08 0.16 0.09 0.08 0.08

1536
0.584 0.245 0.136 0.197 -0.087 0.402 0.143 0.355
0.05 0.09 0.09 0.08 0.16 0.09 0.09 0.09

2048
0.586 0.247 0.144 0.204 -0.085 0.407 0.153 0.359
0.06 0.10 0.10 0.09 0.17 0.10 0.11 0.10

2560
0.587 0.246 0.147 0.207 -0.083 0.408 0.156 0.361
0.06 0.11 0.10 0.10 0.17 0.10 0.11 0.10

3072
0.592 0.259 0.159 0.218 0.421 0.167 0.375 -0.061
0.05 0.10 0.10 0.09 0.09 0.11 0.09 0.16

3584
0.591 0.254 0.156 0.215 -0.076 0.417 0.167 0.369
0.06 0.11 0.11 0.10 0.17 0.10 0.12 0.10

4096
0.592 0.259 0.159 0.218 -0.061 0.421 0.167 0.375
0.05 0.10 0.10 0.09 0.16 0.09 0.11 0.09

arXiv

1024
0.574 0.226 0.093 0.155 -0.168 0.395 0.126 0.351
0.04 0.07 0.08 0.08 0.17 0.08 0.06 0.07

1536
0.575 0.228 0.104 0.167 -0.173 0.386 0.127 0.341
0.05 0.08 0.09 0.08 0.18 0.09 0.07 0.08

2048
0.593 0.260 0.150 0.208 -0.103 0.431 0.155 0.380
0.04 0.08 0.09 0.08 0.16 0.08 0.08 0.08

2560
0.580 0.248 0.124 0.185 -0.128 0.413 0.140 0.366
0.04 0.07 0.08 0.08 0.16 0.08 0.07 0.08

3072
0.586 0.248 0.130 0.189 -0.126 0.422 0.147 0.373
0.04 0.07 0.08 0.08 0.16 0.08 0.07 0.08

3584
0.587 0.254 0.138 0.197 -0.120 0.426 0.151 0.377
0.04 0.07 0.08 0.08 0.16 0.08 0.07 0.08

4096
0.594 0.265 0.152 0.210 -0.100 0.436 0.160 0.384
0.04 0.08 0.09 0.08 0.16 0.08 0.08 0.08

Table E.4: LED performance on a summarization task by model length. This is for the arXiv
and PubMed test sets using Random Starts (see section 5.2.5 for details). Scores reported are
the mean metric score with the standard deviation underneath. These results are displayed
graphically in Figure 6.2 (right-sided panels).
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Figure E.1: Performance of the LED 1024 by attention window length. This plot shows the mean
metric scores using the PubMed test set. A re-based version of this plot is shown in Figure 6.3 to
improve visibility over the trends.

Figure E.2: Plots of the distribution of scores for ProphetNet’s summaries using the
CNN/DailyMail test set by evaluation metric. The mean, median, upper and lower quartiles
are annotated onto the figures.
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Figure E.3: Scatter-plots of the normalized starting position against the evaluation metric score
on the PubMed test set. The columns display bertscore, mover-1 and ROUGE-1; the rows display
the 1024, 2560 and 4096 length LED models. The Pearson r correlation with associated p-stat is
annotated for each subplot.
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Figure E.4: Scatter-plots of the normalized starting position against the evaluation metric score
on the arXiv test set. The columns display bertscore, mover-1 and ROUGE-1; the rows display
the 1024, 2560 and 4096 length LED models. The Pearson r correlation with associated p-stat is
annotated for each subplot.
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F ETHICS CHECKLIST

F Ethics Checklist

Yes No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? x
Does your project involve the use of human embryos? x
Does your project involve the use of human foetal tissues / cells? x
Section 2: HUMANS
Does your project involve human participants? x
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from ”Hu-
man Embryos/Foetuses” i.e. Section 1)?

x

Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing? x
Does it involve the collection and/or processing of sensitive personal data
(e.g. health, sexual lifestyle, ethnicity, political opinion, religious or philo-
sophical conviction)?

x

Does it involve processing of genetic information? x
Does it involve tracking or observation of participants? It should be noted
that this issue is not limited to surveillance or localization data. It also
applies to Wan data such as IP address, MACs, cookies etc.

x

Does your project involve further processing of previously collected per-
sonal data (secondary use)? For example Does your project involve merg-
ing existing data sets?

x

Section 5: ANIMALS
Does your project involve animals? x
Section 6: DEVELOPING COUNTRIES
Does your project involve developing countries? x
If your project involves low and/or lower-middle income countries, are
any benefit-sharing actions planned?

x

Could the situation in the country put the individuals taking part in the
project at risk?

x

Table F.1: Ethics Checklist, part 1. Adapted from the Imperial College Department of Computing
website https://www.doc.ic.ac.uk/lab/msc-projects/ethics-checklist.xlsx.
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F ETHICS CHECKLIST

Yes No
Section 7: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm to the
environment, animals or plants?

x

Does your project deal with endangered fauna and/or flora /protected
areas?

x

Does your project involve the use of elements that may cause harm to
humans, including project staff?

x

Does your project involve other harmful materials or equipment, e.g.
high-powered laser systems?

x

Section 8: DUAL USE
Does your project have the potential for military applications? x
Does your project have an exclusive civilian application focus? x
Will your project use or produce goods or information that will require
export licenses in accordance with legislation on dual use items?

x

Does your project affect current standards in military ethics ? e.g., global
ban on weapons of mass destruction, issues of proportionality, discrimina-
tion of combatants and accountability in drone and autonomous robotics
developments, incendiary or laser weapons?

x

Section 9: MISUSE
Does your project have the potential for malevolent/criminal/terrorist
abuse?

x

Does your project involve information on/or the use of biological-,
chemical-, nuclear/radiological-security sensitive materials and explo-
sives, and means of their delivery?

x

Does your project involve the development of technologies or the creation
of information that could have severe negative impacts on human rights
standards (e.g. privacy, stigmatization, discrimination), if misapplied?

x

Does your project have the potential for terrorist or criminal abuse e.g.
infrastructural vulnerability studies, cybersecurity related project?

x

SECTION 10: LEGAL ISSUES
Will your project use or produce software for which there are copyright
licensing implications?

x

Will your project use or produce goods or information for which there are
data protection, or other legal implications?

x

SECTION 11: OTHER ETHICS ISSUES
Are there any other ethics issues that should be taken into consideration? x

Table F.2: Ethics Checklist, part 2. Adapted from the Imperial College Department of Computing
website https://www.doc.ic.ac.uk/lab/msc-projects/ethics-checklist.xlsx.
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Qingsong Ma, Ondřej Bojar, and Yvette Graham. Results of the WMT18 metrics shared task:
Both characters and embeddings achieve good performance. In Proceedings of the Third
Conference on Machine Translation: Shared Task Papers, pages 671–688, Belgium, Brussels,
October 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-6450.
URL https://www.aclweb.org/anthology/W18-6450. pages 15, 16, 75

Joseph Magiya. Unsupervised text summarization using sentence
embeddings. 2019. URL https://towardsdatascience.com/

pearson-coefficient-of-correlation-explained-369991d93404. pages 75

Ramesh Nallapati, Bing Xiang, and Bowen Zhou. Sequence-to-sequence rnns for text summa-
rization. CoRR, abs/1602.06023, 2016. URL http://arxiv.org/abs/1602.06023. pages
23

Christopher Olah. Understanding lstm networks, 2015. URL http://colah.github.io/

posts/2015-08-Understanding-LSTMs/. pages 6

89

https://www.aclweb.org/anthology/D19-1623
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.1162/COLI_a_00123
http://www.research.ibm.com/journal/rd/022/luhn.pdf
http://www.research.ibm.com/journal/rd/022/luhn.pdf
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
https://www.aclweb.org/anthology/W18-6450
https://towardsdatascience.com/pearson-coefficient-of-correlation-explained-369991d93404
https://towardsdatascience.com/pearson-coefficient-of-correlation-explained-369991d93404
http://arxiv.org/abs/1602.06023
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


REFERENCES REFERENCES

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grang-
ier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. CoRR,
abs/1904.01038, 2019. URL http://arxiv.org/abs/1904.01038. pages 38, 49

Paul Over, Hoa Dang, and Donna Harman. Duc in context. Inf. Process. Manage., 43(6):
1506–1520, November 2007. ISSN 0306-4573. doi: 10.1016/j.ipm.2007.01.019. URL
https://doi.org/10.1016/j.ipm.2007.01.019. pages 4

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July
2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://www.aclweb.org/anthology/P02-1040. pages 13

Ramakanth Pasunuru and Mohit Bansal. Multi-reward reinforced summarization with
saliency and entailment. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 646–653, New Orleans, Louisiana, June 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/N18-2102. URL https:

//www.aclweb.org/anthology/N18-2102. pages 24, 25

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. CoRR, abs/1705.04304, 2017. URL http://arxiv.org/abs/1705.04304.
pages 28

Martin F Porter et al. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
pages 35

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen tau Yih, Sinong Wang, and Jie Tang. Blockwise
self-attention for long document understanding, 2019. pages 64

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019. pages 17, 18, 35

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer, 2019. pages 17

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text, 2016. pages 30

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations
by Back-propagating Errors. Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0.
URL http://www.nature.com/articles/323533a0. pages 5

Alexander Rush. The annotated transformer. In Proceedings of Workshop for NLP Open Source
Software (NLP-OSS), pages 52–60, Melbourne, Australia, July 2018. Association for Com-
putational Linguistics. doi: 10.18653/v1/W18-2509. URL https://www.aclweb.org/

anthology/W18-2509. pages 11

Horacio Saggion and Thierry Poibeau. Automatic Text Summarization: Past, Present and
Future, pages 3–21. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-
3-642-28569-1. doi: 10.1007/978-3-642-28569-1 1. URL https://doi.org/10.1007/

978-3-642-28569-1_1. pages 4

90

http://arxiv.org/abs/1904.01038
https://doi.org/10.1016/j.ipm.2007.01.019
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/N18-2102
https://www.aclweb.org/anthology/N18-2102
http://arxiv.org/abs/1705.04304
http://www.nature.com/articles/323533a0
https://www.aclweb.org/anthology/W18-2509
https://www.aclweb.org/anthology/W18-2509
https://doi.org/10.1007/978-3-642-28569-1_1
https://doi.org/10.1007/978-3-642-28569-1_1


REFERENCES REFERENCES

Chip Scanlan. The inverted pyramid structure. 2008. URL https://owl.purdue.edu/owl/

subject_specific_writing/journalism_and_journalistic_writing/the_inverted_

pyramid.html. pages 25

M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997. pages 8

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks, 2017. pages 2, 10, 15, 23, 24, 25, 26, 27, 28, 37, 47

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh. Bleurt: Learning robust metrics for text
generation, 2020. pages 15, 30, 37, 56

Eva Sharma, Chen Li, and Lu Wang. BIGPATENT: A large-scale dataset for abstractive and
coherent summarization. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2204–2213, Florence, Italy, July 2019a. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1212. URL https://www.aclweb.org/

anthology/P19-1212. pages 29, 65

Lakshay Sharma, Laura Graesser, Nikita Nangia, and Utku Evci. Natural language under-
standing with the quora question pairs dataset. CoRR, abs/1907.01041, 2019b. URL
http://arxiv.org/abs/1907.01041. pages 28, 36

Lucia Specia, Julia Ive, and Ozan Caglayan. Lecture notes in natural language processing
(lecture 8). February 2020. pages 5

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for deep learning in NLP. CoRR, abs/1906.02243, 2019. URL http://arxiv.org/abs/

1906.02243. pages 2

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215. pages
5, 8, 9

Wilson L. Taylor. ”cloze procedure”: a new tool for measuring readability. Journalism Mass
Communication Quarterly, 30:415–433, 1953. pages 18

Trieu H. Trinh and Quoc V. Le. A simple method for commonsense reasoning. CoRR,
abs/1806.02847, 2018. URL http://arxiv.org/abs/1806.02847. pages 35

K. Tutschku. Recurrent multilayer perceptrons for identification and control: The road to
applications, 1995. pages 8
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