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Abstract

Increasingly in recent years individuals have turned to online social media and social net-
work services for the purpose of news consumption. This trend has brought increased focus
and attention to the fields of social network analysis and modelling. Many existing models
for information diffusion have focussed on the interactions between individuals and news
sources, whilst placing little emphasis on the fundamentally social nature of modern online
platforms.

The main goal of this project is to develop a new model for information cascade that
places the social interactions between individuals at the centre of its dynamics. In order
to do this we thoroughly explore existing models and use their findings to influence our
design.

We build our information cascade model using an iterative process, at each step eval-
uating our model both qualitatively and quantitatively using the metric of “mean edge
homogeneity” from the literature. We find that our model behaves similarly to traditional
models, highlighting the important role of social interactions in information diffusion and
validating our hypothesis. We then carry out an investigation into the role of other fac-
tors that contribute to information diffusion including network topology and choice of seed
node. We find that node opinion has the largest impact on cascade dynamics out of those
factors tested. As part of this experimentation we also found that by distributing node
opinion bimodally we were able to observe results and behaviours even closer to real life
studies.
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Chapter 1

Introduction

1.1 Information Spread Online

The internet has brought about a seismic change in the way individuals communicate
information and ideas. In recent years, media consumption and behaviour has evolved
and the advent of online social media services has redefined how individuals receive and
share news. This new approach to information exchange through online social networks
allows individuals access to a wider array of news sources in an on-demand fashion, and
has introduced an interactive element to a previously static process: this has drastically
altered the worldwide information ecosystem.

Using online social networks individuals are able to publish their own thoughts and
opinions directly with others with incredible speed and exceptionally low cost or effort
required, creating seamless interactions between content producers and consumers which
has rapidly increased the speed at which all forms of information can spread online. This
behaviour is aided by a lack of standards and regulations surrounding social media, and
the fact that many platforms “succeed” by actively discouraging users from substantiating
claims [1].

This disintermediation of the way in which individuals consume news makes it harder
for claims to be verified, and as a result unsubstantiated rumours can spread quickly. At
the same time recent advancements in AI technologies, particularly machine learning, have
allowed for the faster creation of misinformation in ever larger quantities and at higher
qualities, making it even harder to detect its deceptive nature. As a result, the World
Economic Forum has categorised “massive digital misinformation” as a central technological
issue that could “wreck havoc in the real world” [2].

The potential damage to society that can be caused by the spread of unsubstantiated
rumours (more colloquially referred to as “fake news”) is particularly highlighted during
times of crisis, such as during the ongoing COVID-19 pandemic of 2020: in fact the per-
vasiveness of misinformation online throughout the pandemic has led some researchers to
study the role that the ongoing “infodemic” has had on the effectiveness of the response to
the public health crisis [3]. In situations such as this, it is not hyperbole to suggest that
misinformation can result in physical harm to society and even cause death to individuals
[1].
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Figure 1.1: How different online platforms are used for news consumption within the UK
amongst the 49% of adults that claim to use social media for news, as shown in [4, p. 41].

As the world becomes ever more interconnected thanks to technological progress, it
becomes increasingly important to understand the causes of certain information flow phe-
nomena. Having discussed the possible dangers and implications of the internet’s effects on
information spread, we can see a clear similarity between how ideas can spread online and
medical epidemiology: this field has come to the forefront of most individual’s attention
during the ongoing 2020 COVID-19 pandemic. As has been widely reported, a key aspect
of the international response to fighting a physical virus is being able to model how it
is currently spreading and will spread in the future through different populations under
different situations. Similar tools and techniques can be equally important in the fight
against (mis)information spread online, helping to inform decisions to combat its effects
going forward.

Social media allows for information of all kinds to spread at an incredible pace, compared
to traditional forms of media. Direct access to such a broad spectrum of information nat-
urally leads to individuals selecting information that is compatible with their interests and
beliefs. This tendency for an individual’s online profile to become ever more personalised
over time thanks to the site’s “algorithm” can distort the individual’s world view: this be-
comes all the more important as social media takes over from traditional mediums as the
main source of news. As of 2019, 49% of adults in the UK consume the majority of their
news via social media [4]. Figures 1.1 and 1.2 highlight how the majority of respondents
primarily consume their news from social media posts rather than directly from verifiable
news sources, and additionally show that 3 in 4 of those using social media use Facebook
as their primary choice of social media for news consumption.

2



Figure 1.2: A breakdown of how the half of UK adults who use social media for news
consumption use other sources as shown in [4, p. 43].

In addition to the highly personalised nature of social media feeds, the interactive nature
of online platforms combined with the ability to have quick and easy access to like-minded
individuals allows ideas to spread socially through “spheres of influence” far easier than
through traditional in person social networks. In fact such a personalised experience online
has been shown to foster the formation of echo chambers [5] (the tendency for individuals
to communicate in clusters with others of similar views), whilst Vicario et al. have studied
the role of confirmation bias in this phenomena [6]: this will be explored in section 3.1.
These findings feed a central hypothesis of this work: nodes in a social network have
a preference over who they communicate and share information with. It is these social
aspects to the sharing of information online that motivate our work, and differentiate it
from the literature.

1.2 Objectives

In this project, we aim to create a new model for information flow within social networks.
The core of our model will be based on the premise that individuals have pre-existing
beliefs and preferences over who they share information with. This is largely influenced
by existing independent cascade and threshold models for diffusion which are discussed in
section 2.4, and recent research into the real world factors affecting information cascade
dynamics discussed in section 3.1.

We aim to evaluate our model by verifying its behaviour both qualitatively and quanti-
tatively against that observed in real social network studies in previous work: specifically
that is the tendency for individuals to communicate in clusters of similar opinions.

Then using our model, we aim to carry out an investigation into the way in which
different factors affect information diffusion. Such other factors include:

• social network size;

• network topology;
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• “opinion” distribution;

• seed node choice or distribution.

This investigation will require an informal “pipeline” for the design, execution and analysis
of experiments that include the simulations of many information cascades across many so-
cial network structures with differing parameters. This will allow us to thoroughly evaluate
our model across a wide range of different scenarios and better relate our work back to the
wider literature.

As part of our model evaluation and investigation we will require methods for generating
and analysing social networks with varying properties. To best test our model performance
on real social networks, we will want to include at least one real world social network
structure in our investigation. We aim to include some kind of interactive visualisation
of cascades as part of the analysis to best show how the network evolves throughout the
simulation, however this interactive “application” is not the core focus of our project and
as such is regarded as a secondary goal.

1.3 Challenges

Throughout the completion of the project there are a number of key challenges and mile-
stones that we anticipate.

Understanding of Diffusion Models To inform our model design and ensure it pro-
vides a new viewpoint to questions and topics covered in the literature, we must perform
thorough background research and analysis of existing diffusion models and techniques
used in the field of social network analysis. This knowledge will help us to shape our
model and subsequent investigation.

Real-World Network Example Availability As discussed in section 1.2, we aim to
include some examples of real online social network topologies in our experimentation
to help us evaluate its usefulness and effectiveness in modelling information flow on real
social networks. Therefore we will require some pre-existing dataset that encodes social
network examples from real online platforms, or we may need to devise our own method
for obtaining this data.

Quantitatively Measuring and Evaluating Model Success The primary method
of evaluating the “performance” of our model is through the observation of behaviour
similar to that seen in real social networks described in the literature. Qualitatively this
is reasonably simple: through visualisations we can observe the network topology and the
behaviour of the information cascade to see whether information “spreads” within clusters.
However being able to introduce a quantitative metric to more precisely measure this
behaviour would be beneficial as it will provide a more straightforward way of comparing
and analysing experiment results.

1.4 Contributions

We explicitly summarise our contributions that will be presented in detail throughout the
remainder of this report.
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• A thorough and self-contained summary of existing graph and network theory and
state-of-the-art models for diffusion within social networks, presented in chapter 2.

• An explanation of research and studies into the real world factors and behaviours
that affect information cascade dynamics, presented in chapter 3.

• A new model for information cascade focussing on social effects, that takes individ-
ual’s pre-existing beliefs and resulting preferences into account, presented in chap-
ter 4.

• An analysis of our models behaviour in relation to the real world observations from
the literature, as well as the results and analysis of an investigation into the role of
other factors in information cascades online, presented in chapter 6. As part of this
experimentation work, we also provide a new and alternative method for generating
directed scale-free graphs.
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Chapter 2

Background

2.1 Social Networks

The term social network is used to describe a set of entities and the interactions and
connections between them. In modern society the term is most often used colloquially
to describe online social network applications1 such as Facebook, Instagram or Twitter,
however the term is equally applicable to traditional in-person networks such as a group
of friends or a family.

In recent years as the internet has become more pervasive and online social networks
have become more prevalent, research in the area of social networks has grown to become
highly interdisciplinary. A key focus of research has been on analysing diffusion, which
describes how an entity (idea, piece of information, event, physical product, etc.) spreads
across a network. In this work, we focus on the diffusion of information and social products,
and the interplay between them. These notions are discussed in section 2.3.

2.2 Graph and Network Theory

For analytical purposes social networks are most commonly represented as mathematical
graphs. At the most simplistic level a social network can be represented by a graph
G = (V,E) where the set of vertices V represents the entities2 of the social network
(people, social groups, etc.) and the set of edges E contains pairs of vertices (i, j) where
i, j ∈ V , representing the social connections3 between entities. We often consider the graph
G to be simple i.e. to contain no self loops of the form (i, i) ∈ E and no parallel edges
such that there exists at most one edge (i, j) ∈ E between nodes i and j. We denote the
cardinality of sets by | · |: for example, we often consider social networks with n nodes,
where n = |V |.

Such simple graphical representations for social networks are highly versatile, as they
are highly extensible when creating more complex models as we shall discuss in section 2.4.

1We use the term “social media” to collectively refer to examples of such online social network applica-
tions throughout this report.

2Throughout this work and the literature, many terms are used to refer to the set of entities V in a
network or graph: these include common terms such as “node”, “vertex” and “agent” as well as more specific
terms for the context of human social networks such as “user” and “individual”.

3Most commonly such social connections refer to friendships, either in the more traditional sense or the
more modern interpretation from online social networks: in this situation the term “follower” may also be
used, which normally refers to a one-way relationship leading to the necessity for directed graphs.
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2.2.1 Graph Terminology

To allow us to accurately describe and classify different social networks throughout our
investigation, we now introduce some fundamental terminology in the field of graph and
network theory.

Directed and Undirected Graphs

For any diffusion in a social network to be modelled, we require a notion of relationships
between nodes in the graph. Such relationships can be regarded as either directed or
undirected, depending on the real-world context of the relationship being modelled.

In an undirected graph, an edge (i, j) ∈ E between nodes i, j ∈ V denotes the existence
of some bidirectional relationship or interaction between nodes i and j: we refer to node
j as a neighbour of node i. The set of all neighbours of i is denoted by N(i), and the
cardinality of this set |N(i)| is defined as the degree of node i, denoted by di. Such
bidirectional relationships are typical in in-person social networks and some online social
networks such as Facebook: when you become “friends”, the connection works both ways
allowing for communication or interaction in both directions.

When working with directed graphs, we can extend our notions to take account of the
directed nature of the edges. An edge (i, j) ∈ E between nodes i, j ∈ V in a directed graph
G = (V,E) represents an outgoing relationship from node i to node j and so node j is
defined as an outgoing neighbour of node i. We denote the set of outgoing neighbours for
node i by Nout(i), and the outgoing degree of i by douti . Similarly, for a given node i ∈ V
we define the set of incoming neighbours as all nodes j ∈ V such that there exists an edge
(j, i) ∈ E and denote this set by N in(i): again the cardinality of this set is then defined
as the incoming degree of i, denoted by dini . Note that we can still apply the general
definitions of neighbours and degree to directed graphs if we consider them as undirected,
however this is uncommon. Examples of unidirectional relationships include the “following”
system on some online social networks such as Twitter and Instagram: you can “follow”
another individual without them having to “follow” you back. Figure 2.1 graphically shows
examples of these definitions.

Degree Distribution

As we have just defined, the degree di of a node i in a graph denotes the number of the
neighbours node i has: mathematically that is the cardinality of the set of all neighbours
of i. In isolation, considering the degree of singular nodes in a graph is rarely of much
analytical interest. Instead it is much more useful to consider the distribution of node
degrees in the graph: that is the probability distribution of the degrees of every node
across the whole graph or network. A histogram or probability density plot of the degree
distribution can be helpful in identifying and classifying network structures, as we will
discuss in section 2.5.

Connectedness: Weakly and Strongly Connected Components

An undirected graph is connected if there exists a path between every pair of nodes in
the graph: if not connected as a whole, a graph is made up of a number of connected
components. When working with directed graphs, we can extend this notion: a directed
graph is strongly connected if there exists a path between every two nodes in the graph,

7



N in(1) = ∅
Nout(1) = {2, 3}
N(1) = N in(1) ∪Nout(1)

din1 = 0

dout1 = 2

d1 = din1 + dout1

Figure 2.1: A simple example of a directed graph and examples of the application of the
terminology and notation introduced in 2.2.1.

whilst a directed graph is weakly connected if it has the property of every node being
reachable from every other node if we ignore the directional element of the edges. For
example, the simple directed graph shown in figure 2.1 consists of a single weakly connected
component: it is not strongly connected as there is no path between every pair of nodes
when the edges direction is enforced.

The notion of a graph’s connectedness is useful when considering the interpretation of
some graph metrics that we will introduce in section 2.2.2, as well as in the discussion of
differing network topologies and real-world datasets as we will do in sections 2.5 and 3.2
respectively.

2.2.2 Graph Metrics

When discussing different social networks throughout our investigation, we will require a
number of metrics to allow us to compare and categorise both quantitatively and quali-
tatively different networks to each other. In this section we present a number of graph
metrics that will be useful in the development of our model and subsequent discussion and
analysis of our cascades.

Average Clustering Coefficient

Much of the motivation for and focus of this project revolves around the observation that in
real-world social networks people tend to cluster together and form cliques4: the average
clustering coefficient of a graph helps us to quantitatively define this. In the literature
there are many different ways in which the clustering coefficient is defined. Throughout
this work we define the average clustering coefficient as follows, as first presented by Watts
and Strogatz in [7]:

C =
1

n

n∑
i=1

Ci (2.1)

4A clique C in a graph G = (V,E) is a subset of nodes C ⊆ V such that every pair of nodes in C are
directly adjacent to each other i.e. for every pair of nodes i, j ∈ C there exists an edge (i, j) ∈ E.
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where each Ci is the local clustering coefficient of node i. The local clustering coefficient of
a node i represents how close its set of neighbours is to being a clique: this is the fraction
of actual links between its neighbours, divided by the number of possible links. More
precisely, Watts and Strogatz define the neighbourhood Ni of a node i to be the nodes that
it is connected to: Ni = {vj : eij ∈ E ∨ eji ∈ E}. They then define ki as the number of
nodes in the neighbourhood i.e. ki = |Ni|. For a node i in an undirected graph, there can
be at most ki(ki−1)

2 edges between the ki nodes in the neighbourhood if it is fully connected.
Therefore for an undirected graph G = (V,E) each Ci for i ∈ V is defined as:

Ci =
2 |{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(2.2)

and similarly for a directed graph, due to the possibility of each pair of nodes in the
neighbourhood being connected in both directions, we simply ignore the factor of two in
the numerator. The clustering coefficient of a network is one of the key metrics used to
classify networks into different topologies with different properties as we shall discuss in
section 2.5.

Transitivity

Transitivity is a closely related metric to average clustering coefficient. It differs in that
it considers the entire network at the macro level. The global clustering coefficient of a
graph G is defined in [8, p. 243] as:

C =
number of closed triplets
number of all triplets

=
3× number of triangles
number of all triplets

(2.3)

where a triplet is three connected nodes (open if connected by two edges or closed if
connected by three edges). Both transitivity and average clustering coefficient provide a
quantitative sense of the clustering within the network, however the different scales of focus
provide different information on the structure of a network.

Average Shortest Path Length

As the name suggests, the average shortest path length is the average of the shortest path
between every two pair of nodes in the network. For a graph G = (V,E), this is:

a =
∑

i,j∈V,i 6=j

d(i, j)

n(n− 1)
(2.4)

where d(i, j) is the shortest path between nodes i and j (each edge contributes one to the
distance) and n = |V |. We say that d(i, j) = 0 if node j cannot be reached from node i,
such as if the network is not connected. For directed graphs, we can calculate the average
short path length if the graph is weakly connected, by ignoring the directional element of
the arcs. Along with the average clustering coefficient, the average shortest path length is
the most important and distinguishing metric for the classification of networks.

Diameter

The final metric that we shall describe is the diameter of a graph. The diameter of a graph
G = (V,E) as defined in [9] is the longest shortest path between any pair of nodes:

d = max
v∈V

max
u∈V

d(v, u) (2.5)
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that is, for each node find the shortest distance between it and every other node and record
the largest of these values, and then select the largest of these values across every node in
the graph. This tells us the maximum number of arcs between any two nodes in the graph,
and alongside the average shortest path length provides insight into how the graph can be
traversed.

2.3 Information and Social Products

In section 2.1 we said that this work will focus on diffusion in social networks in the context
of information and social products. These two concepts are highly related, and we now
provide an overview and intuition for the differences between them and their importance
for our work.

Information We consider information in the context of social network analysis to be
a piece of news or knowledge that can be received, and then passed on. This definition
includes both facts and unsubstantiated claims. From [10], misinformation is a type of
information that is false or inaccurate: note that we make the distinction that misinfor-
mation does not have to be malicious in intent. Meanwhile disinformation is a subset
of misinformation with the specific and deliberate intent to deceive [10]. At a high level
information flow across a network can be analogous to the spread of a biological virus or
contagion. It can be transmitted from node to node, and can result in a change of state at
each node: the nature of the change of state is where the analogy starts to weaken. Whilst
a virus simply transmits through an individual, causing a change of state from “healthy”
to “unhealthy” as a result, information must be adopted by the individual to cause a state
change. If this adoption occurs, it can possibly cause a change to the individual’s social
products.

Social Products As introduced above social products describe a change in the state of
a node in a network that occurs as a result of some social interaction. For example entities
such as political opinion, religious beliefs and group membership are common examples
of social products: nodes can have different political opinions or be members of different
groups or societies, and these can change dynamically as a result of social interactions and
experiences. The key property linking these intangible entities as social products is that
they are transmitted socially and must be adopted by the individual.

Information and social products are clearly interrelated: information may be shared and
potentially adopted by users in a social network depending on their pre-existing beliefs
i.e. social products, and adoption of certain beliefs may also influence an individual’s
overall belief system inducing a change in their social products. This circular nature of the
relationship between the two related notions is what has led to the creation of different
models, theories and mechanisms to study the ideas separately as it becomes complex to
study both phenomena at the same time. In section 2.4.2 we introduce independent cascade
models which are commonly used in the study of information flow and in section 2.4.3 we
introduce a threshold model more appropriate for the modelling of social product diffusion.

From this it is clear that pre-existing social products in a social network will have a
large influence on information flow. For example different people in a social network will
have different beliefs and opinions. In section 3.1 we present work from the literature
that analyses interactions within real social networks and find that individual’s are more
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likely to communicate with others that are like-minded. This is a central hypothesis of
this project: pre-existing social products in a social network influence how information is
diffused across the network.

2.4 Existing Diffusion Models

In this section we discuss the most common categories of models for diffusion in social
networks, and present some existing models that have motivated and inspired our work.

Many early diffusion models came from the field of epidemiology, as researchers looked
to model the spread of contagions through a community. Over time as the applications
of social network analysis broadened, these early epidemiological models were adapted to
better reflect the situation in question.

2.4.1 Susceptible-Infected-Recovered (SIR) Models

An early, seminal model for diffusion was the SIR model that was introduced in [11]. SIR
came out of the field of epidemiology, and the influence of this field can be clearly seen
in the design of the SIR model. At its simplest, SIR models consider each node in the
network to be in one of three states:

• susceptible, meaning the node can be infected by a neighbour; or

• infected; or

• recovered, meaning the node is no longer infected and cannot be reinfected (either
temporarily or permanently depending on the exact situation being modelled).

The diffusion starts from a set of one or more seed nodes, each of which can “infect” each of
its neighbours who are in a susceptible state with a parameterised probability p. At each
advancement of time, any node that was in an infected state at time t− 1 transitions to a
recovered state.

The limiting factor of the SIR model is the single infection probability p. The use
of a single, global probability for all nodes and diffusion steps in the network is a strong
generalisation that may not always provide an accurate representation of the situation being
considered. This led to the development of more generalised models, such as independent
cascade models, which we will discuss in section 2.4.2.

2.4.2 Independent Cascade (IC) Models

Independent cascade models such as that discussed in [12, p. 35–36] are generalisations of
the SIR model discussed above in section 2.4.1. Like SIR, independent cascade models use
discretised time steps to capture the diffusion process, however nodes can only be in one
of two states: active or inactive. Diffusion is modelled through the tendency of inactive
nodes to become activated probabilistically through interactions with neighbouring nodes.

As discussed in section 2.4.1, SIR models use a single probability of infection for the
entire network, whilst IC models allow for the specification of infection probabilities for
each edge in the network. An edge (i, j) ∈ E has an associated probability pi,j , representing
the likelihood of node i activating node j at a given step of the diffusion process.
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Such a generalisation of the infection probabilities allows for the model to be tailored to
fit a wider range of real world scenarios. For example, the probability pi,j can be assigned
using a number of real world factors, such as geographic location or previous infection
rates. Once a node is activated, it activates each of its neighbours at the next time step,
according to the probabilities associated with each edge. The important factor that makes
the cascade independent is that each node has only one chance to activate each of its
neighbours, at the next time step after it was activated itself.

Figure 2.2 shows a simple example of an independent cascade model. Initially at time
t = 0 the seed set contains active nodes C and D, highlighted in yellow. At time t = 1,
nodes C and D are able to activate their respective outgoing neighbours (A, G and H) and
(B, E and F ) with the probability specified adjacently to the edge: subsequently nodes
A, E and H are infected and become activated, and the previously active nodes C and
D remain active but are unable to further infect any neighbours. The cascade continues
until t = 3 when there are no longer any nodes that can be activated, and as a result the
diffusion stops.

This example assumes that a node can only transition from inactive to active, after
which it will remain active for the remaining duration of the model: as a result the term
“monotonic” is occasionally used for models under such assumptions. Such an assumption
is useful when modelling the diffusion of information, as it is unintuitive to suggest that
nodes can “forget” information once they have received it. However, when considering the
diffusion of other entities such as social products as we will see in section 2.4.3, such an
assumption is restrictive as social products can change over time.

2.4.3 Threshold Models

Linear Threshold Models

Standard linear threshold models have a similar structure to the independent cascade
model discussed in section 2.4.2, however the diffusion dynamics differ. We now discuss
an example of a linear threshold model as shown by Shakarian et al. in [12, p. 38]. Each
node can again be either active or inactive, however additionally associated with each edge
(i, j) ∈ E is a non-negative weight wi,j ∈ [0, 1]. It is also assumed that for any node the
sum of the weights of incoming edges is less than or equal to one i.e. for each node i ∈ V
that

∑
j∈N in(i)wj,i ≤ 1. A threshold function θ : V → (0, 1] is then defined that assigns a

value in the interval (0, 1] to each node i ∈ V .

At a time t, each node that was active at time t − 1 has the opportunity to activate
its inactive outgoing neighbours. Intuitively, a node will become active if the sum of the
weights of its incoming edges from previously activated nodes is greater than or equal to
its threshold. More formally an inactive node i will be activated at time t of the diffusion
if: ∑

j∈N in(i)∩Ht−1

wj,i ≥ θ(i) (2.6)

where Ht−1 denotes the set of all nodes that were active at time t− 1.

The interesting difference between independent cascade and threshold models is in the
idea of collective social influence. Independent cascade models allow for a single node to
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Figure 2.2: An example of an independent cascade model progressing from t = 0 to t = 3
as shown by Shakarian et al. in [12, p. 37]. Section 2.4.2 describes the figure in more detail.
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Figure 2.3: An example of a threshold model for diffusion across a social network, pro-
gressing from t = 0 to t = 2 as shown by Shakarian et al. in [12, p. 38]. Section 2.4.3
describes the figure in more detail.

activate or “infect” its neighbours (probabilistically), whilst threshold models more closely
capture the often collective and social aspect of diffusion: nodes can only be activated
when collectively its neighbours are able to combine their influence to exceed the nodes
threshold. Such behaviour is representative of how ideas often spread online, as we shall
discuss in section 3.1.

Figure 2.3 shows an example execution of the threshold model we have previously de-
scribed. In this example from [12, p. 38], the threshold function θ assigns thresholds to
nodes randomly and uniformly in the interval [0, 1]. This is done intentionally for this
simple model as there is no pre-existing knowledge of the behaviour of nodes in the net-
work. In more advanced models, such thresholds can be assigned to capture real-world
behaviours and model the preferences and social products of nodes.

When t = 0, nodes C and D are active, and so at t = 1 they have the opportunity to
activate their inactive neighbours. Node C is only able to activate node A as θ(A) = 0.1
and wC,A = 0.2 i.e. 0.2 ≥ 0.1 so the influence of node C exceeds the threshold of node A.
Note that as C is the only active neighbour of A, it is only able to influence A on its own.
Similarly, D is able to activate F as 0.4 ≥ 0.3.

At t = 3, there are now four active nodes in the network. Collectively they are able to
activate node I as 0.5 + 0.3 ≥ 0.2, and node E as 0.2 + 0.4 ≥ 0.5. This example highlights
how nodes can collectively influence common neighbours in threshold models.

2.5 Network Topologies and Generation

Our mechanism for generating cascades will be built on top of underlying graphs that rep-
resent real-world social networks of individuals. In this section we discuss three commonly
discussed network topologies, and well-known models from the literature for generating
such graphs which will become important during our model experimentation in chapter 6.
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2.5.1 Erdős-Rényi Random Graphs

Random graphs are those in which the edges between pairs of nodes are distributed ran-
domly. The Erdős-Rényi model was presented in [13] as a new model for the generation of
random graphs. An Erdős-Rényi (ER) graph G(n, p) is parameterised by the number of
nodes n and the probability of edge inclusion p. Edges are added between pairs of nodes
randomly and independently of each other with probability p, resulting in a graph with(
n
2

)
p edges on average.

The base assumptions of the Erdős-Rényi model (that edge inclusions are independent
of each other and equally likely) are unrealistic in most real world settings: this leads to
ER graphs having low clustering coefficients and larger average shortest path lengths than
many real-world graphs. However, these properties and the stochastic nature of the graph
generation means that ER graphs can often still be a useful benchmark to compare against
when considering graph metrics to other topologies.

2.5.2 Small-World Networks

The small-world phenomena, or more colloquially the principle of “six degrees of separa-
tion”, suggests that almost every pair of individuals in a human social network is connected
by a short path [14]: intuitively, most individuals are not friends with each other, but your
friends are likely to be friends with each other. This principle is captured by the small-
world network topology, which have been shown to appear in many domains, including
within the network of groups on Facebook [15].

Watts-Strogatz Model

Watts and Strogatz proposed their model for the generation of small-world graphs in [7].
The model is parameterised by the number of nodes n, the mean node degree k and the
rewiring probability p, and generates an undirected graph with nk

2 edges using the following
algorithm.

1. Generate a graph with n nodes each connected to k neighbours i.e. connected to k
2

nodes on each side: this is a regular ring lattice. More precisely, there exists an edge
(i, j) between nodes i and j, if and only if condition 2.7 is met.

0 < |i− j| mod

(
n− 1− k

2

)
≤ k

2
. (2.7)

2. Then, consider every edge (i, j) and rewire the end connected to node j to another
node k (k 6= i as no self-loops) with probability p: the node k is selected uniformly
at random.

Figure 2.4 shows the effects of p on the structure of the resulting network. Watts and
Strogatz showed that for p in the interval [0.01, 0.1] graphs generated via this procedure
exhibited small-world properties. Such small-world properties include a high clustering
coefficient and a low average path length. This structure leads to clusters or cliques of
highly interconnected nodes, that are then connected by “hub” nodes that act as bridges
between the clusters.
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Figure 2.4: An example shown by Watts and Strogatz in [7] of the probabilistic edge
rewiring process with different values of p, interpolating between a regular ring lattice and
a random network.

2.5.3 Scale-Free Networks

Another widely found property of large, real-world networks is a scale-free power-law dis-
tribution of node degrees: this is the underlying property of so called scale-free networks.
Mathematically, that is the fraction P (k) of nodes in the network having k connections to
other nodes (i.e. the probability of a node having degree k) decays as a power law:

P (k) ∼ k−γ (2.8)

where typically 2 < γ < 3. The scale-free name arises from the scale invariant nature of
the property. This property was first shown to exist in complex networks such as pages of
the World Wide Web by Barabási and Albert in [16], and has subsequently been shown to
exist in many other domains. This degree distribution leads to a small number of highly
connected nodes with large degrees far in excess of the network average: these are often
referred to as “hub” nodes. In the fields of social network analysis and social dynamics,
these nodes often represent so called “influencers”, and leads to the more colloquial name
of influencer networks for scale-free networks. Such nodes often play a pivotal role in the
dynamics of the network, due to their high connectedness.

Barabási-Albert Model

Barabási and Albert also presented in [16] an algorithm for generating scale-free networks.
The key mechanism of their generative model was preferential attachment, a key feature
of many real-world networks including online social networks. Intuitively this mechanism
ensures that the “the rich get richer”: the more connected a node is in the existing network,
the more likely it is that new nodes will connect to it as they are added and the network
grows. The model is parameterised by the number of nodes n and the number of edges
m which we add to a new node being introduced to the network. The graph generation
algorithm proposed by Barabási and Albert is described below.

1. Start with a connected network with m nodes.

2. Add the remaining n −m nodes one at time, connecting each with m nodes in the
existing network using the preferential attachment mechanism: the probability Π that
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a new node will be connected to an existing node i depends on the prior connectivity
ki of node i:

Π(ki) =
ki∑
j kj

(2.9)

It was later shown by Albert and Barabási that scale-free graphs generated using this
model exhibit small average path lengths, particularly when compared to random Erdős-
Rényi graphs [17]. Additionally they showed that BA graphs have a larger clustering
coefficient than comparably sized Erdős-Rényi graphs, but a smaller clustering coefficient
than small-world networks generated using the Watts-Strogatz model.
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Chapter 3

Related Work

In this chapter we present a number of studies into the use of online social networks for
news consumption that motivated and shaped our model and experiments. We also present
two datasets that we will use as part of our investigation.

3.1 Real World Factors Affecting Information Diffusion

The field of social network analysis has grown significantly in recent years, with many
studies and research focussing on the dynamics of online social media. As the pervasive-
ness of online social media increases the way in which individuals communicate, become
informed and adopt opinions also changes. As we discussed in section 1.1, this is because
social media results in a disintermediation of news consumption, allowing information to
spread without verification. As a result understanding how users make use of and interact
with social media is key to understanding its effects on users beliefs. We now introduce
the key findings from a number of studies into the real world use of social media.

3.1.1 Increase in use of Social Media for News Consumption

Online services such as Facebook and Twitter have changed the way individuals commu-
nicate and absorb information, and their prevalence is only growing more significant. An
annual report into digital news consumption patterns [18] showed that in both the UK and
the USA, between 2016 and 2019 there was a decline in the use of traditional media (print,
radio and TV) for news consumption and a notable increase in the use of smartphones for
the same purpose. Additionally, the report in [18, p. 15] showed that in the UK 35% of
individuals use social media as their primary source of news, whilst in the USA the figure
is even higher at 43%.

3.1.2 Selective Exposure, User Polarisation and Echo Chambers

To better understand the implications of users consuming news through social media sites
such as Facebook, Vicario et al. have conducted many studies into the consumption pat-
terns of users on Facebook [5, 6, 19].

In [6], Vicario et al. show how many users are more likely to accept, consume and
interact with content that is compatible with their pre-existing beliefs, and will ignore
other dissenting information. Such behaviour is described in psychology by the tendency
of individuals to exhibit confirmation bias i.e. to want to reinforce their own world view.
Over time this leads to individuals in a social network becoming even more polarised.
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Further research in [20, 21] shows how selective exposure and user polarisation foster the
formation of homogenous clusters or echo chambers online. Again through a quantitative
analysis of Facebook data, they show that the level of interaction of a particular user to
a certain type of online content is positively correlated to the number of friends that also
consume similar content. Such homophily, when combined with other behaviours such
as selective exposure fosters the formation of like-minded communities online, referred to
as echo chambers. This terminology comes from the observation that these communities
further reinforce the already established views of their members, due to the very fact that
everyone has very similar opinions that are continuously reverberated internally.

3.1.3 Example Model for Selective Exposure

Having discussed the broad work of Vicario et al. and others, we now present a more
detailed description of a model for selective exposure presented in [21]. In this work, a
large quantitative analysis is undertaken to better understand how individuals consume
news on Facebook through interaction with Facebook pages. The study looks at 920 news
sources and 376 million users, and observes that users focus on a small subset of pages
as news sources, leading to a “sharp community structure”. To reinforce these findings,
Vicario et al. present a model that reproduces these observations by modelling selective
exposure. This selective exposure model is built on top of the Bounded Confidence Model
(BCM) presented by Deffuant et al. in [22], which we introduce first.

Bounded Confidence Model

The BCM introduced in [22] describes how the opinion’s of individual agents in a network
change over time due to interaction with each other. The model considers N agents, each
with a continuous opinion xi for 1 ≤ i ≤ N . Two agents with opinions x and x′ will only
interact if the magnitude of the difference of their opinion’s is within a threshold d, i.e.
|x−x′| < d. If this condition holds the two agents interact, and they adjust their respective
opinion as a result of the interaction according to equation 3.1. In equation 3.1 the term
µ is simply the convergence parameter.

x = x+ µ · (x′ − x)

x′ = x′ + µ · (x− x′)
(3.1)

The threshold condition is included to account for real world behaviour such as that dis-
cussed in section 3.1.2. Deffuant et al. describe the threshold d as the “openness to discus-
sion” amongst agents in the network. They show that a large openness to discussion results
in the opinions converging towards an average across the whole population, whilst small
openness to discussion thresholds results in several homogenous clusters each with differing
opinions. This behaviour is identical to that observed in real world analysis presented in
section 3.1.2.

Selective Exposure Model

The model presented in [21] is a modified version of the BCM discussed above, focussing on
the relationship and resulting interactions between news sources and individuals on Face-
book, with the aim of capturing the behaviour that individuals “interact” more frequently
with pages that share news more compatible with their own beliefs. In this context, the
term interact refers to the action of a user “liking” a Facebook page.
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The core model entities are pages p ∈ P representing Facebook pages as sources of
news and information, and Facebook users u ∈ I. Collectively these two sets of entities
correspond to the set of agents described in the BCM. A real number cp ∈ [0, 1] is assigned
to each page p ∈ P , representing the “editorial line” (i.e. opinion) of the page. Additionally
each user u ∈ I has an initial opinion modelled as a real number θu ∈ [0, 1]. Both page
opinions cp and user opinions θu are uniformly distributed.

The model dynamics then focus on the distance between the opinion of a user u and the
editorial line of a page p, i.e. |cp − θu|. The concept of confirmation bias is then modelled
by assuming that if user u “likes” a page p and the opinion distance |cp − θu| is less than
a parameterised threshold ∆, the opinion of user u will converge towards the editorial line
of the page p with which it interacted. The convergence of user opinion occurs according
to equation 3.1 from the BCM. Specifically for this application, the convergence will occur
according to equation 3.2 which makes use of the same notation. θ′u denotes the new
adjusted opinion for user u, whilst θu denotes the original opinion prior to adjustment. cp
denotes the editorial line of the page, and again µ denotes the convergence parameter.

θ′u = θu + µ · (cp − θu) = θu + µcp − µθu = (1− µ)θu + µcp (3.2)

Vicario et al. augment the model further by introducing for each user an activity coeffi-
cient au that represents the number of pages a certain user can visit. As a result, the final
opinion of a user u will be calculated by the average of the editorial lines of all the pages
that the user “likes”. Vicario et al. denote by Ω the set of pages that match the preference
of user u: that is, the set of pages p for which |cp − θu| < ∆. With this notation they
describe the average opinion for user u denoted by θ̄u according to equation 3.3.

θ̄u = (1− µ)θ̄u + µ|Ω|−1
∑
p∈Ω

cp = |Ω|−1
∑
p∈Ω

cp (3.3)

With this, we can now fully describe the dynamics of the model for selective exposure
presented in [21]. A user u randomly selects a subset of pages from P with which to interact
i.e. “like”, however the interaction only occurs if |cp − θu| < ∆. Upon such an interaction,
the opinion of user u will be adjusted according to equation 3.2: this adjustment of opinion
sees the opinion of u converge towards the average of the editorial lines of the pages with
which it interacts. The threshold condition means that u should only interact with pages
that are already compatible with the beliefs of u, and as a result u’s opinion is reinforced.
On average over many simulations, the average opinion of u is given by equation 3.3.

This model provides an example for how real world observations such as selective ex-
posure and confirmation bias can be modelled. It also serves as a basis to allow for the
discussion of how our work and model relates to that of Vicario et al. which will be pre-
sented in chapter 4.

3.2 SNAP Datasets

As well as generating our own artificial social networks for experimentation purposes, we
will also make use of real social networks from the SNAP project. This will provide a
closer representation of how individuals are connected across the internet through the use
of social media platforms such as Twitter and Facebook, and will better allow us to relate
our findings back to the real world.
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Figure 3.1: An example of an ego-network as shown by Leskovec and Mcauley in [24, p. 2].

The Stanford Network Analysis Platform (SNAP) [23] is a general purpose network
analysis and graph mining library. As part of the platform, a number of large network
datasets are provided. As part of this project, we will make use of two of these datasets,
which we will describe in sections 3.2.2 and 3.2.3. First, we introduce the notion of an
ego-network to allow us to more accurately describe the nature of the datasets in question.

3.2.1 Ego-Networks

The SNAP datasets used as part of this project were both collated using a discovery process
presented by Leskovec and Mcauley in [24]. The datasets are presented as ego-networks,
that is the network of connections between the “friends” of a particular node.

To explain this notion, let us consider a single node u in an online social network such
as Facebook. We then consider each of the nodes vi that are connected to u, and the
subsequent connections between each of the vi nodes: the node u is called the ego of the
network as the network revolves around the interconnectedness of u’s friends, whilst the
vi nodes are called alters. The ego-network associated with node u will be a subset of the
entire online Facebook social network, and provides us with a realistic and manageable
social network with properties that should be largely consistent and applicable to the
network as a whole.

3.2.2 SNAP Facebook Social Circles

The SNAP Facebook social circles dataset consists of a number of anonymised “friends
lists” collected from survey participants, that was then used to construct an ego-network
relevant to the participating user. The dataset is presented as a collection of 10 smaller
networks that can be combined into a single connected example of a Facebook network with
over 4000 nodes. Figure 3.2 shows a visualisation of the complete dataset, which clearly
shows the high clustering and abundance of “hub” nodes within the network. Table 3.1
shows a summary of relevant dataset statistics for our investigation, compiled from those
provided by SNAP and through our own analysis. Crucially, we can see that the network
has a relatively high clustering coefficient and a low average path length, the key properties
of the small-world network topology discussed in section 2.5.2. This further confirms the
validity of our claim that this dataset will provide a more accurate example of real-world
social network structure when running our information cascades.
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Figure 3.2: A visualisation of the SNAP Facebook social circles dataset in [23] as generated
by Sims in [25].

Dataset Statistics
Nodes 4039
Edges 88234
Average Degree 43.6910
Average Clustering Coefficient 0.6055
Transitivity 0.5192
Average Shortest Path 3.6925
Diameter 8

Table 3.1: A summary of relevant statistics for the combined SNAP Facebook social circles
network dataset, compiled from those provided by SNAP as well as through our own
analysis.
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Figure 3.3: A visualisation of our subset of the SNAP Twitter social circles dataset in [23]
as generated by the procedure in [25].

3.2.3 SNAP Twitter Social Circles

The second dataset that we will make use of in our investigation consists of anonymised
Twitter “lists” collected from public sources. Again, the dataset is presented as a collection
of smaller networks that are combined into a larger network, however this combined dataset
is too large for our experimental purposes in this investigation. As a result, we have created
our own “sub-network” of the full network by combining a subset of the provided networks.

We created this “sub-network” by randomly selecting 25 of the provided 973 small net-
works and combining them using the ego-network property: the ego of each of the 25 smaller
networks is friends with each of the nodes in its network. This resulted in a connected,
directed graph that is a subset of the real Twitter network provided in [23]. Table 3.2
summarises the important statistics and properties of the network for our investigation.
Most importantly, table 3.2 shows that the network has a lower average clustering coeffi-
cient and transitivity (a measure of global clustering) as well as a relatively small average
shortest path length: these are key metrics displayed by a scale-free network topology as
described in section 2.5.3. The underlying scale-free property can be seen by looking at
the degree distribution, as shown in figure 3.4.
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Figure 3.4: Histogram of the in-degree distribution of our subset of the SNAP Twitter
network highlighting its approximate scale-free nature.

Dataset Statistics
Weakly Connected True
Strongly Connected False
Nodes 3516
Edges 157425
Average Degree 44.7739
Average Clustering Coefficient 0.3796
Transitivity 0.0114
Average Shortest Path 2.9655

Table 3.2: A summary of relevant statistics for our subset of the SNAP Twitter social
circles network dataset collected through our own analysis.
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Chapter 4

Model Design

In this chapter we discuss the evolutionary approach we took to designing our model, and
how we introduced mechanics one at a time in an attempt to produce the expected model
behaviour. At the end of the chapter we evaluate our final model behaviour as well as the
behaviour observed after the introduction of each model mechanism.

4.1 Core Model

In this section we introduce the core mechanism of our information cascade model, describe
its behaviour and motivate its design and sources of inspiration from the literature.

4.1.1 Structure

In this project we are focussing on how information cascades within social networks are
affected by agent state, where such state represents some kind of social product present in
society such as political opinion and pre-existing belief systems.

Our model design centres around a threshold condition between entities in the underlying
social network of the information cascade, similar to that used in the BCM and selective
exposure model discussed in section 3.1.3. Consider that we wish to model an information
cascade through a graph G = (V,E) with the set of vertices V representing the set of
agents in the social network, and the set of edges E representing the social link between
two agents. We assign to each individual v ∈ V an opinion modelled as a real number in
the interval [0, 1]. We denote the opinion of node v ∈ V by θv for notational consistency
with the selective exposure model discussed in section 3.1.3. Figure 4.1 shows a simple
example of this. A seed node is chosen, which will be the origin of the information cascade.
The modelling of the cascade then proceeds as a discrete time simulation, with the cascade
dynamics occurring as follows.

At each discrete time step, an “activated” node (i.e. a node that is already part of the
information cascade) has the opportunity to interact and “spread” the information cascade
further with each of its (outgoing) neighbours, however the interaction only occurs if a
threshold condition is met. The threshold condition for an interaction to occur between
two nodes u and v where u is already part of the cascade and v ∈ N(u) if G is undirected
or v ∈ Nout(u) if G is directed, is given by:

|θu − θv| < d (4.1)
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Figure 4.1: An example of a simple graph representing a social network, in which each
node has been assigned as opinion in the interval [0, 1].

where d is the parameterised opinion threshold.

4.1.2 Motivation, Influence and Link to Literature

The motivation for this simplistic initial model design revolving around the assignment of
an “opinion” to each node is that in reality belief systems exist on a continuous rather than
discrete or binary scale. By modelling beliefs in the interval [0, 1] we are able to capture the
sense of a true spectrum, where the closer the numerical value to 0 or 1 indicates a highly
polarised world view whilst 0.5 suggests a more typical “balanced” view. Additionally it
makes sense to assume that two individual’s ideas must normally be sufficiently similar to
even warrant a potential interaction or “discussion”. We see these mechanics as a basis for
adding additional assumptions/features if and when we require them to obtain the correct
model behaviour.

The core of our model, the opinion distance threshold condition is similar to the mechan-
ics of models presented in the previously discussed background such as [21, 22], however
we emphasise that we are using these similar mechanics to study different problems. The
selective exposure model presented in [21] is primarily focussed on the interaction between
news sources and agents, and how through individuals choosing to interact with certain
confirmatory news sources their state is adjusted to further reinforce their beliefs. Similarly
the bounded confidence model presented in [22] is interested in analysing how interactions
affect agent state, or social products using our terminology.

Meanwhile, our work looks to focus on how agents themselves affect information flow
due to their pre-existing social products such as political beliefs. We assume that once
the cascade begins all agent state remains constant: in this regard we are approaching
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Figure 4.2: An illustration of how the two core concepts in information cascade models are
related.

a very similar problem to those studied in the literature from the opposite angle. Our
work focusses on the social impact on information flow, whilst Vicario et al. have focussed
on modelling the initial information spread and consumption. This distinction is shown
graphically in figure 4.2.

4.1.3 Model Dynamics Example

To reinforce our models behaviour, we now walk-through a simple example of an informa-
tion cascade step-by-step.

We start from the network shown in figure 4.1, in which each node has already been
assigned an opinion. We then refer to figure 4.3 which shows the different discrete time
steps of the cascade: for this example we take the opinion threshold to be 0.1. When t = 0,
the only node in the cascade is the seed node which was randomly chosen to be node B
depicted in yellow.

At t = 1, node B is able to further the cascade to include each of its neighbours if the
opinion threshold condition is met. Node B is able to spread the cascade to nodes A and
F , however |θB − θE | > 0.1 and so node E is not added to the cascade as shown by its
grey colouration. At t = 2, node A influences node D as the threshold condition is met,
however both of node F ’s neighbours are not influenced. As a result, the remaining nodes
in the network are unreachable and so the cascade stops after t = 3 iterations.

4.2 Pre-Cascade BCM Phase

After our initial model implementation we introduced a new mechanic to the model where
a separate phase is run prior to the cascade simulation.

4.2.1 Motivation

In the initial model discussed above, the node opinions are assigned according to the
parameterised distribution: for basic analysis of our model behaviour, we assume this
distribution to be uniform however other distributions will be considered as part of our
experimentation presented in chapter 6. Whilst this allows the model to capture the fact
that opinions of individuals across a network as a whole are widely spread, it does not
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Figure 4.3: An example of a simple information cascade using our model, in which we take
the opinion threshold to be 0.1.
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accurately reflect the fact that pairs of nodes in a network that are already connected (i.e.
that are already “friends”) have interacted in the past and this might have affected their
opinions.

To try and capture some of this behaviour in the network prior to running our information
cascade, we introduced a preliminary phase in the model setup which incorporates a form of
the bounded confidence model (BCM) mechanics presented in [22] and previously discussed
in section 3.1.3. This mechanism allows the opinions of neighbouring nodes to converge,
simulating how the outcomes of previous cascades might have affected agent state and
simultaneously allowing our model to incorporate the notion that individuals tend to be
friendly with those that have similar views.

4.3 Stochastic Element

The final element of the model that we added is a probabilistic element to the actual cascade
condition. Prior to this, if the opinion threshold condition was met then the interaction
would always be regarded as having occurred and the neighbouring node would be added
to the cascade.

4.3.1 Motivation

In attempting to model an information cascade, we wish to capture the phenomenon of in-
dividuals adopting ideas as a result of social interactions: this is modelled by neighbouring
nodes being added to the cascade if the threshold condition is met. However by allowing
the cascade to occur in a deterministic manner, we are unable to capture the idea of two
individuals having a social discussion that can result in multiple outcomes.

This is the motivation behind the addition of some element of randomness to the cascade
mechanism. The opinion threshold condition still exists as we assume that the opinions of
two neighbouring nodes must be sufficiently similar to allow for a discussion to occur: the
term “openness to discussion” was used by Deffuant et al. to describe this notion in [22].
If this condition holds and the two nodes are “open to discussion” then the probability of
the interaction resulting in “success” (which we define to mean that the cascade has been
furthered) is determined by true distance between the opinions of the neighbouring nodes.

As an example consider we are modelling the information cascade in a graph G = (V,E)
with opinion threshold d and neighbouring nodes u, v ∈ V where u is already in the cascade.
Given that |θu − θv| < d, the probability that the information cascade continues from u to
v is given by equation 4.2.

p = 1− |θu − θv|
d

(4.2)

Clearly this captures the behaviour that the smaller the distance between the two inter-
acting nodes opinions, the higher the probability that the interaction is successful: this is
intuitive as the closer the two individual’s opinions are the more likely the neighbouring
node is to adopt the information being conveyed.
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4.4 Evaluation

In this section we analyse and evaluate the behaviour of our model. We briefly discuss the
behaviour of the model after the introduction of each new feature and describe how this
motivated the addition of subsequent features, before analysing the final model behaviour.

4.4.1 Process

For the purposes of this initial model behaviour evaluation we used the SNAP Facebook
example network as discussed in section 3.2.2. We chose this network for our initial eval-
uation due to its typical small-world properties and modest size. We also used uniformly
distributed node opinions, and the seed node was chosen uniformly from all nodes in the
graph. We then proceed with the information cascade allowing it to run to completion i.e.
until no more nodes can be added to the cascade. Upon completion we form the cascade
graph from all the edges added during each iteration, which we use to perform our analysis
of this particular cascade. To reduce the effects of fluctuations in the stochastic process
we perform 100 simulations to allow us to average the results.

4.4.2 Metrics

There are a number of graph metrics that can be helpful when quantitatively analysing and
comparing graphs. For evaluating our model behaviour and throughout our investigation,
we will focus on two metrics when comparing cascades.

Mean Edge Homogeneity

The metric of mean edge homogeneity was introduced by Vicario et al. in [6] during their
analysis of the way in which individuals interact with news sources online. It reflects the
average similarity of two nodes views in relation to the scale of possible opinions possible.

As we have discussed each node in the underlying network of our model is assigned a
real-valued opinion in the interval [0, 1]. This represents an overall modelling of the nodes
beliefs or world view, on a scale where 0 and 1 are deemed more polarised and “extreme”
views whilst 0.5 suggests a more typical, average opinion. Then using the opinion, we
additionally define for each node its polarisation. For a node u ∈ V of a graph G = (V,E)
its polarisation σu is defined by:

σu = 2θu − 1 (4.3)

where θu is its opinion. Clearly as 0 ≤ θu ≤ 1 then −1 ≤ σu ≤ 1. The polarisation of a
node reflects how polarised its opinion is from the average. From the polarisation, we can
then define the edge homogeneity : for an edge (u, v) ∈ E, the edge homogeneity is defined
as:

σuv = σu × σv (4.4)

where σu and σv are the polarisations of nodes u and v respectively. Given that −1 ≤
σu, σv ≤ 1 we have that −1 ≤ σuv ≤ 1. The edge homogeneity measures how similar the
polarisation’s of two connected nodes are and then any edge with positive edge homogeneity
is defined to be a homogenous link i.e. the polarisation of the two nodes opinions are
more positively correlated than negatively correlated [6]. When considering whole cascades
particularly within larger networks it is more useful to consider the mean edge homogeneity
of the cascade, that is the mean average of the edge homogeneity of every cascade edge.
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The mean edge homogeneity is a random variable over the sample space of all possible
information cascades within a given network. As we are repeating each experiment 100
times to avoid stochastic fluctuations, we will be able to estimate the probability density of
the mean edge homogeneity for a given network and set of model parameters. If we observe
high probability densities for positive mean edge homogeneities, we can conclude that the
majority of links in an information cascade occur between like-minded individuals.

We choose to include mean edge homogeneity as a key metric in our investigation to
allow us to easily compare our findings with those made it related experiments in the
literature, such as those presented in [6]. Whilst the metric was introduced for a slightly
different investigation into how users interact with news sources online, the principle of
quantitatively measuring the similarity of links in a network is applicable to our use case.

Cascade Depth

The other key metric we will consider during our analysis is the cascade depth. We can
consider the cascade graph as a spanning tree of nodes in the cascade, with the root node
of the tree being the seed node of the information cascade. The depth of the cascade tree
is then the longest path from the root node to a leaf, signifying the furthest the “idea”
has been able to spread from the seed. Due to the way we grow the cascade, this depth is
equal to the number of iterations required for the cascade to complete. This metric will be
particularly useful when we investigate the role of other factors such as network topologies
in the information cascade.

4.4.3 Initial Model Behaviour

We start by evaluating the initial model with just the opinion threshold condition as
described above in section 4.1. We vary this threshold in the range [0, 1] and for each model
parameter we perform 100 model simulations and calculate the mean edge homogeneity.
We find that as the opinion threshold goes to 1, the average mean edge homogeneity goes to
0. Therefore we focus on the interval [0, 0.05] in order to maximise mean edge homogeneity.
For a more detailed discussion of model behaviour in the full threshold interval [0, 1] see
appendix A.

Figure 4.4 shows an example information cascade with the opinion threshold set to 0.05.
We can see that the cascade resulted in two identifiable clusters based on the edge homo-
geneity: qualitatively this is the desired behaviour we are aiming for based on real-world
observations in the literature as was discussed in chapter 3. To quantitatively assess our
model’s behaviour, we estimate the probability density function for the mean edge homo-
geneity from our sampled results at intervals in the range [0, 0.05] as shown by figure 4.5.
We truncate the plots to the positive domain as we observed no instances of negative
mean edge homogeneity from our sampling. We see that for smaller opinion thresholds
we observe a more uniform probability density in the range [0, 1], and as the threshold
increases the standard deviation of observed homogeneities decreases and the mean ap-
proaches 0: again see appendix A for further discussion. We see expected model behaviour
in that we observe no 0 or negative homogeneities suggesting that most cascade edges are
homogenous, however the lack of peak in the higher homogeneity range suggests model
adjustments can be made.
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Figure 4.4: An example cascade generated by our simulation of the SNAP Facebook net-
work with opinion threshold 0.05. The seed node was chosen randomly and is highlighted
in yellow. The saturation of the edge colour describes the edge homogeneity: darker edges
have higher homogeneity whilst lighter edges have lower homogeneity.

Figure 4.5: PDF plots for the mean edge homogeneity of cascades with opinion thresholds
in the range [0, 0.1] for the initial model evaluated on the SNAP Facebook network.

32



Figure 4.6: PDF plots for the mean edge homogeneity of cascades with opinion thresholds
in the range [0, 0.05] for our model with the addition of BCM-inspired convergence phase.

4.4.4 Addition of BCM Convergence Phase

The introduction of a BCM-inspired convergence phase similar to that discussed in sec-
tion 3.1.3 allows the opinions of neighbouring nodes to converge, better modelling the
real-world tendency for individuals to have to closer opinions to their neighbours. This
mechanism is parameterised by the openness threshold and the convergence parameter µ:
the openness threshold plays a similar role to the opinion threshold, however its value
can be distinct as it is used in an earlier phase of the simulation. These values function
similarly to hyperparameters in machine learning optimisation, and so we performed a pa-
rameter search by fixing the opinion threshold at 0.01 and varying the openness threshold
and µ in the interval [0, 0.5]. We found that an openness threshold of 0.1 and convergence
parameter of 0.25 were optimal, allowing for sufficient convergence of opinion prior to the
cascade resulting in improved model behavior.

Having found sensible values for these parameters, we then again plotted the mean edge
homogeneity as a function of the opinion threshold as shown in figure 4.6. The sharper peak
as the threshold increases is expected due to the high clustering of the underlying network:
again see appendix A for further discussion. However notably for opinion threshold less
than 0.05, we observe an almost bimodal distribution with peaks around 0.1 and 0.6. We
attribute this observation to the fact that BCM phase allows neighbouring node opinions
to converge slightly, meaning that on average edge homogeneity is also higher.

We also consider the effects of the opinion threshold on the average cascade depth.
As the threshold increases in the interval [0, 0.1] the cascade depth also increases as the
increased openness to discussion between nodes allows the cascade to reach further. Then
as the threshold increases further past 0.1 we observe that the cascade depth begins to
fall. We attribute this behaviour to the strong clustering of the underlying network: once
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Figure 4.7: PDF plots for the mean edge homogeneity of cascades with opinion thresholds
in the range [0, 0.05] for our model with the addition of BCM-inspired convergence phase
and the randomness of the cascade condition.

the threshold is sufficiently large the high clustering means that the cascade can rapidly
reach a highly connected hub node in the network, allowing the cascade to spread across
the entire network.

4.4.5 Effects of Randomness

Finally we evaluate the model behaviour with the addition of the stochastic element dis-
cussed above in section 4.3 on top of the BCM convergence phase. Figure 4.7 shows the
same density plot for this series of simulations. We again see that the smaller the opin-
ion threshold the more closely the distribution appears to be bimodal, however the added
nature of chance suppresses the behaviour of the underlying uniform distribution as the
threshold increases.

Average Cascade Depth
Opinion Threshold Initial Model Stochastic/BCM

0.01 2.30 2.07
0.02 7.85 2.73
0.03 21.81 3.49
0.04 24.55 4.23
0.05 24.94 4.97
0.1 22.17 7.18

Table 4.1: A summary of the average cascade depths across different versions of our model
design.
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We also see a notable change in the average cascade depth. Table 4.1 summarises the
average cascade depth across different opinion thresholds for both our initial model with
the simple threshold condition and our final model. We can see that the average depth is
substantially smaller after the introduction of an element of chance: this makes sense as
clearly the stochastic mechanic gives the cascade a chance to stop at each new node.

It is also worth highlighting the interesting jump in cascade depth for the initial model
between opinion threshold 0.02 and 0.03. We expect that this behaviour is heavily tied
to the moderate clustering in the underlying social network structure: given the right
topology and initial seed node a small increase in threshold can cause a large increase in
possible cascade depth. Of course the effects of the choice of seed node should be cancelled
out by the stochastic nature of its selection, and so it is highly probable that the main
cause of this spike is network structure. Intuitively this also explains the decline in cascade
depth after the peak, as once the threshold becomes sufficiently high the density of the
network allows information to diffuse faster and so reduces the depth of the cascade.

Broadly we are happy with the behaviour of our final model. Qualitatively we can
observe distinct branches of the cascade graph representing interactions within homogenous
clusters of the underlying network. Quantitatively we observe no instances of negative
mean edge homogeneity throughout our simulations meaning we observe high probability
of homogenous links in information cascades, portraying similar behaviour to that observed
in the literature.

4.4.6 Strengths

We now summarise the strengths and weaknesses of our model design in relation to the
objectives previously set out.

• By focussing our design on the way that information spreads socially as a direct
result of social interactions, we have been able to cover new ground not focussed on
by the literature.

• Our final model exhibits intended behaviour, simulating how individual’s beliefs affect
information flow in a highly clustered underlying network.

• The iterative approach to model development allowed us to keep our model as simple
as possible, by quantitatively assessing its behaviour after the introduction of each
new mechanism and allowing us to consider what new mechanisms will give the
desired behaviour.

• We have essentially developed two similar but distinct models: one with a determin-
istic binary spreading system, and another in which chance is introduced.

4.4.7 Weaknesses

• Our model is unable to reproduce the exact behaviour of extreme polarisation ob-
served in real-world cascades as presented by Vicario et al. in [6]. This could be
limited by the assumptions made regarding the underlying network such as node
opinion and network topology. We hope to test this hypothesis in chapter 6.

• We did not have access to a dataset with sufficient features to allow us to truly map
real-world user opinions to numerical values in our model. This restriction is what
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motivated us to the quite strong assumption regarding the opinion distribution of
nodes within the underlying network. We discuss this further in section 7.2.2
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Chapter 5

Implementation

In this section we outline an overview of the implementation details for our model, and
the subsequent simulations and experiments. We chose to use Python 3 for our model
implementation and the various scripts for running simulations, due to its wide range of
available data science libraries. Section 5.2 outlines the main Python libraries we made
use of.

5.1 Overview

Figure 5.1 shows a diagram of the pipeline of the execution of a model simulation within our
implementation. The core part of our pipeline is contained within the execution of a single
Python program as demonstrated by the solid connector arrows, whilst the visualisation
aspects function separately and are signified by the dashed connector arrows. This has been
done intentionally as visualisation is slow and unnecessary for every simulation iteration:
therefore by removing it from the core program we improve the speed and ease at which
large batches of simulations can be performed.

The model parameters are supplied to the simulation via a Python dictionary, which
are used to setup the simulation. The underlying graph representing the social network
being simulated are created or loaded by the NetworkX Python package accordingly. Once
the simulation is complete a number of metrics relating to the cascade simulation are
calculated, and the results are written to a CSV file.

Figure 5.1: An illustration of the high level structure of the internal pipeline of our model
and simulation.
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5.2 Libraries

We now briefly discuss and justify the core libraries we made use of throughout the project.

• NetworkX [26] is used to create, represent, manipulate and analyse complex mathe-
matical graphs and networks: we use NetworkX to represent all the underlying social
networks in our simulations. We chose to use NetworkX over alternative network
analysis packages such as iGraph1 or Graph-Tool2 due to its excellent documenta-
tion allowing for easy learning, and wide range of in-built graph algorithms allowing
us to develop fast and focus on model/simulation design. Whilst NetworkX’s pure
Python implementation means it is noticeably slower than the alternatives (built on
top of C), as we are mostly focussing on smaller network simulations (5000 nodes or
less) throughout this project this downside is not too limiting.

• Pandas [27] provides powerful features for data analysis and manipulation, with
excellent tools for reading and writing data to/from different file formats including
CSV. This was incredibly useful when accessing results from CSV files for analysis
or when creating visualisations. We chose Pandas for this due to its popularity,
performance and more powerful features than comparable packages such as NumPy.

• Matplotlib [28] is a particularly well-known Python library for generating charts
and other data visualisations: it is closely integrated with NetworkX in terms of
creating basic graph visualisations, and is the “standard” Python library for plotting
charts such as histograms which is an important part of our project.

• Dash [29] is a Python framework for building web applications, built on top of the
Python Plotly3 graphing library: this allows for the creation of interactive graph
and chart visualisations, tackling one of the core limitations of Matplotlib which
has limited support for interactive plots. We did not make extensive use of Dash
or Plotly, however we did use it to create a simple web application for displaying
interactive graphs via a local web server: this was useful during the analysis of our
simulation results.

5.3 Challenges

5.3.1 Result Storage

Like any simulation or modelling based project we were always going to generate a signifi-
cant amount of numerical data as part of our experiments that would need to be analysed
effectively to evaluate our model. For this reason reliable and efficient storage would be
important, with a requirement to be able to quickly select and filter data. Early on in the
project development we used CSV files to store results due to their simplistic nature, with
the expectation to move to a more complex system as the project progressed. However, we
found that properly organised directories and CSV files combined with the Pandas Python
library offered us a simple and yet reasonably robust and powerful storage/analysis system.

1https://igraph.org/python/
2https://graph-tool.skewed.de
3https://plotly.com
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We briefly considered using a remote database for the storage of simulation parameters
and subsequent simulation results however we decided that this system would most likely
be overly complex for our requirements. Throughout the project development we found
that the bulk of our time was spent on designing the model and analysing the resulting
cascade data. As this was always intended to be the focus of our project the decision to
not spend more time setting up a more complex pipeline proved beneficial as it allowed us
to focus on the core project objectives. We discuss in chapter 7 how a better integrated
pipeline could be a part of future work.

5.3.2 Visualisation

The biggest challenge we faced with the implementation of the simulation pipeline and
model analysis tools was the model visualisation. Whilst NetworkX is a very rich and full-
featured Python library for social network analysis its plotting and visualisation tools are
quite limited as they rely on Matplotlib. This means that any plots drawn directly using
the methods provided by NetworkX are limited to static plots that could be generated by
Matplotlib. To better visualise the way in which the information cascade grows at each
discrete time step we wanted to develop some form of interactive plot that can display this
temporal dimension, as well as other graph metrics on demand.

This was not a key objective of the project and so to simplify the process we sought to
find a library or framework to perform this task within Python so that we could ensure
smooth compatibility with our NetworkX graph representations. This led us to make use
of the Dash Python framework as was introduced above. As we were unfamiliar with this
framework during our development we modified code snippets from [30] as an example of
how interactive graph and network rendering can be performed using Dash.

We were able to build a simple locally hosted web application for interacting with the
information cascade of previously run simulations. Figure 5.2 shows a screenshot of our
simple interactive application. When a node or edge is hovered over a summary of relevant
information is displayed. The slider allows the user to “scrub” through the discrete steps
of the simulation to see how the cascade evolves. The darkness of the edge colour signifies
the mean homogeneity: a darker hue represents a edge homogeneity close to 1 whilst a
pale colour represents a homogeneity close to 0.
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Figure 5.2: Screenshot of our basic application for allowing interactive information cascade
visualisations.

40



Chapter 6

Experimentation and Analysis

In this chapter we present a number of experiments we conducted to further test our
model behaviour, and to additionally look at the roles other factors can have in the way
information spreads across social networks online.

6.1 Experimental Process

To ensure all results are comparable when performing simulations to determine model
behaviour and as part of experiments, we adopt a standard experimental process.

• Before each simulation all nodes in the network are assigned a real-valued opinion
according to the opinion distribution which is a model parameter. All nodes start in
an “inactive” state, apart from the seed node which is chosen at random.

• At each discrete time step of the cascade we record the edges (and therefore nodes)
that are added to the cascade.

• We allow the cascade to run to completion i.e. until there are no more nodes that
could possibly be added to the cascade. This is computationally viable due to the
static nature of agent state within our model, and the fact that we are mostly exper-
imenting with reasonably small networks.

• Once the cascade has completed we form the cascade graph by collating the edges
added during each iteration: this graph is a spanning tree of all the nodes present in
the cascade. We can then analyse individual cascades by calculating metrics based
on the cascade graph.

• Due to the stochastic nature of each simulation run, for each set of model parameters
we perform 100 simulations to allow us to average any results to combat any biases
or fluctuations.

To compare the results, we again focus on the cascade depth and mean edge homogeneity
as was described previously in section 4.4.2 to evaluate our initial model behaviour.

6.1.1 Factors

Before performing any experiments, we must decide what factors we are considering and
the range of these parameters we wish to focus on. For the remainder of this project, we
choose to focus on the effects of changing the node opinion distribution and the underlying
network topology. We chose to focus on these two factors as they are arguably the most
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observable and measurable differences that could occur between social networks, and they
are likely the most common distinctions between different platforms. For example the
directional nature of relationships on networks such as Twitter and Instagram is different
to the bidirectional relationships present on Facebook and this influences the network
topology.

6.2 Role of Network Topology

6.2.1 Motivation and Setup

Table 6.1 shows a summary of the different network topologies we will use in our experi-
ments. We now briefly motivate the inclusion of each network topology.

• Small-World networks exhibit high clustering and low average path lengths. This
topology is observed across many different domains including real-world human social
networks and the network of groups on Facebook. As described in section 2.5.2 we
can generate small-world networks using the Watts-Strogatz generative graph model.
We conducted a parameter search to determine optimal parameter values to give an
underlying network with high clustering and low path length and diameter: we found
that such optimal values for our use case were N = 5000,K = 50, P = 0.01.

• Scale-Free networks are also observed in real social networks such as Instagram as
explained in section 2.5.3. Key properties include low clustering and small average
path lengths. Such networks can be generated using the Barabási-Albert model. We
chose N = 5000 to give a large network and found that M = 50 gave us optimal
characteristics.

• Erdős-Rényi random graphs are uncommon in real-world settings however they pro-
vide a good baseline to compare other topologies against. We again chose N = 5000
to give a large network size and then set P = 0.01 after a parameter search to give
minimum clustering and maximum path length.

• The SNAP Facebook and SNAP Twitter datasets are included as examples of real
social networks and are more thoroughly discussed in sections 3.2.2 and 3.2.3 respec-
tively.

We now divert briefly to present our approach for generating directed scale-free graphs.

Directed Scale-Free Topology

All previous network topologies discussed are examples of undirected graphs, apart from
the example SNAP Twitter network. To complement this, we wish to experiment with an
artificial directed scale-free network to mimic the kind of structure that can be observed
in online social networks such as Instagram.

Our implementation library of choice NetworkX provides access to a method for gener-
ating directed scale-free graphs based on a process described in [31], however in our testing
of this generative model’s behaviour we found that the resulting graphs were of extremely
low density. Therefore we decided to attempt to devise our own method for the generation
of directed scale-free graphs.
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Figure 6.1: A simple visualisation of the steps in our process to generate a directed
Barabási-Albert scale-free network.

Our generative model is quite simple. Firstly we generate a directed scale-free network
using the standard Barabási-Albert model. Once this network has been generated we con-
vert each undirected edge in the graph to two directed edges, one in each direction. We
then probabilistically remove an edge based on the relative in-degrees of the two neighbour-
ing nodes. More precisely let G = (V,E) represent a directed scale-free network generated
using the standard Barabási-Albert model, where each undirected edge (u, v) ∈ E has
been replaced with two directed edges (u, v) ∈ E and (v, u) ∈ E. Then dinu and dinv are the
in-degrees of the respective neighbouring nodes. Let us assume without loss of generality
that dinu ≥ dinv . We say there is a probability of 0.1 that both directed edges remain:
this hyperparameter was found through experimentation, and was added to ensure that
not every pair of connected nodes has just a one-way relationship. Independently we per-
form a Bernoulli trial in which we remove the directed edge (u, v) i.e. the edge from the
more “popular” node to the less “popular” with the probability shown below: otherwise we
remove the directed edge (v, u).

premove =
dinu

dinu + dinv
(6.1)

The reasoning behind this mechanism is to in some sense replicate preferential attachment
in which it is more likely that nodes will “follow” other nodes with high degrees. Similarly
it is less likely that a high degree node will follow a less “popular” node.

Figure 6.1 shows a simple example of this process. The leftmost network is a simple
undirected graph that could form part of a standard scale-free network as generated by
the Barabási-Albert model using preferential attachment. We then take each undirected
edge and replace it with two directed edges. Finally we remove one of the two directed
edges between a pair of nodes based on their relative in-degrees: in figure 6.1 the centre
node has two incoming edges whilst the other two nodes only have one therefore meaning
it is more likely that we remove the edge from the higher degree node to the lower degree
node. Whilst we do not show rigorously that our produced networks follow the scale-free
topology, we show in appendix B the degree distributions of an example network generated
using this process. These distributions clearly show an approximate scale-free structure in
which the in-degree and out-degree distributions follow different power laws.
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6.2.2 Analysis

Figure 6.2 the average mean edge homogeneity and average cascade depth as functions of
the opinion threshold for all the previously described network topologies. For the average
mean edge homogeneity we largely see the same trend across all the different networks:
this is expected as the opinion threshold increases. For this reason we largely ignore this
metric for this experiment.

The most interesting findings occur in the cascade depth, where we see quite different be-
haviours across different networks. The most striking outlier is that of the Watts-Strogatz
network in which the cascade depth grows rapidly indicating that the information diffuses
slowly until the opinion threshold reaches approximately 0.1, after which the cascade depth
appears to decay almost exponentially. We expect that this behaviour is attributable to
the high-clustering of the network.

The small-world property means that a nodes “friends” are likely to also be friends,
creating clusters of interconnected nodes within the network. As a result when the opinion
threshold is small many neighbouring nodes are able to continue the cascade in successive
iterations, whilst when the opinion threshold increases the effects of clustering become
more prominent and allow for many nodes to be added to the cascade in one step: this
reduces the number of iterations.

Amongst the remaining topologies we can broadly see two patterns emerging. We see
that the SNAP Facebook and SNAP Twitter networks gradually increase in cascade depth
with increasing threshold whilst the directed Barabási-Albert, standard Barabási-Albert
and Erdős-Rényi networks tend to decay in depth. For the SNAP networks this behaviour
appears to reinforce the expected behaviour for a real-world network: as you increase
the openness for nodes to communicate the cascade depth which can also be thought of
as the cascade lifetime increases. This is explained by the properties of these example
networks as was discussed in chapter 3. Whilst both networks exhibit some clustering
it is not as strong as that observed in the artificially generated Watts-Strogatz network.
Extremely high clustering leads to an abundance of hub nodes in the network meaning
that information is able to diffuse faster across the whole network because it is easier to
reach a hub node. The lower clustering exhibited in the SNAP networks explains why the
cascade continues further with increasing threshold, because there are fewer hub nodes and
so further steps are needed. The greater depth for the SNAP Facebook network can be
explained by its larger size.

The similar trend between the cascade depths of the directed Barabási-Albert, standard
Barabási-Albert and Erdős-Rényi networks can also be analysed with similar reasoning.
As examples of scale-free networks the Barabási-Albert graphs contain a small number
of nodes with very high degrees with the remaining nodes having quite small degrees.
This property as generated using the preferential attachment mechanism means that the
majority of “smaller” nodes will follow at least one of the highly influential nodes. Because
of this it takes very few iterations for information to diffuse: this is particularly clear for
the standard undirected Barabási-Albert network.
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Figure 6.2: Comparison of the average mean edge homogeneity and average cascade depth
as functions of the opinion threshold across different network topologies.
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6.3 Role of Opinion Distribution

6.3.1 Motivation and Setup

We will experiment with 3 different opinion distributions across the range of different
network topologies discussed above. We now motivate the inclusion of each of these dis-
tributions.

• The uniform distribution, more specifically a U(0, 1) distribution, was used during
our initial model behaviour evaluation and we will continue to use it as a baseline
when comparing to other network topologies and distributions.

• We distribute opinions normally according to an N(0.5, 0.25) distribution. We de-
termined the µ and σ2 parameters through inspection to obtain a suitable standard
bell-shaped curve in the interval [0, 1]. We include this distribution to test our model
mechanics under the assumption that most users in a social network have an “average”
opinion, despite the observations of polarisation in the literature.

• Finally we distribute the node opinions according to a bimodal distribution to simu-
late examples of networks in which individuals are extremely polarised. We achieve
this by sampling a B(0.5, 0.5) distribution.

For the purposes of this experiment we will focus our discussion on the results for the
SNAP Facebook and SNAP Twitter topologies: together these example networks provide
the best representation of real social networks and provide the basis for a good comparison
between a highly-clustered undirected network and a less-clustered directed network. We
also focus on analysing cascade results for small opinion thresholds to ensure we best
capture the stochastic element of the model.

6.3.2 Analysis

Due to the way in which edge homogeneity is defined and the properties of the different
distributions we are using to model user opinion we can already deduce some expected
behaviour before even looking at our simulation results. All three of the distributions
being investigated have an expected value of 0.5 and so given our definition of mean edge
homogeneity described in section 4.4.2 we expect a peak in probability density around 0,
similar to that observed during our initial model evaluation in section 4.4. We would expect
this to be most prominent for the N(0.5, 0.25) distribution with low probability density for
higher homogeneities. The bimodal property of the B(0.5, 0.5) distribution should result
in a higher peak of probability density close to 1.

The average mean edge homogeneity as a function of the opinion threshold is of little
interest in this experiment as the relative value of the mean edge homogeneity is largely
determined by the behaviour of the opinion distributions. As a result it can be qualitatively
described without observing any experimental results: the quantitative results provided
by experimentation gives little extra insight. Across all opinion thresholds the bimodal
distribution gives the largest average mean edge homogeneity, followed by the uniform
and then normal distribution. Additionally all three distributions follow the same slight
downward trend in average mean edge homogeneity for increasing threshold, which is
expected as a larger proportion of all edges in the underlying network are included. We
also find that the cascade depth provides little insight as all three opinion distributions
follow largely the same trend that is identical to that shown in figure 6.2.
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Figure 6.3: Comparison of the PDF of mean edge homogeneity across different opinion
distributions for both the SNAP Facebook (top) and SNAP Twitter (bottom) example
networks. These results were obtained from cascade simulations with the opinion threshold
set to 0.01.
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Figure 6.3 shows the PDF for mean edge homogeneity across the three different opin-
ion distributions for both the SNAP Facebook and SNAP Twitter networks with opinion
threshold set to 0.01. We can see that for both differing network topologies the PDF
structure broadly follows the expected trends described qualitatively, with no observed
instances of negative mean edge homogeneity in the simulations. This again shows that
the majority of neighbouring nodes taking part in the cascade are homogeneous.

We see a steady decay in probability density when the opinions of nodes in the underlying
network are normally distributed: this is intuitive as most node opinions are close to 0.5.
For uniformly distributed opinions it is interesting to observe that there are nearly identical
peaks around 0.05 and 0.6. The sharp peak around 0.8 for bimodally distributed opinions
also confirms our predictions prior to experimentation, however it is interesting to observe
that the peak is significantly sharper for the SNAP Twitter network. We hypothesise that
this may be due to the directed nature of the network: if many nodes “follow” each other
then this essentially results in each homogeneous edge being counted twice, pushing the
probability density up. Further analysis of the underlying SNAP Twitter network could
confirm this.

6.4 Role of Seed Node in Scale-Free Networks

6.4.1 Motivation and Setup

One key factor that we are yet to consider is the choice of seed node, which can clearly
have some effect on cascade dynamics. The effects of this choice depends heavily on the
properties of the underlying social network. Some topologies such as scale-free or so-called
“influencer” networks have a clearer distinction between types of nodes that may affect
the cascade: the scale-free property describes how a small number of nodes are highly
connected whilst the majority of nodes have low degrees. This partition of the set of nodes
into two sets with vastly different degrees creates the opportunity for the choice of seed
node to potentially have a large effect on the cascade dynamics.

For this reason we limit our investigation into the role of this factor to scale-free networks.
An argument could be made that the notion of “hub” nodes within small-world networks
also provides opportunity for experimentation however the high-clustering of these net-
works (particularly in our examples) means that it is highly likely that most nodes are
connected to a “hub” node anyway.

For this part of the investigation we will use two different distributions for the selection
of a seed node. We now describe and motivate the inclusion of each of them.

• We select a seed node from the set of all nodes uniformly i.e. where each node has
an equal probability of being selected.

• We also select a seed node according to the degree distribution of the network, thereby
weighting the probabilities so that a higher degree node in the network is more likely
to be chosen as the seed node than a lower degree node. This allows us to simulate
the situation in which information more often originates from a popular or influential
individual.
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6.4.2 Analysis

As introduced above we only consider the scale-free Barabási-Albert network topologies
(both directed and undirected), and we focus our attention to the case where opinion is
distributed uniformly.

Unsurprisingly the PDF of mean edge homogeneity is hardly distinguishable between the
two distributions for selecting a seed node particularly as the opinion threshold increases
above 0.2: a similar behaviour applies to the average mean edge homogeneity as a function
of opinion threshold. For this reason we focus our analysis on the depth of the cascade
which offers more interesting insights.

Figure 6.4 shows the average cascade depth as a function of the opinion threshold for
both scale-free network topologies when the seed node is chosen using a uniform and degree-
based distribution. Whilst the two plots representing the different topologies clearly exhibit
different behaviours it is interesting to observe that the choice of seed node appears to have
little impact on the cascade dynamics.

We hypothesise that this is due to the structure of scale-free networks. The preferential
attachment mechanism used in the generation of Barabási-Albert networks leads to the
creation of networks with low clustering and low average path length, with a small number
of nodes having large degrees and the majority of nodes having low degree. This means
that even if the chosen seed node is not an influencer node i.e. one with high degree that
will diffuse information quickly, it is very likely that the seed node will be connected to
such a node. Therefore within a small number of steps the cascade can reach an influencer
node and spread rapidly: this is even more true for the undirected network as can be seen
in the top graph of figure 6.4. This behaviour might also explain why we see negligible
difference between the two different seed node distributions as the number of nodes with
a direct link to a high degree node is so large that it makes little difference whether the
cascade actually originates at a high degree node.

6.5 Evaluation

In section 4.4 we evaluated our model behaviour in relation to the core findings from the
literature that information spreads more rapidly between like-minded individuals. In this
section we look to briefly evaluate our experimental findings in comparison to our goals
to consider what effects other factors can have in information diffusion. Whilst this is
quite an open goal, we hope to be able to relate our findings to some conclusions from the
literature to further validate them.

Throughout this chapter we have considered the role that network topology and the
choice of seed node can have on the information cascade, in comparison to the role of
node opinions which we are using to model social products. We have shown through sim-
ulations using our model that by far the factor that has the biggest influence on cascade
dynamics is the opinion of nodes: this behaviour closely resembles findings from the lit-
erature. Vicario et al. showed in work such as [6] that highly polarising information such
as conspiracy theories spreads much faster than less controversial claims such as scientific
news. By analysing the diffusion of conspiracy theories on Facebook Vicario et al. showed
that large conspiracy cascades often elicited high levels of mean edge homogeneity in the
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Figure 6.4: Comparison of the average cascade depth between a uniformly and degree
distributed choice of seed node for both the directed Barabási-Albert network (top) and
standard Barabási-Albert network (bottom).
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interval [0.5, 0.8]. We can observe similar behaviour with our model when node opinion is
distributed bimodally to simulate a network with highly polarised individuals.

6.5.1 Strengths

• The agreement between our findings that social products play the largest role in
cascade dynamics and conclusions made in the literature verifies that our model can
represent real-world cascades quite well.

• The configurability of our model allows it model a wide range of possible scenarios.

• Our experiments also show that network topology does play a role in information
cascade dynamics however its effects are heavily tied to the opinions of the connected
nodes.

6.5.2 Weaknesses

• We have not been exhaustive in our experimentation: there are potentially other
factors that we have not considered here that may have significant effects on cascade
dynamics. We will discuss this further in section 7.2.3.

• Not all of our findings are verifiable against the literature. For example we are unable
to compare our findings regarding network topology quantitatively to real analysis:
we can only qualitatively come to similar conclusions.

52



Chapter 7

Conclusion and Future Work

7.1 Summary

Throughout this project our main objective of building a new information cascade model
that focusses on the diffusion of information by social means has been met. Influenced and
motivated by the literature we have used similar mechanics to model information diffusion
from a new angle: where the literature has focussed on interaction between individuals
and news sources we have focussed on peer-to-peer diffusion.

To test our model, we studied and collected different network topologies and found ways
to generate example networks. As part of this work we adapted the pre-existing SNAP
datasets to better fit our use cases. To aid our analysis and model evaluation we have built
both static and interactive graph visualisation tools.

To evaluate our model we compared its behaviour both qualitatively and quantitatively
against that observed in real-world studies and other information cascade models in the lit-
erature. We found that our model behaves in broadly the same way and displays outcomes
that are compatible with those previously observed in the literature by comparing the depth
and mean edge homogeneity of cascades. We have then used our model to investigate other
contributing factors to information cascades online, and found that the distribution of node
opinions has the biggest effect on cascade dynamics. These node opinions are intended to
model a spectrum of social products that individuals could possess.

By designing, implementing and experimenting with this model we have approached the
topic of information cascade modelling from a different angle to that previously studied.
When combined with existing models we are now able to model a wide range of scenarios
and mechanics for how individuals use social media. The existence of accurate models for
online social media use allows predictions to be made about how information might dissem-
inate in the future, and therefore how misinformation in particular might be controlled.
Our experimentation has shown that the distribution of social products in the network
plays a large role, and that in particular a bimodal distribution i.e. a network of strongly
polarised individuals results in the largest and potentially most dangerous information cas-
cades. These findings reinforce those found by Vicario et al. in [6] and highlights again
that polarisation and controversy are important factors in information diffusion.

Our experimentation also shows that network structure and topology play a role in cas-
cade dynamics, although to a lesser extent than opinion distribution. We have shown in
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particular that certain well-connected nodes in scale-free networks have a very large influ-
ence on the cascade. These findings highlight that identifying key influential individuals
in a network could be an effective tactic in the fight against misinformation online, and
links our work into wider studies such as that presented in [32].

7.2 Extensions

Whilst our project has largely met its intended goals and objectives there are multiple
directions in which our work could be taken in future given more time and scope.

7.2.1 Expanded Model Mechanics

As we have emphasised throughout this report, our project has focussed on modelling the
social transmission of ideas i.e. information being passed directly from one individual to
another through online social networks. This has been our focus with the aim of augmenting
much of the work in the literature, which has focussed on users consuming news and
information from news outlets through the medium of online social media.

Clearly these ideas are related, and as we have discussed we have used similar mechanics
to model both scenarios. Therefore in future it could be interesting to combine elements
of both models to try and simulate the full spectrum of actions possible on online social
media services. It is important to consider the goal this would aim to achieve as models
and simulations tend to be simplistic for a reason. However a more complex model would
potentially be applicable and configurable to a wider range of scenarios.

7.2.2 More Realistic Network Examples

Throughout this work we have had to make some quite strong assumptions about the way
online social networks are structured and the opinions, beliefs and habits that individuals
using these services have. This is part of the process of designing any mathematical model:
scenarios are usually simplified and assumptions are made to allow progress to be made.
Whilst the assumptions we have made have been sensible and based on analysis of real
social networks, with more time and scope we think that we could further refine our
model assumptions and hopefully our model behaviour in the process. For example with
more time and resources we could potentially look to analyse real social media usage to
capture user sentiment, with the aim of gaining a deeper understanding of how user opinion
is distributed within online social networks. Such work would require substantially more
resources and time, and would of course need to be conducted ethically and legally however
it could be a valuable and interesting piece of future work to better understand the sociology
of user’s behaviour online and allow us to improve our model assumptions in the process.

We did briefly consider going down this path as part of our work, as on initial inspection
it appeared that the SNAP datasets detailed in chapter 3 also came with anonymised node
features. Initially we thought that we might be able to map these node features to node
opinions for our model, however the dataset was incredibly sparse and incomplete: not
every node had features, and not every node had the same features, making it incredibly
difficult to standardise.
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7.2.3 Further Experimentation

In chapter 6 we focussed on the key factors that could affect information cascade sim-
ulations using our model (and in the real-world): user opinions, network topology and
we briefly considered the choice of seed node. Whilst we feel that these are clearly the
largest factors and those most likely to meaningfully affect cascade dynamics, we have
by no means been exhaustive in our experimentation. Perhaps the largest omission from
our investigation is the wider consideration of the role of seed nodes. Possible pathways
for experimentation include varying the number of seed nodes and the way in which they
are chosen. Similar experimentation was used during the evaluation of the cascade model
proposed in [6] and so it could be interesting to see the effects that this factor would have
on our model behaviour.

7.2.4 More Integrated Pipeline

Our work in this project has focussed heavily on the model design, experimentation and
evaluation. Whilst we have created some visualisation tools to aid in our analysis and model
development these are quite limited in scope. Given more time it would be beneficial to
improve these visualisation tools and better integrate them with the model creation and
simulation steps of our program. We envisage a single application or dashboard that allows
users to create models, run simulations and visualise them simultaneously and interactively
within one window. This would allow for more immediate feedback on experimentation
results and simply provide a tidier interface to our model.
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Appendix A

Discussion of Threshold Effect on
Mean Edge Homogeneity

In section 4.4.3 we mention how our initial simulations in which the node opinions are uni-
formly distributed show that as the opinion threshold goes to 1, the mean edge homogeneity
goes to 0. Figure A.1 shows this behaviour as observed in our simulations.

A.1 Intuition

In these simulations the node opinion in the underlying network is distributed according to
a U(0, 1) distribution. This means that the polarisation σu of node u defined in section 4.4.2
is distributed according to U(−1, 1). Therefore the expected value of polarisation is 0, and
so across the whole underlying network the mean edge homogeneity will be 0. The threshold
condition is designed to encourage similar nodes with closer polarisations to interact more
than less similar neighbours, however as the threshold increases this threshold becomes
redundant as all neighbouring nodes in the underlying graph are included in the cascade.
This causes the mean edge homogeneity to go to 0 in the cascade.

A.2 Proof

Let Xu and Xv be two independent and identically distributed random variables represent-
ing the opinions of two neighbouring nodes u and v in a network. In these simulations we
have Xu ∼ U(0, 1) and Xv ∼ U(0, 1). Let Z be a random variable denoting the edge ho-
mogeneity distribution. From section 4.4.2 we know that the edge homogeneity is defined
as the product of the node polarisations. This is given by:

Z = Xu ×Xv = (2Xu − 1)× (2Xv − 1) = 4XuXv − 2Xu − 2Xv + 1 (A.1)

and we want to determine E(Z). We can now apply the linearity property of expectation.

E(Z) = E(4XuXv − 2Xu − 2Xv + 1)

= 4E(XuXv)− 2E(Xu)− 2E(Xv) + 1

By the properties of the uniform distribution, we already know that E(Xu) and E(Xv) are
equal to 1

2 . Therefore we require E(XuXv). Let us define Z1 = XuXv. The cumulative
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Figure A.1: The average mean edge homogeneity of 100 cascade simulations as a function
of the parameterised opinion threshold.

distribution function of Z1 is then derived as follows as first shown in [33].

FZ1(z) = P (Z1 ≤ z) =

∫ 1

x=0
P (Xv ≤

z

x
)fXu(x)dx

=

∫ z

x=0
dx+

∫ 1

x=z

z

x
dx

= [x]z0 + z [ln(z)]1z
= z − z ln(z)

Therefore the density function of Z1 is fZ1(z) = − ln(z). We can now determine the
expectation of Z1.

E(Z1) =

∫ 1

0
−z ln(z)dz

= −
∫ 1

0
z ln(z)dz

= −
[

1

2
z2 ln(z)− z2

4

]1

0

=
1

4

Plugging this expectation back into our original equation for the expectation of Z gives
us:

E(Z) = 4
1

4
− 2

1

2
− 2

1

2
+ 1 = 0 (A.2)

which matches our experimental observations.
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Appendix B

Directed Barabási-Albert Network
Degree Distributions

In section 6.2.1 we described a new process that uses the existing Barabási-Albert model for
scale-free graph generation to generate directed graphs that are approximately scale-free.
Below we show the in-degree and out-degree distributions for an example model generated
using this process. These distributions clearly show an approximate scale-free structure
in which the in-degree and out-degree distributions follow different power laws (i.e. power
laws with different exponents).

Figure B.1: Histograms showing the in and out degree distribution for an example directed
graph generated using the process described in section 6.2.1. The underlying Barabási-
Albert model used parameters n = 5000,m = 50.
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