
MENG INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

FedGDKD: Federated GAN-Based Data-Free
Knowledge Distillation for Heterogeneous

Models

Author:
Arjun Banerjee

Supervisor:
Prof. Kin Leung

Second Marker:
Dr. Jonathan Passerat-Palmbach

June 20, 2022

Abstract

Federated Learning (FL) provides organisations with a tool to collaboratively train a single Deep
Learning model while keeping their data private. Furthermore, allowing organisations to personalise
and privatise their own model brings challenges to FL. Existing methods utilise Knowledge Distillation
(KD) as a vehicle for extracting and transferring knowledge in heterogeneous model FL (HMFL) but this
requires a shared transfer dataset. Data-based methods ask the partipants to assemble this transfer set
through a proxy dataset from a similar domain or, if infeasible, require participants to share a portion
of their private data. Data-free methods assemble the transfer set through synthetic data generation,
however, this is a cumbersome process.

We introduce a novel algorithm Federated GAN-based Data-Free Knowledge Distillation (FedGDKD)
that can collaboratively train heterogeneous Deep Learning models whilst maintaining privacy of both
the data and model itself in a data-free manner. This method uses a conditional generative adversarial
network (cGAN) to produce synthetic data that can be used, in place of sensitive data, to transfer knowl-
edge between heterogeneous models. In developing this algorithm, we also introduce novel method of
training a federated cGAN and formulate novel training objectives that further improves performance
and efficiency over the state-of-the-art with up to an 82.0% reduction in FID Score. We empirically evalu-
ate the performance through measuring the average top-1 accuracy across varying degrees of client data
heterogeneity and find that our method improves the most upon its baseline when compared to state-
of-the-art HMFL methods. Additionally, we evaluate communication and computational efficiency by
approximating complexity using asymptotic notation, finding that our method improves upon the data-
free state-of-the-art. Then, we evaluate privacy through formal discussion of leakage present and find
that our method provides the best privacy guarantees in the scenario of this project. Finally, we show
that overall our method provides the best balance of performance, efficiency and privacy compared to
HMFL state-of-the-art methods.

Deep Learning has become a prevalent tool for solving problems in today’s world. FedGDKD pro-
vides an iterative step forwards to applying collaborative Deep Learning in sensitive industries such as
healthcare.

Acknowledgements

First, I would like to thank my supervisor, Prof. Kin Leung, who helped guide me to the completion of
this project. Through regular meetings and discussions, they have helped me navigate the vast field that
is Federated Learning. A special thanks also goes to my second marker, Dr. Jonathan Passerat-Palmbach,
who toward the beginning of my project helped provide feedback to solidify my project’s direction.

Furthermore, I would like to express how grateful I am to my family and friends for the support they
have given me throughout my degree. In particular my parents: Dr. Asok K Banerjee and Dr. Soma D
Banerjee, who have sacrificed so much for me. Without them, I would not be the person I am today.

Contents

1 Introduction 7
1.1 Contributions . 7
1.2 Ethical Considerations . 8

2 Background 9
2.1 Deep Learning . 9

2.1.1 Artificial Neural Networks . 9
2.1.2 Convolutional Neural Networks . 10
2.1.3 Generative Adversarial Networks . 11
2.1.4 Supervised Learning . 12
2.1.5 Optimisation . 12

2.2 Federated Learning . 13
2.2.1 A Few Definitions . 13
2.2.2 A Federated Training Process . 13
2.2.3 Limitations . 13

2.3 Knowledge Distillation . 14
2.3.1 Approach . 14
2.3.2 What Is The Knowledge In A DNN? . 15
2.3.3 Distillation Schemes . 16
2.3.4 Challenges . 16

2.4 Summary . 17

3 Related Work 18
3.1 Data-Based . 18

3.1.1 Heterogeneous Federated Learning via Model Distillation (FedMD) 18
3.1.2 Federated Distillation and Federated Augmentation (FD + FAug) 19

3.2 Data-Free . 20
3.2.1 Federated Data-Free Knowledge Distillation via Three-Player Generative Adversar-

ial Networks (FedDTG) . 20
3.3 Summary . 21

4 Federated GAN-Based Data-Free Knowledge Distillation (FedGDKD) 22
4.1 Problem Statement . 22
4.2 Proposed Method . 22

4.2.1 Local GAN Training . 23
4.2.2 Generator Aggregation . 25
4.2.3 Data-Free Knowledge Distillation . 26

4.3 Implementation . 27
4.3.1 FedML.fedml_api.standalone . 27
4.3.2 FedML.fedml_experiments.standalone . 28

4.4 Summary . 29

5 Evaluation 31
5.1 Experiment Setup . 31

5.1.1 Dataset . 31
5.1.2 Configurations . 31
5.1.3 Client Data Heterogeneity . 32
5.1.4 Baselines . 32

2

5.2 Performance . 32
5.2.1 Homogeneous Client Models . 32
5.2.2 Heterogeneous Client Models . 34
5.2.3 Active-User Ratio . 36
5.2.4 Knowledge Distillation Parameter Study . 38
5.2.5 Generator Performance . 44

5.3 Ablation Study . 46
5.3.1 Shared Generator . 47
5.3.2 Data-Free Knowledge Distillation . 50
5.3.3 Catch Up Distillation . 52

5.4 Efficiency . 54
5.4.1 Computational Complexity . 54
5.4.2 Communication Cost . 55

5.5 Privacy . 57
5.5.1 Privacy Leakage . 57
5.5.2 Vulnerability Mitigation . 59

5.6 Summary . 60

6 Conclusions and Future Work 61

A Additional Background Information 67

B Evaluation 69
B.1 Random Seeds . 69
B.2 Client Data Heterogeneity . 69
B.3 Model Architectures . 70

B.3.1 Generator Model Architecture . 70
B.3.2 ACGAN Discriminator Architecture . 71

B.4 Active-User Ratio . 72
B.5 Generator Performance: Generator Output Comparison . 72

B.5.1 MNIST . 72
B.5.2 EMNIST . 75

3

List of Tables

5.1 Shared Hyperparameters . 31
5.2 Summary of top-1 test accuracies over varying settings. 33
5.3 Summary of top-1 test accuracy improvement over respective baselines. 34
5.4 Summary of heterogeneous client model architectures. 35
5.5 Heterogeneous Client Models: Top-1 test accuracies (MNIST, Di r (α= 0.5), r = 25%). 35
5.6 Heterogeneous Client Models: Top-1 test accuracy improvement over baselines (MNIST,

Di r (α= 0.5), r = 25%). 36
5.7 Communication rounds required to reach within 1% of final average top-1 test accuracy . . 37
5.8 Knowledge Distillation Parameter Study: Default hyperparameters. 38
5.9 Generator Performance: FID score summary . 45
5.10 Ablation study on catch up distillation: summary of final top-1 test accuracies 53
5.11 Summary of algorithm time complexities at client . 54
5.12 Summary of time complexities for algorithm additional overhead for client ranked lowest

to highest (under a consistent setting) . 55
5.13 Summary of communication costs For heterogeneous model FL algorithms 56
5.14 Summary of additional communication overhead cost per client for T rounds ranked low-

est to highest (under a consistent setting). 56
5.15 Privacy: Summary of privacy leakage present in each federated learning algorithm. 57
5.16 Ranking algorithms over evaluation areas. 60

A.1 Typical characteristics of federated learning settings vs. distributed learning in the data-
center. [1] . 68

B.1 Experiment Random Seeds Used . 69

4

List of Figures

2.1 Artificial Neuron [2] . 9
2.2 Network graph for a (L+1)-layer perceptron. 10
2.3 Structure of LeNet-5 CNN [3] . 11
2.4 GAN structure [4] . 11

4.1 FedGDKD: Local GAN Training Stage (dashed line refers to backpropagation) 23
4.2 Differences between GAN architectures [5] . 23
4.3 FedGDKD: Generator Aggregation Stage . 25
4.4 Example of model drift . 26
4.5 FedGDKD: Data-Free Knowledge Distillation Stage (dashed line refers to backpropagation) 26

5.1 MNIST (r = 10%) client training label distribution with varying degree of heterogeneity . . 32
5.2 Heterogeneous Models: Client training label distribution (MNIST, Di r (α= 0.5), r = 25%). . 35
5.3 Client participation per round (active-user ratio 50%) . 37
5.4 Test curves when varying the active-user ratio (MNIST, Di r (α= 0.5), r = 25%) 37
5.5 Client 9 Top-1 Test Accuracy . 38
5.6 Client Training Label Distribution (MNIST, Di r (α= 0.1), r = 10%) 39
5.7 Average top-1 accuracy with varying αK D . 39
5.8 KD Parameter Study: Client 0 confusion matrices (x-axis: Ground Truth Label; y-axis: Pre-

dicted Label) after training when varying αK D (MNIST, Di r (α= 0.1), r = 10%). 40
5.9 Average top-1 accuracy with varying d . 41
5.10 KD Parameter Study: Client 0 confusion matrices (x-axis: Ground Truth Label; y-axis: Pre-

dicted Label) after training when varying d (MNIST, Di r (α= 0.1), r = 10%). 42
5.11 KD Parameter Study: Average top-1 accuracy with varying N 42
5.12 KD Parameter Study: FedGDKD final generator score with varying N 43
5.13 KD Parameter Study: Client 0 confusion matrices (x-axis: Ground Truth Label; y-axis: Pre-

dicted Label) after training when varying N (MNIST, Di r (α= 0.1), r = 10%). 44
5.14 Generator Performance: FedGDKD GAN Metrics (MNIST, Di r (α= 0.1), r = 10%) 45
5.15 Client training label distribution . 46
5.15 Generator Performance: Generator final output (MNIST, Di r (α= 0.05), r = 10%) 46
5.16 Ablation study on shared generator: test curves (MNIST, Di r (α= 0.5), r = 25%) 47
5.17 Training Label Distribution Between Clients . 47
5.18 Ablation study on shared generator: generator output (MNIST, Di r (α= 0.5), r = 25%). . . . 48
5.19 Ablation study on shared generator: Client 6 generator FID score (MNIST, Di r (α = 0.5),

r = 25%). 48
5.20 Ablation study on shared generator: Client 6 training metrics (MNIST, Di r (α= 0.5), r = 25%). 49
5.21 Ablation study on shared generator: Client 6 confusion matrices at the end of training

(MNIST, Di r (α= 0.5), r = 25%). 49
5.22 Ablation study on data-free knowledge distillation (DKD): test curves (MNIST, Di r (α =

0.5), r = 25%) . 50
5.23 Ablation study on data-free knowledge distillation (DKD): training curves (MNIST, Di r (α=

0.5), r = 25%) . 50
5.24 Client training label distribution (MNIST, Di r (α= 0.5), r = 25%) 51
5.26 Ablation study on data-free knowledge distillation (DKD): FID scores (MNIST, Di r (α =

0.5), r = 25%) . 51
5.25 Ablation study on data-free knowledge distillation (DKD): Client 6 confusion matrices at

the end of training (MNIST, Di r (α= 0.5), r = 25%). 52

5

5.27 Ablation study on data-free knowledge distillation (DKD): a comparison of the generated
data produced at the end of training Di r (α= 0.5), r = 25%). 52

5.28 Ablation study on catch up distillation: test curves (MNIST, Di r (α= 0.5), r = 25%) 53

B.1 Client training label distributions (x-axis: client ID; y-axis: label; size of point: frequency
of label in client’s training data) . 70

B.2 Client participation per round with active-user ratio 30% (MNIST, Dir(α= 0.5), r = 25%) . . 72
B.3 MNIST Ground Truth . 72
B.4 Generator Performance: Generator final output (MNIST, Di r (α= 0.5), r = 25%) 72
B.5 Generator Performance: Generator final output (MNIST, Di r (α= 0.1), r = 25%) 73
B.6 Generator Performance: Generator final output (MNIST, Di r (α= 0.05), r = 25%) 73
B.7 Generator Performance: Generator final output (MNIST, Di r (α= 0.5), r = 10%) 73
B.8 Generator Performance: Generator final output (MNIST, Di r (α= 0.1), r = 10%) 74
B.9 Generator Performance: Generator final output (MNIST, Di r (α= 0.05), r = 10%) 74
B.10 EMNIST Ground Truth . 75
B.11 Generator Performance: Generator final output (EMNIST, Di r (α= 0.5), r = 25%) 76
B.12 Generator Performance: Generator final output (EMNIST, Di r (α= 0.1), r = 25%) 77
B.13 Generator Performance: Generator final output (EMNIST, Di r (α= 0.05), r = 25%) 78
B.14 Generator Performance: Generator final output (EMNIST, Di r (α= 0.5), r = 10%) 79
B.15 Generator Performance: Generator final output (EMNIST, Di r (α= 0.1), r = 10%) 80
B.16 Generator Performance: Generator final output (EMNIST, Di r (α= 0.05), r = 10%) 81

6

Chapter 1

Introduction

In recent years, Deep Learning (DL) has been a powerful tool in solving complex tasks that would be
too difficult to solve analytically. Some prominent examples are: enabling autonomous vehicles, pre-
dicting how proteins fold (AlphaFold[6]) and smart virtual assistants. However, a limiting factor to the
widespread application of Deep Learning is that it requires large amounts of data to train effectively.

In industries such as healthcare, insurance and finance, organisations may operate with highly sen-
sitive data that must be kept private. Privacy-Preserving Machine Learning (PPML) [7] are methods of
applying machine learning (and deep learning) while maintaining privacy guarantees. However, in the
case where a single organisation does not have enough data, what can they do? Federated Learning (FL)
[8] is a distributed PPML technique where a shared DL model is trained through the collaboration of
various parties without sharing their data. This is done by training a copy of this DL model locally at
each party, then aggregating its parameters in a centralised location to construct a global model. This
global model will then have effectively trained on all of the parties’ private data.

However, what if there are further constraints on the DL model architecture that differ between par-
ties? This could be due to restrictions or preference that could also mean this DL model’s details are sen-
sitive information. This leads to the problem of performing FL over heterogeneous models and keeping
them private. DL model parameter aggregation has become infeasible for this task. Indeed, how else
can we aggregate what each local model has learnt?

This brings into light a fundamental question about DL models which are implemented via artificial
neural networks. What do their parameters or layers mean? The lack of interpretability of DL models
makes this a difficult problem as there are many factors that can constitute the “knowledge" stored
in a model. Knowledge Distillation (KD) [9] is a paradigm that attempts to tackle this. KD is a model
compression technique where a large deep learning model teaches what it knows to a smaller “student"
model.

This project explores how to tackle the problem of Federated Learning in a heterogeneous model
setting using Knowledge Distillation, whilst trying to improve privacy, performance and efficiency over
existing methods.

1.1 Contributions

This project extends and explores the application of Federated Learning to the context of personalised
DL models, more specifically heterogeneous neural network architectures. The contributions are as
follows:

• We introduce a novel FL algorithm Federated GAN-Based Data-Free Knowledge Distillation (FedGDKD)
in Chapter 4 that utilises a conditional generative adversarial network (cGAN) to perform data-free
knowledge distillation to effectively train heterogeneous client models. We show that it performs
well under various scenarios and is more efficient and private than some state-of-the-art methods.

• In the process of developing FedGDKD, we develop novel cGAN training objectives (Section 4.2.1),
which does away with the need for a discriminator network and can operate with an unmodified
classifier directly. This is the first method to our knowledge that implements this and further im-
proves ease-of-use.

7

• Additionally, FedGDKD also proves to be a novel method of training cGANs in a FL setting (Sec-
tion 5.2.5). Which, unlike existing state-of-the-art methods that share both generator and dis-
criminator model parameters, only requires sharing the generator parameters. We show that this
is more robust, private and communication efficient than the state-of-the-art.

1.2 Ethical Considerations

In this project, we explore Federated Learningc (FL), a privacy-preserving distributed machine learning
(PPML) technique. In particular, we outline the use of FL with Deep Learning (DL) methods such as
training Deep Neural Networks (DNN). Therefore, ethical, legal, and professional issues are those that
are inherited from DL.

Firstly, DL was developed as a method to find automated feature representations from data without
human intervention. This has led to better performing models that do not require human supervision.
In doing so, a black-box solution is formed where the feature relations modelled by the DNN are not
human-interpretable. This lack of transparency in the decision-making process means that, for highly
critical applications, such as diagnosis in healthcare, not knowing how the decision was made is a major
risk and can lead to catastrophic failures.

Furthermore, DL models are vulnerable to attacks[10] that can leak sensitive information or attacks
that worsen the performance of the model. Regarding the latter point, model poisoning attacks are a
key vulnerability in federated learning. This is where a malicious client can submit bad model updates
or train on unrepresentative data that can induce bias towards certain groups of people and worsen the
performance of a critical application. Bias can occur even if there are no malicious actors, and so proper
collection and preparation of the training data need to be sourced to prevent this.

FL mitigates some privacy and legal issues, as clients do not need to share their data. This is impor-
tant if the clients are globally distributed and have differing regulations such as GDPR compliance.

8

Chapter 2

Background

In this chapter, the stage is set for the rest of the project by providing introductions to relevant back-
ground theory and current work. To begin with, we provide an introduction to Deep Learning, dis-
cussing relevant concepts and privacy vulnerabilities. Then, we have a discussion on Federated Learning
and the heterogeneous model setting. Moving on from this, preliminary information about Knowledge
Distillation and its three main flavours is explored. Finally, a review on closely related works and the
motivation behind this dissertation.

2.1 Deep Learning

Deep learning (DL) is a subclass of Machine Learning (ML) that mitigates the issue of extracting and
learning features (representation) from raw data in conventional ML techniques. These features are
learnt automatically rather than having to handcraft them. DL methods are representation-learning
methods with multiple levels of representation, obtained by composing simple but nonlinear modules
(Artificial Neural Networks) that each transform the representation at one level (starting with the raw
input) into a representation at a higher, more abstract level [11].

2.1.1 Artificial Neural Networks

The idea of replicating human learning has long been a goal in the field of Artificial Intelligence (AI). A
key breakthrough in this area was to replicate the brain’s biological neural networks, and so in the 1940s
the concept of Artificial Neural Networks (ANNs) or Neural Networks (NNs) was created.

An ANN Figure 2.2 is generally composed of multiple interconnected elementary units called artifi-
cial neurons Figure 2.1. An artificial neuron represents a parameterised function that is a weighted sum
of its input connections and a bias passed through an activation function (usually nonlinear) or more
succinctly:

ŷ = a(
∑

i=1..n
wi xi +b) y, xi , yi ,b ∈R ∀i a :R−→R (2.1)

x2 w2 Σ a

Activation
function

ŷ

Output

x1 w1

xn wn

Weights

Bias
b

Inputs

Figure 2.1: Artificial Neuron [2]

9

Conceptually, an ANN represents a parameterised function fθ, where θ denotes the weights and
biases of the network, that can approximate an arbitrary function f : RM −→ RN . In the context of a
problem such as image classification, the function f can be considered as the network’s solution, taking
an input image and outputting its guess as to what the image is of. Ideally, we would like this guess to be
correct every time (100% accuracy) and so this means we need the network to approximate an optimal
solution f∗.

ANNs are considered deep generally if they have multiple hidden layers - called Deep Neural Net-
works (DNNs). The width and depth of a network, when using nonlinear layers, can be correlated with
the capacity of the model. We defined the capacity of the model as its computational complexity, the
higher the capacity, the more complex the function it can represent. However, care needs to be taken
when designing DNNs as they are prone to memorisation and overfitting of the input data. Overfitting
is where there is high variance and low bias in the function approximated, reducing the generalisability
of the network. This has the effect of high performance on training data but low on test or unseen data.

x0

x1

...

xD

y (1)
0

y (1)
1

...

y (1)
m(1)

. . .

. . .

. . . y (L)
0

y (L)
1

...

y (L)
m(L)

y (L+1)
1

y (L+1)
2

...

y (L+1)
C

input layer

1st hidden layer Lth hidden layer

output layer

Figure 2.2: Network graph of a (L +1)-layer perceptron with D input units and C output units. The l th

hidden layer contains m(l) hidden units. [12]

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a branch of ANNs, inspired by the biological visual cor-
tex, that are designed to process data in the form of multiple arrays [11]. Many data modalities can
be expressed through multiple arrays such as: 1D for signals and sequences, including language; 2D
for images or audio spectograms; and 3D for video or volumetric images. What makes CNNs good at
processing signals are: local connections, shared weights, pooling, and the use of many layers.

Convolutional Layer

The convolutional layer is where filters/kernels (learned during training) are convolved[13] over the in-
put to detect the presence of features across regions or receptive fields of the input. Local connectivity
refers to the fact that the output array or feature map of the convolution is mapped to a receptive field
rather than individual input values. Note that the weights of the filter remain fixed during the convolu-
tion, this is known as weight sharing. This means that the memory footprint of this layer is much lower
than its fully connected counterpart.

Pooling Layer

Additionally, the pooling layer (downsampling) reduces the dimensions of the input. This is done in
a similar manner to the convolutional layer through convolving an aggregation filter across the input.
Examples of this are max-pooling and average-pooling, where the maximum/average value is filtered
from the receptive field, respectively. The pooling layer, similarly to the convolutional layer, also exhibits
local connectivity.

10

Figure 2.3: Structure of LeNet-5 CNN [3]

The LeNet-5 fig. 2.3 is a CNN designed to recognise simple digit images. We can decompose the
architecture into two sections: the feature extractor (up to but not including the flatten layer) and the
task specific network. As described before the idea of representation learning persists in CNNs too. The
deeper the layers are in the feature extractor, the larger the receptive field becomes in the input thus the
more abstract the features represented becomes. CNNs therefore benefit from depth and, due to their
smaller memory footprint, scale better than other flavours of ANN.

2.1.3 Generative Adversarial Networks

In this thesis, generating synthetic data for training is an idea in solving the problem of data heterogene-
ity (Section 2.2.3). A key player in doing so is to utilise generative networks that can produce samples
from a learned input distribution. A way to train these types of networks is to do so adversarially, where
a network (generator) in charge of generating synthetic or fake samples is trying to fool a network (dis-
criminator), designed to discriminate between real and fake samples, into thinking they are real. This is
the premise of a generative adversarial network (GAN) [14]. If labels or input-output pairs are provided
we call this a conditional GAN.

More formally, given a set of data instances X and a set of labels Y :

• The generator will capture the joint probability p(X ,Y), or just p(X) if there are no labels.

• The discriminator will capture the conditional probability p(Y |X).

Figure 2.4: GAN structure [4]

As can be seen in Figure 2.4, we can view the set up for training a GAN. Both the discriminator and
generator networks are trained at the same time, competing with each other. They are both trained in
turn using the other network to inform parameter updates.

11

2.1.4 Supervised Learning

In this project, the supervised learning problem setting is explored. In this setting, at training time we
have both the input x and the expected output y for all training samples. We then want to approximate
the mapping f (x) = y . Supervised learning can further be broken down into classification and regression
problems. Classification problems involve categorising the input data into one or more of the predeter-
mined classes, e.g. identifying hand-written digits in images. Regression, on the other hand, is used to
understand the relationships between dependent and independent variables, mainly focusing on tasks
that involve predictions, e.g. sales forecasting.

2.1.5 Optimisation

As mentioned in Section 2.1.1, one would like ANNs to learn a mapping fθ between input and output.
fθ is parameterised by the network weights and biases, so optimisation of the parameters θ needs to
be performed to minimise the error between the fθ and an optimal target mapping f ∗. This can be
summarised by

min
θ

J (θ) = 1

|D|
∑

i∈D
L(fθ(xi), yi) = Ex,y L(fθ(x), y) (2.2)

where |D| is the size of the training set, L(.) is the sample-wise loss/cost function that measures the
error between the predicted value ŷ = fθ(x) and the true value y . The aim is to minimise the expected
loss for all pairs of x and y . Note that this is the describing the supervised setting Section 2.1.4.

Gradient Descent

One of the most popular optimisation techniques used to train ANNs is gradient descent. This method
iteratively updates the parameters θ in the direction of steepest descent with respect to the gradient of
the expected loss function J (θ) eq. (2.2):

∇θ J (θ) = 1

|D|
∑

i∈D
∇θL(fθ(xi), yi) = Ex,y∇θL(fθ(x), y) (2.3)

θt+1 = θt −α∇θt J (θt) (2.4)

where eq. (2.3) refers to the gradient of the expected loss function, eq. (2.4) refers to the update where
α is the step size or learning rate and D is the entire training set. Usually, backpropagation [15] is used
to calculate the gradient by application of the chain rule.

If the objective function eq. (2.2) is non-convex then the optimisation process will be sensitive to
initialisation. Given a well-chosen step size, the process may converge to local minima. Another draw-
back of gradient descent is that it requires the whole training set to approximate the gradient. Therefore,
for problems with extremely large (theoretically can be infinitely sized) training sets, this approach is
computationally costly.

Stochastic Gradient Descent

Stochastic gradient descent was developed to remedy the cost of gradient descent. Rather than calcu-
lating the gradient using the full training set, a random subset St is chosen at each iteration/epoch to
approximate the gradient instead. We can then alter the gradient calculation in eq. (2.3) to

∇θ J (θ) = 1

|St |
∑

i∈St

∇θL(fθ(xi), yi) = Ex,y∇θL(fθ(x), y) St ⊆D (2.5)

We can define the size ofSt as the batch size, where this is set as a hyper parameter. Note that eq. (2.5)
is an unbiased estimate of the gradient which is important for convergence properties. This is because
St is uniformly sampled from the full training dataset D and so it will be identically and independently

distributed (IID) with respect to D: St
i .i .d∼ D . This method of optimisation and extended methods are

used in Federated Learning, however non-IID (Section 2.2.3) is common so this needs to be considered
for convergence in the federated setting.

12

2.2 Federated Learning

Federated learning (FL)[8] was developed in 2016 to address the privacy concerns of big data and the
exploitation of personal data. The goal of FL is to train a global model without the need of sharing data
between entities. More formally, FL is a machine learning environment where multiple entities (clients)
collaborate to solve a machine learning problem under the coordination of a central server. The data
of each client is stored locally and not exchanged or transferred (decentralised data); instead, focused
updates intended for immediate aggregation are used to achieve the learning objective [1]. See details
in the federated learning problem setting in table A.1.

2.2.1 A Few Definitions

Client An individual or organisation that participates in FL.

Device A device refers to the physical hardware of a client.

Central server A server used to aggregate local models into a global model. Synonymous with: central
aggregation server, global server.

2.2.2 A Federated Training Process

We can broadly generalise the steps of FL via the following steps:

1. Initialisation: The central server initialises a global model randomly or by pre-training with public
data. The choice of architecture and initialisation is a non-trivial problem which is not relevant
for this thesis.

2. Client selection: The central server samples from a set of clients that meet the eligibility require-
ments. For example, mobile phones that are connected, in a wifi connection and idle, to avoid
impacting the user of the device[1]. FedCS [16] is an example of such a protocol.

3. Broadcast: The selected clients download the current weights and training program from the cen-
tral server.

4. Local/Client update: Each selected client locally computes an update to the model by executing
the training program, for example, running SGD on the local data (as in Federated Averaging [8]).

5. Global update: The selected clients send their model updates θi to the central server that ag-
gregates them to construct an improved global model θ. For example, Federated Averaging [8]
computes the average by weighting in proportion to each client’s dataset size |Di | against the total
dataset size |D|:

θ =
N∑

i=1

|Di |
|D| θi (2.6)

6. Iteration: Steps 2-5 are repeated until a terminating condition is met, i.e. convergence or the
predefined maximum iterations have been met.

2.2.3 Limitations

Federated learning is indeed the future of privacy-preserving machine learning on the edge. However,
there are many roadblocks in practical application. In the context of this thesis, the following are con-
sidered:

Data Heterogeneity: Non-IID Data

In the federated setting, one cannot assume that the data will be independently and identically dis-
tributed (IID) among clients. This is due to skews in data distribution such as in the case of two coffee
shops tracking sales where one is located in London and another in Beijing. One could argue that the
demographics and taste differences will affect the sales of each type of coffee bought. The IID sam-
pling of the training data is important to ensure that the stochastic gradient is an unbiased estimate

13

of the full gradient. Thus, this is problematic as it can reduce performance of the global model due to
the divergence of the local models resulting from Non-IID client data. That is, local models having the
same initial parameters will converge to different local optima because of the heterogeneity in local data
distribution. [17]

Various methods have been proposed to mitigate this issue, such as synthetically generating data
using generative networks, using a public dataset for parameter updates, and weighting client updates,
e.g. Federated Averaging (FedAvg) [8].

Heterogeneous System

It is highly possible that the clients participating in the algorithm will have different hardware and net-
work constraints. Those with lower computational capacity will have slower local updates and may not
even be able to participate if the model architecture is too large. These clients are likely to be ineligible
to participate in learning, which coupled with the assumption of non-IID data (Section 2.2.3) can lead
to bias in the data used to train the global model.

Personalisation

In standard FL, the goal is to train a global model that performs well on most FL clients. Compared
to local training, the globally shared model trained through FL generalises well to unseen data as it is
trained on large amounts of data. However, these models are designed to fit the “average client”. They
might therefore not perform well in the presence of statistical data heterogeneity (i.e. if the local data
distribution of a client deviates significantly from the global data distribution). Enabling FL to deal with
heterogeneous data is important given the non-IID (Section 2.2.3) nature of data that originate from
clients in the real world. Besides data heterogeneity, FL also needs to deal with heterogeneity in device
capabilities in edge computing applications. [18]

Additionally, clients may have different requirements or standards they may need to meet and so
having flexibility in designing their local model is essential. This can arise in areas such as healthcare,
finance, and supply chain management. An example of this is when several medical institutions would
like to collaborate without sharing private patient data but also need to meet distinct specifications.
This introduces the problem at the crux of this thesis: Heterogeneous Model Federated Learning.

2.3 Knowledge Distillation

Many recent advances in Deep Learning Section 2.1 has led to breakthroughs in applications of nat-
ural language processing, reinforcement learning, and computer vision. Some of these Deep Neural
Networks (DNNs) that have been developed can have thousands of layers and can be cumbersome or
difficult to deploy for real-time applications, especially on devices with limited resources (edge devices),
such as video surveillance or autonomous driving cars [19]. One such avenue for building more efficient
DNNs is Knowledge Distillation (KD)[9], a model compression technique that transfers “knowledge"
from a large, cumbersome teacher model (or ensemble of teachers) to a smaller, more computationally
efficient student model.

2.3.1 Approach

In the original paper by Hinton et al.[9], a simple approach was proposed for KD. The student minimises
a weighted combination of two objectives

Ls :=αLTask + (1−α)LK D , α ∈ [0,1) (2.7)

where LTask is the loss associated with the original task objective, which in the paper is the cross-
entropy loss for image classification, and an added distillation loss term LK D that encourages the stu-
dent to match the teacher. In the original paper, the distillation loss is the cross-entropy between the
student and teacher predictive distributions (discussed in Section 2.3.2). We can also see the distillation
loss acting like a regularisation term or label smoothing which should further mitigate overfitting and
improve generalisation.

The optimisation of the student model for this new objective is carried out using gradient-based
optimisation techniques for neural networks. A set of held-out data samples, the transfer set, is shared
between the teacher and student models to perform KD.

14

2.3.2 What Is The Knowledge In A DNN?

As discussed in Section 2.1, DNNs learn abstract representations of the input data to ultimately produce
an output. This approach can be described as black-box due to their multilayer nonlinear structure.
Therefore, how exactly do they store knowledge of the input data? There have been three main ap-
proaches to answering this question:

Response-Based Knowledge

This refers to the response of the last output layer of the teacher model. The main idea is to directly
mimic the final prediction of the teacher model. This approach is used in the classic method of KD[9],
which uses the logits (un-normalised classification prediction) vector z of the larger model as the teacher
knowledge.

The distillation loss associated with this approach can be formulated as

LResD (zt , zs) =LR (zt , zs) (2.8)

where LR (.) indicates the divergence loss of logits, and zt and zs are the logits of the teacher and
student models, respectively. [19]

In the original paper proposed by Hinton et al., [9] details a popular response-based knowledge im-
plementation for image classification called soft targets. These soft targets are the probabilities that the
input belongs to each class and is estimated by the a softmax function:

ST (zi ,τ) = exp(zi /τ)∑
j exp(z j /τ)

(2.9)

where zi is the logit for the i -th class, and a temparature factor τ is introduced to control the im-
portance of each soft target. A higher temperature results in softer targets. When soft targets have high
entropy, they provide much more information per training case than hard targets and much less vari-
ance in the gradient between training cases, so the small model can often be trained on much less data
than the original cumbersome model and using a much higher learning rate [9]. The distillation loss
using soft targets can then be rewritten as

LResD (ST (zt ,τ),ST (zs ,τ)) =LK L(ST (zt ,τ),ST (zs ,τ)) (2.10)

where LK L(∗) is the Kullback-Leibler divergence loss.
We can describe response-based knowledge as capturing the “dark knowledge" of the teacher model

as the student model is trained to imitate it. However, since only the output of the last layer is used,
supervision of intermediate layers is not possible, which can be detrimental to transferring the repre-
sentations learnt by the teacher. Additionally, response-based knowledge distillation is limited to the
supervised setting.

Feature-Based Knowledge

As discussed in Section 2.1, DNNs are great at learning representations of the feature space at increas-
ingly abstract levels. Using this intuition, we can utilise the outputs of both the hidden layers i.e. the
feature maps and the output layer as the knowledge to distil into the student model. The goal is to
have the same feature activations between the student and teacher models. This is an extension of the
aforementioned response-based knowledge that is specifically good for training thinner and deeper net-
works.

Generally, we formulate the distillation loss for feature-based knowledge transfer as

LFeaD (ft (x), fs (x)) =LF (Φt (ft (x)),Φs (fs (x))) (2.11)

where ft (x) and fs (x) are the feature maps of the hidden layers of teacher and student models, re-
spectively. Additionally, we have denoted the feature map transforms of the teacher and student as Φt

and Φs , respectively. These transforms are to make the feature maps consistent in shape. Finally,LF (.)
denotes a similarity function used to match the feature maps of the teacher and student models.

However, although feature-based knowledge distillation will provide useful information to the stu-
dent model, effectively choosing how to choose layers (feature maps) between the teacher (hint layers)
and student (guide layers) is a tough problem that requires further investigation. Additionally, due to
their potential size differences, effectively matching feature representations of the teacher and student
also needs to be explored.

15

Relation-Based Knowledge

Notice that both response-based and feature-based knowledge use the outputs of specific layers from
the teacher model. What relation-based knowledge explores further is the relationship between different
layers or data samples.

We can explore the relationship between layers by calculating the correlation between selected fea-
ture maps. An example of this would be to calculate the Gram matrix between two layers. It is calculated
by using the inner products between features from two layers. Then, using the correlations between
feature maps as the distilled knowledge, knowledge distillation via singular value decomposition can be
performed to extract key information in the feature maps [20].

More generally, we can formulate the distillation loss of relation-based knowledge as

LRelD (ft , fs) =LRe (ψt (f (1)
t , f (2)

t),ψs (f (1)
s , f (2)

s)) (2.12)

where ft and fs are the teacher and student feature maps, respectively. Pairs of feature maps are
chosen from both the teacher model, f (1)

t and f (2)
t and from the student model, f (1)

s and f (2)
s . ψt (.) and

ψs (.) are similarity functions for a pair of feature maps for the teacher and student models, respectively.
Finally, LRe denotes a correlation function between the teacher and student feature maps.

2.3.3 Distillation Schemes

The distillation schemes (training schemes) we can use to optimise the objective discussed in Sec-
tion 2.3.1 can vary according to whether or not we want to simultaneously update the teacher model
with the student model or not. It can broadly be categorised into three categories:

Offline Distillation

Offline distillation is a scheme where we have a pre-trained teacher model that does not need to be
updated with the student model. This is the simplest scheme to implement and employs a one-way
knowledge transfer with two-phase training (teacher training and student training). However, the com-
plex high-capacity teacher model with a long training time cannot be avoided, while the training of the
student model under the supervision of the teacher is usually efficient[19].

Online Distillation

In online distillation, both the teacher model and the student model are updated simultaneously, and
the whole knowledge distillation framework is end-to-end trainable (one-phase) [19]. An extension of
this is co-distillation [21], where the mean model output of all other students is the teacher’s output.
Many of the relevant works on knowledge distillation in a federated setting (Chapter 3) use a variant of
this approach.

Self-distillation

Self-distillation is where the same networks are used for both the teacher model and the student model.
One case where this is used is to transfer knowledge from deeper sections of the network to shallower
ones [22].

2.3.4 Challenges

Task Limitations

The research surrounding knowledge distillation has been largely focused on classification tasks. There
is literature to explore research directions in regression tasks [19].

Model Capacity Gap

The model capacity gap between the large DNN teacher model and small student DNN can degrade
knowledge transfer. We can define the model capacity as the complexity of a DNN, the higher the capac-
ity the more complex functions the network can approximate. In the context of knowledge distillation, if
the student’s capacity is far lower than the teacher then the feature representations learnt by the teacher
may not be possible for the student to learn.

16

How Well Does The Transfer Work?

The ideal goal of knowledge distillation is for the student to match the teacher in terms of predictive
distribution. However, doing this in practice surprisingly leads to better generalisation of the student
model but a large discrepancy between predictive distributions. In a study on "Does knowledge distil-
lation really work?"[23], it was found that ultimately yes it usually improves the accuracy of the student
model. However, matching the teachers output (fidelity) is rarely achieved and far from perfect. The
conclusions of the paper were:

• Good student accuracy does not imply good distillation fidelity: even outside of self-distillation, the
models with the best generalisation do not always achieve the best fidelity.

• Student fidelity is correlated with calibration when distilling ensembles: although the highest-
fidelity student is not always the most accurate, it is always the best calibrated.

• Optimisation is challenging in knowledge distillation: even in cases when the student has suffi-
cient capacity to match the teacher on the transfer set, it is unable to do so.

• There is a trade-off between optimisation complexity and transfer set quality: Enlarging the transfer
set beyond the teacher training data makes it easier for the student to identify the correct solution,
but also makes an already difficult optimisation problem harder.

2.4 Summary

To conclude, the preliminary information needed for the rest of the thesis has been discussed. In par-
ticular, an introduction into Deep Learning techniques: ANNs (and by extension DNNs), CNNs, GANs
and their optimisation for the supervised learning setting. The optimisation technique discussed was
(stochastic) gradient descent and how having an unbiased estimate for the gradient is essential for con-
vergence. After this, the Federated Learning framework for training a model with decentralised data
without sharing data between parties. Also, limitations of Federated Learning such as data heterogene-
ity (non-IID data among clients), a heterogeneous system and personalisation. Then, an introduction
of the means of transferring knowledge between DNNs of differing architecture through Knowledge
Distillation. It is concluded that there are many ways to interpret knowledge in a DNN and schemes
of transferring this knowledge. However, successfully applying Knowledge Distillation has many chal-
lenges such as: how to extract the knowledge and whether the transfer was even successful or not.

17

Chapter 3

Related Work

In this chapter, we review current state-of-the-art methods that tackle the problem of heterogeneous
client models in Federated Learning. These methods can be split into two groups: data-based, where
clients will either share some private data or need to find a proxy dataset; data-free, where clients have
no need to do the former. Also, note that since heterogeneous models are trained, clients will need to
maintain state between communication rounds making the mentioned algorithms more suitable for the
cross-silo federated setting (Table A.1).

3.1 Data-Based

3.1.1 Heterogeneous Federated Learning via Model Distillation (FedMD)

FedMD [24] was proposed to address the problem of clients independently designing their own model
in the federated setting. The authors propose to answer the question: how can one perform federated
learning when each participant has a different model that is a black box to others? We can see the algo-
rithm below:

Algorithm 1: FedMD [24]

Input: Public dataset Dpubl i c , private client datasets Dk , independently designed models Ck ,
k = 1..K ,

Output: Trained model fk

Transfer Learning: Each party trains fk to convergence on the public D0 and then on its private
Dk .

for j=1,2...P do
Communicate: Each party computes the class scores (logits) l k =Ck (X publ i c) on the public

dataset, and transmits the results to a central server.
Aggregate: The server computes an updated consensus, which is an average

l = 1

K

∑
k

l k

Distribute: Each party downloads the updated consensus l .
Digest: Each party trains its model Ck to approach the consensus l on the public dataset

Dpubl i c through knowledge distillation.
Revisit: Each party trains its model Ck on its own private data for a few epochs.

end

Note that a public dataset Dpubl i c , is used as the transfer set for knowledge distillation (Section 2.3).
They use response-based knowledge (Section 2.3.2) of the local models Ck on Dpubl i c and treat the
teacher model as an ensemble of the local/student models when performing the distillation. A key lim-
itation in this approach is the requirement for the public dataset Dpubl i c as this may be infeasible to
construct in practical applications. Dpubl i c is constrained to samples from a similar domain with simi-
lar features, otherwise transfer learning will be ineffective. In the case where this is not possible, clients
will need to share data to construct Dpubl i c .

18

3.1.2 Federated Distillation and Federated Augmentation (FD + FAug)

Federated distillation (FD) and Federated Augmentation (FAug) [25] are two methods proposed to solve
two problems.

First, in vanilla FL, each client transmits their local model’s parameter updates to be aggregated at
the central server. If the chosen model is large, there can be millions or even billions of floating point
parameters being sent over the network, incurring a large communication cost. FD used online knowl-
edge distillation, in particular co-distillation (Section 2.3.3) to reduce transmitted data to the output of
the local model, achieving 26x less communication overhead [25]. Using FD also allows for heteroge-
neous client models.

Algorithm 2: Federated Distillation(FD)

Input: Client models Ck , Private datasets Dk , Loss function (cross-entropy): φ(F ; l abel),
Ground-truth label: yi nput

while not converged do
procedure LOCAL TRAINING PHASE (at each client)

for n steps do
B , y ← B , B ⊂Dk for sample b ∈ B do

// γ constant learning rate, α distillation weight parameter
θCk ← θCk −γ∇[(1−α)φ(Ck (b|θCk), yb)+α ·φ(Ck (b|θCk), l̂ (yb))]

l (yb)
k ← l (yb)

k +Ck (b|θCk)

cnt (yb)
k ← cnt (yb)

k +1

end
end
for label y = 1,2, ...,c do

// k-th client local average logit vector for y-th ground truth
label

l̄ (y)
k ← l (y)

k /cnt (y)
k

return l̄ (y)
k to server

end

procedure GLOBAL ENSEMBLING PHASE (at central server)
for each client k = 1,2,...,K do

for label y = 1,2,...,c do
// k-th client global average logit vector for y-th ground truth

label
l̂ (y) ← 1

|K−1|
∑i ̸=k

i=1...K l̄ (y)
k

return l̂ (y) to client k
end

end
end

Secondly, the authors wanted to approach the problem of non-IID data among clients (Section 2.2.3)
by synthetically generating IID data at each client using a GAN (Section 2.1.3). The GAN is trained at a
separate, centralised high computing power server with fast internet connection. Each client will then
identify the underrepresented samples (target labels) in its local dataset and upload a few seed samples
to the server to train a conditional GAN. The generator is then downloaded to each client to perform
oversampling and generate an IID dataset for training. To additionally keep the target labels private,
each client will also upload redundant samples to hide them in plain sight. This client-server privacy
leakage has been defined in the paper as:

PLcl i ent =
|L(k)

t |
|L(k)

t |+ |L(k)
r |

(3.1)

PLi nter _cl i ent =
|L(k)

t |
|⋃M

j=1(L(j)
t ∪L(j)

r)|
(3.2)

19

where |L(k)
t | and |L(k)

r | denotes the number of target and redundant labels, respectively, at the k-th
client.

A key drawback to this method is the need for a high computing powered server to train the GAN
and the privacy leakage from the GAN itself. For real-world applications, this algorithm is unsuitable as
in the case where a GAN needs to be trained, sending the data to a third party may not be an option at
all.

3.2 Data-Free

3.2.1 Federated Data-Free Knowledge Distillation via Three-Player Generative Ad-
versarial Networks (FedDTG)

Federated Data-Free Knowledge Distillation via Three-Player Generative Adversarial Networks (Fed-
DTG) [26] (Algorithm 3), is a recent method proposed to solve the issue of sourcing a shared proxy data
set (such as that in FedMD (Section 3.1.1) to perform knowledge distillation over.

Algorithm 3: FedDTG

Input: Private client datasets, Dk , independently designed classifiers Ck , global generator G ,
local generators Gk k = 1..K

Output: trained global generator G , trained K local Ck

Initialise model parameters θG ,θD θCk for k = 1..K
for each communication round t = 1, ...,T do

St ← random subset of K clients.
for each client k ∈ St in parallel do

θGk ← θGk , θDk ← θD

// Local Adversarial Training
for n local epochs do

calculate GAN losses LGk , LCk over local data Dk ⊂D
θGk ← θGk −∇LGk

θDk ← θDk −∇LDk

θCk ← θCk −∇LCk

end
return θGk , θDk to Aggregation Server

end

// Server Aggregation
θG = 1

|St |
∑

k∈St θGk

θD = 1
|St |

∑
k∈St θDk

// Federated Distillation
Server generates noise matrix Z t

for each client k ∈ St in parallel do
θGk ← θGk , θDk ← θD

// Client executes
generate label vector ŷ ∽U (∞,numclasses) XK D ←G(Z t , y t

K D |θGk) generate synthetic
inputs.

l k ←Ck (XK D |θCk) calculate logits

return l k logits to Aggregation Server
end

l k
teacher = 1

|St−1|
∑i ̸=k

i∈St
l i server calculates ensemble teacher logits per client. for each client

k ∈ St in parallel do
calculate losses Lk

Student over DK D , l k
teacher

θCk ← θCk −∇Lk
Student

end
end

20

Assuming k clients, in addition to heterogeneous client models (classifiers) Ck , the authors propose
training a shared conditional generative network G to model the joint distribution of labelled data be-
tween clients, that is, pG (X , y) ∽ pd at a(X , y). G can then be used to generate a synthetic proxy dataset
for co-distillation (Section 2.3.3) to transfer global knowledge to Ck . G’s parameters are shared between
k clients that train a local copy Gk on their private data and aggregated after training in a way similar to
Federated Averaging [8]. Similarly, there is also a shared discriminator D whose equivalent copy in client
k is denoted Dk .

However, unlike regular GANs (Section 2.1.3) that are trained with two networks: the generator and
the discriminator, FedDTG includes Ck in the mix. Ck is used to verify the output of the conditional
generator so that it produces samples of the class on which the output was conditioned. This is similar to
how the popular Auxiliary Classifier GAN [5] trains a conditional generator, although explicitly separates
the roles of discriminator and classifier into two separate networks.

Unfortunately, with the benefit of increased privacy comes the cost of additional overhead, both in
computation and in communication. The client now has to store and train three models as opposed
to one compared to FedMD (Section 3.1.1) and FD (Section 3.1.2) and must communicate two sets of
model parameters as well as logits with the server.

3.3 Summary

In summary, we find that response-based knowledge distillation Section 2.3.2) is the technique of choice
when trying to transfer knowledge between heterogeneous client models. FedMD requires a proxy
dataset; however, there are difficulties in sourcing such a dataset. FD used class-wise logit (soft label)
averaging to avoid the need for a common dataset for knowledge distillation but succumbs to the chal-
lenge of data heterogeneity section 2.2.3, employing FAug as a way to tackle this, but sacrificing privacy
in the process. Finally, FedDTG tackles training heterogeneous client models by training a generative
network to synthesise a proxy dataset - the downside to this approach is high overhead. This thesis ex-
plores the solution of this problem in a more private and efficient manner than the previously stated
methods.

21

Chapter 4

Federated GAN-Based Data-Free
Knowledge Distillation (FedGDKD)

In the previous chapters, we have explored the fundamentals of Federated Learning as well as the mo-
tivation for its use. Furthermore, state-of-the-art methods and their limitations to this paper’s problem
focus have been explored. In this chapter, a novel method for Federated Learning with heterogeneous
client models is presented.

4.1 Problem Statement

The problem we are trying to solve addresses the case where clients have limitations or preferences on
the architecture of the deep learning model they are training and would also like to keep the details
of this model private in addition to their data. These clients could be hospitals with strict regulation
on the type of model they can use. This implies that the algorithm must be stateful as each client is
keeping track of the latest iterations of their own model. In addition, the heterogeneous client models
are learning the same global objective so should have similar final results that outperform training solely
on the data they govern.

Therefore, we can further break down the challenges that the proposed method must tackle to the
following:

Heterogeneous Models The algorithm should allow each client to select their own personalised model
architecture.

Private Each client must not share their private data or details of their model.

Good Performance The performance of each heterogeneous model should perform well on the global
objective.

Efficient The algorithm should not incur much additional overhead in terms of communication or
computational cost when compared to other state-of-the-art methods.

Note that since heterogeneous models are being trained, each client must keep track of the param-
eters of their own model throughout training. This means that the algorithm will be stateful which is
more suited for the cross-silo federated setting (Table A.1).

4.2 Proposed Method

In this paper, we consider the supervised Federated Learning setting: classification. Therefore, the aim
is to train a personalised classifier Ck for each client k (K clients) who has a private dataset Dk ∽ plocalk

that will maximise the objective on the global distribution pg l obal :

Lg l obal = EX ,y∽pg l obal [log pCk (y |X)] ∀k = 1, ..,K (4.1)

Furthermore, we can derive a global dataset D =⋃
k=1...K Dk where D∽ pg l obal .

22

To allow heterogeneous models, an alternative approach to parameter aggregation (as used in Fe-
dAvg [8]) must be carried out, as this is infeasible in the current setting. Therefore, an alternative means
for extracting, aggregating, and transferring global knowledge from client models is required.

We propose Federated GAN-based Data-Free Knowledge Distillation (FedGDKD), which uses a con-
ditional GAN to facilitate data-free knowledge distillation that extracts and distributes global knowl-
edge (Algorithm 4). Although similar to FedDTG (Algorithm 3), FedGDKD was developed without prior
knowledge of it. The method is divided into three stages: local GAN training, generator aggregation and
data-free knowledge distillation.

4.2.1 Local GAN Training

Figure 4.1: FedGDKD: Local GAN Training Stage (dashed line refers to backpropagation)

In this first stage, we implement a local knowledge extraction by taking a novel approach to training a
conditional generator Gk for each client k. This conditional generator will learn to approximate the joint
distribution of client data pl ocalk

(X , y), where X are inputs and y are classification labels (c classes). We
train the generators Gk adversarially directly with the unmodified client classifier Ck .

This is achieved by implementing a modified ACGAN [27]. A normal conditional discriminator D [14]
is one that would predict whether the input X , given the label y , is real or fake: D(X , y) ∽ pr eal (X |Y).
The modification made in ACGAN implements the discriminator as a network with two task heads, one
discriminator task head Dk , and the other is an auxiliary classifier Ck that shares the same feature ex-
tractor as can be seen in Figure 4.2 (Note do not confuse Dk with D the figure).

Figure 4.2: Differences between GAN architectures [5]

A modification proposed in [28], originally designed for semi-supervised GANs [29], eliminates the
need for a discriminator head and allows just an unmodified classifier Ck . The discriminator output
Dk (X) can be reformulated from the as

23

Dk (X) = Zk (X)

Zk (X)+1
, where

Zk (X) =
i=c∑
i=1

exp[l k
i (X)]

(4.2)

where Ck (X) = {l k
i }i=1..c are the logits outputted by Ck for each class i . The summation of exponents

can prove to be numerically unstable so instead we can use the logarithm of this.

log Dk (X) = l og Zk (X)− log (Zk (x)+1)

l og (1−Dk (x)) =−l og (Zk (x)+1)
(4.3)

Note that, log Zk (X) can be considered a smooth maximum function, referred to as LogSumExp [30]
or RealSoftMax which is convex and its gradient is equivalent to SoftMax. Additionally, the second term
l og (1−Dk (x)) is equivalent to a negated Softplus activation function [31] on l og Zk (X) with β= 1.

Using this alternative formulation for Dk (X) will allow the client not to have to modify their person-
alised classifier to be able to participate in the algorithm, improving ease-of-use. We can then formulate
the standard ACGAN objective functions where Ck needs to maximise:

LCk =Lk
G AN +Lk

C LS , where

Lk
C LS = EX ,y∽pl ocalk

[log pCk (y |X)]+Ez∽N (0,1),yg en∽U (0,c)[log pCk (yg en |Gk (z, yg en))]

Lk
G AN = EX∽pl ocalk

(X)[log pDk (r eal |X)]+Ez∽N (0,1),yg en∽U (0,c)[log pDk (f ake|Gk (z, yg en))]

(4.4)

In eq. (4.4) where there are two components, Lk
G AN constitutes the adversarial loss found in a vanilla

GAN [14] which tests the discriminator to determine the correct source of the input (real or fake). The
implementation accompanying the original paper [32] suggests passing the discriminator logits Dk (X)
through a sigmoid activation to compress the output to the range [0,1] followed by using the binary
cross entropy loss. This has been known to cause issues with stability of GAN training due to vanish-
ing gradients [33]. In addition, there is the loss of the classification task Lk

C LS , which tests the classifier
Ck to predict the correct labels, where the cross-entropy loss is normally used to calculate the negative
log-likelihood of the expected class. Instead we use a novel alternative formulation based on this imple-
mentation of the semi-supervised GAN [34], which we have modified to train a conditional GAN, that
does not require the sigmoid and provides a stronger learning signal using raw logit outputs only. We
implement the above losses concretely as a minimisation of (expectation distribution subscript omitted
for brevity):

Lk
C LS =−E[l k

y (X)]+E[l og Zk (X)]−E[l k
yg en

(Xg en)]+E[log Zk (Xg en)] (4.5)

Lk
G AN =−E[log Dk (X)]+E[log (1−Dk (Xg en))] (4.6)

where Xg en =Gk (z, yg en)

We can breakdown the classification loss (eq. (4.5)) into the average error between the logit corre-
sponding to the ground truth label l k

y (X) and the smooth maximum of the logits log Zk (X), this error
is minimised when the smooth maximum corresponds to the ground truth label. Additionally, Dk (X)
output close to 1 (real label) occurs when classifier logits Ck (X) have low entropy i.e. skewed towards
one class. Therefore, Ck should optimise to maximise this for real images X and minimise this for fake
Xg en .

Notice also how the generated inputs and labels are considered in eq. (4.5). This is because as the
generator Gk (in conjunction with generator aggregation - Section 4.2.2) approximates the global joint
distribution pg l obal (X , y), it can provide synthetic samples of classes that are under-represented or even
not present. This should help tackle the issue of heterogeneity (non-iid) of the client’s private data Dk .

However, with the modification made to reformulate the discriminator output in eq. (4.2), we can see
that there is also a contradiction. The classifier is trying to predict both the correct label and distinguish
between real and fake using the same logits. eq. (4.2) suggests that a high realness score (Dk (X) is large)
requires that the logits have low entropy i.e. skewed toward one class (after softmax, one class has a
high probability). Conversely, for a low realness score the classification logits should have high entropy
(not skewed towards a single class). This suggests mutual exclusivity, where the classifier logits can only
be used to predict either fake or real and a class - thus only being able to truly optimise one objective

24

on the synthetic data. This can act as regularisation for the classifier preventing it from dominating the
generator in training i.e. always successfully predicting fake so the generator does not learn to improve.

Following this, we have the ACGAN formulation for the generator objective that Gk needs to min-
imise:

LGk = Ez∽N (0,1),yg en∽U (0,c)[log pDk (f ake|Gk (z, yg en))− log pCk (yg en |Gk (z, yg en))] (4.7)

In eq. (4.7), the generator needs to create realistic images that will fool the discriminator and produce
features in the generated output that will match the conditioned class label yg en . We can also provide
the novel concrete formulation that Gk needs to minimise as:

LGk =−E[log Dk (Xg en)]−E[l k
yg en

(Xg en)]+E[log Zk (Xg en)] (4.8)

where Xg en =Gk (z, yg en)

4.2.2 Generator Aggregation

Figure 4.3: FedGDKD: Generator Aggregation Stage

Once the local adversarial training phase is complete, the central server will then average the model
parameters of the client generator θGk , using a weighted average like FedAvg[8], to produce the global
generator G :

θG = ∑
k∈St

wkθGk wk = |Dk |∑
i∈Sk

|Di |
(4.9)

where St is the set of sampled clients. The distribution of the generator G should approach that of
the global distribution, that is, pG (X , y) → pg l obal (X , y).

Unlike existing federated GAN training frameworks [35, 36, 37, 26], this proposed method only ag-
gregates the generator parameters θGk as opposed to the generator and discriminator (classifier) param-
eters θCk . This novel approach further improves efficiency and privacy of federated GAN training.

Parameter aggregation is one method of resolving model drift in FL. Model drift occurs because the
local objectives LCk differ from the global objective due to non-iid client data. During local training, the
client models will be biased towards their local objective and as such be optimised to move towards a
local extrema. The aggregation of parameters followed by the distribution of the global model G acts
as a "reset". A simplified example of this can be seen in Figure 4.4, where the black cross and the line
represent the change in the global model on the global objective and the white lines represent the client
models drifting due to their local objectives. Once the global model parameters have been calculated,
these are distributed to the clients again for local training.

An alternative method for training GANs in a distributed manner that allows personalised discrimi-
nators has been shown to work [38, 39]. However, usually this requires the generator G to be trained on a
high-power central server, querying local discriminators for scores on the generated samples per batch
(there can be hundreds or thousands of batches per epoch). This is impractical in the federated setting
as this requires a much higher communication cost.

However, the model drift of the local classifier models Ck should also be taken into account. This is
done in the next stage.

25

Figure 4.4: Example of model drift

4.2.3 Data-Free Knowledge Distillation

Figure 4.5: FedGDKD: Data-Free Knowledge Distillation Stage (dashed line refers to backpropagation)

In this stage, we correct the drift of the local classifier models Ck and impart global aggregated knowl-
edge to them through co-distillation [21].

To do this, we need to construct a common distillation dataset DK D . Here shines our global gener-
ator G . We can generate a synthetic dataset of arbitrary size to act as our distillation dataset. To save

communication costs, we send to each client a noise matrix Z ∈R⌈ N
c ⌉xnz consisting of ⌈N

c ⌉ noise vectors
z ∽N (0,1) to each client, where N is the target size of the distillation dataset, nz is the latent vector size
of G and c the number of classes. The client will then produce ⌈N

c ⌉ generated samples X i
K D conditioned

on each class i (using label vector y i
K D ∈Z⌈ N

c ⌉) together forming a distillation dataset of size N . In ad-
dition, we update each client so that they have the same generator parameters θG such that identical
distillation data sets are produced at each client.

26

DK D = (XK D , yK D), where

XK D = {Gk (Z , y i
K D |θG)}c

i=0 = {G(Z , y i
K D)}c

i=0 ∀k = 1, ..,K

yK D = {y i
K D }c

i=0

(4.10)

Each client classifier Ck will then calculate the logits for the distillation dataset DK D ∽ pG and return
them to the server. The teacher logits for client k in the communication round t can then be calculated
as follows:

l teacher (k, t)≜
1

|St −1|
i ̸=k∑
i∈St

l i (4.11)

The teacher logits contains an ensemble of response-based knowledge (Section 2.3.2) from all other
clients that can be used to transfer knowledge about classes that are not present or underepresented in
local datasets Dk . As explained in Section 2.3, the student model attempts to mimic the teacher. In this
case, the student models are the client models Ck and aim to minimise the following objective:

Lk
student = (1−α)Lk

Task +αLk
K D α ∈ [0..1], where

Lk
Task = EXK D ,yK D∽pG [pCk (yK D |XK D)]

Lk
K D = K L(ST (Ck (XK D),τ) ||ST (l teacher (k, t),τ)))

(4.12)

where ST is the soft targets function eq. (2.9) with temperature T and K L is the Kullback–Leibler
divergence. In this method, the use of knowledge distillation is used to correct the drift of the local
model while imparting global knowledge. Therefore, we recommend choosing a high α to prioritise this
realignment over correctly classifying the synthetic data.

A consideration that must be made is the case that not all clients will participate in a communication
round - a common challenge in FL. Therefore, to account for this, we can perform co-distillation in the
subsequent communication round t + 1 only on those clients who did not participate in the current
round, i.e. k ∉ St where St is the sample of clients from the current round. Doing this will “catch up" the
clients with knowledge that it has missed out on learning and reduce the model drift, allowing for better
performance. The teacher logits would then be the empirical mean:

l teacher (k, t) = 1

|St |
∑

i∈St

l i , ∀k ∈ St+1 \ St (4.13)

4.3 Implementation

To implement the proposed method, we chose to use the FL research framework FedML [40]. This is
because FedML offers boilerplate code that could be used to speed up development, as well as imple-
mentations of existing methods that can be used as baselines to evaluate against. We also opted to use
the PyTorch machine learning framework [41] to implement the machine learning aspects of the algo-
rithm.

FedML is an extensive framework that covers many paradigms of FL; however, it lacks refinement
and often has complex code with a lot of redundancy. More importantly, it lacked the support for het-
erogeneous model FL algorithms and stateful clients, so a refactor was required to implement this func-
tionality. The framework opted for an implementation pattern where there is a single client and model
instance (since they are homogeneous), and its private data is replaced to emulate different clients.

After we added the functionality to allow for stateful clients, the workflow for implementing such an
FL algorithm for single machine simulation is as follows:

4.3.1 FedML.fedml_api.standalone

In this package, the FL algorithm code is implemented. To complete an implementation, one needs to
implement the following classes:

27

StatefulModelBaseTrainerAPI

This abstract class represents the central aggregation server in the algorithm and also governs the or-
chestration of the clients. The abstract base class includes implementations that will allow for client
sampling, testing, and parameter aggregation, but can also be overriden. The only methods that need
to be implemented are the following:

train() This method should implement the role of the aggregation server in the algorithm.

_setup_clients(...) This private method instantiates multiple stateful clients (Section 4.3.1) given
their configuration. This includes individual models as well as their respective datasets.

BaseClient

This class represents the individual stateful client that holds the client dataset and a ModelTrainer
(Section 4.3.1). It is a light layer of abstraction that mainly contains functionality that the aggregation
server might call upon. If additional methods are required, this class should be extended. The important
methods are the following:

train(...) Starts local training at the client.

ModelTrainer

Arguably the most important class, this abstract class implements the client-side training of local private
models and has the least boilerplate code. This class should be extended to implement the following
methods:

__init__(...) The constructor of this class should be overridden to allow for any configuration pa-
rameters or additional models.

get_model_params() If parameter aggregation is used, this method should return the local model pa-
rameters.

set_model_params(...) This method should update the parameters of a local model. In the case of
the proposed method, this would be used to update the local copies of the generator G .

train(...) Trains the local models. In the proposed method, this would perform the local adversarial
training.

test(...) Tests the local models for evaluation.

In addition to the above, for the proposed algorithm, we have implemented additional functionality
to carry out the knowledge distillation.

4.3.2 FedML.fedml_experiments.standalone

In this package are the scripts for the experiments. Here, we can use the APIs defined previously (Sec-
tion 4.3.1) in a parameterised experiment. To do so, one needs to extend the following class:

ExperimentBase

This abstract class contains the basic functionality to run an experiment. In particular, it will set up the
environment by parsing command-line arguments (of which there are common ones), partitioning the
selected dataset, and logging the experiment run to Weights and Biases[42] - an MLOps platform. One
needs to implement the following methods:

add_custom_args(...) This method allows FL algorithm-specific arguments to be added to the
command-line argument parser.

experiment_start(...) Instantiates the custom StatefulModelBaseTrainerAPI (Section 4.3.1)
class and calls the train method.

28

4.4 Summary

In this chapter, we have introduced the novel FedGDKD algorithm which tackles the problem of het-
erogenous client model federated learning with data-free knowledge distillation. To facilitate the “data-
free" aspect, a novel federated conditional GAN (cGAN) is trained, to generate realistic synthetic data
that can be used as a common dataset for knowledge distillation. To further ease use of this method, we
implement novel cGAN training objectives, to allow for unmodified client models to take part.

29

Algorithm 4: FedGDKD

Input: Private client datasets, Dk , independently designed classifiers Ck , global generator G ,
local generators Gk k = 1..K

Output: trained global generator G , trained K local Ck

Initialise model parameters θG , θCk for k = 1..K
for each communication round t = 1, ...,T do

St ← random subset of K clients.
for each client k ∈ St in parallel do

send θG to client k
θGk ← θG

// Catch up Co-Distillation
if client k ∉ St−1 and t > 1 then

Send l teacher (k, t −1) eq. (4.13), Z (t−1) to client k

D(t−1)
K D ← (X (t−1)

K D , y (t−1)
K D) generate distillation dataset eq. (4.10)

Co-distillation(D(t−1)
K D , l teacher (k, t −1))

end
// Local GAN Training
for n local epochs do

calculate losses LGk eq. (4.7), LCk eq. (4.4) over local data Dk ⊂D
θGk ← θGk −∇LGk

θCk ← θCk −∇LCk

end
return θGk to Aggregation Server

end

// Generator Aggregation
θG =∑

k∈St wkθGk wk = |Dk |∑
j∈St |D j |

// Data-Free Knowledge Distillation

Server generates noise matrix Z (t) ∈R⌈ N
c ⌉×nz

for each client k ∈ St in parallel do
Send Z (t), θG to client k
// Client executes
θk

G ← θG

D(t)
K D ← (X (t)

K D , y (t)
K D) generate distillation dataset eq. (4.10)

l k ←Ck (X (t)
K D |θCk) calculate logits

return l k logits to Aggregation Server
end

for each client k ∈ St in parallel do
Send l teacher (k, t) (eq. (4.11)) to client k

Co-distillation(D(t)
K D , l teacher (k, t))

end

end

Function Co-distillation(DK D , lteacher)is
for d distillation epochs do

calculate losses Lk
Student eq. (4.12) over DK D , lteacher

θCk ← θCk −∇Lk
Student

end
end

30

Chapter 5

Evaluation

In this section, we evaluate the proposed FedGDKD (Chapter 4) against our problem statement (Sec-
tion 4.1). This is done by testing various scenarios to gauge performance, efficiency, privacy guarantees,
and justify the stages of the proposed method.

5.1 Experiment Setup

5.1.1 Dataset

To evaluate the proposed method and compare it to state-of-the-art methods, we used two image classi-
fication datasets: MNIST[43] and EMNIST[44]. MNIST is a dataset composed of 28x28 greyscale images
of handwritten digits. It has a training set size per digit (10 classes) of 6,000 and a testing set size of 1,000.
EMNIST is a dataset composed of 28x28 greyscale images of handwritten digits and letters (0-9, a-z, A-Z)
totalling 47 classes (balanced split) with a training set, testing set size per class of 2,400 and 400 respec-
tively. There are 47 classes as they merge similar looking classes into one to avoid misclassification.

5.1.2 Configurations

Unless otherwise specified, we focus on 10 clients (10 models) with hyperparameters shared between
algorithms remaining fixed. This was done without tuning for any particular scenario. Additionally, we
fix random seeds (Table B.1) to provide determinism and isolate performance based on the change in
algorithm. The main shared hyperparameters are:

Hyperparameter Value

Communication Rounds (T) 50
Client Local Training Epochs (n) 5

Client Model (Ck) Optimiser SGD(learning rate = 0.01)
Batch Size 32

Image Size (Resize Transform) 32
Knowledge Distillation Epochs (d) (if applicable) 5

Knowledge Distillation Weight (αK D) (if applicable) 0.8
Soft Targets Temperature (τ) (if applicable) 4

Generator Architecture (if applicable) Specified in Appendix B.3.1
Generator Optimiser (if applicable) Adam(learning rate = 0.001)

Generator Latent Vector Dimensions (nz) (if applicable) 100
Discriminator Architecture (if applicable) Specified in appendix Appendix B.3.2

Discriminator Optimiser (if applicable) SGD(learning rate = 0.01)
Distillation Dataset Size (N) (if applicable) 10000

Table 5.1: Shared Hyperparameters

To represent the lack of data in a federated setting, we use at most r = 25% of the training dataset
and distribute it in a non-iid fashion to clients (Section 5.1.3). As the goal of our proposed algorithm

31

FedGDKD is to optimise local models towards the global objective, we use an iid distribution of the test
set at each client.

5.1.3 Client Data Heterogeneity

To achieve a non-iid client data distribution, we use a Dirichlet distribution Dir(α) [45], in which a
smaller α indicates higher data heterogeneity. See Figure 5.1.

(a) Dir(α = 0.05) (b) Dir(α = 0.1) (c) Dir(α = 0.5)

Figure 5.1: MNIST (r = 10%) client training label distribution with varying degree of heterogeneity

The size of the point (blue) in Figure 5.1 represents the frequency of the label/class in the training
dataset or private data of each client.

5.1.4 Baselines

The goal of FedGDKD is to allow effective training of heterogeneous models in a federated setting with-
out the need for a proxy/shared dataset. Therefore, we consider Baseline, that is, each client model is
trained on their private data, to determine that the algorithm indeed imparts global knowledge to lo-
cal models (a lower bound); Centralised, where each client model is trained on the combined client
datasets (if all data were to be aggregated in one data centre), this is an upper bound of performance;
FedAvg [8], the state-of-the-art and most widely used federated learning (FL) algorithm, we compare
the performance with homogeneous client models; FedMD (Section 3.1.1), FD + FAug (Section 3.1.2)
and FedDTG (Section 3.2.1) state-of-the-art FL algorithms that allow heterogeneous client models.

Note that for both FedMD and FD + FAug, each client creates a public and augmented data set,
respectively, sharing a random 5% of their private data. This is based on the fact that in FedMD, the proxy
dataset can be difficult to find (in the same domain); in FD + FAug, the generator is trained on this shared
data (for 200 epochs) and distributed to each client prior to the commencement of communication
rounds. Additionally, we introduce another baseline: Baseline (5% shared), that is similar to Baseline
but augments each client’s private data with the shared dataset detailed earlier. This baseline is to see
the additional benefit of FedMD and FD + FAug in comparison to just sharing the data.

5.2 Performance

To properly evaluate the performance of the proposed method FedGDKD, we evaluated it in various
scenarios.

5.2.1 Homogeneous Client Models

The first scenario in which we evaluate performance is when the client models are identical ∀k, j .Ck =
C j . For this experiment, the architecture of the homogeneous client model has a convolutional neural
network feature extractor with three convolutional layers of filter size 8, 16 and 16 with an instance
normalisation layer and ReLU activation between each one. Then the classification task head is two
fully connected linear layers with feature sizes 128 and the number of classes as output, respectively.

32

This is the simplest circumstance under which to perform an evaluation, as we can then compare
it to the FedAvg [8] the most popular federated learning algorithm. Doing so will allow us to measure
basic proficiency.

Since the goal is to train the client models Ck to perform well in the global objective, we can mea-
sure this with the average top-1 accuracy across clients in an iid test set for each client (balanced in all
classes). We have collected the top-1 test accuracy across both the MNIST and EMNIST datasets while
varying the degree of heterogeneity of the client data (Di r (α)) with valuesα= [0.05,0.1,0.5]. The smaller
α the more heterogeneous the client training distributions will be. Furthermore, we vary the proportion
of the training dataset used: sampling ratio r = [10%,25%] (uniform random selection). This is to test the
robustness under varying amounts of training data. The results we gather using the parameters defined
in Section 5.1.2 are in the Table 5.2 and you can see the effect of the dataset setting in Figure B.1.

Average Top-1 Test Accuracy (%)

Dataset Setting Baseline
Baseline

(5% shared) Centralised FedAvg
FD

+ FAug FedMD FedDTG FedGDKD

MNIST
r = 25%

α= 0.5 64.0 93.5 97.3 93.0 66.6 92.9 63.6 91.7
α= 0.1 38.1 92.5 96.9 85.2 47.6 90.1 38.9 72.0
α= 0.05 21.6 91.3 97.2 56.6 52.0 81.4 22.0 51.1

MNIST
r = 10%

α= 0.5 58.6 89.5 96.6 89.8 53.8 89.7 59.4 88.5
α= 0.1 27.4 87.0 96.6 67.2 37.9 85.0 28.4 57.6
α= 0.05 27.9 85.8 96.1 65.7 41.1 87.0 28.4 61.2

EMNIST
r = 25%

α= 0.5 50.4 68.7 78.3 71.1 49.1 69.7 46.9 69.7
α= 0.1 28.6 66.2 70.5 52.9 28.6 54.7 26.8 54.8
α= 0.05 22.6 65.0 65.0 37.9 27.8 41.1 17.4 38.7

EMNIST
r = 10%

α= 0.5 42.5 60.2 75.8 68.9 39.6 63.2 37.4 67.1
α= 0.1 24.1 55.5 76.5 50.5 16.0 47.7 21.0 53.5
α= 0.05 21.4 52.1 72.3 42.8 21.2 42.7 18.9 45.1

Table 5.2: Summary of top-1 test accuracies over varying settings.

In Table 5.2, we see an interesting result. First there is a general trend that as data heterogeneity in-
creases (α decreases), the final average top-1 test accuracy decreases. Likewise, as the dataset sampling
ratio r decreases so does the performance. Both of which are expected, lower α means that more clients
will lack good representation of many classes, simiilarly with lower r again the number of samples per
class is reduced meaning the local model is likely to not generalise well.

Second, in cases of low data heterogeneity (high α), we see that FedAvg performs the best. This is
likely due to directly being able to aggregate client model parameters. However, it seems to lack ro-
bustness to increased heterogeneity (lower α) as it tends to perform worse than either FedMD or the
proposed method FedGDKD under these scenarios. FedMD, consistently performs well on the MNIST
dataset but not as well on the EMNIST dataset, performing worse than Baseline (5% shared). This is
likely due to an increased complexity in the task, as EMNIST has 47 classes as opposed to MNIST’s 10.
Therefore, the proxy dataset that is made up of 5% of client private data may not have enough repre-
sentation of all classes to perform effectively. Finally, we see that our proposed method FedGDKD also
performs reasonably well. Its performance is similar to FedAvg, although generally worse. However, in
the more complex EMNIST dataset, it is more robust to higher data heterogeneity than FedAvg.

However, we should also consider the perspective that since in the cases of utilising algorithms
FedMD and FD + FAug, we assume that clients are willing to share 5% of their private data. There-
fore, to show the additional benefit each algorithm has, we should also consider the improvement over
their respective baselines. For FedMD and FD + FAug - Baseline (5% shared); for FedAvg, FedDTG and
FedGDKD - Baseline. We present the improvements over these baselines in Table 5.3.

33

Average Top-1 Test Accuracy Improvement (%)

Dataset Setting FedAvg
FD

+ FAug FedMD FedDTG FedGDKD

MNIST
r = 25%

α= 0.5 29.0 -26.9 -0.58 -0.44 27.7
α= 0.1 47.1 -45.0 -2.45 0.832 34.0
α= 0.05 35.0 -39.3 -9.89 0.321 29.5

MNIST
r = 10%

α= 0.5 31.1 -35.6 0.183 0.808 29.9
α= 0.1 39.9 -49.1 -1.94 1.04 30.3
α= 0.05 37.8 -37.3 -23.9 -5.28 33.3

EMNIST
r = 25%

α= 0.5 20.7 -19.6 1.02 -3.54 19.3
α= 0.1 24.3 -37.6 -11.5 -1.81 26.2
α= 0.05 15.2 -37.3 -23.9 -5.28 16.1

EMNIST
r = 10%

α= 0.5 26.4 -20.7 2.98 -5.12 24.7
α= 0.1 26.4 -39.6 -7.84 -3.11 29.4
α= 0.05 21.4 31.0 -9.40 -3.07 23.7

Table 5.3: Summary of top-1 test accuracy improvement over respective baselines.

We can see in Table 5.3 that this clarifies the additional benefit of each algorithm. We see that similar
to before FedAvg consistently has the most improvement over the baseline. However, now FedGDKD
proves to provide the second most benefit. Note that both data-based methods FedMD and FD + FAug
actually have little benefit over simply sharing the 5% of private data, even proving to be worse than
this. In the case of FedMD, this is likely due to the regularisation of knowledge distillation adding too
much bias and worsening performance. This could be similarly said for FD + FAug, but is more likely
due to a bad generative model trained on a small amount of data, causing the client models to fit to this
unrepresentative synthetic samples. Finally, FedDTG does not provide much benefit over the baseline,
this was due to the complex three-player adversarial training that seems not be working effectively in
this experimental setup.

In summary, we have shown that the proposed method FedGDKD provides the most benefit to per-
formance compared to state-of-the-art heterogeneous model federated learning algorithms. Addition-
ally, it even shows potential for higher robustness to increased data heterogeneity for more complex
tasks than FedAvg but this needs to be explored further.

5.2.2 Heterogeneous Client Models

Previously, we have tested the case of homogeoneous client models (Section 5.2.1), now we look at the
primary scenario of this thesis: heterogeneous client models. In this study, we examine the performance
of heterogeneous model federated learning algorithms and their ability to transfer global knowledge.

In particular, we investigate the performance of 10 heterogeneous clients which have different client
model architectures. Each client model’s feature extractor is made up of blocks of a 2D convolution layer,
2D instance normalisation layer and ReLU activation. The number and size of the filter of these blocks
differ. The classification task head is made up of two dense linear layers whose penultimate layer has 128
neurons. However, this is not a restriction, just for easier parameterisation. In reality the architecture
of these models only need to have the same output layer. We summarise the architectures used in the
following table:

34

Client Model Architectures
Client Index Feature Extractor Block Configuration

0 [16, 32]
1 [16, 32, 16]
2 [8, 16, 16]
3 [8, 8, 8]
4 [32, 64, 64]
5 [32, 32, 32]
6 [16, 16]
7 [32, 32]
8 [16, 16, 16, 16]
9 [16, 32, 64, 32]

Table 5.4: Summary of heterogeneous client model architectures.

where “Feature Extractor Block Configuration" refers to the configuration of the feature extractor
blocks where the length of the list is the number of blocks and each item in the list is the number of
convolutional filters.

We then fix the setting under which to run the algorithms to MNIST with non-iid parameter Di r (α=
0.5) and training set sample ratio of r = 25% (Figure 5.2). A summary of the results per client can be seen
below:

Figure 5.2: Heterogeneous Models: Client training label distribution (MNIST, Di r (α= 0.5), r = 25%).

Client
Index

Top-1 Test Accuracy (%)

Baseline
Baseline

(5% shared) Centralised FD + FAug FedMD FedDTG FedGDKD

0 73.5 92.3 97.8 77.1 95.0 87.9 92.2
1 59.4 90.6 96.3 65.2 91.3 79.9 90.2
2 58.0 91.5 96.8 66.1 91.8 84.5 90.6
3 80.9 90.8 97.2 78.8 93.7 85.4 88.8
4 72.9 93.6 97.9 76.4 94.2 85.8 91.7
5 94.4 97.0 98.8 92.3 96.7 93.4 96.5
6 63.9 94.4 98.2 72.5 96.2 88.1 94.6
7 83.2 98.2 100 86.0 98.3 95.8 97.1
8 77.7 96.2 98.7 83.5 96.5 93.4 96.1
9 70.6 93.6 98.5 77.6 94.6 84.9 91.6

Table 5.5: Heterogeneous Client Models: Top-1 test accuracies (MNIST, Di r (α= 0.5), r = 25%).

In Table 5.5, we can see that FedMD consistently performs best for each client and FedGDKD consis-
tently performs second best. However, we must also consider that FedMD assembles its proxy dataset

35

from 5% of shared private data. Therefore let us consider the improvements from the corresponding
baselines. Algorithms that use client data: FedMD and FD + FAug will be compared to the Baseline (5%
shared) performance and those that do not: FedDTG and FedGDKD will be compared to Baseline. The
improvements over respective baselines is presented in Table 5.6.

Client
Index

Top-1 Test Accuracy Improvement (%)
FD + FAug FedMD FedDTG FedGDKD

0 -15.2 2.71 14.4 18.7
1 -25.4 0.71 20.5 30.8
2 -25.4 0.30 26.5 32.5
3 -11.9 2.91 4.52 7.83
4 -17.1 0.610 13.0 18.8
5 -4.72 -0.450 -1.01 3.12
6 -21.9 1.80 24.2 30.7
7 -12.2 0.102 12.6 13.9
8 -12.7 0.310 15.7 18.4
9 -16.0 1.01 14.3 30.0

Table 5.6: Heterogeneous Client Models: Top-1 test accuracy improvement over baselines (MNIST,
Di r (α= 0.5), r = 25%).

As can clearly be seen in Table 5.6, FedGDKD improves the most upon its baseline consistently. This
suggests that it is the most effective at global knowledge extraction and distribution. It is interesting to
note a consistent decrease in performance from FD + FAug (Section 3.1.2), this is due to a bad generator
that is only trained on a small subset of the training set. Similar reasoning can be given for FedDTG,
as due to the complexity of its three-player GAN, under these circumstances its generator also performs
worse. This is not the case in FedGDKD, as the novel GAN training proves to be more stable and produces
higher quality synthetic data. We recorded the Frechet Inception Distance (FID) [46] at corresponding
stages, which is a metric for measuring the distance between the feature distributions of two image
samples. Therefore, the lower score the better. We found that the generators at the end of their training
had scores of: 315 for FD + FAug; 188 for FedDTG and 39.4 for FedGDKD. Further confirming this theory.

In summary, we have shown that FedGDKD is an effective heterogeneous model federated learning
algorithm and should be selected out of the presented algorithms clients are not willing to share data.
However, if the client is willing to share some data, then FedMD is the best choice.

5.2.3 Active-User Ratio

A common challenge in FL is that a client may not participate in all communication rounds. This could
be due to not meeting requirements, e.g. connected to power and the Internet, or technical difficulties
such as the Internet going down. Therefore, FL algorithms should be robust to such scenarios and still
perform well.

In this experiment, we adjust the active-user ratio so that we can emulate such a scenario. We chose
active-user ratios of: 30%, 50% and 100% (full participation) of 10 homogeneous model clients to see the
effects. This was carried out on the MNIST dataset with non-iid parameter Di r (α= 0.5) and the training
set sample ratio r = 25%. The client sampling per round was performed randomly from a uniform distri-
bution, so the likelihood of being selected per client matches that of the active-user ratio (see Figure 5.3
and Figure B.2).

36

Figure 5.3: Client participation per round (active-user ratio 50%)

(a) Top-1 Average Test Accuracy (b) Average Test Loss

Figure 5.4: Test curves when varying the active-user ratio (MNIST, Di r (α= 0.5), r = 25%)

Figure 5.4 depicts the average test performance (mean) of client models given varying active-user
ratios. We can see that the final performance of the local models is not affected by user sampling. This
can be seen in the final test accuracy of each run (∼91% test accuracy).

However, the number of communication rounds required to achieve the said performance increases
as the active-user ratio decreases. This can be seen where the different runs reach within 1% of the final
top-1 average test accuracy:

Active-User Ratio Communication Rounds

30% 88
50% 39

100% (full participation) 25

Table 5.7: Communication rounds required to reach within 1% of final average top-1 test accuracy

we can see in Table 5.7 a super-linear decay, but, to be sure of this, further active-user ratios should
be considered. In relation to this observation, we can also see in Figure 5.4, that the curves are more
unstable. Both observations are likely due to the clients not participating in the communication round,

37

who will not improve, performing worse than those participating. We can see this in Figure 5.5, where
the flat sections are, where the client is not participating in the rounds. This results in a negative skew in
average performance. The lower the active-user ratio, the greater the skew. This is, of course, unavoid-
able and expected.

Figure 5.5: Client 9 Top-1 Test Accuracy

The robustness to this scenario is most likely attributed to the “catch up" distillation described in
Section 4.2.3, where if a client has not participated in the previous round, they must undergo knowledge
distillation on the distillation dataset constructed in the previous round. This imparts knowledge that
would otherwise be missing from the client model and effectively "catches" the model up to be suitable
for the current round. Further investigation of this is done in Section 5.3.3. In general, we can see that
the proposed method FedGDKD is robust to scenarios where clients may not participate in every round
having little effect on final performance given enough communication rounds.

5.2.4 Knowledge Distillation Parameter Study

FedGDKD employs knowledge distillation (KD), in particular co-distillation, as a means of aggregating
and transferring knowledge between heterogeneous client models. This feature is extremely important
for the success of the algorithm, as has been discussed in Section 5.3.2. Indeed, there are three hyper-
parameters that dictate the impact of co-distillation in FedGDKD, namely: the knowledge distillation
weight parameter αK D , the distillation epochs d , and the size of the distillation dataset N . Therefore, in
this study, we examine the effects of changing these parameters on the performance of the algorithm.

To do so, we pick a problem setting in which there can be a clear improvement in performance and
fix this so that only the change in parameter will affect the change in performance. We choose MNIST
with a non-iid setting of Di r (α= 0.1) and dataset sampling ratio of r = 10%. Unless specified, for each
study the default values for these hyperparameters are noted in Table 5.8 and the corresponding client
training label distribution can be seen in Figure 5.6.

Hyperparameter Value

Knowledge Distillation Weight αK D 0.8
Knowledge Distillation Epochs d 5

Distillation Dataset Size N 10000

Table 5.8: Knowledge Distillation Parameter Study: Default hyperparameters.

38

Figure 5.6: Client Training Label Distribution (MNIST, Di r (α= 0.1), r = 10%)

Knowledge Distillation Weight Parameter αK D

First, let us consider studying the effects of the KD weight parameter αK D . This parameter controls the
importance of the KD regulariser in the student objective Equation (4.12), where a higher value indi-
cates prioritising alignment of student and teacher outputs, and a lower value prioritising classification
performance on the distillation dataset. Given that the distillation data set is synthetic and produced by
the learnt generator, a low αK D could lead to worse performance due to low quality samples. We can
then test this hypothesis by varying the values of αK D = [0.1,0.5,0.8,1].

Figure 5.7: Average top-1 accuracy with varying αK D

In Figure 5.7, there is an almost linear improvement in the top-1 average test accuracy as αK D in-
creases. This is likely due to the strength of the learning signal from the teacher logits increasing with
αK D in the student’s objective Equation (4.12). This increase in learning signal, causes the local model to
align more with the ensemble teacher logits and further ignoring classifying the potentially low quality
synthetic data correctly. This allows more global knowledge to be transferred to the otherwise isolated
local model.

39

(a) αK D = 0.1 (b) αK D = 0.5

(c) αK D = 0.8 (d) αK D = 1

Figure 5.8: KD Parameter Study: Client 0 confusion matrices (x-axis: Ground Truth Label; y-axis: Pre-
dicted Label) after training when varying αK D (MNIST, Di r (α= 0.1), r = 10%).

We can confirm that this is the case by looking at the client with index 0 (Client 0) whose training
label distribution is very sparse (Figure 5.6). In particular, we look at the final confusion matrix after
training on the test data Figure 5.8. A perfect classification model will have high values across the di-
agonal (individual class precision). We can see that as αK D increases, the precision per class increases.
In summary, we have confirmed that a high αK D results in better performance due to prioritising align-
ment with teacher logits.

40

Knowledge Distillation Epochs d

Next, we investigate the effect of varying the number of knowledge distillation (KD) epochs d . This
hyperparameter has the role of determining to what degree the student’s objective Equation (4.12) is
optimised. The degree refers to how close to the optimal value can be reached. This is because gradient-
based optimisation (in particular, stochastic gradient descent Section 2.1.5) is used. At each epoch, the
gradient is approximated and then a step is taken towards a local optima. The more steps that can be
taken, the closer the local optima that can be reached (assuming that divergence does not occur). There-
fore, we hypothesise that increasing d will allow further global (teacher) knowledge to be transferred to
the local model. We can test this by looking at the performance while varying d = [1,5,10,20]

Figure 5.9: Average top-1 accuracy with varying d

We can see in Figure 5.9, that this hypothesis is indeed correct as there is indeed an almost linear
positive trend between d and the average top-1 test accuracy. However, future work would be to test
larger values of d , to see if a divergence occurs in the local objective and negatively affects the result.
We can further confirm that more global knowledge is transferred by looking again at the confusion
matrices for Client 0.

(a) d = 1 (b) d = 5

41

(c) d = 10 (d) d = 20

Figure 5.10: KD Parameter Study: Client 0 confusion matrices (x-axis: Ground Truth Label; y-axis: Pre-
dicted Label) after training when varying d (MNIST, Di r (α= 0.1), r = 10%).

As can be seen in Figure 5.10, there is again a stronger diagonal pattern as d increases. This suggests
that the per-class precision increases and the more global knowledge, that is otherwise inaccessible, has
been transferred to Client 0. In summary, we see that increasing d , should increase the performance of
the algorithm. However, a balance must be struck with the additional computational cost incurred, as
discussed in Section 5.4.1.

Distillation Dataset Size N

Finally, we examine the effects of the size of the distillation data set N . For knowledge distillation to work
effectively, a common dataset with a good representation per class needs to be used. The representation
of classes is key to effectively teaching the student model (client local model), as if a greater number
(and more diverse set) of examples are given for each class, more knowledge can be transferred due to
inter-class diversity. Therefore, we hypothesise that a larger N , will allow for better global knowledge
transfer. We test this by examining the final performance when varying N = [100,1000,5000,10000].

Figure 5.11: KD Parameter Study: Average top-1 accuracy with varying N

In Figure 5.11, the average top-1 test accuracy (y-axis) has been plotted against the varying values
of N (x-axis) on a logarithmic scale (base 10). We can see that there is a logarithmic trend and that an

42

increase in N results in diminishing gains in performance. This can likely be attributed to the lack of
diversity in samples at higher N , that is, similar samples are repeated. To determine whether this is
indeed the case, we can examine the final Frechet Inception Distance (FID) score [46] reached by the
generators in each run. The FID also includes a component that scores the diversity of the generated
images. Additionally, the lower the score, the better, as the features of the generated images and the real
images therefore match more closely. Note that each score is calculated from 10,000 real images and
10,000 generated images.

Figure 5.12: KD Parameter Study: FedGDKD final generator score with varying N

The final FID scores of the generators for each N (Figure 5.12) do not differ significantly. Therefore, it
is reasonable to say that all the generators have similar performance and so the diversity will be similar
- so there is a threshold N reaches before the generator will produce similar samples with no additional
benefit.

Finally, we can examine Client 0 again to ensure that there is indeed a diminishing increase in the
amount of global knowledge transferred as N increases.

(a) N = 100 (b) N = 1000

43

(c) N = 5000 (d) N = 10000

Figure 5.13: KD Parameter Study: Client 0 confusion matrices (x-axis: Ground Truth Label; y-axis: Pre-
dicted Label) after training when varying N (MNIST, Di r (α= 0.1), r = 10%).

We can see in Figure 5.13, that the per class precision has a reduction in increase as N increases,
suggesting the logarithmic increase in the global knowledge transferred.

In summary, we see an increase in global knowledge transferred as N increases. However, there is a
diminishing increase that should be taken into account as N greatly affects the efficiency of FedGDKD
(Section 5.4). Further work can be done to improve the diversity of synthetic samples produced by the
generator. Doing so should increase the threshold of N where the returns diminish. This improvement
would also allow a smaller N to be selected as more knowledge can be distilled in a smaller, more diverse
dataset, further improving efficiency.

Overall Summary

Overall, we have explored the effect that each KD hyperparameter has and have seen that generally big-
ger is better! However, a balance must be struck between the increase in performance and the potential
decrease in efficiency.

5.2.5 Generator Performance

In this thesis, we solve the problem of heterogeneous model federated learning using GAN-based (Sec-
tion 2.1.3) data-free knowledge distillation in our proposed method FedGDKD (Chapter 4). FedGDKD’s
primary purpose is to train an accurate classifier that performs well on a global objective, however in
doing so we train a generator that aims to produce realistic synthetic data. The generator itself, is a
vehicle for global knowledge transfer as discussed in Section 5.3.1 and in fact its training is not reliant
on correcting model drift through the data-free distillation stage (Section 5.3.2). Therefore, could the
proposed method also be used as a means of GAN training in a federated setting. In this section of the
evaluation, we investigate just that by comparing performance to the state-of-the-art [35] algorithm.

To perform the comparison, we use the same generator and a classifier architecture as mentioned
in Section 5.2.1 but with an additional discriminative task head. This is because FedGAN implements
an ACGAN [5]. For FedGDKD, this discriminative head is not used as it is not required. To measure how
close the synthetic samples produced by the trained generators are to the real data, we use the Frechet
Inception Distance (FID) [46]. This is a measure of how close the feature distributions match between
two image-like datasets, therefore the lower the FID score the, the more realistic the generated samples

44

are. We test both algorithms with the same hyperparameters as mentioned in Section 5.1.2 and use a
sample size of 10000 real and synthetic images to calculate the FID score over. We do this for several
dataset settings:

Generator Final FID Score
Dataset Setting FedGAN FedGDKD

MNIST
r = 25%

α= 0.5 191 43.9
α= 0.1 131 76.9
α= 0.05 157 89.5

MNIST
r = 10%

α= 0.5 272 49.0
α= 0.1 327 125
α= 0.05 383 106

EMNIST
r = 25%

α= 0.5 153 48.5
α= 0.1 149 58.6
α= 0.05 166 103

EMNIST
r = 10%

α= 0.5 173 185
α= 0.1 144 57.0
α= 0.05 143 200

Table 5.9: Generator Performance: FID score summary

We can see in Table 5.9, that FedGDKD generally outperforms FedGAN in most settings. This is a very
interesting result as GANs are difficult to train, an explanation is that the novel GAN loss implemented
in FedGDKD (Section 4.2.1) improves stability of training through stronger learning signals. The class
logits are not funneled through a sigmoid activation and so its gradients will not saturate for very high
and low values, therefore mitigating the vanishing gradient problem.

Additionally, the classifier loss (Equation (4.4)) includes a contradictory term which can act like an
additional regulariser which prevents the discriminator (classifier) from dominating the generator i.e.
the discriminator always classifies all synthetic samples as fake causing the generator to not improve.
Whereas, since there is separation in FedGAN’s discriminator due to the separate task heads for the
discrimination task and classification task, a sample can be both fake and be classified. This means
that the discriminator is not battling itself to optimise one task or the other and can optimise for both
allowing it to dominate the generator. We can see this by observing the discriminative and classification
loss (eq. (4.5)) of FedGDKD over its generated data:

(a) Average component-wise loss over generated data (b) Generator FID Score

Figure 5.14: Generator Performance: FedGDKD GAN Metrics (MNIST, Di r (α= 0.1), r = 10%)

Figure 5.14a, shows that indeed the classifiers (client models) tend to optimise one of the two losses
over generated data. Towards the beginning of training, the discriminative loss is generally lower, as it
is apparent that the synthetic images are of worse quality in Figure 5.14b. We then see as the images
get more realistic the classification component of the loss decreases whereas the discriminative com-
ponent of the loss stagnates. This discriminative component will then act as a regulariser as previously

45

mentioned (Section 4.2.1), preventing the classifier from dominating the generator.

This additional regularisation also prevents the client models from overfitting on their private data.
Overfitting can cause worse generalisation, leading to worse test performance as well as lead to further
privacy leakage if access to the model is given (discussed in Section 5.5.1).

In summary, we have shown that the proposed method FedGDKD is a more robust and private
method of conditional GAN training under a federated setting. Also note that FedGAN requires both
the discriminator and generator parameters to be shared and aggregated with the central aggregation
server, whereas FedGDKD only shares the generator. This is both cheaper in terms of communication
as well as more private as only one model is shared.

Figure 5.15: Client training label distribution

(a) FedGAN (b) FedGDKD (c) Ground Truth

Figure 5.15: Generator Performance: Generator final output (MNIST, Di r (α= 0.05), r = 10%)

Note: additional examples of generator outputs can be seen in Appendix B.5.

5.3 Ablation Study

In this evaluation section, we discuss and investigate the importance of the main features in our pro-
posed method FedGDKD. We ablate each feature one by one to see the effect this has and comment on
the initial reasoning behind its use.

46

5.3.1 Shared Generator

In our proposed FedGDKD method, the clients share a generator whose parameters are aggregated on
the central server. This generator is hypothesised to model the global joint distribution of the train-
ing samples and their labels. It plays an extremely important part in global knowledge extraction and
transfer, where clients will be exposed to realistic samples from under-represented classes and, as such,
generalise better.

To study the effects in isolation, we can ablate the shared generator by removing shared updates and
allowing each client’s clone of the generator to diverge on their private data. The difficulty in this study
is that we are unable to generate an identical distillation dataset at each client. Unfortunately, there is
no way around this, so the noise vector is sent as is. This will result in an identical number of generated
samples per class; however, nonidentical samples will be generated.

To create the comparison, we ran the algorithm with and without a shared generator on the same
dataset, MNIST, and setting, Dir(α= 0.5), r = 25%. The results are as follows:

(a) Top-1 average test accuracy (b) Average test loss

Figure 5.16: Ablation study on shared generator: test curves (MNIST, Di r (α= 0.5), r = 25%)

Evidently in Figure 5.16, there is a significant difference when the generator model is not shared. We
see a significant drop in accuracy from 91.7% (with shared generator, red) to a peak of 77.5% (without
shared generator, green). This is likely due to the local copies of the generator diverging (model drift)
towards the optima of the non-iid distribution in the client data. Attempting to replicate the joint distri-
bution of the unbalanced private data, it will be biased towards well-represented classes and, as such,
produce low-quality synthetic samples for under-represented ones. The effect of this is “bad" teacher
logits for the subsequent data-free knowledge distillation stage Section 4.2.3. This supports the hypoth-
esis that the shared generator better approximates the global distribution of the data.

Continuing the previous statement that local generators diverge to the local optima of private client
datasets, we can investigate the FID[46] scores on average and for a specific client.

Figure 5.17: Training Label Distribution Between Clients

47

(a) FedGDKD without shared gener-
ator (Client 6)

(b) FedGDKD (c) Ground truth

Figure 5.18: Ablation study on shared generator: generator output (MNIST, Di r (α= 0.5), r = 25%).

We can see in Figure 5.17, that the client with ID 6 (Client 6) does not have classes/labels (in the case
of MNIST the label directly corresponds to the digit) 7,8 and 9 present in their private training dataset.
Therefore, it should be fair to assume that the client 6 generator will not be able to produce realistic
samples for these classes. Looking at the output of the generator of client 6 Figure 5.18a and comparing
it with the output of the shared generator Figure 5.18b, this is indeed the case. This provides further
confirmation of the hypothesis.

Figure 5.19: Ablation study on shared generator: Client 6 generator FID score (MNIST, Di r (α = 0.5),
r = 25%).

Looking deeper into the FID scores [46] of the client 6 generator (Section 5.3.1). The score represents
the distance between the feature distributions of the generated data and the real data. Therefore, the
lower the score the better. First, note that the average client generator scores (dotted green) are consis-
tently and significantly higher without a shared generator than with(red). This is again most likely due
to each client generator diverging. Also, note that the scores have an unstable trend for the client 6 gen-
erator (solid green). This is likely due to ineffective data-free knowledge distillation, where inconsistent
lower-quality distillation datasets are being used. Thus, noisy perturbations in training, as can be seen
in Figure 5.20a and Figure 5.20b.

48

(a) Training Top-1 Accuracy (b) Training Loss

Figure 5.20: Ablation study on shared generator: Client 6 training metrics (MNIST, Di r (α = 0.5), r =
25%).

Finally, we can examine the confusion matrices of Client 6’s local model to determine the level of
global knowledge transferred. In alignment with the hypothesis that the shared generator enables effec-
tive global knowledge transfer, we should see that the missing labels are classified correctly on the test
set and misclassified without it. In fact, this is the case, as can be seen in Figure 5.21. Interestingly, label
7 (digit 7) is misclassified with a high probability as label 3 (digit 3) in the case without the generator
Figure 5.25b. This is due to a 3-like sample being generated by Client 6’s generator (Figure 5.18a). Again,
this further highlights the importance of a good generator in the proposed method FedGDKD.

In summary, we have shown that sharing the generator model between clients allows effective global
knowledge transfer and more closely approximates the true joint global distribution of the data. How-
ever, this also highlights a tight coupling between the generator and the client model, where the gener-
ator must produce realistic samples to increase the accuracy of the client model.

(a) FedGDKD (b) FedGDKD without Shared Generator

Figure 5.21: Ablation study on shared generator: Client 6 confusion matrices at the end of training
(MNIST, Di r (α= 0.5), r = 25%).

49

5.3.2 Data-Free Knowledge Distillation

To study the effects that the data-free knowledge distillation (DKD) stage (Section 4.2.3) has on our pro-
posed method FedGDKD, we perform an ablation of the stage. This stage was hypothesised to help
impart global knowledge to each client model, as well as reduce model drift to improve the training of
the generator.

To create the comparison, we ran the algorithm with and without the stage on the same dataset,
MNIST, and setting, Dir(α = 0.5), r = 25%. To give a perspective on performance, the baseline (client
models train only on client private data) is provided. The test performance can be seen in Figure 5.22:

(a) Top-1 average test accuracy (b) Average test loss

Figure 5.22: Ablation study on data-free knowledge distillation (DKD): test curves (MNIST, Di r (α= 0.5),
r = 25%)

As can be seen in Figure 5.22, we can clearly see the performance benefit that DKD has. The final
average top-1 test accuracy (Figure 5.22a) of FedGDKD with DKD (red) is 91.7% compared to without
DKD (blue) is 81.2% at its peak. This is a significant drop of more than 10%. Indeed, this supports the
claim that DKD is imparting global knowledge to each client model.

We can further investigate this claim by looking at the effect of ablation on the training performance:

(a) Top-1 average training accuracy (b) Average training loss

Figure 5.23: Ablation study on data-free knowledge distillation (DKD): training curves (MNIST, Di r (α=
0.5), r = 25%)

In Figure 5.23, two observations can be made. The first is that DKD’s regularising effect is clearly
present (as knowledge distillation is added as a regularisation term). This is evident as the training ac-
curacies are consistently lower and losses are higher throughout the communication rounds when DKD
is being used (red). The convergence seems to be quite similar, if not slightly slower, than without DKD
(blue). This suggests that DKD helps to reduce overfitting on the small private datasets, further reducing
bias towards the local objective. However, also notice that without DKD, the test curves do not match

50

the baseline (black) in Figure 5.23. This is most likely due to the novel classification loss used in local
GAN training acting as additional regularisation (Section 5.2.5).

The second observation is that the training curves are smoother with DKD than without it. This can
be attributed again to the regularisation effect, which leads to model alignment (as this is the average
accuracy, meaning that the variance between model training accuracies is low). The goal of DKD is to
align the model with a shared teacher model (an ensemble of other clients) that has global knowledge.
This suggests that as the generator produces samples from under-represented classes (when compared
to a client’s own private dataset), they will have less of an effect as the client model has been exposed to
them through DKD.

Figure 5.24: Client training label distribution (MNIST, Di r (α= 0.5), r = 25%)

Both observations in the training data set further support the claim that DKD imparts global knowl-
edge on the client model and reduces model drift. Another, more concrete investigation is to see the
effect DKD has on a client whose private data is completely missing samples from some classes. Look-
ing at the distribution of training labels between clients (Figure 5.24), we can see that the client with ID
6 (Client 6) lacks labels 7,8 and 9. Therefore the final test performance on these labels will be telling as
to how well the global knowledge is imparted onto Client 6.

There is a clear distinction between the confusion matrices when using DKD (Figure 5.25a) versus
without (Figure 5.25b). We can see that in fact the missing labels are more likely to be misclassified when
the DKD is removed. This solidifies the claim that DKD plays an important role in global knowledge
transfer.

Figure 5.26: Ablation study on data-free knowledge
distillation (DKD): FID scores (MNIST, Di r (α= 0.5),
r = 25%)

To explore the hypothesis that DKD also im-
proves generator training, we can look at FID[46]
scores during communication rounds of the
shared generator. The FID score is a metric based
on how close the feature distributions are to each
other between two image sets. In this study, we
examine the distance between the generated dis-
tillation dataset and a sample of MNIST images
(both of size 10,000). The lower the metric, the
closer the distributions are, i.e. the more realistic
the generated data are.

In Figure 5.26 and (visually in Figure 5.27),
it is actually not the case that DKD (red) im-
proves generator training, in fact, it makes it
slightly worse in early communication rounds.
This could be due to the double-edged effect of
the knowledge distillation regularisation, where
the low-quality synthetic samples will cause "bad
teaching" because the client models will likely
lack consensus on what the sample’s class could be leading potentially high realness scores for low-
quality images. This could in turn provide the generator with positive feedback for synthesising low-

51

(a) FedGDKD (b) FedGDKD without DKD

Figure 5.25: Ablation study on data-free knowledge distillation (DKD): Client 6 confusion matrices at the
end of training (MNIST, Di r (α= 0.5), r = 25%).

quality samples, and so increases the FID metric. Therefore, an improvement could be to set a schedule
for the knowledge distillation weight αK D that starts low to avoid the effect of bad synthetic data and
increases as the generator improves. Investigating this improvement is left for future work.

In summary, this ablation study has been worthwhile. It shows both the importance of DKD in ef-
fective global knowledge transfer and model alignment (model drift resolution). However, it disproves
the hypothesis that DKD improves GAN training. The insight derived from this study has opened a path
of further research into scheduling the knowledge distillation weight parameter αK D .

(a) FedGDKD (b) FedGKDK without DKD (c) Ground Truth

Figure 5.27: Ablation study on data-free knowledge distillation (DKD): a comparison of the generated
data produced at the end of training Di r (α= 0.5), r = 25%).

5.3.3 Catch Up Distillation

In this ablation study, we see the effectiveness of the "catch up" distillation step in the proposed method
FedGDKD (Section 4.2.3). The idea behind this step was to address model drift in client models when

52

they have not participated in the previous communication round. Before starting local GAN training
they will undergo co-distillation where ensemble teacher knowledge from the previous round is im-
parted onto the client’s model.

To test the effect this step has, we perform an ablation study under the partial client participation
scenario as explored in (Section 5.2.3). We explore active user ratios of 30% and 50% (not full partici-
pation as the catch up step will never occur). This was performed under the same conditions as (Sec-
tion 5.2.3): on the MNIST dataset with non-iid parameter Di r (α= 0.5) and the training set sample ratio
r = 25%. Therefore, the client participation will be the same as well.

(a) Top-1 average test accuracy (b) Average test loss

Figure 5.28: Ablation study on catch up distillation: test curves (MNIST, Di r (α= 0.5), r = 25%)

We can see in fig. 5.28, that the removal of the catch up distillation step has an almost negligible
negative impact on the final performance of the algorithm as can be seen in Table 5.10.

Active User Ratio (%) Catch Up Distilla-
tion

Communication
Rounds T

Final Average Top-1 Test
Accuracy (%)

50 ✓ 50 91.0
50 ✗ 50 89.8 (-1.20)
30 ✓ 100 91.2
30 ✗ 100 89.7 (-1.47)

Table 5.10: Ablation study on catch up distillation: summary of final top-1 test accuracies

However, another observation that can be seen is a drop in convergence rate towards the beginning
of the runs (smaller gradient magnitude). The lower the active user ratio, the slower the initial conver-
gence. This suggests that catch up improves the convergence of the algorithm, and in cases where there
are limitations on the number of communication rounds, it could be an important feature.

We can weigh up the additional overhead of the catch up step with performance increase. Let us
assume a stationary (does not change over time) active user ratio which can be uniformly sampled p ∈
(0..1] and let us assume a binomial distribution. Then we can say that this step will be executed each
round by a client with a probability of (1−p), as this is the probability that they will not participate in
the previous round. Let us go through an example, in the case where p = 0.3 and T = 100, the expected
number of rounds a client will participate in is Ep [par ti ci pate] = p ×T = 30 and the expected number
of rounds the client will execute catch up distillation: Ep [catchup] = (1−p)×Ep [par ti ci pate] = 21. So
we can clearly see that the lower the active user rate, the higher the likelihood per round where the client
is participating of additional overhead, but also the faster the convergence. Therefore, this additional
overhead could be tolerable for clients not wanting to stop early, i.e., stop participating completely after
a number of rounds.

Alternatively, for clients prepared to participate in all T communication rounds. The expected exe-
cution of the catch-up step occurs at most in 25% of rounds and will involve this additional overhead as
(1−p)p ≤ 0.25∀p ∈ (0..1]. This may be unfavourable for some as even without this additional overhead
the final performance is just as good.

53

Overall, these observations justify the use of catch up distillation in cases where convergence speed
is of high priority and the removal in cases where clients are willing to participate for extended periods
of time.

5.4 Efficiency

5.4.1 Computational Complexity

An ideal algorithm should be as cheap to compute as possible; this is an obvious statement, as it im-
proves the speed of execution. In the context of federated learning, this factor greatly affects client se-
lection. If the algorithm is expensive to run, it could cause clients with low computing resources to be
unable to complete the round in time or not be able to participate at all. This is an active area of research
[1, 47].

Therefore, we should investigate the computational cost for the clients in our proposed
method FedGDKD and compare this with other state-of-the-art heterogeneous model FL algorithms.
This can be done through analysing the running time of each algorithm. We do this using asymptotic
notation [48].

To do this, we introduce some simplifying assumptions. First, we assume that floating-point opera-
tions (flops) take a constant time to execute. We can then estimate the time complexity as the number
of flops. Then let us assume that the number of flops for forward and backward passes through a (deep
learning) model M for a single input (e.g. single image) is proportional to the number of parameters θM .
Therefore, we can derive the time complexity by the number of forward and backward passes through a
model. The summary of time complexities is as follows

Algorithm Initialisation Communication Round

FedMD O((npubl i c |Dpubl i c |+npr i vate |Dk |)θCk) O((ndi g est |Dpubl i c |+nr evi si t |Dk |)θCk)
FD + FAug O(|Daug |θG) O(n(|Daug |+ |Dk |)θCk)
FedDTG 0 O((n|Dk |+N)(θCk +θG)+n|Dk |θD)
FedGDKD 0 O((n|Dk |+(d+1)N)θCk +(n|Dk |+N)θG)

Table 5.11: Summary of algorithm time complexities at client

where |∗ | is a length function that in the case of datasets |D | refers to its length. We have estimated
the number of passes that have passed through the client models.

First, we give an explanation of how these figures were derived. In the case of FedMD (Section 3.1.1),
the complexity of the initialisation (before the communication rounds) comes from the transfer learning
step. In this step, the client model Ck is trained (forward and backward passes) first on the public/proxy
dataset Dpubl i c until convergence (in npubl i c epochs) and then on the private data set Dk until con-
vergence (in npr i vate epochs). We can then estimate the total number of inputs passed through Ck

as proportional to the sum of the size of these datasets multiplied by the epochs required for training:
2(npubl i c |Dpubl i c | +npr i vate |Dk |) (the constant 2 can be removed). We can then multiply this by the
operations Ck performed on a single input sample, which is proportional to the number of parameters
in the model |Ck |. Similarly, for communication rounds, the client executes two stages: digest, where the
distillation of knowledge occurs for Ck on the public dataset Dpubl i c for ndi g est epochs; revisit, where
Ck trains further on the private dataset Dk .

Using the same logic, we can analyse FD + FAug (Section 3.1.2). Before communication rounds,
all that occurs is the optional FAug step, where clients share undersampled labels from their private
dataset to train a generative model G on another server. This incurs no cost to the client. However,
G is then used to augment the training data with Daug to alleviate data heterogeneity (degree of non-
iid). This comprises a forward pass over G proportional to the size of this augmented dataset. During
a communication round, the client Ck is trained (by knowledge distillation) on this augmented dataset
Daug ∪Dk for n epochs.

Again, we can use this logic to derive the computational complexity for our proposed method
FedGDKD (Chapter 4). The initialisation complexity of the client is 0 as no computation occurs prior to
commencing communication rounds. During a communication round, there are two stages that involve
computation at the client. First local GAN training; this is where the clients train a copy of the shared
generator G adversarially with their local model Ck . During this stage, the private dataset Dk is iterated
over for n epochs in mini-batches. For each mini-batch, the generator G produces synthetic data of the

54

same batch size, resulting in |Dg en | = |Dk |. The synthetic data passes forward and backward through G
and 2|Dk | samples are passed forward and backward through Ck . This gives a time complexity of

O(n(2|Dk |θG +4|Dk |θCk)) =O(n|Dk |(θCk +θG)) (5.1)

The second stage involving client computation is the data-free knowledge distillation stage. Here,
a synthetic dataset for distillation (DK D) of size N is generated by G (only forward pass) and passed
through the client model Ck retrieve class logits (only forward pass). Then during co-distillation, DK D is
passed forward and backward through the client model Ck for d epochs. Additionally, the client may not
have participated in the previous communication round, so the cost of co-distillation can be doubled in
the worst case. This leads to a time complexity of

O(2[N (θG +θCK)+2d N |θCk]) =O(N (θG +θCK)+d NθCk) (5.2)

where summing eq. (5.1) and eq. (5.2) produces the result in Table 5.11:

O(n|Dk |(θG +θCk)+N (θG +θCk)+d NθCk)

=O((n|Dk |+N +d N)θCk + (n|Dk |+N)θG)

=O((n|Dk |+ (d +1)N)θCk + (n|Dk |+N)θG)

(5.3)

We can also derive a similar result for FedDTG. However, we account for the additional discriminator
only taking part in GAN training and only one distillation epoch, resulting in:

O((n|Dk |+N)θCk + (n|Dk |+N)θG +n|Dk |θD)

=O((n|Dk |+N)(θCk +θG)+n|Dk |θD)
(5.4)

To compare the time complexities, let us analyse the added overhead in a consistent setting where
the client participates in T communication rounds. We can assume that the three algorithms run on
the same datasets (|Dk | is constant). Furthermore, during communication rounds, the normal training
epochs (without knowledge distillation) are the same and constant n = nr evi si t . Also, the datasets used
for knowledge distillation are of the same size |Daug | = |Dpubl i c | = N . Finally, the client models Ck are
the same so θCk is constant. The time complexity can then be simplified to

Algorithm Initialisation Communication Round Overhead (T Rounds)

FedMD O(npubl i c +npr i vate) O(ndi g est) O(npubl i c +npr i vate +T ndi g est)
FD + FAug O(θG) O(1) O(θG +T)
FedGDKD 0 O(d +θG) O(T (d +θG))
FedDTG 0 O(θG +θD) O(T (θG +θD))

Table 5.12: Summary of time complexities for algorithm additional overhead for client ranked lowest to
highest (under a consistent setting)

In Table 5.12, we can clearly see that the additional overhead of the FedDTG has the highest cost.
This is because the number of parameters for the generator θG (millions) is orders of magnitude larger
than the number of epochs (tens), that is, θG >> npr i vate +npubl i c . We can also say the same for θD ,
hence coming to the conclusion that FedDTG is the most expensive. With similar reasoning and lack
of discriminator, our proposed FedGDKD method is the second most expensive as θD >> d . Follow-
ing this, is FD + FAug, this cost is due to the production of synthetic data at initialisation, where also
θG >> T ndi g est . Therefore, the computationally cheapest method is FedMD where the proxy dataset is
assembled in advance.

In summary, our proposed FedGDKD method is more computationally efficient than the closely
related FedDTG but not as cheap as the data-based alternatives. However, we must also consider the
difficulty in producing this proxy dataset in FedMD and the privacy issues associated with data sharing
in FD + FAug. Therefore, in the circumstances where this is the case, FedGDKD is a good alternative.

5.4.2 Communication Cost

Another challenge in Federated Learning (FL) is the cost of network communication. As FL is a dis-
tributed algorithm, relying on the network is of utmost importance. There could be heterogeneity in

55

network bandwidth, download and upload speeds at each client, so minimising the overhead of com-
munication is highly important. Therefore, we consider comparing communication costs across algo-
rithms that allow heterogeneous models to align with the initial aim of this thesis.

Let us assume that the cost of transmitting a single byte of information value over a network is con-
stant. Then we can estimate the cost of communication through the number of bytes transmitted. In
the case of neural network models M , the number of bytes is proportional to the number of parameters
θM , for a logit vector, the cost is proportional to the number of entries in the vector. Finally, for a dataset
D, it is proportional to the length of the dataset |D | multiplied by the size of each entry.

Algorithm Initialisation Communication Round

FedMD O(Dpubl i c) O(|Dpubl i c |∗ [lconsensus]0)
FD + FAug O(DG AN +θG) (FAug) O(c ∗ lcl ass_aver ag e)
FedDTG 0 O(θG +θD +N ([ZK D]0 + [l k]0))

FedGDKD 0 O(θG +⌈N /c⌉[ZK D]0 +N [l k]0)

Table 5.13: Summary of communication costs For heterogeneous model FL algorithms

In Table 5.13 we have summarised the communication costs per algorithm (i.e. data sent between
client and aggregation server) and broken it down into: initialisation costs (before communication
rounds start) and the cost per communication round. Note that | ∗ | refers to a length operation and
[∗]x refers to an indexing operation in a matrix (rowwise) or vector at position x. These values are de-
rived from the algorithms: FedMD (Algorithm 1), FD + FAug (Algorithm 2), FedDTG (Algorithm 3) and
our proposed method - FedGDKD (Algorithm 4). Here, we provide a quick overview of the derivations
of the terms used.

First, in the case of FedMD, the initial cost comes from the sharing of the proxy / public data set
between clients. The cost per communication round comes from sending and receiving logits (only
these logits are shared) from client to server and vice versa. The size of this logit matrix is determined by
the size of the public dataset |Dpubl i c |.

Second, in the case of FD + FAug, the initial cost is attributed to FAug. Here, clients will share a small
subset of private data DG AN ⊂ Dk with a high-power server to train a generative network whose param-
eters θG are then shared with all clients. The cost per round of communication comes from sharing the
average logits per label lcl ass_aver ag e , the number of which depends on the number of classes c.

Then, analysing FedDTG, where there is no upfront cost for the client. The cost of communication
per round comes in part from the use of a shared generator and discriminator whose parameters θG

and θD are, in fact, updated twice during a communication round. The other part comes from aligning
the client models through data-free distillation. This consists of first generating the distillation data
set of size N , by sharing a noise vector ZK D whose first dimension is of size N . Furthermore, the cost
of sharing logit vectors l k calculated on the distillation dataset (size N) to ensemble teacher logits, as
well as receiving these teacher logits to perform knowledge distillation, must be taken into account.
This is similar for our proposed method FedGDKD with the differences that it only shares the generator
parameters θG and a smaller noise vector whose first dimension is of size ⌈N

c ⌉.
To compare each algorithm, let us analyse the additional overhead in a consistent setting where the

client participates in T communication rounds. We can assume that the sizes of the logit vectors (for
a single input) are the same [lconsensus]0 = lcl ass_aver ag e = [l k]0. Also, the task is the same and so the
number of classes c is constant and equivalent. Additionally we can assume for now that identical gen-
erators are used for FD + FAug, FedDTG and FedGDKD. Then we can summarise the additional overhead
incurred by the algorithm as

Algorithm Initialisation Communication Round Overhead (T rounds)

FedMD O(Dpubl i c) O(|Dpubl i c |) O(Dpubl i c +T |Dpubl i c |)
FD + FAug O(DG AN +θG) (FAug) O(1) O(DG AN +θG +T)
FedGDKD 0 O(θG +N [ZK D]0) O(T (θG +N [ZK D]0))
FedDTG 0 O(θG +θD +N [ZK D]0) O(T (θG +θD +N [ZK D]0))

Table 5.14: Summary of additional communication overhead cost per client for T rounds ranked lowest
to highest (under a consistent setting).

When comparing the costs noted in Table 5.14, one must consider the context of the problem. The

56

initialisation of FedMD and FD + FAug both involve transmitting entire data sets. Depending on the size
of their entries, the cost could change dramatically, e.g. number vs. video file. Let us also assume that
the size of the entry is proportional to the complexity of the problem, i.e. a larger dataset entry will need
larger model capacities (more parameters).

Using the previous assumptions, FedDTG incurs the highest additional overhead. This is because the
number of parameters in the generator and discriminator (millions) (shared in every communication
round) probably outnumbers the length of the public dataset (hundreds/thousands) by a considerable
margin, that is, θG >> |Dpubl i c |. The second highest is our proposed algorithm FedGDKD for the same
reason, however, without the discriminator parameters. Next, DG AN is smaller than Dpubl i c , as the
former refers to the data shared between clients and the server, and the latter the complete proxy data
set. This suggests that unless the number of rounds T or the length of the public dataset Dpubl i c is very
large θG > T |Dpubl i c |, FedMD has the lowest additional overhead cost, otherwise, FD + FAug.

In summary, we have shown that our proposed method, FedGDKD, is more communication efficient
than the related data-free FedDTG. However, there is still a trade-off that one needs to consider when
choosing a suitable algorithm. If the communication cost must be kept as low as possible, then FedMD
should be chosen. If they cannot obtain a proxy data set but are willing to share some data then FD +
FAug should be chosen. Finally, if there are (most likely) difficulties in acquiring a proxy dataset and
restrictions on data sharing, then our proposed algorithm FedGDKD should be chosen.

Methods to further reduce the communication costs of the proposed algorithm will be considered
in future work, but a few suggestions are as follows:

• Quantisation of the generator model.

• Compression methods.

• Reduce client participation per communication round.

• Reduce the size of the distillation dataset N .

5.5 Privacy

Privacy is the fundamental driver behind federated algorithms. Therefore in this section, we examine
the privacy of the proposed method. This is not an exhaustive study over the vulnerabilties in federated
learning e.g. [49], but examines the exposure introduced by the algorithms themselves.

5.5.1 Privacy Leakage

Privacy leakage refers to any vulnerabilities in the algorithm that can lead to access to private informa-
tion. For the federated learning (FL) algorithms covered in this evaluation, we discuss these vulnerabili-
ties and compare levels of privacy. We consider private information to be that related to the exposure of
client private data as well for our use case the information regarding the client model Ck e.g. architec-
ture, parameters, etc.

First, let us discuss the vulnerabilities that each federated learning algorithm exposes. We also in-
clude the evaluation of FedAvg [8], to compare against the most common FL algorithm. We have as-
sumed that both the clients and aggregation server are honest-but-curious - follows the algorithm as
outlined but also looks to learn all information legitimately - presenting a summary of findings in the
following table:

Algorithm
Access (Client / Server)

Client
Data

Model
White-box Black-box

FedAvg ✗/✗ C /Ck ✗/✗
FedMD ?/? ✗/✗ ✗/Ck

FD + FAug ✗/✓ G/G ✗/✗
FedDTG ✗/✗ G , D/Gk , Dk ✗/Ck

FedGDKD ✗/✗ G/Gk ✗/Ck

Table 5.15: Privacy: Summary of privacy leakage present in each federated learning algorithm.

57

where white-box refers to full access to a model (architecture, parameters, etc.) and black-box refers
to the ability to query the model i.e. pass an input and receive an output. In terms of severity, access to
client private data directly is the most severe for obvious reasons, following this is white-box access as
this provides full access to a model and finally black-box which provides limited access. In particular,
white-box access to the client models Ck is more severe than other models. The attacks that can be
performed with each level of access can be found here [50]. Next, we give explanation to how Table 5.15
was produced.

Firstly, Federated Averaging (FedAvg) [8], which does not require sharing of any client private data.
FedAvg uses parameter aggregation of client models Ck at the central server. This means that the server
has white-box access to all of the client models Ck ; the client has white-box access to the global model C
which is the weighted average of client models. This is the only federated learning algorithm discussed
that exposes the client model to white-box access.

Following this is FedMD (Section 3.1.1), which firstly requires a proxy dataset to carry out knowledge
distillation. In the circumstance that the proxy dataset can be sourced from a similar domain without
restriction then there is no leakage of client data. However, in the circumstance where no proxy dataset
can be sourced, the clients will have to share some private data hence the “?" meaning depends. We
have assumed the latter for preceding sections of evaluation. Additionally, the central server has access
to the proxy dataset (as a means of distribution) and queries each client model Ck to ensemble teacher
logits for knowledge distillation. This means that the server has black-box access to the client models.
However, the aggregation of the teacher logits could also be insecure as the server knows the individual
client logits so it can learn some information about the structure of the training data i.e. if it has greater
representation of some classes over others etc.

Next, FD + FAug (Section 3.1.2), to initialise the algorithm each client shares private data to a high-
powered server (which we assume to be the same as the aggregation server) to train a generative model
G as part of FAug. This means that the server has access to the shared private data of the clients albeit
partially. Once G is trained, it is distributed to the clients so both the server and clients have white-box
access to it. Note, most attacks [50] work to uncover the private training data. So if the the proportion
of shared training data is small so is the privacy leakage. Additionally, in FD + FAug, the clients share
averages of class-wise logits which are then aggregated and redistributed at the server. One could argue
that this does not strictly count as black-box access as neither the server nor client have knowledge about
the data that was used to produce these logits and the averaging protects finer-grained information
leakage. However, the aggregation of these could be insecure again through similar logic mentioned for
FedMD.

Let us then discuss FedDTG (Section 3.2.1) which also does not require clients to share any private
data. We can break down the algorithm into its main stages. First, GAN training, this stage requires that
each client trains local copies of a shared generator G and discriminator D then sharing these back to the
server. Therefore, the server has white-box access to the client copies Gk , Dk and the clients have white-
box access to the shared copies G and D . Following this, a shared dataset for knowledge distillation is
constructed and the server queries each client model Ck for its outputs. This suggests that as the server
knows both the input and the output, it has black-box access to client models Ck . Following similar
logic used in FedMD, the aggregation of logits could again be insecure allowing the server to uncover
the structure of each client’s training data.

Finally, our proposed method FedGDKD (Chapter 4), which again does not require clients to share
any private data. Similarly to FedDTG, for GAN training the clients collaboratively train a global gener-
ator G sharing local copies Gk with the server - so white-box access. Additionally, again similar to Fed-
DTG, a shared dataset is constructed for knowledge distillation by using G whereby the server queries
client models Ck giving it black-box access. We also note the additional regularisation given by the novel
cGAN training objectives (Section 4.2.1), this prevents the client models overfitting on the private data
which can further reduce privacy leakage [51]. Finally, similar to FedMD the aggregation of logits could
also cause some privacy leakage.

To compare the above, we focus on the severity of each vulnerability present (as discussed earlier).
First, the most secure algorithm is FedMD when an applicable proxy dataset can be found without the
need for clients to share private data. Following this as the next most secure is our proposed method
FedGDKD, this is because of limited black-box access to client models and only white-box access to a
shared generator. Then we have FedDTG for similar reasoning however, exposing an additional shared
discriminator D which directly interacts with client data. After this is FD + FAug, where a small amount
of client private data is shared in addition to a generator G trained on it but the client models are mostly
protected. Then FedAvg, as although it does not expose any client data directly, white-box access to

58

the client models Ck is given. Finally the least secure is FedMD where a proxy dataset cannot be found
and must be constructed from a proportion of client private data. The proxy dataset is shared amongst
clients and so each client will have access to other’s private data.

In summary, we have found that our proposed method FedGDKD, has higher privacy guarantees
than most other federated learning algorithms present, further reinforcing its applicability. However,
it still has vulnerabilities that can lead to privacy leakage of which we discuss solutions to in the next
section.

5.5.2 Vulnerability Mitigation

In Section 5.5.1, we discussed the vulnerabilities present in our proposed algorithm FedGDKD that could
lead to privacy leakage. In this section, we look at how we can combat this with implementation and
investigation left as future work.

The two main vulnerabilities that FedGDKD has is the shared generator model G which approxi-
mates the joint distribution of the collective client private data. The second vulnerability is the informa-
tion leakage that could be present in sharing logits calculated on the distillation set using client models
Ck . Next we offer suggestions for further research as to how to tackle them.

Local Differential Privacy

Differential privacy (DP) has been used extensively in deep learning and in analytics to preserve privacy
of individuals in datasets [52, 53]. Therefore, we can use differential privacy local to each client in two
places: when training the local copy of the generator model Gk and when returning the logits on the
distillation dataset.

Using ideas from Differentially Private GANs (DPGAN) [54] and its federated implementation [55],
we can kill two birds in one stone by training the client model Ck in a differentially private manner
i.e. adding noise to gradients and clipping updates. Due to the post-processing property of DP, where
a function on something that is differentially private is also differentially private, the generator G and
logits will be differentially private too. This is because the generator G does not directly interact with
client private data but interacts with outputs of Ck which has. Additionally, the logits of Ck will also be
inherently differentially private for the same reason.

However, there is a privacy-utility trade-off that comes into play when using DP. This is where in
place of privacy the performance of the algorithm will be negatively affected. Therefore, directly apply-
ing DP to the client model Ck will worsen its performance. Could there be a way to reduce this effect
while maintaining the same privacy guarantees? Potentially, we could apply DP directly to the shared
generator and to the logits instead of to the client model. This means that Ck will not be hampered by
DP and may perform better. Unfortunately, this can add further complexity as DP occurs separately in
two places now.

Secure Aggregation

Alternatively, we can employ secure aggregation [56] at the central server which will hide individual
contributions of each client’s generator parameters or knowledge distillation logits. This can be used to
prevent the server from having black-box access to client models and increase privacy without the ex-
pense of utility. This would be used to aggregate the client copies of the generator Gk and for aggregating
client logits for knowledge distillation.

However, while protecting individual contributions and updates of clients, secure aggregation will
not alone protect against the privacy leakage from white-box access to the generator G . Therefore, a
solution could be to use secure aggregation with DP on just the generator. This, in theory, could also
maintain utility better than just local DP on the client model Ck .

Overall Summary

In summary we have presented three different approaches on mitigating privacy leakage in our pro-
posed algorithm FedGDKD. The evaluation of such improvements is left for further research but indeed
provides interesting discussion.

59

5.6 Summary

In summary, in conjunction with the problem statement and challenges set out in Section 4.1, we have
explored the various aspects of our proposed method FedGDKD compared to the state-of-the-art. In
particular, we can give an overall score to each heterogeneous model federated learning algorithm based
on their relative rankings of performance (Section 5.2), efficiency (Section 5.4), privacy (Section 5.5)
and whether they are data-based (0 for no; 1 for yes). The lower the overall total, the better the overall
algorithm.

Algorithm Data-based Performance Efficiency Privacy Total

FedMD 1 1(2*) 1 4 7(8*)
FD + FAug 1 4 2 3 10
FedDTG 0 3 4 2 9

FedGDKD 0 2(1*) 3 1 6(5*)

Table 5.16: Ranking algorithms over evaluation areas.

In this project, we have assumed that a proxy dataset is impossible to assemble (clients share 5%
of their data) and so for FedMD we have accordingly ranked it in Table 5.16. The performance rank-
ings were purely based on final top-1 test accuracies reached, whereas, if improvement over baselines is
considered, as denoted by the “*“, then FedGDKD would be ranked first and FedMD second (leading to
an overall score of 5 and 8, respectively). In either case however, the results show that overall, the pro-
posed method FedGDKD is the best when compared to the state-of-the-art when meeting the solution
criteria. Additionally, we have shown that the novel GAN training method present in FedGDKD proves
to also be more robust than the state-of-the-art federated GAN algorithm. However, this evaluation has
also highlighted areas of improvement as well as further research.

60

Chapter 6

Conclusions and Future Work

In this project, we have presented a novel algorithm for tackling the problem of heterogeneous model
federated learning. A summary of our contributions is as follows:

• We introduced Federated GAN-based Data-Free Knowledge Distillation (FedGDKD), a novel fed-
erated learning algorithm that allows clients to collaborate effectively while protecting the archi-
tecture and parameters of their own model. The algorithm is made up of three stages: local GAN
training, generator aggregation and data-free knowledge distillation which are all necessary for
best performance. We evaluated our algorithm across both the MNIST and EMNIST datasets with
various settings. This showed that FedGDKD performs well under various amounts of data hetero-
geneity (degree of non-iid) and even shows higher robustness to these settings than state-of-the-
art methods; is more efficient than other state-of-the-art heterogeneous model federated learning
algorithms using data-free knowledge distillation; is more private than other state-of-the-art het-
erogeneous model federated learning algorithms under.

• In the process of developing FedGDKD, we developed a novel cGAN loss formulation for training
conditional generators that removes the use of a discriminator task. This allows clients to not have
to modify their private models to use FedGDKD.

• Continuing with the previous contribution, FedGDKD also introduces a novel federated cGAN
training method, whereby only the generator must be shared and the discriminator’s role is ab-
sorbed into the client’s private classifier (can be heterogeneous in architecture too). We evaluated
this against the state-of-the-art method FedGAN and found it in fact generally performs better, is
more private and is more communication efficient.

Additionally, from evaluating our method we had found areas of improvement and that of further
work that could be done:

Theoretical Convergence Analysis In this project we empirically evaluated the convergence of
FedGDKD under various scenarios. For more rigorous evaluation, a theoretical convergence analysis
should be performed obtaining an upper bound.

Evaluation Under More Complex Datasets In this project we focussed on simple image-classification
datasets: MNIST and EMNIST. Further evaluation should be done to see the performance on image
datasets that have more complex features e.g. CIFAR10[57] or ImageNet[58].

Evaluation Under More Random Seeds In this project due to limitations in time, we were only able to
perform a single run for some algorithms over a single seed per experiment. This is because of the run-
time being quite large (up to 9 hours). Therefore, to test further and to further isolate performance from
a lucky/unlucky random seed, we suggest running more experiments over multiple seeds to find the a
better approximation of performance.

Evaluate FedMD With Suitable Proxy Datasets In this project we assumed that the proxy dataset was
impossible to assemble for the FedMD algorithm (Section 3.1.1). It would be interesting to explore the
case where one could be assembled. This could be done by perturbing or applying transformations on
the dataset to different degrees to simulate covariate shift and elicit a difference in domain. We can then

61

see the effect on performance this has, which we hypothesise will make FedMD perform worse.

Extension To Other Tasks As current methods in knowledge distillation Section 2.3 mainly focus on clas-
sification tasks, it would be interesting to see extensions to other tasks such as regression.

Knowledge Distillation Weight Scheduling In our evaluation of the hyperparameters related to knowl-
edge distillation (Section 5.2.4), we had found evidence that having a schedule for the weight parameter
αK D could improve overall performance of FedGDKD. Therefore, different schedules
should be explored to see what works best.

GAN Training Our novel GAN training objectives were evaluated to perform better than the state-of-the-
art (Section 5.2.5). However, further research can be done to improve the diversity of samples generated.
As this can be used to further improve the efficiency of knowledge distillation. This was discussed in the
study when varying the distillation dataset size N Section 5.2.4.

Communication Efficiency Enhancement When evaluating the communication efficiency of our pro-
posed method (Section 5.4.2), we had found that FedGDKD has a relatively large cost. Therefore, we
proposed methods of reducing these communication costs through methods such as: model quantisa-
tion, compression and modifying hyperparameters. Other such methods should be implemented and
evaluated in future work.

Privacy Enhancement In the privacy evaluation of our proposed method (Section 5.5), we had found
potential vulnerabilities that could lead to privacy leakage. We additionally propose solutions to miti-
gate this vulnerabilities however further work should be done to implement and evaluate such improve-
ments.

We also consider that the constituent methods and techniques used in FedGDKD may have orthogo-
nal enhancements that complement well. One such example is more robust parameter aggregation like
used in FedProx[59] or SCAFFOLD[60]. It is also worth stating that any individual method or technique
used in FedGDKD can be switched out for one that is more effective, such as a better version of response-
based knowledge distilliaton. Any of these changes could positively impact the overall performance of
our proposed method.

Finally, to finish, this project proved difficult at times due to the expansive fields of Federated Learn-
ing, GANs and Knowledge Distillation. However, we feel that the final method presented is one that
tackles the problem of heterogeneous model federated learning effectively and hope that it opens fur-
ther questions into the field.

62

Bibliography

[1] Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, et al. Advances and open
problems in federated learning. arXiv preprint arXiv:191204977. 2019. Available from: https:
//arxiv.org/abs/1912.04977.

[2] Gonzalo Medina TT. Diagram of an artificial neuron; 2017. Last accessed 07 Jan-
uary 2022. Available from: https://tex.stackexchange.com/questions/132444/
diagram-of-an-artificial-neural-network.

[3] Zhou Y, Song S, Cheung NM. On classification of distorted images with deep convolutional neu-
ral networks. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE; 2017. p. 1213-7. Available from: https://ieeexplore.ieee.org/document/
7952349.

[4] Overview of GAN Structure; Generative Adversarial Networks; Google Developers. Google;. Avail-
able from: https://developers.google.com/machine-learning/gan/gan_structure.

[5] Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier gans. In: In-
ternational conference on machine learning. PMLR; 2017. p. 2642-51. Available from: https:
//arxiv.org/abs/1610.09585v3.

[6] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein
structure prediction with AlphaFold. Nature. 2021;596(7873):583-9. Available from: https://www.
nature.com/articles/s41586-021-03819-2.

[7] Al-Rubaie, Mohammad and Chang, J Morris. Privacy-Preserving Machine Learning: Threats and
Solutions. IEEE Security Privacy. 2019;17(2):49-58. Available from: https://ieeexplore.ieee.
org/abstract/document/8677282.

[8] Brendan McMahan H, Moore E, Ramage D, Hampson S, Agüera y Arcas B. Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics. PMLR;
2017. p. 1273-82. Available from: http://proceedings.mlr.press/v54/mcmahan17a.

[9] Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network. In: NIPS Deep Learning
and Representation Learning Workshop; 2015. Available from: http://arxiv.org/abs/1503.
02531.

[10] Mireshghallah F, Taram M, Vepakomma P, Singh A, Raskar R, Esmaeilzadeh H. Privacy in deep
learning: A survey. arXiv preprint arXiv:200412254. 2020. Available from: https://arxiv.org/
abs/2004.12254.

[11] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. Available from:
https://www.nature.com/articles/nature14539.

[12] Stutz D. Illustrating (Convolutional) Neural Networks in LaTeX with TikZ; 2020.
Last accessed 10 January 2022. Available from: https://davidstutz.de/
illustrating-convolutional-neural-networks-in-latex-with-tikz/.

[13] Weisstein EW. Convolution.. MathWorld–A Wolfram Web Resource.;. Available from: https://
mathworld.wolfram.com/Convolution.html.

63

https://arxiv.org/abs/1912.04977
https://arxiv.org/abs/1912.04977
https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network
https://ieeexplore.ieee.org/document/7952349
https://ieeexplore.ieee.org/document/7952349
https://developers.google.com/machine-learning/gan/gan_structure
https://arxiv.org/abs/1610.09585v3
https://arxiv.org/abs/1610.09585v3
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://ieeexplore.ieee.org/abstract/document/8677282
https://ieeexplore.ieee.org/abstract/document/8677282
http://proceedings.mlr.press/v54/mcmahan17a
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2004.12254
https://arxiv.org/abs/2004.12254
https://www.nature.com/articles/nature14539
https://davidstutz.de/illustrating-convolutional-neural-networks-in-latex-with-tikz/
https://davidstutz.de/illustrating-convolutional-neural-networks-in-latex-with-tikz/
https://mathworld.wolfram.com/Convolution.html
https://mathworld.wolfram.com/Convolution.html

[14] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Gen-
erative Adversarial Nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence N, Wein-
berger KQ, editors. Advances in Neural Information Processing Systems. vol. 27. Curran As-
sociates, Inc.; 2014. Available from: https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[15] Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation.
California Univ San Diego La Jolla Inst for Cognitive Science; 1985. Available from: https:
//ieeexplore.ieee.org/document/6302929.

[16] Nishio T, Yonetani R. Client Selection for Federated Learning with Heterogeneous Resources in
Mobile Edge. In: ICC 2019 - 2019 IEEE International Conference on Communications (ICC); 2019.
p. 1-7. Available from: https://arxiv.org/abs/1804.08333.

[17] Zhu H, Xu J, Liu S, Jin Y. Federated Learning on Non-IID Data: A Survey. arXiv preprint
arXiv:210606843. 2021. Available from: https://arxiv.org/abs/2106.06843.

[18] Tan AZ, Yu H, Cui L, Yang Q. Towards personalized federated learning. arXiv preprint
arXiv:210300710. 2021. Available from: https://arxiv.org/abs/2103.00710.

[19] Gou J, Yu B, Maybank SJ, Tao D. Knowledge distillation: A survey. International Journal of Com-
puter Vision. 2021;129(6):1789-819. Available from: https://link.springer.com/article/10.
1007/s11263-021-01453-z.

[20] Lee SH, Kim DH, Song BC. Self-supervised knowledge distillation using singular value decompo-
sition. In: Proceedings of the European Conference on Computer Vision (ECCV); 2018. p. 335-50.
Available from: https://arxiv.org/abs/1807.06819.

[21] Anil R, Pereyra G, Passos A, Ormandi R, Dahl GE, Hinton GE. Large scale distributed neural network
training through online distillation. arXiv preprint arXiv:180403235. 2018. Available from: https:
//arxiv.org/abs/1804.03235.

[22] Zhang L, Song J, Gao A, Chen J, Bao C, Ma K. Be your own teacher: Improve the performance of
convolutional neural networks via self distillation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision; 2019. p. 3713-22. Available from: https://arxiv.org/abs/
1905.08094.

[23] Stanton S, Izmailov P, Kirichenko P, Alemi AA, Wilson AG. Does Knowledge Distillation Really Work?
arXiv preprint arXiv:210605945. 2021. Available from: https://arxiv.org/abs/2106.05945.

[24] Li D, Wang J. FedMD: Heterogenous federated learning via model distillation. arXiv preprint
arXiv:191003581. 2019. Available from: https://arxiv.org/abs/1910.03581.

[25] Jeong E, Oh S, Kim H, Park J, Bennis M, Kim SL. Communication-efficient on-device machine
learning: Federated distillation and augmentation under non-iid private data. arXiv preprint
arXiv:181111479. 2018. Available from: https://arxiv.org/abs/2103.00710.

[26] Zhang Z. FedDTG: Federated Data-Free Knowledge Distillation via Three-Player Generative Adver-
sarial Networks. arXiv preprint arXiv:220103169. 2022. Available from: https://arxiv.org/pdf/
2201.03169.

[27] Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier gans. In: In-
ternational conference on machine learning. PMLR; 2017. p. 2642-51. Available from: https:
//arxiv.org/abs/1610.09585.

[28] Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for
training GANs. Advances in neural information processing systems. 2016;29. Available from:
https://arxiv.org/pdf/1606.03498.

[29] Odena A. Semi-supervised learning with generative adversarial networks. arXiv preprint
arXiv:160601583. 2016. Available from: https://arxiv.org/abs/1606.01583.

[30] torch.logsumexp. PyTorch;. Available from: https://pytorch.org/docs/stable/generated/
torch.logsumexp.html.

64

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://ieeexplore.ieee.org/document/6302929
https://ieeexplore.ieee.org/document/6302929
https://arxiv.org/abs/1804.08333
https://arxiv.org/abs/2106.06843
https://arxiv.org/abs/2103.00710
https://link.springer.com/article/10.1007/s11263-021-01453-z
https://link.springer.com/article/10.1007/s11263-021-01453-z
https://arxiv.org/abs/1807.06819
https://arxiv.org/abs/1804.03235
https://arxiv.org/abs/1804.03235
https://arxiv.org/abs/1905.08094
https://arxiv.org/abs/1905.08094
https://arxiv.org/abs/2106.05945
https://arxiv.org/abs/1910.03581
https://arxiv.org/abs/2103.00710
https://arxiv.org/pdf/2201.03169
https://arxiv.org/pdf/2201.03169
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1610.09585
https://arxiv.org/pdf/1606.03498
https://arxiv.org/abs/1606.01583
https://pytorch.org/docs/stable/generated/torch.logsumexp.html
https://pytorch.org/docs/stable/generated/torch.logsumexp.html

[31] softplus. PyTorch;. Available from: https://pytorch.org/docs/stable/generated/torch.
nn.Softplus.html.

[32] OpenAI. Code for the paper "Improved Techniques for Training GANs"; 2018. [Online; accessed
10-June-2022]. https://github.com/openai/improved-gan.

[33] Common Problems; Generative Adversarial Networks; Google Developers. Google;. Available from:
https://developers.google.com/machine-learning/gan/problems.

[34] Petrova O. Semi-Supervised Learning with GANs: a Tale of Cats and Dogs; 2020. [Online; accessed
10-June-2022]. https://blog.scaleway.com/semi-supervised/.

[35] Rasouli M, Sun T, Rajagopal R. FedGAN: Federated generative adversarial networks for distributed
data. arXiv preprint arXiv:200607228. 2020. Available from: https://arxiv.org/pdf/2006.
07228.

[36] Guerraoui R, Guirguis A, Kermarrec AM, Merrer EL. FeGAN: Scaling Distributed GANs. Proceedings
of the 21st International Middleware Conference. 2020. Available from: https://dl.acm.org/
doi/pdf/10.1145/3423211.3425688.

[37] Fan, Chenyou and Liu, Ping. Federated generative adversarial learning. In: Chinese Conference on
Pattern Recognition and Computer Vision (PRCV). Springer; 2020. p. 3-15. Available from: https:
//arxiv.org/pdf/2005.03793.

[38] Hardy C, Le Merrer E, Sericola B. MD-GAN: Multi-Discriminator Generative Adversarial Networks
for Distributed Datasets. In: 2019 IEEE international parallel and distributed processing sym-
posium (IPDPS). IEEE; 2019. p. 866-77. Available from: https://ieeexplore.ieee.org/iel7/
8804711/8820774/08821025.

[39] Yonetani R, Takahashi T, Hashimoto A, Ushiku Y. Decentralized learning of generative adversar-
ial networks from non-iid data. arXiv preprint arXiv:190509684. 2019. Available from: https:
//arxiv.org/pdf/1905.09684.

[40] He C, Li S, So J, Zhang M, Wang H, Wang X, et al. FedML: A Research Library and Benchmark
for Federated Machine Learning. Advances in Neural Information Processing Systems, Best Paper
Award at Federate Learning Workshop. 2020. Available from: https://arxiv.org/abs/2007.
13518.

[41] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In: Wallach H, Larochelle H, Beygelzimer A, d'Alché-
Buc F, Fox E, Garnett R, editors. Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc.; 2019. p. 8024-35. Available from: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[42] Biewald L. Experiment Tracking with Weights and Biases; 2020. Software available from
wandb.com. Available from: https://www.wandb.com/.

[43] LeCun Y, Cortes C, Burges C. MNIST handwritten digit database. ATT Labs [Online]. 2010;2. Avail-
able from: http://yann.lecun.com/exdb/mnist.

[44] Cohen G, Afshar S, Tapson J, Schaik AV. EMNIST: Extending MNIST to handwritten letters. 2017
International Joint Conference on Neural Networks (IJCNN). 2017.

[45] Kotz S, Balakrishnan N, Johnson NL. 49. In: Continuous multivariate distributions, Volume 1:
Models and applications. vol. 1. John Wiley & Sons; 2004. .

[46] Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs Trained by a Two Time-
Scale Update Rule Converge to a Local Nash Equilibrium. In: Guyon I, Luxburg UV, Bengio S,
Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in Neural Information Processing
Systems. vol. 30. Curran Associates, Inc.; 2017. Available from: https://proceedings.neurips.
cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.

[47] Wang S, Tuor T, Salonidis T, Leung KK, Makaya C, He T, et al. Adaptive Federated Learning in Re-
source Constrained Edge Computing Systems. IEEE Journal on Selected Areas in Communications.
2019;37(6):1205-21. Available from: https://ieeexplore.ieee.org/document/8664630/.

65

https://pytorch.org/docs/stable/generated/torch.nn.Softplus.html
https://pytorch.org/docs/stable/generated/torch.nn.Softplus.html
https://github.com/openai/improved-gan
https://developers.google.com/machine-learning/gan/problems
https://blog.scaleway.com/semi-supervised/
https://arxiv.org/pdf/2006.07228
https://arxiv.org/pdf/2006.07228
https://dl.acm.org/doi/pdf/10.1145/3423211.3425688
https://dl.acm.org/doi/pdf/10.1145/3423211.3425688
https://arxiv.org/pdf/2005.03793
https://arxiv.org/pdf/2005.03793
https://ieeexplore.ieee.org/iel7/8804711/8820774/08821025
https://ieeexplore.ieee.org/iel7/8804711/8820774/08821025
https://arxiv.org/pdf/1905.09684
https://arxiv.org/pdf/1905.09684
https://arxiv.org/abs/2007.13518
https://arxiv.org/abs/2007.13518
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.wandb.com/
http://yann.lecun.com/exdb/mnist
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://ieeexplore.ieee.org/document/8664630/

[48] Knuth DE. Big omicron and big omega and big theta. ACM Sigact News. 1976;8(2):18-24.

[49] Bouacida N, Mohapatra P. Vulnerabilities in Federated Learning. IEEE Access. 2021;9:63229-49.
Available from: https://ieeexplore.ieee.org/document/9411833.

[50] Rigaki M, Garcia S. A survey of privacy attacks in machine learning. arXiv preprint arXiv:200707646.
2020. Available from: https://arxiv.org/abs/2007.07646.

[51] Yeom S, Giacomelli I, Fredrikson M, Jha S. Privacy risk in machine learning: Analyzing the connec-
tion to overfitting. In: 2018 IEEE 31st computer security foundations symposium (CSF). IEEE; 2018.
p. 268-82.

[52] Dwork C. Differential Privacy: A Survey of Results. In: Agrawal M, Du D, Duan Z, Li A, ed-
itors. Theory and Applications of Models of Computation. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2008. p. 1-19. Available from: https://link.springer.com/chapter/10.1007/
978-3-540-79228-4_1.

[53] Abadi M, Chu A, Goodfellow I, McMahan B, Mironov I, Talwar K, et al. Deep Learning with Differ-
ential Privacy. In: 23rd ACM Conference on Computer and Communications Security (ACM CCS);
2016. p. 308-18. Available from: https://arxiv.org/abs/1607.00133.

[54] Xie L, Lin K, Wang S, Wang F, Zhou J. Differentially private generative adversarial network. arXiv
preprint arXiv:180206739. 2018. Available from: https://arxiv.org/abs/1802.06739.

[55] Zhang L, Shen B, Barnawi A, Xi S, Kumar N, Wu Y. FedDPGAN: federated differentially private gen-
erative adversarial networks framework for the detection of COVID-19 pneumonia. Information
Systems Frontiers. 2021;23(6):1403-15. Available from: https://link.springer.com/article/
10.1007/s10796-021-10144-6.

[56] Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, et al. Practical secure ag-
gregation for privacy-preserving machine learning. In: proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security; 2017. p. 1175-91. Available from: https:
//dl.acm.org/doi/abs/10.1145/3133956.3133982.

[57] Krizhevsky A, Nair V, Hinton G. Learning multiple layers of features from tiny images. 2009. Avail-
able from: http://www.cs.toronto.edu/~kriz/cifar.html.

[58] Recht B, Roelofs R, Schmidt L, Shankar V. Do ImageNet Classifiers Generalize to ImageNet?
In: International Conference on Machine Learning; 2019. p. 5389-400. Available from: http:
//proceedings.mlr.press/v97/recht19a/recht19a.pdf.

[59] Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated Optimization in Heteroge-
neous Networks. In: Dhillon I, Papailiopoulos D, Sze V, editors. Proceedings of Machine Learning
and Systems. vol. 2; 2020. p. 429-50. Available from: https://proceedings.mlsys.org/paper/
2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf.

[60] Karimireddy SP, Kale S, Mohri M, Reddi S, Stich S, Suresh AT. SCAFFOLD: Stochastic controlled
averaging for federated learning. In: International Conference on Machine Learning. PMLR; 2020.
p. 5132-43. Available from: https://proceedings.mlr.press/v119/karimireddy20a.html.

66

https://ieeexplore.ieee.org/document/9411833
https://arxiv.org/abs/2007.07646
https://link.springer.com/chapter/10.1007/978-3-540-79228-4_1
https://link.springer.com/chapter/10.1007/978-3-540-79228-4_1
https://arxiv.org/abs/1607.00133
https://arxiv.org/abs/1802.06739
https://link.springer.com/article/10.1007/s10796-021-10144-6
https://link.springer.com/article/10.1007/s10796-021-10144-6
https://dl.acm.org/doi/abs/10.1145/3133956.3133982
https://dl.acm.org/doi/abs/10.1145/3133956.3133982
http://www.cs.toronto.edu/~kriz/cifar.html
http://proceedings.mlr.press/v97/recht19a/recht19a.pdf
http://proceedings.mlr.press/v97/recht19a/recht19a.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlr.press/v119/karimireddy20a.html

Appendix A

Additional Background Information

67

Datacenter
distributed learning

Cross-silo
federated learning

Cross-device
federated learning

Setting Training a model on a large but
“flat” dataset. Clients are com-
pute nodes in a single cluster
or datacenter.

Training a model on siloed
data. Clients are different
organizations (e.g. medical
or financial) or geo-distributed
datacenters.

The clients are a very large
number of mobile or IoT de-
vices.

Data
distribution

Data is centrally stored and
can be shuffled and balanced
across clients. Any client can
read any part of the dataset.

Data is generated locally and remains decentralized. Each
client stores its own data and cannot read the data of other
clients. Data is not independently or identically distributed.

Orchestration Centrally orchestrated. A central orchestration server/service organizes the train-
ing, but never sees raw data.

Wide-area
communication

None (fully connected clients
in one datacenter/cluster).

Typically a hub-and-spoke topology, with the hub represent-
ing a coordinating service provider (typically without data)
and the spokes connecting to clients.

Data
availability

All clients in one datacenter/cluster Only a fraction of clients are
available at any one time, of-
ten with diurnal or other vari-
ations.

Distribution
scale

Typically 1 - 1000 clients. Typically 2 - 100 clients. Massively parallel, up to 1010

clients.

Primary
bottleneck

Computation is more often the
bottleneck in the datacenter,
where very fast networks can
be assumed.

Might be computation or com-
munication.

Communication is often the
primary bottleneck, though
it depends on the task. Gen-
erally, cross-device federated
computations use wi-fi or
slower connections.

Addressability Each client has an identity or name that allows the system to
access it specifically.

Clients cannot be indexed di-
rectly (i.e., no use of client
identifiers).

Client
statefulness

Stateful—each client may participate in each round of the
computation, carrying state from round to round.

Stateless — each client will
likely participate only once in
a task, so generally a fresh
sample of never-before-seen
clients in each round of com-
putation is assumed.

Client
reliability

Relatively few failures Highly unreliable — 5% or
more of the clients participat-
ing in a round of computation
are expected to fail or drop out
(e.g. because the device be-
comes ineligible when battery,
network, or idleness require-
ments are violated).

Data partition
axis

Data can be partitioned /
repartitioned arbitrarily across
clients.

Partition is fixed. Could be
example-partitioned (horizon-
tal) or feature-partitioned (ver-
tical).

Fixed partitioning by example
(horizontal).

Table A.1: Typical characteristics of federated learning settings vs. distributed learning in the datacenter.
[1]

68

Appendix B

Evaluation

B.1 Random Seeds

We picked seeds based on the performance of FedAvg from the range 0-4 to use for each case and fixed
it for each experiment.

Random Seeds
Dataset Setting Seed

MNIST
r = 25%

α= 0.5 4
α= 0.1 4
α= 0.05 2

MNIST
r = 10%

α= 0.5 3
α= 0.1 0
α= 0.05 0

EMNIST
r = 25%

α= 0.5 1
α= 0.1 4
α= 0.05 1

EMNIST
r = 10%

α= 0.5 4
α= 0.1 1
α= 0.05 3

Table B.1: Experiment Random Seeds Used

B.2 Client Data Heterogeneity

(a) MNIST, Di r (α= 0.5), r = 25% (b) MNIST, Di r (α= 0.1), r = 25% (c) MNIST, Di r (α= 0.05), r = 25%

69

(d) MNIST, Di r (α= 0.5), r = 10% (e) MNIST, Di r (α= 0.1), r = 10% (f) MNIST, Di r (α= 0.05), r = 10%

(g) EMNIST, Di r (α= 0.5), r = 25% (h) EMNIST, Di r (α= 0.1), r = 25% (i) EMNIST, Di r (α= 0.05), r = 25%

(j) EMNIST, Di r (α= 0.5), r = 10% (k) EMNIST, Di r (α= 0.1), r = 10% (l) EMNIST, Di r (α= 0.05), r = 10%

Figure B.1: Client training label distributions (x-axis: client ID; y-axis: label; size of point: frequency of
label in client’s training data)

B.3 Model Architectures

For both MNIST and EMNIST, we transformed the images to size 32 x 32. Allowing us to use the same
architectures for both.

B.3.1 Generator Model Architecture

Pytorch:

ConditionalImageGenerator(
(label_emb): Embedding(10, 100)
(l1): Sequential(

(0): Linear(in_features=100, out_features=6400, bias=True)
)
(main): Sequential(

(block 0): Sequential(
(0): ConvTranspose2d(400, 200, kernel_size=(4, 4),

stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(200, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(2): ReLU(inplace=True)

70

)
(block 1): Sequential(

(0): ConvTranspose2d(200, 100, kernel_size=(4, 4),
stride=(2, 2), padding=(1, 1), bias=False)

(1): BatchNorm2d(100, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(2): ReLU(inplace=True)
)
(end): Sequential(

(0): ConvTranspose2d(100, 1, kernel_size=(4, 4),
stride=(2, 2), padding=(1, 1), bias=False)

(1): Tanh()
)

)
)

B.3.2 ACGAN Discriminator Architecture

Pytorch:

(CNNParameterised(
(net): Sequential(

(layer_0): Sequential(
(0): Conv2d(1, 8, kernel_size=(3, 3),

stride=(2, 2), padding=(1, 1), bias=False)
(1): InstanceNorm2d(8, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=False)
(2): ReLU(inplace=True)

)
(layer_1): Sequential(

(0): Conv2d(8, 16, kernel_size=(3, 3),
stride=(2, 2), padding=(1, 1), bias=False)

(1): InstanceNorm2d(16, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=False)

(2): ReLU(inplace=True)
)
(layer_2): Sequential(

(0): Conv2d(16, 16, kernel_size=(3, 3),
stride=(2, 2), padding=(1, 1), bias=False)

(1): InstanceNorm2d(16, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=False)

(2): ReLU(inplace=True)
)

)
(classifier): Sequential(

(0): Flatten(start_dim=1, end_dim=-1)
(1): Linear(in_features=256, out_features=128, bias=True)
(2): Linear(in_features=128, out_features=10, bias=True)

)
(discriminator): Sequential(

(0): Flatten(start_dim=1, end_dim=-1)
(1): Linear(in_features=256, out_features=128, bias=True)
(2): Linear(in_features=128, out_features=1, bias=True)
(3): Sigmoid()

)

71

B.4 Active-User Ratio

Figure B.2: Client participation per round with active-user ratio 30% (MNIST, Dir(α= 0.5), r = 25%)

B.5 Generator Performance: Generator Output Comparison

B.5.1 MNIST

Figure B.3: MNIST Ground Truth

(a) FedGAN (b) FedGDKD

Figure B.4: Generator Performance: Generator final output (MNIST, Di r (α= 0.5), r = 25%)

72

(a) FedGAN (b) FedGDKD

Figure B.5: Generator Performance: Generator final output (MNIST, Di r (α= 0.1), r = 25%)

(a) FedGAN (b) FedGDKD

Figure B.6: Generator Performance: Generator final output (MNIST, Di r (α= 0.05), r = 25%)

(a) FedGAN (b) FedGDKD

Figure B.7: Generator Performance: Generator final output (MNIST, Di r (α= 0.5), r = 10%)

73

(a) FedGAN (b) FedGDKD

Figure B.8: Generator Performance: Generator final output (MNIST, Di r (α= 0.1), r = 10%)

(a) FedGAN (b) FedGDKD

Figure B.9: Generator Performance: Generator final output (MNIST, Di r (α= 0.05), r = 10%)

74

B.5.2 EMNIST

Figure B.10: EMNIST Ground Truth

75

(a) FedGAN (b) FedGDKD

Figure B.11: Generator Performance: Generator final output (EMNIST, Di r (α= 0.5), r = 25%)

76

(a) FedGAN (b) FedGDKD

Figure B.12: Generator Performance: Generator final output (EMNIST, Di r (α= 0.1), r = 25%)

77

(a) FedGAN (b) FedGDKD

Figure B.13: Generator Performance: Generator final output (EMNIST, Di r (α= 0.05), r = 25%)

78

(a) FedGAN (b) FedGDKD

Figure B.14: Generator Performance: Generator final output (EMNIST, Di r (α= 0.5), r = 10%)

79

(a) FedGAN (b) FedGDKD

Figure B.15: Generator Performance: Generator final output (EMNIST, Di r (α= 0.1), r = 10%)

80

(a) FedGAN (b) FedGDKD

Figure B.16: Generator Performance: Generator final output (EMNIST, Di r (α= 0.05), r = 10%)

81

	Introduction
	Contributions
	Ethical Considerations

	Background
	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Generative Adversarial Networks
	Supervised Learning
	Optimisation

	Federated Learning
	A Few Definitions
	A Federated Training Process
	Limitations

	Knowledge Distillation
	Approach
	What Is The Knowledge In A DNN?
	Distillation Schemes
	Challenges

	Summary

	Related Work
	Data-Based
	Heterogeneous Federated Learning via Model Distillation (FedMD)
	Federated Distillation and Federated Augmentation (FD + FAug)

	Data-Free
	Federated Data-Free Knowledge Distillation via Three-Player Generative Adversarial Networks (FedDTG)

	Summary

	Federated GAN-Based Data-Free Knowledge Distillation (FedGDKD)
	Problem Statement
	Proposed Method
	Local GAN Training
	Generator Aggregation
	Data-Free Knowledge Distillation

	Implementation
	FedML.fedml_api.standalone
	FedML.fedml_experiments.standalone

	Summary

	Evaluation
	Experiment Setup
	Dataset
	Configurations
	Client Data Heterogeneity
	Baselines

	Performance
	Homogeneous Client Models
	Heterogeneous Client Models
	Active-User Ratio
	Knowledge Distillation Parameter Study
	Generator Performance

	Ablation Study
	Shared Generator
	Data-Free Knowledge Distillation
	Catch Up Distillation

	Efficiency
	Computational Complexity
	Communication Cost

	Privacy
	Privacy Leakage
	Vulnerability Mitigation

	Summary

	Conclusions and Future Work
	Additional Background Information
	Evaluation
	Random Seeds
	Client Data Heterogeneity
	Model Architectures
	Generator Model Architecture
	ACGAN Discriminator Architecture

	Active-User Ratio
	Generator Performance: Generator Output Comparison
	MNIST
	EMNIST

