
MENG INDIVIDUAL PROJECT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

WGSLsmith: a Random Generator of
WebGPU Shader Programs

Author:
Hasan Mohsin

Supervisor:
Prof. Alastair Donaldson

June 2022

Submitted in partial fulfillment of the requirements for the MEng Computing Degree of
Imperial College London

Abstract

The WebGPU API is a recent addition to the web, catering to the high performance graph-
ics needs of modern web applications. The introduction of WGSL as WebGPU’s shader
language enables web developers to write graphics and compute shaders to accelerate
their applications, but facilitates running untrusted code from the internet on GPUs.
Thus, it is crucial to ensure that WGSL compilers are free from bugs to limit the potential
for exploitable vulnerabilities.

Compiler testing has been explored in the past to find bugs across various languages and
compilers. WGSLsmith provides a toolkit for testing WGSL compilers through random-
ized testing. To date, it has been able to find 33 distinct bugs, including both crashes and
miscompilations resulting in unexpected runtime behaviour. Most of these have been
reported to and confirmed by compiler developers, and several have already been fixed.

WGSLsmith is able to generate test programs using a range of WGSL language features,
and is the first tool for testing shader compilers with support for pointers. This uses
a static pointer analysis to ensure that programs containing pointer operations behave
predictably. WGSLsmith also applies the reconditioning technique [1] to avoid undefined
behaviour in generated programs, enabling the use of off-the-shelf test case reduction
tools to produce human-readable test cases suitable for bug reports.

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. Alastair Donaldson, for his invaluable
guidance, support and feedback throughout the project, as well as for helping with bug-
finding on macOS. It has been a pleasure to work with you on this project.

I would also like to thank the Tint and Naga developers for providing feedback on bug
reports. I am particularly grateful to Teodor Tanasoaia for their quick responses and code
reviews on my pull requests.

Finally, I would like to thank my friends and family for their support throughout the past
four years, without which I never would have made it this far.

Contents

1 Introduction 4
1.1 Contributions . 5

2 Background 6
2.1 Compiler Testing . 6
2.2 Program Construction . 7

2.2.1 Program Generation . 8
2.2.2 Program Transformation . 9

2.3 Ensuring Correctness . 10
2.3.1 Structural Approach . 10
2.3.2 Dynamic Checks . 11
2.3.3 Generation-Time Analysis . 12

2.4 Test Oracles . 13
2.4.1 Differential Testing . 13
2.4.2 Metamorphic Testing . 14

2.5 Test Case Reduction . 15
2.5.1 Reconditioning . 17
2.5.2 Bug Slippage . 17

3 Graphics Programming 18
3.1 Overview . 18
3.2 WebGPU . 19
3.3 WGSL . 20

3.3.1 Overview . 20
3.3.2 Shader I/O . 22
3.3.3 Pointers . 23
3.3.4 Floating-Point . 23
3.3.5 Predictability and Undefined Behaviour 24

3.4 Security Concerns . 25

4 WGSLsmith 26

2

CONTENTS CONTENTS

4.1 Generator . 27
4.1.1 Types . 28
4.1.2 Global Variables . 29
4.1.3 Expressions . 29
4.1.4 Functions . 30
4.1.5 Pointers . 31
4.1.6 Statements & Control-Flow . 32

4.2 Reconditioner . 32
4.2.1 Arithmetic Wrappers . 33
4.2.2 Floating-Point . 35
4.2.3 Loop Limiters . 36
4.2.4 Array Bounds Checking . 36
4.2.5 Pointer Aliasing . 37

4.3 Test harness . 42
4.3.1 Reflection . 43
4.3.2 Preprocessing . 44
4.3.3 Execution . 45
4.3.4 Buffer Checking . 46
4.3.5 Server Mode . 46

4.4 Reduction Driver . 47
4.4.1 Interestingness Test . 47

5 Evaluation 48
5.1 Bugs Found . 48

5.1.1 Smallest integer literals in Metal 49
5.1.2 Pointer bugs . 50
5.1.3 FXC issues affecting WGSL compilers 51
5.1.4 Switch statements . 52
5.1.5 Implicit array initialization . 53

5.2 Bug Reporting . 53
5.3 Reducer Evaluation . 54

6 Conclusion 57
6.1 Future Work . 57
6.2 Ethical Considerations . 58

A Built-In Functions 59

Bibliography 60

3

Chapter 1

Introduction

With the introduction of the WebGPU API [2], the web has gained new capabilities for
high performance graphics rendering and general purpose computation on GPU hard-
ware. This enables a wide range of applications to target web browsers, from video
games to graphics-intensive professional tools.

However, the nature of the web platform means that software developed for the web is
a valuable target for attacks. It is crucial to ensure that web browsers are secure and
free from exploitable bugs, to safeguard users’ devices and personal data. The addition
of WebGPU serves to expand the exploitable attack surface of web browsers, increasing
the potential for misuse (see section 3.4).

Modern graphics hardware is highly programmable and can be used for general com-
putation applications such as machine learning. WebGPU introduces WGSL [3], a new
programming language for writing GPU programs, known as shaders. Implementations
of WebGPU include compilers in order to transform WGSL source code into platform and
driver specific shader code to be executed on the hardware.

Compilers provide critical infrastructure for a language, and are typically highly complex
pieces of software. Thus, it is no surprise that existing research has shown bugs to be
prevalent in compilers for mainstream programming languages such as C and C++ [4].

Most research into compiler bugs and testing approaches focuses on general purpose pro-
gramming languages such as C and C++ [4–10]. This makes sense as these languages
are commonly used to implement critical systems. Some recent work has been done on
testing compilers for GLSL, a shader language designed for the OpenGL API [11, 12], as
well as SPIR-V for Vulkan [13, 14].

4

CHAPTER 1. INTRODUCTION 1.1. CONTRIBUTIONS

1.1 Contributions

This project introduces WGSLsmith, a toolkit for performing automated testing of WGSL
compilers. WGSLsmith uses randomized testing (fuzzing) to test compilers by generating
random shader programs and running them to compare the behaviour across compiler
implementations (section 4.1).

WGSLsmith applies the idea of reconditioning [1] to WGSL, to ensure that generated
programs have predictable runtime behaviour, and to maintain this property during test
case reduction (section 4.2). Additionally, WGSLsmith is the first tool for testing shader
compilers that includes support for pointers, and uses a pointer analysis to ensure that
pointer accesses remain valid.

WGSLsmith includes a flexible tool for executing and testing arbitrary WGSL shaders, for
use in differential testing scenarios (section 4.3). This is able to execute shaders with
different I/O layouts, and can perform alignment and padding sensitive buffer compar-
isons for use across compiler implementations1. It also implements a client-server model
to enable remote testing workflows.

Finally, WGSLsmith also includes tools for performing automated test case reduction
on shaders, to produce human-readable test cases suitable for providing in bug reports
(section 4.4).

WGSLsmith has been continuously evaluated to find bugs in the current WGSL compiler
implementations (Tint [15] and Naga [16]). So far, it has been able to find 33 bugs (sec-
tion 5.1), most of which have been reported to compiler developers and several of which
have already been fixed. Different types of bugs have been found, including both crashes
and miscompilations resulting in unexpected runtime behaviour. The performance of
four different reducers has also been evaluated when applied to WGSL programs using
the reconditioning technique (section 5.3).

1Compiler implementations do not currently treat padding the same, though recent spec changes have
been made to rectify this. See section 4.3.1.

5

Chapter 2

Background

This chapter introduces compiler testing concepts, and discusses approaches that have
been used in the past by existing testing tools. As this chapter focuses on general com-
piler testing, an introduction to graphics programming and WebGPU is provided later in
chapter 3.

2.1 Compiler Testing

Testing software is crucial to ensuring that it fulfils its requirements and is free from bugs.
A common method for testing is to use manually written test cases. This approach has
a number of advantages: it is very flexible as tests can be highly focused for a particular
application and scenario; additionally, it is usually straightforward for the programmer
to determine the expected program output for a given test case, avoiding the test oracle
problem (discussed in section 2.4).

However, manual testing puts considerable burden on the programmer to write these
test cases. Writing good tests can take significant time and effort. It is also limited
by the programmer’s imagination; the only cases that will be tested are those that the
programmer has thought of. While the programmer may be good at testing the expected
inputs and execution paths, identifying all possible edge cases and input variations to
test is usually more difficult.

Another approach is to use formal verification to ensure correct program behaviour. This
has the advantage of being able to verify all possible execution paths of the program,
thus guaranteeing correctness. Existing work has been done to apply formal verification
to compilers such as CompCert [10]. However, it is a laborious process and can take a
long time for non-trivial systems, often resulting in specifications larger than the software
itself. This makes it impractical for large scale software such as compilers.

6

CHAPTER 2. BACKGROUND 2.2. PROGRAM CONSTRUCTION

Automatic test case generation can overcome the challenges associated with manual
testing, by removing the burden from the programmer to design and write test cases.
Fuzzing is an approach to automate the testing process by producing large numbers of
randomized test cases, with the aim that some of these test cases will probabilistically
trigger bugs.

However, this poses a number of new challenges.

• Firstly, it is necessary to automatically construct test programs to test the compiler
with (section 2.2). For a very simple approach, the compiler could be tested with
arbitrary textual input. However, it is common to impose constraints on the input;
when testing middle and back-end stages of a compiler it is useful to test only
syntactically valid programs to bypass uninteresting errors from the lexing and
parsing stages of the compiler.

• Secondly, given a test case, the automated testing system must be able to determine
the expected output of the program to establish whether the compiler correctly
handles the test case. This is known as the test oracle problem (section 2.4).

• Thirdly, it must be possible to make test cases human-readable so that they can be
reported to developers (section 2.5). Test programs that are difficult to read and
analyse are unlikely to be well-received by developers as they significantly increase
the effort required to debug an issue.

Existing approaches to solving these problems are discussed in the following sections.

2.2 Program Construction

In order to test a piece of software, a concrete test case must be generated. Compil-
ers take source code as input, so the test case generator must be able to produce test
programs.

Depending on which part of the compiler is being tested, the test program will need to be
constrained. For example, to identify memory safety issues in the initial stages of lexing
and parsing it may be sufficient to provide completely random input to the compiler in
an attempt to trigger unsafe memory operations.

However, if it is desired to identify bugs that would result in miscompilations in the
output program, the test program must be both syntactically and semantically correct to
ensure it is parsed correctly. That way it can be used to test later compilation stages such
as code generation and optimization. This project focuses on detecting miscompilations
as well as crash-related bugs in the later stages of WGSL compilers.

There are two main approaches to automatically generating test programs. Random
program generation involves randomly generating new programs from scratch. Alter-

7

2.2. PROGRAM CONSTRUCTION CHAPTER 2. BACKGROUND

natively, it is possible to apply transformations to existing programs to produce new
variants of the test programs. In either case, the primary objective is usually to maximize
the diversity of test cases.

2.2.1 Program Generation

A commonly employed method for constructing test programs is to generate them from
scratch. Csmith [5] is a well-known tool capable of randomly generating C programs in
this way.

Program generation in Csmith takes a grammar-directed approach. It first creates a
random number of struct declarations, each containing a random set of members. It
then begins generating a top-level entrypoint function by selecting a production based
on the grammar rules for the current context. This process is continued recursively for
non-terminal productions.

Csmith is able to generate additional functions and variable definitions on demand. Dur-
ing the process of generating an expression, the generator may select a variable or func-
tion call in which case it can pick a previously-defined variable or function (if possible),
or decide to generate a new one. In this way, the generator uses a “top-down” approach
to generate programs [5]. Compared to an approach where all variables and functions
are generated upfront, this means that it is not restricted by previous decisions and can
instead branch out further, enabling greater diversity in the generated programs.

To make random choices during the generation process, Csmith uses a probability ta-
ble that defines probabilities for generating each of the possible constructs. Csmith also
allows the user to configure certain options that influence generation, such as the maxi-
mum expression depth.

Programs generated by Csmith are deterministic and do not read from any external in-
put. The main function invokes the top-level entrypoint and then computes and prints a
checksum of global variables [5]. This checksum is used to compare executions of the
program across compilers under test.

YARPGen [6] is another random program generator capable of producing both C and
C++ programs. The generator begins by generating a set of struct declarations similarly
to Csmith, as well as a set of global variables. It then randomly generates a set of func-
tions; unlike Csmith, variables and functions are generated upfront rather than during
expression generation. In the case of functions, this is necessary since YARPGen does not
support function calls.

After generating the test functions, YARPGen generates a main function which invokes
the test functions and computes a checksum from global variables, similarly to Csmith.

8

CHAPTER 2. BACKGROUND 2.2. PROGRAM CONSTRUCTION

Global variables are also declared in the same file as main.

YARPGen introduces the concept of generation policies [6] with the aim of increasing
program diversity. The main idea is to sample from different distributions when making
decisions in the generator. For example, YARPGen can decide to limit the types of oper-
ations in a particular expression subtree to use bitwise and shift operators only. This can
be used to target particular optimizations that the compiler may implement, for more
focused testing.

Additionally, YARPGen uses a technique known as parameter shuffling [6] where a ran-
dom distribution is used to seed the main distributions used for the generator’s decisions,
before beginning the generation process. This enables programs to have very different
characteristics between executions of the generator.

2.2.2 Program Transformation

Recent research has been conducted into using program transformation as a technique
for generating test programs. This works by taking an existing program and applying
modifications to produce a different one.

Many tools using this approach are based on the idea of equivalence modulo inputs (EMI)
[8]. At a high level, EMI relies on the idea that two programs are equivalent with respect
to some input if both programs exhibit the same behaviour given the same input. Thus,
the code produced by the compiler should exhibit the same behaviour for both of the
input programs (when run with the same inputs).

Orion [8] is an example of a bug-finding tool that makes use of this technique. Orion
applies a two-step approach to producing test programs. First, it profiles the execution
of a program on a number of inputs, to extract coverage information. This enables
identifying areas of code that are not executed (dead code) for later pruning. The second
step is to generate a number of EMI variants. Orion does this by traversing the program’s
AST and randomly removing statements that have been identified as dead code by the
previous step.

While Orion’s effectiveness at detecting bugs has been demonstrated [8], it is limited as
the only transformation applied is the removal of dead code. Athena [17] introduces
the ability to insert new code into regions of dead code. As there is no upper bound
on the amount of new code that can be inserted, this greatly increases the number and
diversity of variants that can be generated compared to Orion. Athena also introduces a
technique to improve detection of bugs that require long sequences of transformations,
by using Markov Chain Monte Carlo (MCMC) techniques for sampling with the aim of
maximizing the difference between the original and variant programs. The authors show
this to be much more effective than Orion’s simple “blind mutation strategy”.

9

2.3. ENSURING CORRECTNESS CHAPTER 2. BACKGROUND

Hermes [18] is another tool that takes this further by enabling additional transformations
capable of modifying any part of the original program. Hermes extends the profiling
stage to collect information about the concrete values of variables at each program point.
It then uses this information to insert code snippets at particular program points in such
a way that the values of existing variables at that point are unchanged. This guarantees
that the result of the program execution is preserved.

Additional tools such as GLFuzz [11] and spirv-fuzz [14] have been developed using
program transformation techniques. These are discussed further in the context of meta-
morphic testing, in section 2.4.2.

One important advantage of the aforementioned approaches is that they preserve cor-
rectness of the program across transformations. This is necessary to ensure that test
results are meaningful, and is discussed further in the next section. However, these
approaches are still limited since they can only apply a fixed set of transformations to
existing programs. A from scratch generator can potentially achieve greater diversity in
the generated programs by having more choices available during the generation process.

2.3 Ensuring Correctness

Undefined behaviour (UB) refers to behaviour that is not explicitly defined by the lan-
guage specification. For example in C, dereferencing a null pointer is undefined be-
haviour. In the presence of UB, the compiler no longer makes any guarantees about the
runtime behaviour of the program and is free to generate code with arbitrary behaviour.
In practice, this can result in effects ranging from runtime crashes to silent propagation
of errors through the program execution.

Along with undefined behaviour, it is possible for a language to have unspecified or
implementation-defined behaviour. This is behaviour that can vary between occurrences
and across compiler implementations. Implementation-defined behaviour is more com-
mon in WGSL than traditional UB (see section 3.3.5), but also leads to unpredictable
runtime behaviour and can be treated similarly.

Therefore, it is necessary to ensure that the behaviour of generated test programs is
predictable, so that tests can produce meaningful and reproducible results.

2.3.1 Structural Approach

An obvious technique to eliminate undefined behaviour is for the generator to simply
avoid producing syntactic structures that would elicit such behaviour. For example,
uninitialized memory accesses are UB in C. A generator could avoid producing accesses
to uninitialized variables by always generating an unconditional initialization statement

10

CHAPTER 2. BACKGROUND 2.3. ENSURING CORRECTNESS

for all variables.

Quest [9] makes extensive use of this technique by only generating very simple C pro-
grams, without for example, complex arithmetic expressions or control-flow. This has the
advantage of being very simple to implement and works well for Quest which specifically
aims to detect bugs in C calling conventions. However, this means that test programs are
much less expressive, making it unsuitable for finding bugs related to other language
constructs.

In practice, most generators will use this approach to some extent, but turn to other
approaches to enable more advanced testing.

2.3.2 Dynamic Checks

More complex types of UB may depend on the specific values of variables at runtime.
For example, avoiding division by zero requires the generator to guarantee that the di-
visor is non-zero. Eliminating division operations altogether will solve this problem, but
significantly limits expressiveness, so Csmith [5] solves this through dynamic checks at
runtime.

Listing 2.1 contains a C program that defines a function f. The function divides argument
x by y. On its own, this is unsafe as there is no guarantee that y contains a non-zero value.
This operation can be made safe by including runtime checks, as shown in listing 2.2.

int f(int x, int y) {

return x / y;

}

Listing 2.1: A C program that may exhibit UB.

int safe_div(int x, int y) {

if (y == 0) return x;

else return x / y;

}

int f(int x, int y) {

return safe_div(x, y);

}

Listing 2.2: Using runtime checks to avoid UB.

The unsafe division is wrapped in a dynamic check to ensure that the divisor is non-zero.
Note that typically, the concrete result of the division is unimportant to the test program.
Thus, it is possible to return an arbitrary value in the case where the safety check fails.

11

2.3. ENSURING CORRECTNESS CHAPTER 2. BACKGROUND

Csmith uses similar dynamic checks to ensure safety in a variety of cases, such as for
arithmetic checks and pointer safety. While this technique has been criticized in other
works for limiting the expressiveness of generated programs [6], Csmith has been suc-
cessful at detecting a wide range of bugs in C compilers [5].

Csmith’s safe wrappers guarantee that operations do not invoke UB. However, they are
inserted unconditionally, without regard for whether UB can actually be triggered based
on the runtime values of variables. Even-Mendoza et al. show how these checks can in
fact be relaxed in some cases by analysing the runtime behaviour of the test program
[19]. This approach involves replacing occurrences of safe wrapper usages with instru-
mentation code that records whether the code fragment is executed with values that
would trigger UB. Since Csmith always produces deterministic programs, executing this
instrumented program identifies the areas where the safety checks are actually necessary.
Thus, redundant checks can be removed from program points where the given operation
would not result in UB.

2.3.3 Generation-Time Analysis

The YARPGen generator for C and C++ programs has shown that it is also possible to
avoid many types of undefined behaviour through more advanced analysis during the
generation process [6].

To avoid UB such as integer overflow when generating expressions, YARPGen partitions
variables into three groups:

• Input variables can appear in expressions but are never reassigned. These will
always contain their initial value.

• Output variables contain the results of expressions and can be written to one or
more times, but never appear in an expression. These do not need to be analysed
since their values are never used (except for bug checking at the end of execution).

• Mixed variables can appear in expressions and can be reassigned.

The values of mixed variables can change through the program, so YARPGen keeps track
of their concrete values [6]. This enables the generator to statically guarantee that an
expression will not result in undefined behaviour, since it knows the values of the subex-
pressions. If the analysis determines that an expression is not safe, the generator uses a
set of rules to rewrite the expression into an alternative safe expression.

For example, the expression -x is unsafe if x is a signed integer and contains the smallest
possible value for the type, as it may overflow. In this case, YARPGen will transform this
into +x which is a safe operation.

Since YARPGen programs do not read from any external input, it is possible for con-

12

CHAPTER 2. BACKGROUND 2.4. TEST ORACLES

crete values to be statically tracked through the program. Using generation-time analysis
means that YARPGen can avoid the runtime checks used by other generators such as
Csmith [5]. This may enable detecting bugs that are otherwise obscured by the addi-
tional code for performing dynamic checks.

However, YARPGen has a number of limitations. It experimentally implements limited
support for loops, requiring that all iterations of a loop operate on the same values [6].
This constrains the types of behaviour that can be tested within loops. Additionally,
YARPGen does not support certain key features such as function calls and pointer arith-
metic.

2.4 Test Oracles

When employing manual testing approaches, the programmer is typically able to encode
the expected behaviour of each test case. With automatic test case generation comes the
challenge of automatically determining what the correct outcome of a test case should
be. This information is provided by a test oracle [20].

In the context of compilers, this is a challenging problem as compilers are typically highly
complex pieces of software. This makes it difficult to statically determine the expected
behaviour of a test program. In practice, two main techniques for deriving a test oracle
have been applied to compiler testing: differential testing and metamorphic testing. The
latter is closely related to the program transformation approaches outlined in section
2.2.2.

2.4.1 Differential Testing

Differential testing, introduced by McKeeman [7], relies on the availability of multiple
compiler implementations for a given programming language. The implementations can
then be tested by comparing the results of executing the same program compiled by each
compiler implementation under test. Assuming that the test program is guaranteed to
have predictable behaviour (i.e. it is free of undefined, unspecified or implementation-
defined behaviour), differences in the execution results will indicate the existence of a
compiler bug.

There are a number of differential testing strategies: cross-compiler, cross-optimization
and cross-version [21]. Cross-optimization and cross-version strategies enable testing a
single compiler implementation across different versions and optimization levels. Testing
different versions is useful to avoid regressions in compiler behaviour between releases.
Comparing different optimizations can also be good at identifying issues with how opti-
mizations affect each other when used in interesting combinations. Comparing entirely
different implementations is the most general strategy, but requires the language to ac-

13

2.4. TEST ORACLES CHAPTER 2. BACKGROUND

tually have multiple implementations available.

2.4.2 Metamorphic Testing

Metamorphic testing [22] is an alternative approach to providing a test oracle that does
not require multiple compilers to test against. This approach is built on the program
transformation techniques discussed in section 2.2.2. Using the idea of EMI, transforming
a program into an equivalent program by e.g. inserting dead code should not change the
result produced when executing the program. Thus, if a difference in the output is
observed between the transformed program and the original, it indicates a compiler bug.

Metamorphic testing has been used in both Orion and Hermes [8, 18] by generating vari-
ants of programs using the EMI technique (section 2.2.2). The main difference between
the two is the types of transformations they are capable of producing, as previously dis-
cussed.

Metamorphic testing is often used in conjunction with a random program generator to
produce the seed programs. Orion and Hermes make use of Csmith to generate initial C
programs, as well as other sources of existing programs such as compiler test suites and
open-source projects.

Metamorphic testing has also been applied to shader compilers by Donaldson et al. in GL-
Fuzz for testing GLSL compilers [11], and spirv-fuzz for testing SPIR-V compilers [14].
They introduce the idea of essentially semantics-preserving transformations which pre-
serve the behaviour of the program similarly to EMI. However, the precise semantics of
floating-point operations are typically underspecified in languages such as GLSL; thus, a
level of error is allowed when comparing the results of these operations.

Transformation-based testing also presents an alternative strategy for test case reduction
(section 2.5) [14]. Delta debugging is used by spirv-fuzz to find the minimal subset of
transformations applied to the original program to reproduce a bug. This can be easier
to implement compared to other approaches, and guarantees reduced programs are free
from UB if the original program is also UB-free.

GLFuzz and spirv-fuzz are able to compare images in order to test graphics shaders.
By default, GLFuzz uses chi-squared distances to compare images, determining whether
they are "visually indistinguishable" [11]. This is necessary due to the potential for ac-
cumulation of errors in floating-point operations, making a direct comparison of images
impossible.

A comparison of differential testing and metamorphic testing is presented in figure 2.1.

14

CHAPTER 2. BACKGROUND 2.5. TEST CASE REDUCTION

Input program

Compiler 1 Compiler 2 Compiler n

Execution Result

Discard if equivalent Retain if mismatch

(a) Differential testing

Input program

Compiler

Execution Result

Discard if equivalent Retain if mismatch

Mutator

(b) Metamorphic testing

Figure 2.1: Differential testing vs metamorphic testing.

2.5 Test Case Reduction

Program generators typically produce programs that are very large and highly obfus-
cated, due to the nature of automatic code generation and the desire to test language
features in atypical scenarios. Listing 2.3 contains a small extract from a program gen-
erated by the WGSLsmith tool, the design and implementation of which is presented in
chapter 4. The program consists of many complex expressions as well as opaque variable
and function identifiers, and the full program contains many functions with large bodies.

fn main() {

if (var_0.x) {

let var_1 = 711513123u;

}

let var_1 = ~((countOneBits(max(~(2610881137u), ~(577783483u)))) * (~((~(4128073036u))

var_0 = vec2<bool>(any(!(!(func_1(vec3<u32>(var_1, var_1, var_1))))), !(false));

if (!(((clamp(reverseBits(var_1), 3961180244u, dot(vec2<u32>(var_1, 1912858368u), vec2<

var var_3 = vec4<u32>(dot(vec4<u32>(dot(max(vec4<u32>(var_1, 2847045454u, var_1, 36

var var_4 = (dot((-(-(vec4<i32>(1364496193, 1843907678, -828384492, 893683990)))) >

}

let var_3 = !((all(var_2)) | ((countOneBits((472260210) - (-1613635233))) > ((-11199131

...

}

Listing 2.3: Extract from a program generated by WGSLsmith. The code is largely unreadable,
and unsuitable for directly reporting to compiler developers.

15

2.5. TEST CASE REDUCTION CHAPTER 2. BACKGROUND

Submitting bug reports to a compiler development team containing such unreadable
programs is unlikely to be helpful or well-received. Therefore, it is useful to find a
minimal reproduction of the bug in a reduced version of the program if possible. Test case
reduction techniques attempt to automatically reduce programs into smaller programs
that remain interesting, where the definition of interesting is supplied the user.

Delta debugging [23, 24] is a simple technique to find the minimal set of changes applied
to a program that result in a test failure. Delta debugging typically works by splitting up
the input text into lines, and removing lines to find the smallest interesting input. This
can work well in general for programs that accept arbitrary text input, but is not always
ideal when applied to compiler testing as code fragments often have intricate dependen-
cies that can be broken by removing entire lines at once. However, this technique has
been applied in practice for program reduction, through tools such as Picire [25].

Regehr et al. show that existing delta debugging algorithms are specific solutions to a
more general test reduction framework [26] and present three new test case reducers
that are able to produce smaller programs.

The first two reducers, Seq-Reduce and Fast-Reduce, only work with programs generated
by Csmith. Seq-Reduce uses a special mode in Csmith to bypass its internal random num-
ber generator and take control of decisions. Starting with a Csmith-generated program, it
randomly modifies the specification of the Csmith generator’s decisions and uses Csmith
to regenerate a new program. The advantage of this is that Csmith is able to guarantee
that the resulting program is valid. The program is further reduced in this way if it still
exhibits the compiler bug and is smaller than the original.

Fast-Reduce instead applies rule-based transformations to the program such as dead code
elimination to remove parts of the code. This is done by analysing both the static struc-
ture of the program and its runtime behaviour through instrumentation code added to
the Csmith output.

The third reducer they present is C-Reduce, which is capable of reducing arbitrary C
programs. C-Reduce is very flexible as it uses pluggable transformations to reduce a
program until a fixpoint is reached. Several of the transformations implemented in C-
Reduce are not specific to C, making it potentially useful for reducing programs written
in other languages as well.

Sun et al. present Perses as an alternative reducer that uses a more “syntax-directed”
approach to reduce programs, with improved speed and a smaller size compared to delta
debugging and C-Reduce [27]. Perses takes a context-free grammar as input, which
describes the language of the program being reduced. This allows it to work for a variety
of languages, provided a grammar is available. A key advantage of this is that it ensures
that the reduced program remains syntactically valid, thus decreasing the search space.

16

CHAPTER 2. BACKGROUND 2.5. TEST CASE REDUCTION

Reducers are usually parameterized by an interestingness test, in the form of a shell
script. This test supplies the definition of interesting, and is invoked for each interme-
diate reduction candidate. It will often perform some initial validation of the candidate
program before compiling it and checking if the bug is still manifested.

2.5.1 Reconditioning

Ensuring that the reduced program remains valid is a key challenge when performing
automated reduction. Syntactic validity can be ensured by approaches such as Perses’,
while additional validation such as type checking can be performed in the interestingness
test. However, it is possible for the program to be modified during reduction such that the
changes introduce undefined behaviour, despite the unreduced program being correct.
In this case, the reduced test case is useless as its behaviour is no longer guaranteed by
the compiler. Even if it exhibits the same bug as the original, this can now be considered
to be expected behaviour.

For widely used languages such as C and C++, existing sanitizer tools can solve this
problem by detecting UB in reduced programs. However, for other languages that are
not as commonly used, these tools may not be available, making it impossible to check
reduced programs for UB. Program reconditioning provides a solution to this, by extract-
ing the function of ensuring validity from a program generator into a separate process
[1, 12]. Thus, a reconditioner is able to take an input program and transform it such that
the resulting program is guaranteed to be valid.

Reconditioning integrates with the reduction loop by processing the output of the reducer
to ensure it is valid before testing for the presence of the compiler bug. The reconditioner
is also used to ensure validity of the original test programs produced by a program gen-
erator, before performing differential testing. This has been shown in the past to work
effectively for GLSL, which suggests that it is likely to be effective when applied to WGSL,
given their similarities.

2.5.2 Bug Slippage

Bug slippage can be another challenge during reduction [28]. When reducing a test
case exhibiting bug a, it is possible that some transformations may cause the program to
instead exhibit bug b. A naive reducer may continue reducing the test case further, not
knowing that the wrong bug is now being reduced. This is especially undesirable if b is
a known, uninteresting bug, as it now masks a which may be much more interesting.
Slippage is commonly avoided through heuristics such as checking error codes in the
interestingness test. Holmes et al. [28] propose ways that slippage can be harnessed to
find more bugs, by collecting sets of reduced test cases rather than just one.

17

Chapter 3

Graphics Programming

This chapter provides an overview of graphics programming concepts that are relevant to
this project. Section 3.1 describes general graphics concepts, while section 3.2 introduces
WebGPU and section 3.3 provides an overview of the WGSL shader language. A brief
discussion of WebGPU’s security considerations is also contained in section 3.4.

3.1 Overview

In the past, the capabilities of graphics hardware were typically restricted to a set of
fixed and specialized functionality built into the hardware, which could be invoked by
a programmer to accelerate aspects of graphics rendering. In contrast, modern graphics
hardware is highly programmable, allowing users to execute arbitrary programs on a
GPU. This can be used for a wide range of graphics software, as well as other applica-
tions that may benefit from the highly parallel nature of GPUs, such as machine learning
algorithms.

In order to control a GPU, commands must be sent from the CPU. While the low-level
details of this communication may be proprietary, standardized APIs are available which
can be implemented by a vendor in the graphics driver, to allow programmers to interact
with different devices in a uniform manner.

There are several standard APIs available, some of which are operating-system specific.
Notably, DirectX is available from Microsoft for Windows [29], while Apple provides
Metal for macOS and iOS [30]. Additionally, several platform-agnostic standards have
been developed by the Khronos group such as OpenGL [31] and Vulkan [32], which are
supported on Linux (including Android) and Windows, as well as a few other platforms.

Programs written to be executed on a GPU are called shaders. These are typically written
using a specialized language for shader programming. The aforementioned graphics APIs

18

CHAPTER 3. GRAPHICS PROGRAMMING 3.2. WEBGPU

each provide their own languages for this purpose, as shown in table 3.1.

Graphics API Shader Language Supported Platforms
DirectX HLSL [33] Windows
Metal MSL [34] macOS/iOS
Vulkan SPIR-V [35] Windows, Linux

OpenGL GLSL [36] Windows, Linux

Table 3.1: Common graphics APIs

Broadly, there are two categories of shaders – graphics and compute shaders. Graphics
shaders are used to perform specific tasks within the graphics rendering process, such
as determining the colour to assign each pixel. In contrast, compute shaders are much
more general and can be used to perform arbitrary computation.

Writing a program to control the GPU using these APIs involves setting up a pipeline. The
pipeline supplies a shader program to execute, and describes features of the execution
such as the inputs and outputs of the shader(s). A graphics pipeline consists of multiple
shader stages which can pass data between them, with the final result being a rendered
image. A compute pipeline consists of a single compute shader which can write data to
one or more storage buffers. These can later be read by the CPU.

Comparing images to detect bugs can be challenging as many aspects of rendering are
not well-specified to allow for flexibility in implementations. This can result in small
differences in the outputs, which need to be accounted for. While prior work has been
done in this area [11], this project will focus on testing compute shaders to simplify this
process. Most capabilities available in graphics shaders are also available to compute
shaders, excluding certain graphics specific functionality such as texture manipulation
functions.

3.2 WebGPU

Web browsers have supported graphics rendering for many years through the canvas API,
which allows for high-level drawing of 2D shapes and text. More recently, WebGL has
provided a more advanced API based on OpenGL ES, a simplified variant of OpenGL used
on mobile and embedded devices.

WebGPU aims to provide a lower-level API allowing more control compared to the exist-
ing offerings, to cater to high-performance graphics applications not well-supported by
existing web APIs, as well as to enable the use of compute shaders on the web.

Web browsers implement WebGPU by exposing a JavaScript API for use by programmers.
In the case of Chrome and Firefox, the underlying implementation of the API is delegated

19

3.3. WGSL CHAPTER 3. GRAPHICS PROGRAMMING

to an external library, which builds a platform-agnostic abstraction over the existing APIs
available on each platform, such as DirectX (Windows), Metal (macOS, iOS) and Vulkan
(Linux, Android). This job is performed by the Dawn [37] and wgpu [38] libraries for
Chrome and Firefox respectively. The WebGPU architecture is illustrated in figure 3.1.

Dawn

DirectX Metal Vulkan

GPU

wgpu

Chrome Firefox

Hardware

Platform API

WebGPU
Implementation

WebGPU
JavaScript API

Figure 3.1: Overview of the WebGPU architecture. Additional layers between platform APIs and
the physical hardware have been omitted for simplicity.

3.3 WGSL

WGSL is the language used to write shaders for WebGPU applications. As WebGPU im-
plementations are built on top of platform graphics APIs, an implementation includes
a compiler that translates WGSL source code into the appropriate language for the tar-
geted graphics API, as described in table 3.1. Dawn uses the Tint compiler [15], while
wgpu uses Naga [16]. Both of these are capable of translating WGSL into HLSL, MSL
and SPIR-V (they also provide some support for translating to GLSL for OpenGL). WGSL
shares similarities with existing shader languages such as GLSL, as well as general pur-
pose languages including Rust and C.

WGSL is currently still in active development and sees regular changes to the specifi-
cation, affecting both syntax and behaviour. This has been a challenge throughout the
development and testing of WGSLsmith, and is discussed multiple times in later sections
of this report.

3.3.1 Overview

The primitive types supported by WGSL include booleans (bool), 32-bit signed and un-
signed integers (i32 and u32), and 32-bit floats (f32). WGSL supports vectors of between
2 and 4 components, containing any of the numeric types. These are denoted by vecN<T>,

20

CHAPTER 3. GRAPHICS PROGRAMMING 3.3. WGSL

where N is the number of components and T is the element type.

WGSL supports fixed-size array types, denoted by array<T, N> where T is the element
type and N is the size of the array. Runtime-sized arrays are also supported; however, a
runtime-sized array cannot actually be constructed in a WGSL program – they may only
be used in types for host-shareable buffers (section 3.3.2). Users are also able to define
additional composite data types using structs.

Vector components can be accessed in multiple ways. The dot operator (.) may be
used to access a single component by name, or multiple names can be used together to
construct a new vector using the specified components (known as swizzling). Finally,
the indexing operator ([]) may be used to access a component by index, similarly to an
array.

Most standard arithmetic, logical and bitwise operators are supported. Operations are
component-wise when one or more operands is a vector.

WGSL does not support any implicit conversions between different types (except for
converting from an abstract numeric literal to a type with a concrete size). Conversions
between built-in scalar and vector types are supported through explicit type constructors
and bitcast operations.

WGSL has three ways to assign names to expressions: var statements, let statements
and function parameters. var statements declare variables, which are names for memory
locations. The type of a variable must be storable – this includes most primitive types as
well as arrays and structs (notably, pointers are not storable). In contrast, let statements
create a new name for a value. These are read-only and must be initialized at declaration
time. Function parameters have similar semantics to let statements; notably, both can
only be used in functions and cannot be reassigned.

The difference between variables compared to lets and parameters is largely seman-
tic, influencing how they behave in certain cases, and means that they do not always
have to refer to storable types. Variable identifier expressions are considered to be ref-
erence types, while lets and parameters are not. Since lets and parameters cannot be
reassigned and cannot escape from their lexical scope, they are safe to store pointers in
without risk of dangling pointers (pointers that do not point to valid memory locations).
This is not the case for variables, which can be assigned to from nested scopes where the
referenced data may not live as long as the lifetime of the variable. Pointers are discussed
further in section 3.3.3.

21

3.3. WGSL CHAPTER 3. GRAPHICS PROGRAMMING

3.3.2 Shader I/O

In a compute shader, passing data between a shader and the host is performed through
host-shareable buffers. There are two buffer types available to compute shaders: uniform
and storage buffers. Uniform buffers are read-only and can be used for passing inputs to
the shader. Storage buffers can also be written to by the shader, so are useful for passing
results back to the host.

The host application is able to create and initialize one or more buffers when setting up
the pipeline, through the WebGPU API. Each buffer is bound to a particular slot in the
pipeline, referred to by a combined group index and binding index. The shader is able to
reference these buffers by declaring a special buffer variable at the global scope. For each
buffer variable, the shader must specify the group and binding index using the @group

and @binding attributes, as shown in listing 3.1.

struct MyUniformBuffer {

a: u32,

b: f32,

c: vec3<i32>,

}

// The @group and @binding attributes specify the buffer that this variable is

// bound to in the pipeline.

@group(0) @binding(0)

var<uniform> input_buffer: MyUniformBuffer;

// Storage buffers are read-only by default but can be made writable using

// the read_write qualifier.

@group(0) @binding(1)

var<storage, read_write> output_buffer: array<u32, 16>;

Listing 3.1: Host-shareable buffer variables

From the perspective of the host, buffers are simply byte arrays, without any structure.
While it is possible to treat buffers similarly as simple arrays in the shader, a more struc-
tured representation can also be used via structs, specifying different types for fields
within the buffer.

Buffer variables have size and alignment requirements which are defined by the WGSL
specification [3]. This means that determining the minimum size required for a buffer
variable is not a trivial calculation, as there may be additional padding bytes inserted
between fields of a struct or at the end to satisfy alignment requirements, which increase
its size. This must be considered when calculating the sizes of buffers to be allocated on

22

CHAPTER 3. GRAPHICS PROGRAMMING 3.3. WGSL

the host.

All variables in WGSL are associated with an address space. Module-scoped variables
(those defined at the top-level of the program) must specify the address space explicitly,
as shown in listing 3.1. The uniform and storage address spaces are used for uniform
and storage buffers respectively. Additionally, the private address space can be used
for global variables that are not shared between invocations (multiple invocations of a
shader can run in parallel). Global variables can also be shared between invocations us-
ing the workgroup address space. Local variables in functions implicitly use the function

address space.

3.3.3 Pointers

WGSL includes limited support for pointers compared to other languages such as C. For
example, WGSL does not support pointer arithmetic nor conversions between integers
and pointers, and it is impossible to obtain a null pointer. It is also forbidden to return
a pointer from a function. As described in section 3.3.1, pointers are not storable so
cannot be stored in variables (though they can be named by function parameters and let

statements). These rules make it impossible to produce a dangling pointer. WGSL also
does not provide a facility for dynamic memory allocation; thus, all memory locations
are known statically.

Another key rule is that the address-of operator (&) can only be applied to expressions of
reference type. Since lets and function parameters are not considered references, it is
not possible to obtain a pointer to a let or a parameter.

These restrictions mean that many dynamic pointer-related errors that are possible to
trigger at runtime in C are eliminated in WGSL. However, WGSL does have one rule
that must be enforced by the programmer, involving aliasing (where multiple point-
ers/references are used to access the same memory location). This is discussed in detail
in section 4.2.5, along with a technique for ensuring that a WGSL program does not
contain invalid aliasing.

3.3.4 Floating-Point

WGSL supports floating-point values and operations according to the IEEE-754 standard
[39]. However, certain requirements of the standard are relaxed to enable greater imple-
mentation flexibility. This can lead to differences in behaviour between implementations.

In particular, the rounding mode in WGSL is unspecified, meaning that an implementa-
tion is allowed to select any scheme to use when rounding values (up or down). Addi-
tionally, WGSL programs do not generate floating-point exceptions or signalling NaNs,

23

3.3. WGSL CHAPTER 3. GRAPHICS PROGRAMMING

and implementations may ignore the sign of zero values (floating-point zero may be
positive or negative).

All floating-point operations have a specified level of accuracy. However, the precise
results of operations may differ across implementations. Certain operations are required
to produce correct results, but most will have a range of possible values that they are
allowed to produce. However, it is possible to restrict values and operations in such a
way that they can have more predictable semantics. This is discussed in section 4.2.2.

3.3.5 Predictability and Undefined Behaviour

In contrast to other shader languages such as GLSL and HLSL, WGSL contains very little
undefined behaviour, in the traditional sense. The WGSL specification aims to explic-
itly define the semantics of WGSL programs to as large an extent as possible, which is
important given the security critical context in which WGSL programs will be executed.

Nevertheless, it is difficult to precisely define the behaviour of all operations, without
compromising on implementation complexity and runtime performance. Thus, there are
certain operations that may have multiple allowable behaviours, making their precise
behaviour implementation specific. In other cases, there are operations that can result
in dynamic errors (at runtime), such as the invalid pointer aliasing mentioned previ-
ously. From the perspective of a program generator, these are as important to avoid as
undefined behaviour, since it is necessary to ensure that test cases have well-defined and
predictable behaviour.

Type Implementation-defined behaviours and dynamic errors

Arithmetic
Floating-point accuracy
Floating-point rounding modes

Data layout Mismatch between host and shader memory layout

Memory access
Invalid pointer aliasing
Out-of-bounds array access

Control-flow Infinite loops

Concurrency
Race conditions
Atomic operations on invalid memory locations

Table 3.2: Summary of implementation-defined behaviours and dynamic errors in WGSL.

Table 3.2 summarizes the implementation-defined behaviours and dynamic errors that
are present in WGSL. However, there is an additional challenge for a WGSL program
generator due to the current status of WGSL compiler development. While there are
several behaviours such as arithmetic overflow that are specified by WGSL, it is possi-
ble that compiler developers have not yet implemented the necessary checks to enforce
them. Given the nature of WGSL compilers as translators from WGSL to an API-specific

24

CHAPTER 3. GRAPHICS PROGRAMMING 3.4. SECURITY CONCERNS

(typically high-level) backend language, these behaviours may be undefined in the back-
end language resulting in them being effectively undefined in WGSL for the purpose of
program generation.

Type Undefined behaviours

Arithmetic

Integer overflow
Division by zero
Invalid shift values
Modulo of negative values

Built-in functions
Order of arguments in clamp

Bit operations on signed integers

Table 3.3: Undefined behaviours in other shader languages targeted by WGSL compilers.

It is difficult to provide a comprehensive list of such behaviours as it is dependent on
the set of functionality used by WGSL compilers for each targeted language. However,
table 3.3 lists some of the issues that have been identified and corrected in WGSLsmith,
across the targeted backends. These are in addition to the specific WGSL issues in table
3.2. Eventually, these behaviours will be implemented and enforced correctly in WGSL
compilers. However, in the short-term, it is necessary for a program generator to handle
these as they affect basic operations, and are likely to produce significant noise in results
that will hinder finding actual bugs.

3.4 Security Concerns

The addition of WebGPU and WGSL to the web adds new ways for web applications to
access GPU hardware. WGSL shaders enable running code on GPUs and add support
for compute shaders, which were previously not possible to use on the web. However,
this means that any website will be able to download and execute untrusted WGSL code
from the internet. While the web already enables untrusted code execution through
JavaScript, WebAssembly and WebGL, this creates an additional attack surface which
must be made secure.

There are several potential security issues associated with WebGPU and WGSL, such
as accessing memory belonging to other programs, CPU and GPU-based undefined be-
haviour, driver bugs and DoS attacks [2]. In addition to these security concerns, the web
also exposes privacy issues that can result in leaking sensitive information that identifies
users. The very existence of implementation bugs can provide information about the spe-
cific hardware and software that a user is running, as an additional data-point to identify
a user. Testing WGSL compilers and WebGPU implementations is therefore crucial to en-
suring that web browsers are free from these security issues and can adequately address
privacy concerns.

25

Chapter 4

WGSLsmith

WGSLsmith is a toolkit for automated WGSL compiler testing. There are two main work-
flows that WGSLsmith aims to facilitate: the fuzzing process, which involves generating
and testing shaders to find test cases exhibiting potential bugs, and the reduction pro-
cess which involves finding a minimized version of a buggy test case. Thus, WGSLsmith
provides a fuzzing driver that continuously generates and tests shaders and a reduction
driver that oversees reduction using a pluggable reducer.

From an implementation perspective, WGSLsmith consists of several components:

1. A generator, which produces random WGSL shader programs to be tested.
2. A reconditioner, which processes a shader to remove undefined behaviour and

ensure predictable execution.
3. A test harness, which executes shaders and checks their outputs.
4. A reduction driver, for performing test case reduction on a given shader that ex-

hibits a bug, using a pluggable reducer.
5. A WGSL parser, which is used by the reconditioner during reduction and by the

harness for extracting I/O information.

These tools are all written primarily in Rust, along with a small amount of C++ and Bash
shell scripting. Rust provides language features such as sum types (called enums in Rust)
which are useful for modelling abstract syntax trees (ASTs). More importantly, as wgpu is
also written in Rust it is trivial to integrate with, and thanks to Rust’s straightforward FFI
(foreign function interface) capabilities it is also simple to integrate with Dawn’s C/C++
codebase.

Figure 4.1a shows how the fuzzing process works in WGSLsmith. The generator pro-
duces test cases that are processed through the reconditioner before being passed to the
test harness. This will execute the shader against multiple configurations and check the
results. The filter stage is configured by the user to determine which shaders are inter-

26

CHAPTER 4. WGSLSMITH 4.1. GENERATOR

esting – this decides whether the shader should be saved or not based on the execution
result.

Given the availability of multiple compiler implementations (Tint and Naga), WGSLsmith
uses differential testing (section 2.4.1) to provide a test oracle. As WGSL compilers are
currently in active development, there are likely to be frequent changes and fixes, so
testing the latest versions of compilers is desirable. Additionally, the WebGPU API does
not currently expose an interface for controlling the optimization level of shader com-
pilation, making a cross-optimization approach infeasible. Thus, WGSLsmith primarily
uses the cross-compiler strategy for differential testing, but is also able to test multiple
backends for the different languages supported by Tint and Naga.

WGSLsmith’s reduction driver is outlined in figure 4.1b. The shader is passed to an ex-
ternal reducer program (such as C-Reduce) along with an interestingness test (section
2.5). The reducer will incrementally generate reduced candidates and invoke the inter-
estingness test to determine whether the reduced shader remains interesting.

The following sections discuss in detail the design and implementation of each of these
components.

4.1 Generator

WGSLsmith uses a random generator to produce test cases, as this can enable greater
program diversity (section 2.2.1). Shaders produced by the generator are guaranteed to
be both syntactically well-formed and well-typed, but may behave unpredictably or fail
to terminate (this is solved by the reconditioner described in section 4.2).

The generator works by constructing an abstract syntax tree (AST), which can later be
pretty printed as concrete WGSL syntax. This is useful when using the generator as a
standalone tool; however, it is also possible to invoke it as a library and apply further
transformations on the AST directly, as is done by the fuzzing driver for reconditioning.

The overall generation strategy is split into two phases. First, a number of supporting
constructs including types, global variables and buffer variables are generated. After this,
the entrypoint function is generated. Additional functions are generated on demand, us-
ing a top-down approach similar to Csmith [5]. This process operates recursively, starting
from a request to generate a particular construct (such as a function) and recursing until
leaf constructs are reached (typically literal expressions or identifiers).

At each stage where a choice of possible constructs that may be produced is available,
preconditions for each choice are checked to determine which choices can be generated
successfully. A construct type is then selected randomly from this reduced set, using
an appropriate distribution. This ensures that there is no need for backtracking as the

27

4.1. GENERATOR CHAPTER 4. WGSLSMITH

Generator Shader

ReconditionerShader (UB free)

Test harness Filter

Save/Discard

Execution result Bug type

Output filter

(a) Fuzzing

ReducerShader

Interestingness test

Reconditioner Validator

Filter

Reduced shader

(b) Reduction

Figure 4.1: Fuzzing and reduction workflows in WGSLsmith

generator will never fail to produce a result for a particular request.

4.1.1 Types

WGSL supports user-defined types in the form of structs (section 3.3.1). The process for
generating structs is largely straightforward. First, a member count is selected randomly
based on configurable bounds, after which types are selected randomly for each member.
The allowed types include built-in types, as well as previously generated structs to enable
support for nested structs. An example of structs generated by WGSLsmith is shown in
listing 4.1.

Notably, when generating types for buffer variables, the set of allowed member types is

28

CHAPTER 4. WGSLSMITH 4.1. GENERATOR

restricted as WGSL does not allow certain types such as bool within host-shareable types.
One additional restriction is made by WGSLsmith, which does not currently support
nested structs in host-shareable types due to complexities in calculating the alignment
and padding, which is necessary for examining buffer values during differential testing.
It will be possible to remove this restriction in future.

struct Struct_1 {

a: vec4<f32>,

b: i32,

}

struct Struct_2 {

b: vec2<u32>,

c: vec3<bool>,

d: i32,

}

Listing 4.1: Example of structs generated by WGSLsmith

4.1.2 Global Variables

A collection of global variables is generated early on in the generation process, to enable
their use when subsequently generating functions. The number of global variables to
generate is selected at random, with user-defined upper and lower bounds. These vari-
ables are able to reference types that were defined in the previous stage. Additionally,
WGSLsmith will randomly decide to generate or omit an initialization expression for the
variable. When generating initialization expressions for global variables, expressions are
limited to those that are available in a const context, as required by WGSL.

4.1.3 Expressions

WGSLsmith supports generating most expression types available in WGSL. The expres-
sion generator is supplied with a target data type, and recursively generates a suitable
expression. Complexity is bounded by a configurable maximum depth – once this limit
is reached only leaf nodes (literals and variable identifiers) may be generated.

To generate integer literals, WGSLsmith is able to sample from two different distribu-
tions. Firstly, it can sample uniformly from a set of interesting edge cases: for i32 this
is the set {0, 1, -1, i32::MAX, i32::MIN} and for u32 this is {0, 1, u32::MAX}. These val-
ues may be more likely to trigger interesting behaviour where edge cases have not been
handled correctly.

29

4.1. GENERATOR CHAPTER 4. WGSLSMITH

The second is sourced from a binomial distribution. Values are sampled from

B(i32::MAX× 2, 0.5)

and then shifted by i32::MAX, resulting in a distribution centred around 0. This favours
generating smaller values, with the aim of reducing the likelihood that operations on
these values will be immediately reconditioned away to avoid overflow (section 4.2).

Floating-point operations can be difficult to test, due to differences in behaviour across
implementations (section 3.3.4). WGSLsmith uses a very similar approach to [12] to test
floating-point operations, by limiting the range of floating-point values and restricting
the set of operations. Floating-point literals are generated similarly to integers, to favour
smaller values. Details of floating-point support are discussed further in section 4.2.2.

In addition to generating simple variable expressions, WGSLsmith is also able to generate
accesses to members for vectors and structs, as well as array element accesses, as shown
in listing 4.2. For each type T, the generator maintains a set of accessible types which
refers to the types that can be transitively accessed through T. For example, the accessible
set of a vec3<u32> is {u32, vec2<u32>, vec3<u32>} since T is trivially accessible from T,
u32 can be obtained by accessing individual members, and vec2<u32> can be obtained
through vector swizzling. This is used when generating variable declarations, to maintain
a mapping from types to a list of variables through which the type may be accessed.
Thus, the expression generator can simply perform a lookup in this map to obtain a list
of possible variables that can satisfy a request for an expression of a target data type.

var var_1 = global1[arg_0 + 6u];

var var_2 = vec3<i32>(36, 8).xz;

var var_3 = Struct_4(1, 13, vec2<u32>()).b;

Listing 4.2: Member and array element accesses in WGSLsmith

4.1.4 Functions

WGSLsmith supports both built-in functions and user defined auxiliary functions. The
function generation process is driven by the expression generator, which can choose to
generate a function call expression. The generator maintains a mapping from types to
lists of functions, similarly to the mapping for variables described above, where the type
represents the function’s return type. An example of a function declaration is illustrated
in listing 4.3.

When generating a function call expression, the generator will perform a look-up to
determine which functions are available. If no suitable function is found, a new function
can be generated. Additionally, if existing functions are available, a new one may still be

30

CHAPTER 4. WGSLSMITH 4.1. GENERATOR

generated with a smaller probability.

Return statements are supported at arbitrary scope levels within a function. WGSL for-
bids additional statements within a block, after a return statement, so the generator will
immediately finish the current block once a return statement is generated. Also, func-
tions that return a value will always contain a return statement as the final expression.

fn func_1(arg_0: bool, arg_1: vec3<i32>) -> i32 {

return select(arg_1.x, arg_1.y, arg_0);

}

Listing 4.3: Example of a function declaration. Additional statements are never included after a
return statement, as this is forbidden by WGSL.

WGSLsmith supports all the logical and integer built-in functions that are currently im-
plemented in both Tint and Naga. Additionally, certain functions that are only supported
in Tint (at the time of writing) are supported through user-configurable options, for crash
testing Tint on its own. For floating-point functions, support is limited to a small set of
functions with predictable behaviour. Examples of function call expressions are shown
in listing 4.4. The full list of supported built-in functions is available in appendix A.

var var_1 = reverseBits(abs(-18151 | var_0.x));

var var_2 = !(select(!vec3<bool>(global2.x), !vec3<bool>(true)));

var var_3 = Struct_1(~(-clamp(abs(arg_1.b.a), u_input.c << vec3<u32>(429u))));

Listing 4.4: Function calls generated by WGSLsmith

4.1.5 Pointers

Generating code containing pointers is supported behind an opt-in flag. WGSL allows
a restricted form of pointers as described in section 3.3.3. WGSLsmith can generate
function parameters of pointer type, as well let declarations containing pointers, which
allow giving new names to memory locations. Address-of and indirection expressions are
supported to construct and dereference pointers. An example is shown in listing 4.5.

fn func_1(arg_0: ptr<private, i32>) -> i32 {

return *arg_0 + 36;

}

Listing 4.5: Function with pointer parameters and pointer dereferencing.

The generation process for pointers in WGSLsmith is straightforward. Checking the
safety conditions of pointer operations is performed during the reconditioning stage and
is described in section 4.2.5.

31

4.2. RECONDITIONER CHAPTER 4. WGSLSMITH

4.1.6 Statements & Control-Flow

WGSLsmith supports let and var declaration statements as well as assignments. The
standard control-flow constructs available in WGSL are also supported, including if,
loop, for and switch statements. Additionally, break and continue statements are sup-
ported in loops, and fallthrough is supported in switch statements.

With for loops, WGSLsmith can generate both idiomatic and arbitrary loop headers.
Normally, the header consists of a loop variable, optionally initialized with a fixed value,
a termination condition involving the loop variable, and an update statement which up-
dates the loop variable by incrementing, decrementing or reassigning it. With some
probability, any of these statements can be omitted, or an arbitrary initialization expres-
sion, loop condition or update statement may be used.

4.2 Reconditioner

The reconditioner ensures that generated shaders are free of UB and have predictable
execution (section 2.5.1). While WGSL does have certain runtime error cases that must
be avoided, it has little UB as the semantics of many operations that are typically unde-
fined in other languages are explicitly defined in WGSL (section 3.3.5). However, certain
features and checks may not be implemented in compilers yet as they are still in develop-
ment. In fact, some of the behaviour that the WGSL spec specifies, such as wrapping on
overflow for integer operations, is not currently enforced in Tint and Naga. Therefore, to
produce useful test cases, we need to ensure that these unimplemented behaviours are
avoided in addition to handling other issues such as loop termination.

Previous work has focused on reconditioning as a way to remove undefined behaviour
from a program [1, 12]. Reconditioning in WGSLsmith also includes:

• An analysis phase that is able to reject certain shaders. This is useful for avoiding
some behaviours that may be difficult to recondition away.

• Workarounds for known compiler bugs that can otherwise cause issues in testing.
This is particularly useful when testing languages in active development.

The reconditioner is implemented as a two-step process. The first step involves an analy-
sis of the AST – this is specifically for the detection of invalid pointer aliasing (discussed
further in section 4.2.5). The second step is implemented as a transformation of the AST,
which removes undesired behaviour. The AST is traversed recursively, and each node is
mapped to a new reconditioned node.

32

CHAPTER 4. WGSLSMITH 4.2. RECONDITIONER

4.2.1 Arithmetic Wrappers

The behaviours of basic arithmetic operations including addition, subtraction, multipli-
cation, division and remainder are defined in WGSL. However, Naga and Tint do not
currently implement the necessary checks to ensure correct behaviour on all backends
in case of issues such as overflow and division-by-zero. Indeed, it is possible to observe
undefined behaviour in certain cases where different backends will produce different
results for the same operation.

For example, the program in listing 4.6 executes a multiplication that will overflow. Both
Tint and Naga will compile this directly to the equivalent HLSL, without safety checks.
The overflow behaviour is undefined in HLSL and the result of the multiplication will not
simply wrap as expected. In contrast, when executing the compiled SPIR-V code with
Vulkan, it wraps as expected since the behaviour in SPIR-V is defined.

@group(0) @binding(0)

var<storage, read_write> out_buf: i32;

@compute @workgroup_size(1)

fn main() {

out_buf = 2147483647 * 2147483647;

}

Listing 4.6: Tint and Naga compile this to HLSL that exhibits undefined behaviour.

Thus, to ensure consistent behaviour, these checks must be implemented by WGSLsmith.
The checks are performed by various arithmetic wrapper functions, which are automat-
ically inserted during reconditioning. As the AST is traversed, any subexpressions that
could produce undesired behaviour are transformed to an appropriate function call with
the operands passed as arguments to the function. Additionally, the use of the wrapper is
registered with the reconditioner state along with the argument data types. The wrapper
implementations are generated at the end of the reconditioning process. All arithmetic
wrapper functions are independently usable.

Wrappers are named using the convention "_wgslsmith_{wrapper name}_{data type}".
The data type must be included as WGSL does not support function overloading, and
wrappers for an operation typically consist of a number of variants for combinations of
scalar, vector, signed and unsigned operands. Examples of wrapper functions are shown
in listing 4.7.

Most wrapper implementations consist of an expression representing the original oper-
ation, a safe fallback expression, and a safety condition. The condition is checked to
determine whether the original expression or fallback should be returned. For vectors,

33

4.2. RECONDITIONER CHAPTER 4. WGSLSMITH

fn _wgslsmith_div_vec3_i32(a: vec3<i32>, b: vec3<i32>) -> vec3<i32> {

return select(a / b, a / vec3<i32>(2),

a[0] == -2147483648 && (b[0] == -1) || (b[0] == 0) ||

(a[1] == -2147483648 && (b[1] == -1) || (b[1] == 0)) ||

(a[2] == -2147483648 && (b[2] == -1) || (b[2] == 0)));

}

fn _wgslsmith_add_i32(a: i32, b: i32) -> i32 {

return select(a + b, a,

b > 0 && (a > (2147483647 - b)) || (b < 0 && (a < (-2147483648 - b))));

}

// original

fn func_4() {

var var_2 = vec3<i32>(23, 11, 4) / vec3<i32>(4 + var_1);

}

// safe version

fn func_4() {

var var_2 = _wgslsmith_div_vec3_i32(vec3<i32>(23, 11, 4),

vec3<i32>(_wgslsmith_add_i32(4, var_1)));

}

Listing 4.7: Examples of arithmetic wrapper functions and their usage.

the safety condition typically involves applying the same check to each component.

In addition to the basic arithmetic operators, certain built-in functions also have associ-
ated wrappers. This includes the dot and clamp functions. The dot function is imple-
mented in terms of multiplications and additions; thus, it has similar overflow behaviour
which must be checked. For i32 operands, the wrapper is implemented by clamping the
operands between

−

⌊√
i32::MAX

n

⌋
and

⌊√
i32::MAX

n

⌋
where n is 1 if the operand is a scalar, otherwise the size of the vector. The u32 variant
is similar with the lower bound replaced with 0. The clamping is performed component-
wise for vectors. The bounds are constants, so can be precomputed as an optimization.
This guarantees that no overflow will occur, and ensures that the dot operation is always
executed to improve the chances of finding bugs. However, it does limit the range of
possible values that the function will be applied to.

34

CHAPTER 4. WGSLSMITH 4.2. RECONDITIONER

fn _wgslsmith_f_op_f32(v: f32) -> f32 {

return select(v, f32(10.0),

abs(v) < f32(0.1) || (abs(v) >= f32(16777216.0)));

}

Listing 4.8: Wrapper for scalar floating-point operations.

This is an interesting example of the challenge of implementing wrappers for complex
operations. An alternative implementation could do a more advanced check to deter-
mine whether the specific combination of operands will overflow. However, this would
be significantly more complex and result in a large amount of additional code which
could mask bugs. This shows the trade-off in terms of complexity and precision when
implementing these wrappers.

4.2.2 Floating-Point

WGSLsmith uses a very similar approach to GLSLsmith [12] for reconditioning floating-
point operations. The generator restricts floating-point literals to integer values within
the range −16777216.0 to 16777216.0 (excluding 0.0), and does not support floating-point
values in input buffers. The reconditioner then only needs to ensure that the results of
operations on floats remain in this set.

To implement this, WGSLsmith includes the "_wgslsmith_f_op_{data type}" family of
wrapper functions (listing 4.8). These wrappers check that the argument value is within
the safe set, and if not replace it with a fixed safe value. All floating-point operations
including arithmetic operations and built-in function calls are wrapped, to ensure that at
each point in the program, it only operates on safe float values.

In addition to the +, - and * operators supported by GLSLsmith, WGSLsmith can also
recondition floating-point division (/) by observing that the concrete value returned by
an operation is irrelevant; if there is a difference in results for the correct and incorrect
cases, this is sufficient to detect a bug. The wrapper implementation is shown in figure
4.9. This checks whether the absolute value of the result is less than the dividend, which
should hold as the absolute value of the divisor must be greater than one (fractional
literals are not generated in WGSLsmith). Also note that division-by-zero is avoided
as zero literals are not produced by the generator. In both cases a fixed safe value is
returned. However, this approach is limited as it only performs a basic check on the
division, and makes composing operations involving division impossible.

Certain floating-point functions are also supported (full list in appendix A). These func-
tions are guaranteed to be correctly rounded in WGSL, and give exact results when ap-
plied to whole numbers, making them safe to use similarly to +, - and *.

35

4.2. RECONDITIONER CHAPTER 4. WGSLSMITH

fn _wgslsmith_div_f32(a: f32, b: f32) -> f32 {

return select(f32(42.0), f32(-123.0), abs(a / b) > abs(a));

}

Listing 4.9: Wrapper for scalar floating-point division.

4.2.3 Loop Limiters

WGSLsmith guarantees that loops (and by extension shaders) will terminate. Shaders
that fail to terminate may be forcefully terminated or cause other issues such as crashes.
In WGSL, certain cases where infinite loops can be statically detected are considered
shader-creation errors and mean that the program will fail validation by the compiler.
To enforce loop termination, WGSLsmith uses loop limiters [12, 13] as shown in listing
4.10. Two strategies were considered for loop limiters: global limiters and local limiters.

Local limiters use local scoped variables to store a loop counter. This means that the
counter is effectively reset at the exit of each loop, meaning that if the loop is executed
again later (such as through a different invocation of the function, or a different iteration
of an outer loop), the counter will restart from 0.

The alternative strategy of global limiters relies on using global variables for each loop.
This means that each syntactic loop has a globally fixed upper bound on the number of
iterations throughout the execution of the program. The main advantage of this strategy
is that it can reduce the execution time of the shader.

After experimenting with local limiters, it was found that these significantly increase
execution time and often result in shaders that must be forcefully terminated. Thus,
global limiters have been implemented in WGSLsmith. For each syntactic loop in the
program, WGSLsmith creates an associated counter, stored in a global array, which is
incremented at the start of each loop iteration. A check is additionally inserted at the
start of the loop to compare the counter against a maximum value. Once the maximum
count is reached, the loop is terminated. This places an upper bound on the number of
iterations of each loop.

4.2.4 Array Bounds Checking

Array accesses must be made safe as WGSL allows out-of-bounds accesses to return an
arbitrary value of the element type. In WGSL, arrays usually have a fixed size specified
as part of the type. Runtime-sized arrays are possible for host-shareable buffers but are
not currently supported in WGSLsmith.

Array indexes are reconditioned using the remainder operator (%) to enable all indexes
to have a similar probability of being used. Alternatively clamping could be used, but this

36

CHAPTER 4. WGSLSMITH 4.2. RECONDITIONER

var<private> LOOP_COUNTERS: array<u32, 17>;

fn func_6() {

loop {

if (LOOP_COUNTERS[10u] >= 5u) { break; }

(LOOP_COUNTERS)[10u] = LOOP_COUNTERS[10u] + 1u;

...

}

}

Listing 4.10: Loop limiters in WGSLsmith.

would mean that the extremal values (0 and arrayLength-1) would occur with higher
probabilities. For signed integers, it is necessary to ensure that the index is positive (since
negative values can behave unpredictably with %). This is done using the abs function.
While abs is well-defined for i32::MIN in WGSL, it is equivalent to the identity function
and will produce a negative value; this case must be checked for separately. WGSLsmith
uses a wrapper function for all indexing operations, as shown in listing 4.11.

fn _wgslsmith_index_i32(index: i32, size: i32) -> i32 {

return select(abs(index) % size, 0, index == -2147483648);

}

fn _wgslsmith_index_u32(index: u32, size: u32) -> u32 {

return index % size;

}

fn main() {

var a = array<u32, 4>();

_ = a[_wgslsmith_index_i32(-1234, 4)];

_ = a[_wgslsmith_index_u32(1234u, 4u)];

}

Listing 4.11: Array bounds checking in WGSLsmith.

4.2.5 Pointer Aliasing

WGSL has limited support for pointers, as described in section 3.3.3. While most of
the rules relating to pointers are statically enforced and can be avoided by construction,
invalid pointer aliasing (defined below) results in a dynamic error which may behave
unpredictably at runtime. Approaches to making pointer operations safe have been used
in other languages. For example, Csmith uses a combination of runtime checks and static

37

4.2. RECONDITIONER CHAPTER 4. WGSLSMITH

analysis to avoid invalid pointer operations [5].

Dynamic checks are not possible in WGSL, due to its limited pointer capabilities – it is not
possible to check pointer values at runtime as the language does not allow comparisons
involving pointers. Thus, WGSLsmith relies on static analysis, inspired by previous work
on pointer analyses [40, 41]. In contrast to the previous reconditioning techniques,
which use local information to apply transformations, this requires global information
about the program. The pointer analysis used is context-insensitive and flow-insensitive
[41], meaning that it is insensitive to control-flow structures, which loses some precision
but reduces implementation complexity.

Informally, the aim of WGSL’s aliasing rule is to prevent multiple accesses to the same
memory location through different aliases, where at least one of the accesses is a write
operation. Below, a more precise explanation of this rule is provided which introduces
some key terminology, before describing the analysis.

Memory locations and aliasing

Here, we define the concept of a memory location as a memory region that is introduced
by a var statement (a variable). The variable identifier that introduces a memory loca-
tion is called the originating variable. By definition, each memory location has exactly
one originating variable. While function parameters and let declarations may also be
implemented using memory, they are not considered memory locations according to this
definition, for the purpose of the aliasing analysis. This distinction is made as pointers
can only point to variables, since they are the only reference types in WGSL (section
3.3.1 & 3.3.3).

As described in section 3.3.1, Pointers can be named in two ways. Firstly, a let declara-
tion can be used to assign a name to a pointer expression (i.e. an address-of expression
or an existing identifier of pointer type). Secondly, a function may accept a parameter of
pointer type. Unlike in other languages such as C, pointers are not storable; thus, they
cannot be stored in memory locations (as defined above).

Memory locations can be accessed in expressions using identifiers. Additionally, each
access to a memory location is performed through a root identifier, which is defined as
follows. Within the scope of a single function, for a given identifier v that refers to a
memory location, there are three cases:

1. v is a reference type and refers to an originating variable.
2. v is a pointer type and is a function parameter.
3. v is a pointer type and was named by a let declaration.

For (1) and (2), the root identifier is trivially v. For (3), the root identifier is defined as
the root identifier of the address-of expression or identifier expression that was used to

38

CHAPTER 4. WGSLSMITH 4.2. RECONDITIONER

declare v. Note that we only consider the scope of a single function – if, for example, a
let is declared in another function and passed as a parameter, the parameter is still the
root identifier for all its usages within the callee.

Each distinct root identifier is considered an alias of the memory location that the identi-
fier references. From this, it is clear to see that a program that does not contain pointers
will only ever have a single alias for each memory location, namely the originating vari-
able. Listing 4.12 illustrates an example of memory locations, originating variables and
root identifiers in a WGSL program.

// x is an originating variable, and defines a new memory location.

var<private> x: i32;

fn f(p: ptr<private, i32>) -> i32 {

// x is accessed through root identifier p.

return *p;

}

fn g() {

// x is accessed through the originating variable.

x = 1;

let q = &x;

// x is accessed through q, but the root identifier is still x as q is a

// 'let' declaration.

*q = 2;

// f accesses x through p. However, in the context of g the access is

// performed through x (as p is replaced with &x).

f(&x);

}

Listing 4.12: Illustration of memory locations and root identifiers.

Finally, invalid aliasing occurs when all the following conditions are satisfied:

• Multiple aliased root identifiers are used to access a memory location.
• The accesses occur within the same function invocation.
• At least one of these accesses executes a memory write operation.

Detecting invalid aliasing

From the definition of invalid aliasing, it follows that to analyse a function for invalid
aliasing, it is necessary to identify which memory locations it accesses and which root
identifiers each access is performed through. Therefore, a pointer analysis of the function

39

4.2. RECONDITIONER CHAPTER 4. WGSLSMITH

parameters (of pointer type) is required to determine the possible memory locations they
could point to.

The general process for detecting invalid aliasing involves three stages:

1. Collecting information about parameters, memory accesses and nested function
calls for each function.

2. Performing an expansion of the collected information.
3. Finding invalid accesses using the expanded information.

The first two stages build the required information as stated above, while the third per-
forms the actual detection.

First, we define a memory access as a pair 〈σ, ω〉where σ ∈ {read ,write} is the type of the
access, and ω is the root identifier through which the access is performed. Additionally,
each variable declaration and function parameter is assigned a globally unique ID that
labels its memory location.

For each function f , we will store:

1. A mapping from pointer parameters of f to a set of possible memory locations that
the pointer could refer to.

2. A set of memory accesses, accesses(f), that occur statically within f .
3. A set of function calls, calls(f), that occur statically within f , storing the location

of the call, function name and mapping of pointer parameters to root identifiers.

Statically is used to mean a syntactic occurrence within the function, though it may
not be executed at runtime (e.g. it may be dead code, or executed conditionally based
on inputs). There are three AST nodes of interest during this process: function calls,
expressions that read memory, and assignment statements which write to memory.

Below, rootIdentifier(e) denotes the root identifier of an expression e that contains an
identifier, memLocs(e) denotes the set of memory locations that rootIdentifier(e) could
refer to, and pointsTo(p) denotes the set of possible memory locations that p could point
to, where p is a function parameter of pointer type.

When visiting a call to function g with parameters p1, ..., pn and arguments e1, ..., en, the
call is recorded in calls(f) as described above. For each ei, if pi is of pointer type then pi
is associated with rootIdentifier(ei) for the call. Additionally, for each pi, memLocs(ei) is
added to pointsTo(pi).

For an expression e that performs a memory read, 〈read , rootIdentifier(e)〉 is added to
accesses(f). Similarly, for an assignment to the memory location represented by expres-
sion e, 〈write, rootIdentifier(e)〉 is added to accesses(f).

40

CHAPTER 4. WGSLSMITH 4.2. RECONDITIONER

Once this is complete, for each f , calls(f) stores the set of calls in f , and accesses(f)

stores the set of memory accesses in f . Additionally, pointsTo(p) stores the set of memory
locations that pointer-type parameter p could point to, for each p in the entire program.

It is important to note that WGSL does not support recursion. This means that the
call graph forms a directed acyclic graph, enabling the analysis to be done in a single
iteration. The traversal must start at the root of the call graph (i.e. the main function)
and use a breadth-first approach, since analysing a function requires having previously
built the pointsTo set for each of its parameters (and thus visiting all calls to the function).

The next step involves effectively inlining function calls to expand the set of memory
accesses within a function. For each function f , consider a call c to function g from f

with argument root identifiers ω1, ..., ωn. Then, for each access 〈σ, ω〉 ∈ accesses(g), there
are two cases:

1. ω is an originating variable.
2. ω is a pointer parameter pi of g.

(1) is trivial as 〈σ, ω〉 is added to accesses(f). For (2), 〈σ, argRootIdent(c, pi)〉 is added
to accesses(f), where argRootIdent(c, pi) is the root identifier of the argument ei passed
for pi in call c (this information was stored for each call in the previous step). The
intention here is to replace memory accesses through pointer parameters in g with the
corresponding root identifiers that f passed as arguments when calling g.

After inlining calls, a further expansion step involves resolving pointer parameters to
concrete memory locations used for each access. We define a concrete memory access as
a pair 〈m,ψ〉, where m is a memory access and ψ is the ID of a memory location. Then
for each access m of the form 〈σ, ω〉 in function f :

1. If ω is an originating variable then add 〈m,ω〉 to concreteAccesses(f).
2. If ω is a pointer parameter p then add 〈m,ψ〉 to concreteAccesses(f), for each ψ ∈

pointsTo(p).

This results in a set, concreteAccesses(f), storing the access type, root identifier, and a
memory location to which the root identifier could point for each transitive memory
access in f .

The final step involves examining concreteAccesses(f) to find invalid aliasing accesses.
This can be done simply by looking through the set for memory locations where there
are multiple accesses using different root identifiers and at least one access is a write.

Implementation in WGSLsmith

Several implementation details have been omitted above. In particular, details of han-
dling let declarations have not been provided. This is considered an implementation

41

4.3. TEST HARNESS CHAPTER 4. WGSLSMITH

detail of the rootIdentifier function. In WGSLsmith, this is implemented using a data
structure to represent the scope, which is maintained through the AST traversal and
maps normal identifiers to their root identifiers. This is used to enable mapping identi-
fiers declared with let statements back to the root.

WGSLsmith also performs a small optimization in the final step, storing a map of memory
locations to sets of accesses, rather than a single flat set of accesses. This means that
accesses to the same memory location are already grouped together.

As mentioned previously, this detection is performed before the main reconditioning
stage and rejects shaders that fail the check. This is mainly to simplify the implemen-
tation, and in practice has been found to reject approximately 30% of shaders when
enabled, which is considered to be acceptable. However, it may be possible to avoid this
in future through approaches such as proper reconditioning or avoiding invalid aliasing
by construction in the generator.

4.3 Test harness

The test harness is responsible for executing shaders within a WebGPU pipeline, op-
tionally with provided input data, and checking the output buffers to detect potential
bugs. The harness is designed to be a general purpose tool for executing WGSL compute
shaders, and is capable of handling shaders with an arbitrary number of uniform and
storage buffers. For each uniform buffer, the user is able to supply an input buffer in
the form of a JSON byte array, which will be used to initialize the buffer. The process
of executing a shader through the harness is described in figure 4.2, and involves the
following stages:

1. Reflection
2. Preprocessing
3. Execution
4. Buffer checking

To support differential testing, the harness is able to execute shaders against one or more
configurations specified by the user. A configuration is defined as the combination of a
WebGPU implementation (such as Dawn or wgpu) and a graphics adapter. The graphics
adapter is identified by its backend type (D3D12, Metal, Vulkan) and a platform-specific
device ID. For example, the string dawn:vk:93481 identifies a configuration that is exe-
cuted with Dawn using the Vulkan backend, on device ID 9348. The device ID is consis-
tent across WebGPU implementations and backends, and is usually provided by the de-
vice driver to uniquely identify the physical device (or software device if e.g. SwiftShader
[42] is being used) on the system. For example on Windows, it may correspond to a PCI

1This is a real configuration ID for the Vulkan backend used with an Nvidia RTX 3070 GPU on Windows.

42

CHAPTER 4. WGSLSMITH 4.3. TEST HARNESS

Shader Input dataReflection

Preprocessor

Executor

Implementation 1

Preprocessor

Executor

Implementation 2

Execution Manager

Buffer checking

Output buffers Output buffers

Result

I/O description

Figure 4.2: Overview of harness execution process.

device ID. This mechanism allows the harness to be used with multiple hardware and
software platforms, enabling the user to specify which specific configuration to test.

The harness is also able to support a client-server model, where shaders can be sent to a
server process for execution. This is designed to support a remote testing model, such as
to perform testing on a mobile phone while driving the process from a desktop machine.

4.3.1 Reflection

To execute a compute shader, it is necessary to set up a WebGPU pipeline (section 3.1).
Part of this involves a description of the shader’s input and output buffers, including the
sizes of the buffers and the slots that they must be bound to. In the harness, the reflection
stage is responsible for extracting this information from the shader source code.

This is done by parsing the shader, and traversing the top-level declarations to collect

43

4.3. TEST HARNESS CHAPTER 4. WGSLSMITH

all global variable declarations that are associated with the uniform or storage_buffer

address spaces. Each such buffer variable is required to have a @group and @binding

attribute, which is extracted to determine the slot that the buffer should be bound to.
The data type is also inspected to determine the minimum buffer size that must be used.

One important detail to consider is the alignment and padding requirements for host-
shareable types in WGSL. This is crucial for two reasons. Firstly, it is important to con-
sider padding within a struct, to correctly compute the minimum buffer size required.
If the buffer is too small, the type will not fit and the shader will fail to execute. Sec-
ondly, for much of the duration of WGSLsmith’s development and testing, the treatment
of padding in host buffers has been poorly defined and a point of active discussion for
language designers. Thus, it has been necessary to avoid observing padding when per-
forming buffer comparisons for differential testing, as compilers may behave differently.
This has recently been finalized in the spec [43], but illustrates the challenges of working
on a language in active development.

Another consideration is that in WGSL, a shader’s resource interface consists only of
buffer variables that are statically accessed within the program. This means that if the
shader does not contain any uses of a buffer variable (including in unreachable code),
then the variable is not considered part of the shader’s interface. Thus, attempting to
include the unused buffer in the pipeline may fail. While this is not a problem for exe-
cuting shaders produced by WGSLsmith (which always use all defined buffer variables),
it may result in failure to remove irrelevant variables during test case reduction, and is
also inconvenient for manual debugging. The harness thus performs a simple analysis
of the program to determine which variables are accessed at any point. Buffer variables
that are not accessed are removed from the previously computed list of buffers.

4.3.2 Preprocessing

Another challenge of WGSL’s active development status is that it occasionally experiences
breaking syntax changes. Often, these changes are purely syntactic and do not affect
behaviour in any way. Different compilers may adopt these changes at different paces,
resulting in a situation where the latest version of one compiler requires a new syntax
while another compiler does not support it. While the compiler developers could provide
a deprecation period, this does not always happen; not doing so is justifiable as WGSL is
still in early development. However, this is unfortunate as there may be other changes
such as bug fixes or new features that are useful to incorporate in WGSLsmith.

The syntactic preprocessing step is introduced in the harness as a method for applying
implementation-specific syntactic transformations, in order to patch the shader syntax
to enable it to work across compiler implementations. For example, as shown in figure
4.13, the syntax for shader stage attributes was modified in the WGSL specification to be

44

CHAPTER 4. WGSLSMITH 4.3. TEST HARNESS

more concise [44]. This was adopted by Naga almost immediately as a breaking change
[45], but was only implemented in Tint much more recently [46].

// old syntax

@stage(compute)

fn main() { ... }

// new syntax

@compute

fn main() { ... }

Listing 4.13: A recent version of the WGSL spec has modified the syntax of shader stage at-
tributes.

The generator produces shaders using the old syntax to remain compatible with Tint, and
the preprocessor is able to patch the attribute syntax for executions with wgpu, but not
with Dawn. Currently, the preprocessor is implemented as a text-based transformation,
though it can apply more complex AST transformations if necessary.

4.3.3 Execution

The shader is compiled during the execution stage, and a pipeline is set up using the
appropriate backend API as specified by the configuration. Buffers are created according
the information extracted by the reflection process, and initialized with user supplied
input data if available. The input data is optional, and defaults to zero-initialized buffers
if not supplied.

Additionally, it is possible to provide input data that has a different size to the actual
reflected buffer size. If the input data is smaller than the buffer, the trailing bytes in the
buffer are zero-initialized. If the input data is larger, then only the leading bytes of the
input are used. This is important when performing test case reduction as it allows the
reducer to change the sizes of buffers (by removing struct fields or modifying types, for
example), without causing the execution to fail.

Shaders are currently executed using a workgroup size of 1 (this means that the shader
is essentially single-threaded), as parallelism is not yet supported.

If the execution fails, the harness will immediately terminate with an appropriate exit
code signifying a crash. This is useful when testing for crash bugs rather than miscom-
pilations. On a successful execution, storage buffers are mapped on the host (uniform
buffers are read-only so will never change) and read back.

In WGSLsmith, separate executors are currently implemented for each of Dawn and
wgpu. There has been ongoing effort to standardize a WebGPU C header [47]. This

45

4.3. TEST HARNESS CHAPTER 4. WGSLSMITH

would enable code sharing between conforming implementations. Both Dawn and wgpu
have implemented parts of this header; however, certain limitations, particularly regard-
ing asynchronous operations [48], currently require implementation-specific code mak-
ing this approach infeasible for now in WGSLsmith.

4.3.4 Buffer Checking

The final stage involves comparing the output buffers to find mismatches. As discussed in
section 4.3.1, padding bytes in buffers must be ignored since current compiler implemen-
tations do not always have consistent behaviour [49] (though this should be rectified in
future). The data ranges to examine are computed for each buffer during reflection; this
information is then used during buffer checking to only inspect the parts of the buffer
that contain data.

If the buffers match across configurations, the harness will exit successfully, indicating
that the test case is not interesting. If a mismatch is detected, the harness will exit with
an appropriate status code to indicate a buffer mismatch.

4.3.5 Server Mode

The harness supports running in a server mode, to facilitate remote execution workflows.
In this mode, it accepts requests over a TCP socket. Requests contain a list of the config-
urations to execute, as well as the shader source code and optional input data, and are
encoded using the Bincode format [50]. For each request, the harness is spawned as a
child process (for resilience against crashes) and executed with the provided inputs. The
server returns a response containing the exit status code as well as the stderr from the
process, for matching against when performing crash testing.

The server also supports controlled parallelism, as it creates a threadpool of worker
threads to handle requests. This is particularly useful for test case reduction, where
reducers can typically test multiple candidates in parallel. Controlling the size of the
threadpool enables controlling the number of shaders that can be executed in parallel.

During this project, the server has been used to enable a workflow where the tools are
driven from Windows Subsystem for Linux [51] (WSL, essentially a Linux virtual ma-
chine) while executing shaders natively on Windows, as some development and testing
tools are easier to use on Linux. In the future, this could be used to enable testing on
physically remote devices such as Android smartphones.

46

CHAPTER 4. WGSLSMITH 4.4. REDUCTION DRIVER

4.4 Reduction Driver

The reduction driver is responsible for controlling the test case reduction process. This
involves spawning and managing the reducer child process, and providing an interest-
ingness test that allows the reducer to determine whether a candidate shader remains
interesting. WGSLsmith includes support for reducing shaders using C-Reduce [26], C-
Vise [52], Perses [27] and Picire [25].

4.4.1 Interestingness Test

The interestingness test is a script/program that is invoked by the reducer on a given
shader. It must return an exit code of 0 to signify that a shader is interesting (i.e. it
continues to reproduce the bug), while a non-zero exit code indicates that the shader
should be discarded.

In WGSLsmith, the interestingness is split into two parts. The main test logic is written
in Rust and built into the wgslsmith program to be exposed through the test command.
In addition, a wrapper shell script invokes the test command with appropriate argu-
ments. Implementing the majority of the logic in Rust allows for sharing code with other
components, and enables linking Tint and Naga directly to avoid the need to depend on
external executables.

The shell script is still necessary because some reducers strictly require the interesting-
ness test to be a shell script containing a Unix style shebang. The script is parsed to
determine which shell to use when invoking the script – presumably, this is used to sim-
plify supporting non-Unix platforms.

The interestingness test supports multiple modes for reducing test case. It is possible to
reduce both crashes and buffer mismatches. For mismatches, the test harness is used to
execute shaders and compare the output buffers. For crashes, in many cases they are
triggered by the backend language compiler (e.g. HLSL or MSL) due to bugs or miscom-
pilations from the WGSL compiler. It is possible to reduce these using the harness, but
WGSLsmith also supports calling language-specific validation tools directly. For example,
it can invoke Microsoft’s FXC [53] compiler to validate the HLSL produced by Tint and
Naga. This is often faster than doing a full execution of the shaders, and allows testing on
platforms where execution may not be possible (e.g. Metal shaders cannot be executed
on Windows, but Apple does provide a version of the Metal compiler for Windows).

When reducing crash bugs a regular expression must also be supplied. The output from
the harness/validator is matched against the regular expression to determine whether it
is interesting. This helps to avoid bug slippage (section 2.5.2).

47

Chapter 5

Evaluation

WGSLsmith has been evaluated continuously through the project, to find both crash and
miscompilation bugs in Tint and Naga. This has proven to be quite successful with 33
new bugs found in total, to date. In particular, crashes due to WGSL compilers producing
incorrect code for the target language have been found to be very common. Currently,
21 bugs have been reported to Naga and 8 have been reported to Tint. 11 of the reported
bugs have been fixed so far, with another fix currently pending.

Section 5.1 explores examples of bugs that WGSLsmith has been able to find and high-
lights features of WGSLsmith that enabled finding these bugs. Section 5.2 describes the
bug reporting process and illustrates some of the issues that must be considered in large
bug-reporting campaigns. Finally, section 5.3 evaluates the performance of multiple re-
ducers when applied to WGSL, and validates the use of reconditioning as an effective
method for avoiding UB during reduction.

5.1 Bugs Found

WGSLsmith has found several types of bugs in Tint and Naga, including compiler crashes
as well as miscompilations causing unexpected runtime behaviour. Table 5.1 presents a
summary of bugs that have been found for each combination of compiler and backend
that has been tested, grouped into crashes and miscompilations. Table 5.2 shows the
current statuses of bugs. Note that the counts are exclusive (i.e. confirmed does not
include reported and fixed does not include confirmed).

HLSL bugs appear to have been the most lucrative, particularly in Naga’s HLSL backend.
This is likely to be because the language is not as well-specified as MSL and SPIR-V in
some cases, and often contains edge cases and compiler bugs which can be overlooked.

In typical compiler testing, crashes refer specifically to those crashes that occur during

48

CHAPTER 5. EVALUATION 5.1. BUGS FOUND

Compiler Crashes Miscompilations Total
Tint-HLSL 3 4 7
Tint-MSL 4 3 7

Tint-SPIRV 0 1 1
Naga-HLSL 10 6 16
Naga-MSL 5 3 7

Naga-SPIRV 0 2 2
Total 22 19 41

Total Distinct 20 13 33

Table 5.1: Summary of bugs affecting Tint and Naga. Several bugs affect both Tint and Naga,
possibly across multiple backends. Results for Total Distinct show the deduplicated counts across
compilers and backends.

Status Count
Unreported 6
Reported 2

Confirmed 13
Pending Fix 1

Fixed 11

Table 5.2: Statuses of bugs that have been found across all compilers and backends. Rows are
exclusive (e.g. reported does not include confirmed).

execution of the compiler under test, while crashes that may occur when running the
compiled program are considered miscompilations. WGSL is an interesting case, since
the compilation process is split into multiple stages. A first-stage compiler such as Tint
and Naga will translate WGSL code into an appropriate language for the target graphics
API, while a second-stage compiler is invoked later when creating a WebGPU pipeline.
Here, we will refer to a crash that occurs during either compilation stage as a crash bug,
while a bug that causes incorrect behaviour during actual shader execution is referred to
as a miscompilation.

5.1.1 Smallest integer literals in Metal

A group of related bugs have been found involving operations on the smallest integer
literal (-2147483648). The metal compiler treats this literal as a 64-bit integer rather
than a 32-bit integer. It is likely that the compiler parses it as a unary negation operation
applied to a positive literal, rather than a negative literal, but positive 2147483648 is not
representable as a 32-bit signed integer.

In Naga, this is not handled correctly as the compiler naively translates the literal and

49

5.1. BUGS FOUND CHAPTER 5. EVALUATION

the related operations to their MSL equivalents, without inserting appropriate checks or
transformations. This can cause a crash when the MSL (Metal Shading Language) code is
later compiled. Listing 5.1 shows an example of a left shift operation applied to INT_MIN,
the result of which is stored as a value of type i32.

struct Struct_1 {

a: i32,

}

fn f(a: u32) {

_ = Struct_1(-2147483648 << a);

}

Listing 5.1: This code performs a left shift of an INT_MIN literal. This is compiled by Naga to
MSL that is rejected by the Metal compiler.

WGSLsmith was able to discover these bugs thanks to its literal generation process (sec-
tion 4.1.3). This involves sampling from multiple distributions, including a uniform
distribution that contains specific values likely to be edge cases, such as INT_MIN.

5.1.2 Pointer bugs

WGSLsmith has been able to identify two issues related to pointers so far, thanks to its
support for generating code involving pointers. This includes a crash bug affecting Naga,
and a miscompilation resulting in unexpected runtime behaviour that affects both Tint
and Naga.

The crash is caused by generating incorrect HLSL code for functions that accept pointers
to an array. Naga translates the parameter as a pointer to the element type, rather than
to the array itself. This is rejected by Microsoft’s FXC [53] compiler when compiling the
resulting HLSL, due to the incorrect types.

The miscompilation is an interesting case of pointer aliasing, where an alias exists as a
function parameter but is not actually used to perform a memory access. An example is
illustrated in listing 5.2, where the flag variable is only accessed through a single alias
throughout the program.

Though listing 5.2 illustrates a simple and arguably contrived example, a more complex
scenario could involve conditionally accessing different pointer arguments of a function,
which may be more representative of code that a programmer would write. While such
an example is likely to be rejected by WGSLsmith’s conservative pointer analysis, this
shows that the analysis is still able to allow related cases that can highlight the same
problem, and is liberal enough to enable finding interesting bugs.

50

CHAPTER 5. EVALUATION 5.1. BUGS FOUND

@group(0) @binding(1)

var<storage, read_write> s_out: i32;

var<private> flag: bool;

fn func(p: ptr<private, bool>) { flag = true; }

@stage(compute) @workgroup_size(1)

fn main() {

func(&flag);

if (flag) { s_out = 1; }

else { s_out = 2; }

}

Listing 5.2: func accepts a pointer p, which is an alias of flag at runtime. However, it does not
read or write p, so no memory access is performed through p and there is no invalid aliasing oc-
curring. This program results in unexpected behaviour when executed with the DirectX backend
(using HLSL).

Both issues above have been reported to and confirmed by the Naga developers. Since
pointer support was added at a very late stage of the project and has not seen as much
testing as other features, it is possible that further issues will be discovered in future.

5.1.3 FXC issues affecting WGSL compilers

FXC [53] is the legacy tool for compiling HLSL, and has been superseded by the newer
DXC compiler [54], which is open-source and based on LLVM infrastructure. While FXC
is generally not maintained any longer (other than for major bug fixes), Tint and Naga
still aim to retain compatibility with it for now, due to issues such as availability and
compatibility of DXC on older systems. Indeed, wgpu does not include support for DXC
at this time. This means that workarounds for issues with FXC must be implemented in
WGSL compilers, where FXC rejects or miscompiles seemingly valid HLSL.

WGSLsmith has been able to identify a number of these FXC related issues, including 3
crash bugs where FXC rejects valid code, and 4 cases of unexpected behaviour at runtime.
Two of the miscompilations affected both Tint and Naga and have been fixed in both, and
one of the crashes affecting Naga has also been fixed.

Listing 5.3 shows a WGSL program that safely wraps a division by zero. However, the
HLSL code generated by Naga for this is rejected by FXC, despite being valid, as FXC
believes there to be a statically-detectable division by zero. This particular case is inter-
esting as the WGSL specification requires certain division semantics that must be checked
at runtime. Naga does not yet implement the check, but Tint implements it as a ternary

51

5.1. BUGS FOUND CHAPTER 5. EVALUATION

operation in HLSL wrapping the division (resulting in two checks), which has the side
effect of appeasing FXC too. This is shown in listing 5.4.

fn divide(a: i32, b: i32) -> i32 {

if (b == 0) { return a / 2; }

else { return a / b; }

}

@stage(compute) @workgroup_size(1)

fn main() {

_ = divide(0, 0);

}

Listing 5.3: Naga compiles this WGSL to valid HLSL code. However, FXC complains about a
possible division by zero, despite the division operation being checked at runtime.

// WGSL

fn _wgslsmith_div_i32(a: i32, b: i32) -> i32 {

return select(a / b, a / i32(2), ((a == -2147483648) && (b == -1)) || (b == 0));

}

// HLSL

int _wgslsmith_div_i32(int a, int b) {

bool tint_tmp_1 = (a == -2147483648);

if (tint_tmp_1) { tint_tmp_1 = (b == -1); }

bool tint_tmp = (tint_tmp_1);

if (!tint_tmp) { tint_tmp = (b == 0); } // <- WGSLsmith's b == 0 check

return ((tint_tmp) ? (a / int(2)) : (a / (b == 0 ? 1 : b))); // <- Tint's check

}

Listing 5.4: HLSL code generated by Tint for WGSLsmith’s i32 division wrapper. The second
b == 0 check inserted by Tint is able to prevent FXC from throwing a division by zero error for
the case in listing 5.3.

5.1.4 Switch statements

Three bugs have been found by WGSLsmith related to Naga’s handling of switch state-
ments in its HLSL backend. One of these is due to an FXC issue where it incorrectly
identifies an invalid fallthrough between case blocks, while another is due to a bug in
Naga’s implementation of the fallthrough statement in WGSL (listing 5.5). The final
issue is caused by FXC rejecting uses of the continue statement in switch statements,
even if the switch is contained within a loop.

52

CHAPTER 5. EVALUATION 5.2. BUG REPORTING

// WGSL

fn main() {

switch (1) {

case -1: { fallthrough; }

default: { let var_2 = i32(11632); }

}

}

// HLSL

void main() {

switch(1) {

case -1: {

{}

{ int var_2_ = int(11632); } break;

}

default: { int var_2_1 = var_2_; break; }

}

}

Listing 5.5: Naga generates HLSL that duplicates the contents of the default block in the first
case block, to simulate a fallthrough. However, the default block then attempts to reference a
variable defined in the case block, which is invalid as it is not in scope.

5.1.5 Implicit array initialization

As described in section 4.1.2, WGSLsmith is able to omit the initialization expression
when generating global variables. This was able to detect an issue in Naga’s SPIR-V
backend, where variables in the private and function address spaces were not being
correctly initialized when lacking an explicit initializer expression. In certain cases, this
could result in unexpected runtime behaviour.

5.2 Bug Reporting

Throughout the project, bugs that have been found by WGSLsmith have been reported
to compiler developers, through Naga’s GitHub repository and Tint’s issue tracker. The
developers have been receptive to reported bugs, with Naga developers in particular
often providing quick responses that have been helpful for validating issues. Several of
the bugs that have been reported have received fixes, and one currently has a pending
pull request.

There are important social issues that must be considered when reporting bugs in bug-

53

5.3. REDUCER EVALUATION CHAPTER 5. EVALUATION

finding campaigns such as this [55, 56]. Submitting many bug reports in a short period
of time can be overwhelming for developers who will have to investigate and validate the
reports. Particularly with WGSL compilers, there are some issues that may be related to
functionality which has simply not been implemented yet. In such a case the developers
may not be interested in a report, so this is an additional consideration when deciding to
report a bug.

Care has been taken to locally investigate and validate all of my bug submissions, where
possible. In addition, bug reports detail reproducible code examples, as well as inter-
mediate code where this is relevant, and provide details of error messages and expected
outcomes.

It is important to maintain a good relationship with developers, and it is possible to
come across as a nuisance if simply dumping large numbers of bug reports. Thus, I have
also contributed fixes for some of the issues found by WGSLsmith [57–59]. The intent
of WGSLsmith is to assist WGSL compiler developers with ensuring their compilers are
robust and reliable, and contributing fixes can help to ease the burden on maintainers.
In addition, it can help with further bug-finding as existing bugs can mask other bugs.

5.3 Reducer Evaluation

The aim of program reconditioning is to enable existing general-purpose program reduc-
ers to work with languages such as WGSL, which existing reducers cannot automatically
be applied to while maintaining correctness of the reduced programs (section 2.5.1).
This section evaluates the effectiveness of different reduction tools when combined with
reconditioning, for WGSL compiler testing. It also provides a general comparison of
reducer performance on WGSL programs.

Reducers have been tested using a collection of 17 test cases found with WGSLsmith, that
exhibit crash bugs. This is split into 8 shaders with bugs affecting the HLSL backends and
9 shaders with bugs affecting MSL backends. These have been selected as they are all
reproducible with the same compiler versions. Crash bugs are used for this experiment
as they are easy to reproduce across multiple systems.

Four reducers have been tested, including C-Reduce, C-Vise, Perses and Picire. The tests
have been conducted on a machine with a 12-core 3.8GHz AMD Ryzen 9 3900X CPU and
32 GB of RAM, running Ubuntu 20.04. Each of these reducers supports parallelism, so
both single-threaded and multithreaded reductions have been tested.

Reduction has been performed using WGSLsmith’s special crash reduction mode. As de-
scribed in section 4.4.1, this avoids using the harness to execute shaders, and instead
compiles WGSL shaders directly to the target language and uses language-specific vali-
dation tools to test for the presence of crashes. This is done to avoid making these tests

54

CHAPTER 5. EVALUATION 5.3. REDUCER EVALUATION

platform-specific.

The speed of reduction is measured by recording the total reduction time per test case, as
well as the number of calls made to the interestingness test. This is measured by sending
a signal from the test script to the reduction driver process to increment a counter, rather
than through other methods such as the filesystem, to ensure that each test script call
remains isolated when multithreading is enabled. The level of reduction achieved is also
measured, by comparing the size in bytes of the reduced file to the original.

Note that most reducers will continue running until a fixpoint is reached, before termi-
nating. However, Picire appears to favour fast reduction times at the cost of not max-
imizing the level of reduction possible. Thus, a similar approach to [1] has been used
by running Picire on successively reduced shaders three times to allow Picire to perform
further reduction if possible.

Table 5.3 summarizes the reduction percentages achieved by each reducer. The results
are given for multithreaded reductions, though the single-threaded results are largely
identical. Table 5.4 details the full results including sizes and timing comparisons be-
tween reducers.

All reducers have been able to achieve reasonable levels of reduction on average, includ-
ing Picire, though it has poor worst-case performance. C-Reduce, C-Vise and Perses in
particular have all been able to achieve similar levels of reduction. Reduction times are
more varied, with Perses demonstrating the fastest mean and median reduction times.

Min Max Mean Median
C-Reduce 92.93% 99.69% 97.52% 97.61%

C-Vise 90.77% 99.66% 96.96% 97.25%
Perses 92.63% 99.58% 97.68% 98.15%
Picire 30.41% 97.86% 74.63% 83.36%

Table 5.3: Percentage reduction achieved by each reducer. Results are given for multithreaded
reductions, but single-threaded results are largely identical.

It is interesting to see that C-Reduce and C-Vise can benefit quite significantly from mul-
tithreading, with C-Reduce achieving 56% and 40% improvements for mean and median
times respectively, while Perses does not see similar improvement. Comparing the num-
ber of test calls between C-Reduce and Perses in single and multithreaded modes shows
an increase in calls for C-Reduce and a small decrease for Perses with multithreading.
This suggests different parallelization strategies between the reducers, where Perses may
be able to use parallelism to rule out certain paths more quickly, while C-Reduce appears
to test as many candidates as possible.

In practice, all reducers have been able to achieve a reasonable level of reduction with

55

5.3. REDUCER EVALUATION CHAPTER 5. EVALUATION

Min Max Mean Median
Original Size (bytes) 5785 17496 11592.5 11749

C-Reduce (s)
Time (m:s) 00:42 07:48 02:07 01:17
Test calls 1965 26435 8230.7 6737
Size (bytes) 46 973 288.6 256

C-Reduce (m)
Time (m:s) 00:14 03:12 00:56 00:46
Test calls 2686 30069 10151.2 8819
Size (bytes) 46 973 288.6 256

C-Vise (s)
Time (m:s) 00:38 09:19 02:30 01:43
Test calls 1387 26018 7653.7 6050
Size (bytes) 51 1270 357.6 288

C-Vise (m)
Time (m:s) 00:26 04:20 01:28 01:01
Test calls 2161 28242 8774 6969
Size (bytes) 51 1270 357.6 288

Perses (s)
Time (m:s) 00:14 01:21 00:30 00:31
Test calls 90 960 301.2 222
Size (bytes) 59 1014 266.4 158

Perses (m)
Time (m:s) 00:14 01:14 00:29 00:30
Test calls 87 904 295.3 232
Size (bytes) 59 1014 266.4 158

Picire (s)
Time (m:s) 00:16 09:34 01:40 01:06
Test calls 145 2691 1799.2 2067
Size (bytes) 158 10257 3117 2103

Picire (m)
Time (m:s) 00:09 04:40 01:09 00:32
Test calls 172 6423 3900.8 3699
Size (bytes) 158 10263 3124.6 2103

Table 5.4: Comparison of reduction performance across multiple reducers. (s) indicates single-
threading and (m) indicates multithreading with 8 threads.

acceptable run-times, and reconditioning is able to ensure that the reduced programs
contain predictable behaviour. Perses has proven to be particularly effective at perform-
ing fast reductions of WGSL programs. This is as expected since it uses a language
grammar to ensure that reduction candidates are syntactically valid, allowing it to avoid
testing large groups of candidates that other reducers such as C-Reduce will try.

56

Chapter 6

Conclusion

WGSLsmith is one of the first tools for large-scale testing of WGSL compilers and has
proven to be an effective bug-finding tool, having found 33 bugs in Tint and Naga to
date. Most of these have been reported to and confirmed by developers and 11 have
been fixed so far, with another fix currently pending. This shows that WGSLsmith is
able to find important bugs that developers want to fix. In addition, WGSLsmith’s novel
support for testing pointers in a shader language has enabled finding two bugs relating
to pointers in WGSL.

Applying reconditioning to WGSL has worked well to ensure correct and predictable
behaviour of generated test cases, enabling effective automatic test case reduction. A
number of existing reducers have been shown to be effective for WGSL, with Perses in
particular providing fast reduction times and high levels of reduction. Reconditioning has
also been particularly useful in the context of WGSL, by providing a way to implement
fixes and mitigations for current compiler bugs and missing UB checks. This is very useful
for testing languages in active development, such as WGSL.

Working on a language in flux has been challenging, as there have been both syntactic
and behavioural changes to the language over the course of the project, which have
been adopted by compilers at varying paces. Syntactic preprocessing (section 4.3.2) and
reconditioning techniques have helped to mitigate some of these problems, by smoothing
out small language differences between compilers.

6.1 Future Work

WGSLsmith is able to generate code using a variety of WGSL language features; however,
there are still several features that are currently missing. In particular, WGSLsmith does
not support matrices or bitcast operations, and lacks some of WGSL’s control-flow con-

57

6.2. ETHICAL CONSIDERATIONS CHAPTER 6. CONCLUSION

structs such as continuing (not to be confused with continue) and break-if statements.
This is due to time constraints and these features are good candidates for future exten-
sions. More complex extensions to WGSLsmith could include support for concurrency in
shaders (using barriers and atomics) and the ability to test graphics shaders.

Additionally, floating-point support is currently limited to a restricted set of values and
operations. No floating-point related bugs have been identified so far, although the fea-
ture has not seen as much testing as other features. As floating-point operations in WGSL
usually specify the possible rounding error that could occur, it may be interesting to see
if this could be used to make checks more precise and to relax some of the above restric-
tions, which could prove more effective at finding bugs.

While WGSLsmith supports pointers with promising initial results, the analysis contains
some limitations. It is currently context-insensitive, meaning that it does not properly
consider control-flow which can result in false positives. Further work could be done
to make the analysis more precise, allowing it to accept more shaders. Alternative ap-
proaches could also be explored that do not require rejecting shaders at all.

Finally, the platform support for WGSLsmith could be extended to enable testing on
other devices. As WGSLsmith supports remote shader execution, it should be possible to
perform testing on mobile devices such as Android smartphones with minimal effort. iOS
could be supported similarly, though may require more work due to platform restrictions.

6.2 Ethical Considerations

This project aims to develop tools to improve the reliability and security of compiler
implementations used in web browsers. Web browsers are a key target for attackers
thanks to their massive audience and the complexity of the modern web which entails a
wide attack surface. Thus, there is potential for this work to improve the security of web
users’ personal devices and safeguard private data.

However, there is also potential for fuzzing tools to be misused. It is possible for this work
to be used to find bugs in a browser by a malicious attacker. If these bugs are security
critical, an attacker may be able to exploit them to attack users’ devices. However, the
risk of exploitable bugs exists regardless of whether tools to find these bugs exist or not;
thus, it is important that browser vendors patch security issues in a timely fashion to
avoid attacks.

Another consideration for fuzzing tools is the environmental impact of a large fuzzing
campaign. Fuzzing can be described as a "brute-force" approach as it involves generating
and testing a very large number of test cases in the hope that a small fraction will trigger
bugs. This can result in high energy usage, so improving the efficiency of the process can
have beneficial environmental impacts.

58

Appendix A

Built-In Functions

Type Function

Logical
all

any

select

Integer

abs

clamp

countOneBits

reverseBits

firstLeadingBit

firstTrailingBit

min

max

countLeadingZeros

countTrailingZeros

extractBits

insertBits

dot

Floating-point

ceil

floor

round

sign

trunc

max

min

step

Table A.1: Built-in WGSL functions supported by WGSLsmith.

59

Bibliography

[1] Alastair F. Donaldson and Bastien Lecoeur. Program reconditioning: Avoiding un-
defined behaviour during compiler test case reduction. Unpublished, 2022.

[2] Dzmitry Malyshau, Kai Ninomiya, Brandon Jones, and Justin Fan. WebGPU, 2022.
URL https://www.w3.org/TR/2022/WD-webgpu-20220617/. Accessed: 2022-06-20.

[3] David Neto, Myles C. Maxfield, and Dan Sinclair. WGSL, 2022. URL https://www.

w3.org/TR/2022/WD-WGSL-20220617/. Accessed: 2022-06-20.

[4] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Toward understanding
compiler bugs in GCC and LLVM. In Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, page 294–305, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450343909. doi: 10.1145/
2931037.2931074. URL https://doi.org/10.1145/2931037.2931074.

[5] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’11, page 283–294, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450306638. doi:
10.1145/1993498.1993532. URL https://doi.org/10.1145/1993498.1993532.

[6] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing for C and
C++ compilers with YARPGen. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.
doi: 10.1145/3428264. URL https://doi.org/10.1145/3428264.

[7] William M. McKeeman. Differential testing for software. Digital Technical Journal,
10(1):100–107, 1998.

[8] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence
modulo inputs. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, page 216–226, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450327848. doi: 10.1145/
2594291.2594334. URL https://doi.org/10.1145/2594291.2594334.

60

https://www.w3.org/TR/2022/WD-webgpu-20220617/
https://www.w3.org/TR/2022/WD-WGSL-20220617/
https://www.w3.org/TR/2022/WD-WGSL-20220617/
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3428264
https://doi.org/10.1145/2594291.2594334

BIBLIOGRAPHY BIBLIOGRAPHY

[9] Christian Lindig. Random testing of C calling conventions. In Proceedings of the
Sixth International Symposium on Automated Analysis-Driven Debugging, AADE-
BUG’05, page 3–12, New York, NY, USA, 2005. Association for Computing Ma-
chinery. ISBN 1595930507. doi: 10.1145/1085130.1085132. URL https:

//doi.org/10.1145/1085130.1085132.

[10] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):
107–115, jul 2009. ISSN 0001-0782. doi: 10.1145/1538788.1538814. URL https:

//doi.org/10.1145/1538788.1538814.

[11] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. Auto-
mated testing of graphics shader compilers. Proc. ACM Program. Lang., 1(OOPSLA),
oct 2017. doi: 10.1145/3133917. URL https://doi.org/10.1145/3133917.

[12] Bastien Lecoeur. GLSLsmith: a Random Generator of OpenGL shader programs.
Master’s thesis, Imperial College London, 2021.

[13] Alastair F. Donaldson, Hugues Evrard, and Paul Thomson. Putting Randomized
Compiler Testing into Production (Experience Report). In Robert Hirschfeld and
Tobias Pape, editors, 34th European Conference on Object-Oriented Programming
(ECOOP 2020), volume 166 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 22:1–22:29, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-154-2. doi: 10.4230/LIPIcs.ECOOP.
2020.22. URL https://drops.dagstuhl.de/opus/volltexte/2020/13179.

[14] Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez
Maselco, and Antoni Karpiński. Test-case reduction and deduplication almost for
free with transformation-based compiler testing. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implemen-
tation, PLDI 2021, page 1017–1032, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383912. doi: 10.1145/3453483.3454092.
URL https://doi.org/10.1145/3453483.3454092.

[15] Google. Tint, n.d. URL https://dawn.googlesource.com/tint. Accessed: 2022-
06-20.

[16] Rust Graphics Mages. Naga, n.d. URL https://github.com/gfx-rs/naga. Ac-
cessed: 2022-06-20.

[17] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler bugs via guided
stochastic program mutation. SIGPLAN Not., 50(10):386–399, oct 2015. ISSN
0362-1340. doi: 10.1145/2858965.2814319. URL https://doi.org/10.1145/

2858965.2814319.

61

https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3133917
https://drops.dagstuhl.de/opus/volltexte/2020/13179
https://doi.org/10.1145/3453483.3454092
https://dawn.googlesource.com/tint
https://github.com/gfx-rs/naga
https://doi.org/10.1145/2858965.2814319
https://doi.org/10.1145/2858965.2814319

BIBLIOGRAPHY BIBLIOGRAPHY

[18] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code
mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,
page 849–863, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450344449. doi: 10.1145/2983990.2984038. URL https://doi.org/

10.1145/2983990.2984038.

[19] Karine Even-Mendoza, Cristian Cadar, and Alastair F. Donaldson. Closer to the
Edge: Testing Compilers More Thoroughly by Being Less Conservative about Unde-
fined Behaviour, page 1219–1223. Association for Computing Machinery, New York,
NY, USA, 2020. ISBN 9781450367684. URL https://doi.org/10.1145/3324884.

3418933.

[20] W.E. Howden. Theoretical and empirical studies of program testing. IEEE Trans-
actions on Software Engineering, SE-4(4):293–298, 1978. doi: 10.1109/TSE.1978.
231514.

[21] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao,
and Lu Zhang. A survey of compiler testing. ACM Comput. Surv., 53(1), feb
2020. ISSN 0360-0300. doi: 10.1145/3363562. URL https://doi.org/10.1145/

3363562.

[22] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: a new
approach for generating next test cases. Technical Report HKUST-CS98-01, De-
partment of Computer Science, Hong Kong University of Science and Technology,
1998.

[23] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In Pro-
ceedings of the 7th European Software Engineering Conference Held Jointly with the
7th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, ESEC/FSE-7, page 253–267, Berlin, Heidelberg, 1999. Springer-Verlag. ISBN
3540665382.

[24] Ralf Hildebrandt and Andreas Zeller. Simplifying failure-inducing input. In Pro-
ceedings of the 2000 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA ’00, page 135–145, New York, NY, USA, 2000. Association for
Computing Machinery. ISBN 1581132662. doi: 10.1145/347324.348938. URL
https://doi.org/10.1145/347324.348938.

[25] Renáta Hodován. Picire, n.d. URL https://github.com/renatahodovan/picire.
Accessed: 2022-06-20.

[26] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. Test-case reduction for C compiler bugs. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI

62

https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3324884.3418933
https://doi.org/10.1145/3324884.3418933
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/347324.348938
https://github.com/renatahodovan/picire

BIBLIOGRAPHY BIBLIOGRAPHY

’12, page 335–346, New York, NY, USA, 2012. Association for Computing Ma-
chinery. ISBN 9781450312059. doi: 10.1145/2254064.2254104. URL https:

//doi.org/10.1145/2254064.2254104.

[27] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. Perses:
Syntax-guided program reduction. In Proceedings of the 40th International Con-
ference on Software Engineering, ICSE ’18, page 361–371, New York, NY, USA,
2018. Association for Computing Machinery. ISBN 9781450356381. doi: 10.1145/
3180155.3180236. URL https://doi.org/10.1145/3180155.3180236.

[28] Josie Holmes, Alex Groce, and Mohammad Amin Alipour. Mitigating (and ex-
ploiting) test reduction slippage. In Proceedings of the 7th International Work-
shop on Automating Test Case Design, Selection, and Evaluation, A-TEST 2016, page
66–69, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450344012. doi: 10.1145/2994291.2994301. URL https://doi.org/10.

1145/2994291.2994301.

[29] Microsoft. DirectX graphics and gaming, 2022. URL https://docs.microsoft.

com/en-gb/windows/win32/directx. Accessed: 2022-06-20.

[30] Apple. Metal, n.d. URL https://developer.apple.com/metal/. Accessed: 2022-
06-20.

[31] Khronos Group. OpenGL, n.d. URL https://www.opengl.org/. Accessed: 2022-
06-20.

[32] Khronos Group. Vulkan, n.d. URL https://www.vulkan.org/. Accessed: 2022-06-
20.

[33] Microsoft. High-level shader language (HLSL), 2021. URL https:

//docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl.
Accessed: 2022-06-20.

[34] Apple. Metal shading language specification version 3.0, 2022. URL https://

developer.apple.com/metal/Metal-Shading-Language-Specification.pdf. Ac-
cessed: 2022-06-20.

[35] Khronos Group. SPIR-V Specification, 2021. URL https://www.khronos.org/

registry/SPIR-V/specs/unified1/SPIRV.html. Accessed: 2022-06-20.

[36] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL® Shading Language,
2014. URL https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.

4.40.pdf. Accessed: 2022-06-20.

[37] Google. Dawn, n.d. URL https://dawn.googlesource.com/dawn. Accessed: 2022-
06-20.

63

https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/2994291.2994301
https://doi.org/10.1145/2994291.2994301
https://docs.microsoft.com/en-gb/windows/win32/directx
https://docs.microsoft.com/en-gb/windows/win32/directx
https://developer.apple.com/metal/
https://www.opengl.org/
https://www.vulkan.org/
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.40.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.40.pdf
https://dawn.googlesource.com/dawn

BIBLIOGRAPHY BIBLIOGRAPHY

[38] Rust Graphics Mages. wgpu, n.d. URL https://github.com/gfx-rs/wgpu. Ac-
cessed: 2022-06-20.

[39] IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70,
2008. doi: 10.1109/IEEESTD.2008.4610935.

[40] Vlas Zyrianov, Christian D. Newman, Drew T. Guarnera, Michael L. Collard, and
Jonathan I. Maletic. Srcptr: A framework for implementing static pointer analysis
approaches. In Proceedings of the 27th International Conference on Program Com-
prehension, ICPC ’19, page 144–147. IEEE Press, 2019. doi: 10.1109/ICPC.2019.
00031. URL https://doi.org/10.1109/ICPC.2019.00031.

[41] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceed-
ings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE ’01, page 54–61, New York, NY, USA, 2001. Associa-
tion for Computing Machinery. ISBN 1581134134. doi: 10.1145/379605.379665.
URL https://doi.org/10.1145/379605.379665.

[42] Google. SwiftShader, n.d. URL https://swiftshader.googlesource.com/

SwiftShader. Accessed: 2022-06-20.

[43] Alan Baker. Disallow accessing padding, 2022. URL https://github.com/gpuweb/

gpuweb/pull/2987. Accessed: 2022-06-20.

[44] Jim Blandy. Use concise forms for entry point stage attributes., 2022. URL https:

//github.com/gpuweb/gpuweb/pull/2652. Accessed: 2022-06-20.

[45] Igor Shaposhnik. [wgsl-in] update entry point stage attributes, 2022. URL https:

//github.com/gfx-rs/naga/pull/1833. Accessed: 2022-06-20.

[46] Dan Sinclair. Issue 1503: concise shader stage attributes, 2022. URL https://

bugs.chromium.org/p/tint/issues/detail?id=1503. Accessed: 2022-06-20.

[47] Correntin Wallez, Kai Ninomiya, Austin Eng, ShrekShao, Rajveer Malviya, Dzmitry
Malyshau, Westerbly Snaydley, and Jiawei Shao. webgpu-headers, n.d. URL https:

//github.com/webgpu-native/webgpu-headers. Accessed: 2022-06-20.

[48] Tianqi Chen. [discuss] synchronization or lightweight sync to async abstraction,
2020. URL https://github.com/webgpu-native/webgpu-headers/issues/47. Ac-
cessed: 2022-06-20.

[49] Alastair F. Donaldson. Issue 1544: Issue with padding in storage buffer struct,
2022. URL https://bugs.chromium.org/p/tint/issues/detail?id=1544. Ac-
cessed: 2022-06-20.

[50] Ty Overby and Trangar. Bincode, n.d. URL https://github.com/bincode-org/

bincode. Accessed: 2022-06-20.

64

https://github.com/gfx-rs/wgpu
https://doi.org/10.1109/ICPC.2019.00031
https://doi.org/10.1145/379605.379665
https://swiftshader.googlesource.com/SwiftShader
https://swiftshader.googlesource.com/SwiftShader
https://github.com/gpuweb/gpuweb/pull/2987
https://github.com/gpuweb/gpuweb/pull/2987
https://github.com/gpuweb/gpuweb/pull/2652
https://github.com/gpuweb/gpuweb/pull/2652
https://github.com/gfx-rs/naga/pull/1833
https://github.com/gfx-rs/naga/pull/1833
https://bugs.chromium.org/p/tint/issues/detail?id=1503
https://bugs.chromium.org/p/tint/issues/detail?id=1503
https://github.com/webgpu-native/webgpu-headers
https://github.com/webgpu-native/webgpu-headers
https://github.com/webgpu-native/webgpu-headers/issues/47
https://bugs.chromium.org/p/tint/issues/detail?id=1544
https://github.com/bincode-org/bincode
https://github.com/bincode-org/bincode

BIBLIOGRAPHY BIBLIOGRAPHY

[51] Microsoft. Windows subsystem for linux documentation, 2021. URL https://docs.

microsoft.com/en-us/windows/wsl/. Accessed: 2022-06-20.

[52] Martin Liška. C-Vise, n.d. URL https://github.com/marxin/cvise. Accessed:
2022-06-20.

[53] Microsoft. Effect-Compiler Tool, 2020. URL https://docs.microsoft.com/en-us/

windows/win32/direct3dtools/fxc. Accessed: 2022-06-20.

[54] Microsoft. DirectX Shader Compiler, 2022. URL https://github.com/microsoft/

DirectXShaderCompiler. Accessed: 2022-06-20.

[55] John Regehr. Responsible and effective bug finding, 2020. URL https://blog.

regehr.org/archives/2037. Accessed: 2022-06-20.

[56] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines
of code later: Using static analysis to find bugs in the real world. Commun. ACM,
53(2):66–75, feb 2010. ISSN 0001-0782. doi: 10.1145/1646353.1646374. URL
https://doi.org/10.1145/1646353.1646374.

[57] Hasan Mohsin. [hlsl-out] Fix countOneBits and reverseBits for signed integers,
2022. URL https://github.com/gfx-rs/naga/pull/1928. Accessed: 2022-06-20.

[58] Hasan Mohsin. Fix generated hlsl for writes to scalar/vector storage buffer, 2022.
URL https://github.com/gfx-rs/naga/pull/1903. Accessed: 2022-06-20.

[59] Hasan Mohsin. Implement reverseBits and countOneBits for SPIR-V, 2022. URL
https://github.com/gfx-rs/naga/pull/1897. Accessed: 2022-06-20.

65

https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/
https://github.com/marxin/cvise
https://docs.microsoft.com/en-us/windows/win32/direct3dtools/fxc
https://docs.microsoft.com/en-us/windows/win32/direct3dtools/fxc
https://github.com/microsoft/DirectXShaderCompiler
https://github.com/microsoft/DirectXShaderCompiler
https://blog.regehr.org/archives/2037
https://blog.regehr.org/archives/2037
https://doi.org/10.1145/1646353.1646374
https://github.com/gfx-rs/naga/pull/1928
https://github.com/gfx-rs/naga/pull/1903
https://github.com/gfx-rs/naga/pull/1897

	Introduction
	Contributions

	Background
	Compiler Testing
	Program Construction
	Program Generation
	Program Transformation

	Ensuring Correctness
	Structural Approach
	Dynamic Checks
	Generation-Time Analysis

	Test Oracles
	Differential Testing
	Metamorphic Testing

	Test Case Reduction
	Reconditioning
	Bug Slippage

	Graphics Programming
	Overview
	WebGPU
	WGSL
	Overview
	Shader I/O
	Pointers
	Floating-Point
	Predictability and Undefined Behaviour

	Security Concerns

	WGSLsmith
	Generator
	Types
	Global Variables
	Expressions
	Functions
	Pointers
	Statements & Control-Flow

	Reconditioner
	Arithmetic Wrappers
	Floating-Point
	Loop Limiters
	Array Bounds Checking
	Pointer Aliasing

	Test harness
	Reflection
	Preprocessing
	Execution
	Buffer Checking
	Server Mode

	Reduction Driver
	Interestingness Test

	Evaluation
	Bugs Found
	Smallest integer literals in Metal
	Pointer bugs
	FXC issues affecting WGSL compilers
	Switch statements
	Implicit array initialization

	Bug Reporting
	Reducer Evaluation

	Conclusion
	Future Work
	Ethical Considerations

	Built-In Functions
	Bibliography

