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Abstract

Phishing attacks have alarmingly increased in recent years, leveraging hand-crafted
emails to deceive victims and obtain confidential information. Reports from the Anti-
Phishing Work Group underscore a concerning 150% annual rise in such incidents
since 2019. Furthermore, the Verizon Data Breach Investigation Report reveals that
phishing-driven attacks accounted for over 19% of 2022’s breaches; the urgency for
efficient countermeasures has never been more palpable. Notably, the problem is not
limited to detecting phishing attacks; it is equally important to identify the target of
zero-day attacks for immediate preventive actions.

This project aims to develop a deep learning pipeline that achieves accurate phish-
ing email detection and target identification for both existing (known) and new (un-
known) phishing attacks using email content.

The final pipeline successfully combines classification, extractive, and generative
models, achieves high performance, and exhibits strong generalization to unknown
phishing attacks. The integration of the novel dynamic loss and K nearest neighbor
ensemble techniques further enhances the pipeline’s overall performance.
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Chapter 1

Introduction

1.1 Motivations

Phishing is a fraudulent attempt to obtain targets’ personal or confidential infor-
mation [1]. The attacker often impersonates legitimate and credible companies
and sends victims hand-crafted emails with embedded URLs, baiting the victim into
inadvertently submitting confidential information. Over the last few years, phish-
ing emails have significantly increased. According to Anti-Phishing Work Group’s
(APWG) Q4 report of 2022, “the number of phishing attacks has grown by more
than 150% per year since 2019”, with over 4.7 million attacks in 2022 [2]. Phishing
has increased exponentially, and so has the harm caused by it. According to Veri-
zon Data Breach Investigation Report (DBIR), phishing attacks caused over 19% of
breaches in 2022 [3], resulting in billions of ransomware damage. While phishing
attack can be conducted through various medium, this works focus on email phish-
ing attack, as it is the most common channel [4].

Detecting phishing emails is a complex task and has been in active research in the
past decade. As phishing attacks evolve, earlier methods, such as heuristic and black-
listing, become less effective [5]. Consequently, researchers attempt to use Machine
Learning (ML) methods with hand-crafted features, from hyperlinks to detect phish-
ing emails. However, recent phishing attacks, such as shortened URL or redirection
attacks, have found ways of circumventing traditional URL-based methods. This en-
courages the study of phishing detection using solely email content. Currently, deep
learning (DL) methodology with word embeddings achieves state-of-the-art perfor-
mance in many phishing detection datasets [6, 7, 8].

The pressing challenge, however, extends beyond phishing detection. In the ever-
evolving landscape of phishing attacks, it is equally crucial to detect and identify
the target of zero-day (unknown) attacks to take preventive measures. Despite this,
research on identifying the target of phishing is limited. While [9, 10] designed ML
methodologies for detecting zero-day phishing websites, zero-day phishing email
target detection remains unexplored.
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1.2 Objectives

This study aims to develop a pipeline that can accurately detect phishing emails and
identify the target of the attack using email body content. Specifically, we strive to
construct a robust pipeline that excels at existing (known) targets while generalizes
well for new (unknown) targets. Our objectives include:

• Adapt and compare DL, ML, and transformer-based models for phishing detec-
tion and target identification.

• Develop an accurate and robust pipeline using state-of-the-art phishing detec-
tion and target identification models. The pipeline should be carefully de-
signed, and different combining strategies should be explored.

• Evaluate and improve the pipeline performance for known and unknown target
identification.

1.3 Contributions

The main contributions of this project can be summarized as follows:

• Compared, adapted and fine-tuned various DL, ML, and transformer-based
models for phishing detection (Section 3.2) and target identification (Section
3.3)

• Designed a four-component pipeline combining classification, extractive, and
generative models with good performance (Section 3.4).

• Explored various techniques to improve the model’s performance further. Pro-
posed dynamic loss and KNN ensemble techniques for hard example mining
and improving pipeline’s generalization ability. (Section 3.5)

• Evaluated pipeline phishing detection (Section 4.2) and target identification
(Section 4.3) performance for both known and unknown targets.
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Chapter 2

Background Knowledge

2.1 Phishing Detection

Figure 2.1: Example of phishing email from phishing corpus [11]

Phishing detection is the identification of malicious attacks to acquire sensitive infor-
mation by masquerading as a trustworthy entity in electronic communication. While
phishing attacks can be conducted via phone calls (Voice phishing) or text messages
(SMS phishing), email phishing is the most common. This method involves luring
the recipient into clicking on a link in the email that redirects them to a fraudulent
website, often designed to mimic a legitimate service. The victim is then prompted
to enter personal information, as illustrated in Figure 2.1.

Cybercriminals utilize many phishing techniques to deceive their targets. Among
these is spear phishing, in which the attackers gather detailed information about
the victim to craft an email that appears authentic, thereby increasing the chances of
success. Another method is clone phishing, where the attackers replicate a legitimate
email that the victim has previously received and modify it to include malicious links

4



or attachments. Social engineering is also often employed, where attackers expertly
manipulate human psychology to trick individuals. This may involve using urgent
language or leveraging current events to make the request seem legitimate. These
sophisticated strategies highlight phishing attempts’ nuanced and complex nature
and emphasize the need for robust phishing detection methods to keep pace with
evolving cyber threats.

2.2 Target Identification

In addition to detecting phishing attempts, a critical aspect of this research is identi-
fying the specific company being impersonated by the attacker. Recognizing the tar-
geted entity enables immediate protective actions, such as customer and employee
alerts and enhanced security measures. Different from phishing detection, for the
email in Figure 2.1, target identification aims to pinpoint the specific target “Ama-
zon”.

Besides conventional multiclass classification, this study employs several advanced
methods for target identification. This section provides a concise overview of these
tasks: named entity recognition, token classification, extractive question answering,
abstractive summarization, and text generation.

Named Entity Recognition (NER) Named Entity Recognition (NER) is the task of
identifying and classifying named entities (such as persons, organizations, locations,
and dates) in a given text into predefined categories.

Token Classification (TC) Token Classification (TC) categorizes individual words
into specific classes based on their context. Typical applications include part-of-
speech tagging, where tokens are classified as nouns, verbs, and adjectives. For
target identification

Extractive Question Answering (EQA) Extractive question answering (EQA) in-
volves pinpointing and extracting specific segments or spans from a given text that
directly answers a posed question. Instead of generating new content or providing a
synthesized response, the system identifies the most relevant portion of the original
text, ensuring the answer is factual, contextually accurate, and directly sourced from
the provided material.

Text Generation (TG) Text generation’s (TG) objective is to create coherent and
contextually relevant textual content based on specific input or prompts. Utilizing
various algorithms, including DL models like T5, this task spans myriad applications
from story writing and poetry creation to generating conversational responses in
chatbots.
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Abstractive Summarization (AS) Abstractive summarization (AS) aims to gener-
ate a concise and coherent summary of a given text, capturing its core meaning and
presenting it in new, synthesized sentences. Unlike extractive summarization, which
merely selects sentences from the source text, abstractive methods reformulate and
condense the content, producing more natural-sounding summaries.

2.3 Machine Learning (ML) Models

Machine Learning (ML) is a branch of computer science that focuses on building
machines to recognize patterns from data and make decisions without explicit pro-
gramming. ML algorithms are broadly classified into supervised, unsupervised, and
reinforcement learning. In particular, supervised learning uses a training set that
includes both the input data and the label. For this study, we utilize supervised
learning approaches to categorize phishing emails and identify their targets. The
following sections detail the specific ML models employed in this research.

2.3.1 Random Forest (RF)

Random Forest (RF) is an ensemble learning method that combines multiple deci-
sion trees to generate a more accurate and stable prediction [12]. Each tree in the
forest is grown using a bootstrap sample from the training data, and during the con-
struction of trees, only a random subset of features is considered for splitting. This
randomness introduced both in data and features ensures diversity among trees. For
classification tasks, the mode of the classes predicted by individual trees is taken as
the final prediction. Owing to its versatility and robustness against overfitting, RF
has found applications across diverse domains, including phishing detection.

2.3.2 Logistic Regression (LR)

Logistic Regression (LR) is a statistical method that models the probability of a bi-
nary outcome using a logistic function. Unlike linear regression, which predicts
continuous values, LR predicts the likelihood that a given instance belongs to a par-
ticular category. It calculates the weighted sum of input features and passes the
result through a logistic (sigmoid) function to squeeze the output between 0 and 1.
The weights are learned using methods like maximum likelihood estimation. Due to
its simplicity and efficiency, LR is widely used in phishing detection.

2.4 Deep Learning (DL) Models

Deep Learning (DL), a subset of ML, employs neural networks with multiple layers
(deep architectures) to analyze various data. The strength of DL lies in its ability to
process vast amounts of data, automatically extracting features that traditional ML
models might overlook. Subsequent sections delve into two prominent DL architec-
tures.
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2.4.1 Convolution Neural Network (CNN)

Convolution Neural Network (CNN) is a type of neural network that contains a con-
volutional layer on top of other common layers, such as fully connected layers [13].
In a CNN, each neuron only sees a small input region and extracts useful features
from the local region. The local information is then combined to allow the network
to form a global understanding of the input. In NLP, a typical convolutional opera-
tion involves sliding a kernel across text embedding. The output value is obtained
by element-wise multiplication of the weights associated with the kernel and the
embedding [13]. Pooling layer is often used with convolutional layers to reduce the
dimension of feature representations.

2.4.2 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) is a type of neural network containing a memory
unit, making it very useful and applicable to tasks requiring sequential data process-
ing. As RNN considers the outputs from previous timestamps when computing the
current output, it stores the previously seen information and uses it to make future
predictions [14]. This makes RNN suitable for phishing email detection as RNN
excels at modeling long-distance dependencies across paragraphs.

2.5 Transformer-based Models

Transformer-based models, building upon deep learning foundations, signify a
paradigm shift in the design and training of models. Originating from the paper
“Attention Is All You Need” by Vaswani et al. in 2017 [15], the Transformer archi-
tecture introduced the self-attention mechanism, allowing the model to weigh input
tokens differently, making it particularly adept at handling varying contexts in lan-
guage. Subsequent sections explore a selection of state-of-the-art transformer-based
models in detail.
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2.5.1 Transformers

Figure 2.2: Illustration of transformer block

In [15] Vaswani et al. introduced transformers encoder and decoder. This work
focuses primarily on the transformer encoder, a multilayer architecture containing
six transformer blocks and one embedding layer. Each transformer block comprises
a multi-head attention module, a feedforward network, normalization modules, and
residual connectors.

Embedding layer For a vector of input tokens of length N Xinput ∈ RN , it first
passes through an embedding layer that converts each token into an H dimensional
embedding, resulting in Xembed ∈ RN×H . Element-wise addition is then performed
between Xembed and Xpos, a sinusoidal positional embedding of shape RN×H . The
Xpos is defined as follows:

Xpos(j,2i) = sin (
j

100002i/H
), Xpos(j,2i+1) = cos (

j

100002i/H
) (2.1)

Transformer block The added embedding, say Xembed+pos ∈ RN×H , is fed to the
multi-headed attention module, and we have Xatt ∈ RN×H as the output. The input
and output of the attention module, Xembed+pos, Xatt, is connected residually and
layer-wise normalised as follows:

Xnorm1 = LayerNorm(Xembed+pos +Xatt) (2.2)
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Let Xresidual = Xembed+pos + Xatt ∈ RN×H , layer normalisation normalises the
Xresidual across the H dimension [16]. For position j ∈ 0. . . N − 1 and dimension
i ∈ 0. . . H − 1, the normalised matrix Xnorm1 ∈ RN×H is calculated as:

Xnorm1(j,i) =
Xresidual(j,i) − µj

σj

(2.3)

where mean µj and variance σj are calculated as follows:

µj =
1

H

N−1∑
i=0

Xresidual(j,i), σj =

√√√√ 1

H

N−1∑
i=0

(Xresidual(j,i) − µj)2 (2.4)

The normalized hidden state, Xnorm1, is then fed to a two-layered feedforward
network, outputting Xfeedforward ∈ RN×H . Again, the Xnorm1 and Xfeedforward are
residually connected and normalized as follows:

Xnorm2 = LayerNorm(Xnorm1 +Xfeedforward) (2.5)

Where Xnorm2,∈ RN×H , is the transformer block’s output.

Multi-head attention Multi-head attention is a mechanism that attends to various
positions in the sequence, enabling the transformer model to capture complex token-
wise relationships. Consider as M the total number of heads, the ith attention head
calculate the attention matrix Ai ∈ RN×H

z as follows:

Ai = Softmax(
Qi ×Ki√

H
)Vi (2.6)

where Qi, Ki, Vi, are linear transformations of Xembed+pos with weight matrix
Wq,i,Wk,i,Wv,i ∈ RHxH

Z respectively.

Z(k,j) =
expU(k,j)∑K
j=1 expU(k,j)

= Softmax(Uk)j (2.7)

Multiplication between Softmax(QiKi√
H
) and Vi allows each token to attend to other

token’s values. All attention heads, A1. . . AM , are then concatenated and projected
with Wo ∈ RN×N as follows:

Y = Wo[A1. . . AM ] (2.8)

where Y ∈ RN×H , is the multi-head attention layer output.

Position-wise Feedforward Layers The transformer’s feedforward network con-
sists of two fully connected layers. The feed-forward network calculates P ∈ RN×H

using the output Y from the multi-head attention module as follows:

P = ReLU(PW1 + b1)W2 + b2 (2.9)

where Wi, bi is ith layer’s weights and biases.
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2.5.2 Bidirectional Encoder Representations from Transformers
(BERT)

Devlin et al. developed BERT, a bidirectional transformer encoder based on the
original transformer model. BERT uses trainable positional embedding instead of
the fixed sinusoidal vector. BERT uses the word piece tokenizer, splitting tokens into
subwords to handle out-of-vocabulary (OOV) words [17]. BERT was pre-trained
on mask language modelling (MLM) and next-sentence prediction tasks (NSP) to
achieve high transferability in downstream tasks [17]. For the MLM task, BERT aims
to predict the correct masked token given its context. Whereas for the NSP task,
given two sequences, BERT aims to determine whether the first sentence precedes
the second in the original text This work uses BERT as the baseline model due to
its near state-of-the-art performance in text classification and its wide usage in NLP
[17, 18].

2.5.3 A Lite BERT (ALBERT)

ALBERT designed to address the hardware limitations associated with scaling tradi-
tional BERT architectures, introduces two critical parameter-reduction techniques:
factorized embedding parameterization and cross-layer parameter sharing. These
innovations significantly reduce the model’s parameters without significantly im-
pacting performance, resulting in an 18x reduction compared to BERT-large and a
1.7x faster training time. ALBERT’s design improves parameter efficiency, stabilizes
training, and aids generalization. Furthermore, the introduction of a self-supervised
loss for sentence-order prediction (SOP) enhances inter-sentence coherence, setting
new state-of-the-art results on benchmarks such as GLUE, RACE, and SQuAD [19].

2.5.4 Pre-training with Extracted Gap-sentences for Abstractive
Summarization Sequence-to-sequence models (PEGASUS)

PEGASUS is a model designed explicitly for abstractive text summarization, extend-
ing the success of Transformer-based models to this domain [20]. Unlike traditional
extractive summarization, PEGASUS generates the summarization based on the orig-
inal document. Its pre-training objective, gap sentence generation (GSG), focuses
on masking whole sentences from a document and generating these gap sentences
from the rest of the document. This approach encourages whole-document com-
prehension and summary-like generation. PEGASUS has shown the ability to equal
or exceed state-of-the-art performance across various summarization tasks, such as
news, science, instructions, and emails. Its design allows for high adaptability even
in low-resource summarization scenarios, quickly fine-tuning to achieve top results
with minimal supervised pairs.

2.5.5 Text-to-Text Transfer Transformer (T5)

T5 is a model developed by Raffel et al. that treats every text processing problem
as a text-to-text task [21]. This unified approach enables the model to take any text
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as input and generate new text as output, covering a wide range of English-based
NLP tasks such as translation, question-answering summarization, and sentiment
classification. The text-to-text framework of T5 allows the application of the same
model, objective, training procedure, and decoding process across various tasks. T5’s
methodology explores the limits of transfer learning by scaling up models and data
sets beyond what has previously been considered, introducing the “Colossal Clean
Crawled Corpus” (C4) and obtaining state-of-the-art results in numerous tasks.

2.6 Related Work

Traditionally, filtering techniques, such as blacklist and heuristic, are often used for
fast phishing detection [22, 23, 24]. The author of [23] proposed a blacklist-based
approach in which the URLs of phishing websites are recorded. When the user re-
ceives a suspicious URL, the URL is classified as phishing if it is similar to the ones on
blacklist websites. List-based approaches are often ineffective when encountering a
webpage not included in those pre-established lists. In addition, these lists require
frequent updates, which can be computationally expensive. In [24], Moghimi et al.
uses CANTINA+, a heuristic-based approach, to classify phishing URLs. The algo-
rithm extracts the most frequent words on the webpage for any potentially malicious
website and searches them in a search engine. The webpage is classified as legiti-
mate if it appears in the first research results. With that being said, the attacker can
manipulate these entries and make the phishing website the top result.

Researchers also proposed various ML models to solve the problem. Examples
of frequently used ML techniques are LR, RF, and support vector machine (SVM)
[25, 26, 27, 28, 29]. In [27], Ho et al. trained an RF classifier to discover unseen
phishing attacks using “phishy” keyword features and URL reputation information.
While their method requires a large dataset of URL reputation information, this
historical data may not always be available. In [28], Kumar et al. introduced a
hybrid methodology that uses SVM for feature extraction and Probabilistic Neural
System (PNN) for further phishing detection. While this strategy demonstrates good
performance, the system’s performance is limited by the quality of SVM-extracted
features. Despite this, SVM’s large computation cost makes it less efficient on input
data. Thus, our work uses LR and RF instead.

Some recent work has employed various DL models to extract features and detect
phishing attacks automatically [30, 31, 7, 8]. In [30], Halgas et al. proposed a Long
Short Term Memory (LSTM) based model to detect phishing attacks using word se-
quences. The author of [31] introduced a Convolutional Neural Network (CNN) that
only extracts email headers to detect potential spam messages. This work also uses
RNN and CNN models with text embedding for phishing detection. However, our
experiment demonstrates that the transformer-based models outperform the RNN
and CNN models.

There are relatively few studies that utilize a transformer-based approach. Maner-
iker et al. [32] proposed URLTran, a transformer-based phishing URL classification
model, and achieved high performance compared to other DL methods. Extending
from [32] Wang et al. [33] proposed TCURL, which uses a CNN model to capture
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local correlations and combines it with a transformer model. This work distinguishes
itself from the studies presented in [32, 33] by focusing on phishing detection within
the email content. This approach requires the model to capture morphological and
semantic information embedded within the phishing email content. Additionally,
[34] blends Topic Modelling, Named Entity Recognition (NER), and Structural fea-
tures with image processing, utilizing RF, SVM, and LogitBoost classifiers to detect
phishing emails. While this work also uses NER and other topic modelling mod-
els, we use the extracted entities for target identification instead of as features for
phishing detection. Furthermore, in [35], Lee et al. introduced Context-Aware Tiny
Bert, which detects phishing emails based on email content information. While this
work also uses BERT base models, we emphasize improving phishing detection per-
formance instead of inference time. Additionally, different from [32, 33, 35], this
work also focuses on target identification.

Many studies explore methodologies for target identification. However, most of
them focus on webpages-based methodologies. For instance, in [36], a DBSCAN
clustering-based approach was proposed to discern phishing targets, utilizing re-
lationships such as link, ranking, text similarity, and layout similarity among web
pages. However, given their complexity and inconsistent performance, these clus-
tering techniques often prove ineffective for email data. Similarly, [37], the authors
present a graph-based approach that leverages a suspicious webpage’s associated
relationships to identify its phishing target automatically. Despite this, due to the
distinct characteristics of phishing emails, graph-based approaches are not always
applicable, and this work uses supervised methods instead. Similar to this work,
[38] also uses a supervised phishing detection system with a gradient-boosting target
identification component. However, this work also uses DL and transformer-based
methods, which demonstrated improved performance over gradient-boosting meth-
ods. Moreover, unlike webpage-based methodologies, this work primarily focuses on
email text data.

Few studies have explored target identification for text messages and emails. [39]
offers a content-focused, multi-stage methodology employing Conditional Random
Field (CRF) and Latent Dirichlet Allocation (LDA) to both detect phishing content
and discern the impersonated entities. [40] details PhishWHO, a tri-phase mecha-
nism leveraging a weighted N-gram model for keyword extraction, a search engine
integration for domain targeting, and a three-tiered system for identity verification.
This work primarily uses the transformer base models for target identification, which
is different from [39, 40]. Our uniquely designed pipeline integrates classification,
extraction, and generative components. Notably, it excels in recognizing known tar-
gets and also exhibits commendable generalization capabilities for unknown target
identification.
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Chapter 3

Methodology

This chapter presents the process and techniques to arrive at the final pipeline. We
start with introducing the dataset and how data is preprocessed and split. Next, we
discuss the binary classification models used for phishing detection. After that, we
present the multiclass, generative, and extractive models used for target identifica-
tion. The integration method used to combine those models will also be explained.
Then, we present an overview of the final pipeline architecture and discuss addi-
tional techniques used to improve pipeline performance. Finally, we describe the
hyperparameter tuning procedure for each model.

3.1 Dataset

3.1.1 Dataset Overview

This work evaluates models using three datasets: merged phishing corpus dataset
(dataset1), repartitioned Netcraft dataset (dataset2), and original Netcraft dataset.
(dataset3).

This work employs Netcraft’s dataset (dataset2 and dataset3) for target identifica-
tion and phishing detection tasks. The Netcraft dataset consists of 458,683 (57.8%)
phishing emails and 334,434 (42.2%) benign emails. Each email in the dataset is la-
belled into one of 445 distinct categories with class distribution illustrated in Figure
3.1. Each email within this dataset adheres to the MIME format and includes details
such as the email body, sender information, subject line, and embedded URLs.

In the absence of previous research utilizing NetCraft’s dataset, additional phish-
ing datasets were employed to identify suitable models and enable comparison
with existing literature. Due to a scarcity of multiclass datasets, this work lever-
aged binary classification datasets, specifically the SpamAssassin dataset [41] and
the Nazario phishing corpus [11] as they are frequently used in previous research
[42]. The phishing corpus dataset, assembled and hand-classified by cybersecurity
researcher José Nazario [11], consists of 7,315 phishing emails. These encompass
attributes such as sender’s information, subject line, body content, and embedded
URLs, offering a comprehensive insight into various phishing techniques, such as
spear phishing and brand impersonation. The SpamAssassin dataset, part of the
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Apache SpamAssassin project, includes 6,950 benign and 5,932 non-benign emails.
The emails contained in the dataset have been collected and hand-classified by con-
tributors. It features key attributes like email content, subject, headers, and other
metadata for analyzing spam characteristics.

The phishing corpus and SpamAssassin dataset are highly unbalanced regarding
phishing and benign email distribution, making them unsuitable for evaluating per-
formance. As a solution, and in alignment with previous literature [43, 8, 7, 29],
a more balanced dataset combined from sampling the two datasets. The combined
dataset (dataset1) contains 4,000 emails, including 2,000 benign and 2,000 phish-
ing emails. The benign emails were sourced from the SpamAssassin project [41],
while the phishing emails were from Nazario [11]. This approach, with closer distri-
bution in the Netcraft dataset, thus facilitates the underlying model to better learn
and discriminate between phishing and benign email.

Figure 3.1: Distribution of samples per top ten phishing class in Netcraft dataset

3.1.2 Dataset Preprocess

This work preprocesses the three datasets through several key steps, as illustrated in
Figure 3.2. The process begins by extracting only the email body from each dataset.
Then, we clean the text by removing unnecessary text, HTML tags, and excessive
line breaks and symbols. Moreover, all embedded URL was eliminated to ensure
the analysis of only semantic text. Emails containing fewer than ten tokens were
excluded since they usually comprise only a link or a phrase, which is unbeneficial
for training. In line with the work’s focus on English text, non-English content was
removed. Finally, additional anonymizing preprocessing scripts were applied to the
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Figure 3.2: Illustration of dataset preprocessing pipeline

datasets, further eradicating any remaining sensitive information and strengthening
privacy protection and ethical compliance.

Distinct tokenization methods are applied based on the specific model to optimize
training time. For transformer-based models such as BERT, the corresponding BERT
tokenizer is employed, and the text is truncated and padded to a fixed length of 512
tokens. In contrast, the word tokenize method from the NLTK library is utilized for
non-transformer-based models.

Furthermore, the label for each email is also preprocessed for tasks such as binary
classification, multiclass classification, and token classification. Particularly, we pre-
pare the binary classification label by mapping all phishing examples into one and
benign examples into zero. The labels for each task are preprocessed into the appro-
priate form for each task and stored in the dataset, with details of the preprocessing
step listed in the appropriate sections.

3.1.3 Dataset Splitting

Train Valid Test Test-unk Description
dataset1 80 10 10 - Merged phishing corpus dataset
dataset2 70 10 10 10 Repartitioned Netcraft dataset
dataset3 90 - 10 - Original Netcraft dataset

Table 3.1: Ratio (%) of train, validation, test, test-unk subsets

The original Netcraft dataset (dataset3) is already partitioned into training
(dataset3train) and testing (dataset3test), as shown in Table 3.1. We reparti-
tioned dataset3 to get dataset2, with two distinct test sets: dataset2test and
dataset2test−unk. dataset2test is used to assess models’ efficacy on known classes,
whereas dataset2test−unk evaluates model performance on unknown classes. In de-
tail, the 445 classes in dataset2 are pseudo-randomly split into known (95%) and
unknown (5%) subsets with disjointed classes. The known subset is sampled into
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dataset2train dataset2valid/test dataset2test−unk

Count Ratio % Count Ratio % Count Ratio %
Benign 246425 44.4 35203 44.4 17603 22.2

Crypto Currency 220110 42.2 31444 39.6 15723 19.8
Canada Phramacy 39704 7.2 5672 7.2 2836 3.6

DHL - - - - 23568 29.7
Health product 11602 2.1 1657 2.1 830 1.05

Royal Mail 5872 1.1 838 1.1 422 0.5
Netflix 5335 1.0 762 1.0 382 0.5

Natwest - - - - 7023 8.9
Webmail 3508 0.6 501 0.6 252 0.3
UKGOV 2947 0.5 421 0.5 211 0.3

... - - - - - -
Total 555000 - 79310 - 79310 -

Table 3.2: Distribution of samples for each partition of dataset2

training (dataset2train 70%), validation (dataset2valid 10%), test (dataset2test 10%),
and test-unknown (dataset2test−unk 5%) subset. The unknown subset is merged with
dataset2test−unk, resulting in 10% dataset2test−unk subset, as shown in Table 3.1 and
3.2. Since half of the data in dataset2test−unk have unknown classes, it is used to
assess the model’s robustness against unknown targets.

For dataset1, given its primary role in facilitating comparisons with existing lit-
erature, we adopted a more straightforward approach. The dataset was stratified
sampled into training (dataset1train 80%), validation (dataset1valid 10%), and test-
ing (dataset1test 10%) subsets. These were designated for training, hyperparameter
tuning, and evaluating, respectively.

3.2 Phishing Detection

3.2.1 Binary Classification

Phishing detection can be viewed as a binary classification task, where given an email
text, the classification models output 1 if it is phishing and 0 otherwise. To com-
pare models’ performance against previous literature performance, this work trains
transformer-based, DL, and ML models on dataset1train, dataset2train, and evaluates
F1micro on dataset1test, dataset2test, dataset2test−unk.

For transformer base models, we use “bert-base-uncased” (BERT) and “albert-
base-v2” (ALBERT) due to their state-of-the-art performance in many natural lan-
guage tasks [19, 17]. To utilize these models, dataset1 and dataset2 are tokenized
from the Hugging Face library using corresponding tokenizers - BERTtokenizer, AL-
BERTtokenizer. These tokenizers convert the string texts into input indexes, which
are then fed into the pre-trained models from the Hugging Face repository to fine-
tune them on the datasets.
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Figure 3.3: Illustration of CNN model architecture

For DL models, we choose RNN and CNN due to their proven state-of-the-art per-
formance in phishing detection [8]. Again, we tokenize dataset1 and dataset2 text
into indexes using the NLTK library’s tokenizer. Then, the preprocessed indexes are
converted into numerical vectors of 300 dimensions using word2vec from Gensim’s
library. Taking the word embeddings as input, we fine-tuned the CNN and RNN on
the binary classification task.

For ML models, we employ RF and LR due to their frequent application in phishing
detection [29]. Though SVM also yields strong performance, its memory and space
complexity render it unsuitable for dataset2. Like the DL model’s preprocessing
steps, the text is tokenized using NLTK and converted into 300-dimensional vectors
with word2vec.
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Figure 3.4: Illustration of RNN model architecture

3.3 Target Identification

Figure 3.5: Illustration of four type of phishing email
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Our initial strategy utilized multiclass classification models on dataset2 to identify
phishing email targets. While effective for known targets, this approach lacked the
flexibility to handle unknown targets, which was vital for generalizing to unknown
phishing classes in dataset2test−unk. Recognizing this limitation, we embarked on a
deeper analysis of the phishing email characteristics. Figure 3.5 illustrates that some
phishing emails explicitly named the target, such as “Amazon”. In contrast, others
were more subtle, impersonating targets using format, logos, imagery, or links.

Guided by these insights, we categorized the emails into four distinct categories
based on visibility (explicit or implicit) and familiarity (known or unknown). Each
category was tackled with models best suited for its specifics:

• Known Targets: We applied multiclass classification to categorize emails into
pre-established classes.

• Implicit Targets: We leveraged summarization and generation models to de-
duce and generate implicit targets.

• Explicit Targets: We employed EQA, NER, and TC models to extract explicit
targets.

For clarity, we termed models focused on extracting explicit targets (i.e. EQA, TC) as
extractive models. In contrast, models that attempt to generate implicit targets (i.e.
AS, TG) were referred to as generative models.

Given the inherent challenges in discerning implicit targets, we undertook manual
preprocessing of specific target labels to reduce the number of implicit mentions. An
example includes splitting “louisvuitton” to “louis vuitton”.

Moreover, since we focus on target identification of phishing emails, we only back-
propagate the loss of phishing emails, while the loss of benign emails is masked.

3.3.1 Multiclass Classification

A critical component of our methodology for target identification revolved around
handling known targets. We carefully compare and select the optimal multiclass
classification model to address this challenge. Drawing parallels with Section 3.2.1,
the same models and preprocessing steps were taken, with slight architecture modi-
fication to suit the multiclass context. Specifically, the output size for each model is
adjusted to 455 instead of 2.

3.3.2 Generative Models

In the context of unknown target identification, generative models are intuitive as
they can handle both explicit and implicit targets. This work attempted to reframe
unknown target identification into two generative tasks: AS and TG.

Abstractive Summarization (AS) Naively, unknown target identification can be
reconsidered into a summarization task. This work uses the “pegasus-base” (PE-
GASUS) fine-tuned on the C4 dataset [20]. We convert the multiclass classes into
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strings for preprocessing and use them as the label for further fine-tuning AS mod-
els. At inference, we use the AS models to summarize the email, where predictions
exceeding five tokens are pruned to improve accuracy.

Text Generation (TG) Another approach for unknown target identification is to
reframe it as a text generation task. By prepending emails with the prompt, “What
is the target of this email?”, we leverage the semantic knowledge of the fine-tuned
TG model. Particularly, this work preprocesses each email by prepending the
predetermined prompt. Then, using the string of multiclass target as the label, we
further fine-tune “flan-t5-base” (T5) [21] for the generation task. During inference,
the same question is prepended to the email and the generated text is used as the
output. Again, the generated text is truncated if it is longer than five tokens to
ensure that only keyphrases are extracted.

Since both the PEGASUS and T5 model exhibit good performance even with-
out additional fine-tuning, this work compares their performance with and without
further fine-tuning.

3.3.3 Extractive Models

This work explores various extractive models and strategies for identifying explicit
targets in phishing emails. Specifically, we attempted to frame the explicit target
identification into TC, NER, and EQA tasks.

Token Classification (TC) The naive approach of identifying unknown explicit tar-
gets is through token classification. For each input token, we perform binary classi-
fication on whether it is part of the explicit target. Preprocessing of labels involves
initializing a zero vector and assigning 1 to the explicit target indices. Then, we ap-
pended a token classification linear layer to the “bert-base-uncased” (BERT) model
and fine-tuned the model. We extract continuous token spans with a size shorter
than five at inference, selecting the span with the highest mean confidence as the
prediction.

Named Entity Recognition (NER) Explicit target identification can also be framed
as a NER task. This reframing allows for utilizing existing NER models, thereby
leveraging the entity information within these models for enhanced generalization.
Particularly, we utilize the “bert-base-NER” (BERT-NER) model from dslim [17], orig-
inally fine-tuned on the CoNLL-2003 NER dataset [44]. In the preprocessing stage,
we create the label for the NER task by assigning organization tags (B-ORG, I-ORG,
O-ORG) to explicit target indices, while other indices receive the O tag. During
inference, the most frequent organization spans were extracted as the target.

Extractive Question Answering (EQA) Another method of tackling explicit target
identification is EQA. Again, by prepending the predetermined prompts “What is
the target of this email?” to the email, we can capitalize the extractive capabilities
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of already fine-tuned EQA. Specifically, we employ the “bert-base-uncased-squad1”
(BERT-EQA) [17] for this task. For preprocessing, we prepend emails with the cho-
sen prompt and use explicit target’s start and end indices as labels. Any predictions
exceeding five tokens were pruned to improve accuracy.

Since the three models can only extract explicit targets during fine-tuning, we
only backpropagate the loss of phishing emails with an explicit target, while losses
of other emails are masked. Moreover, EQA and NER models’ performance with and
without further fine-tuning are compared.

3.3.4 Integration Method

Figure 3.6: Illustration of the sequential (confidence threshold/unknown class) pipeline

This work investigates three methods for combining multiclass, extraction, and
generation models for target identification: confidence threshold, unknown class
incorporation, and ensemble.

Confidence Threshold Method This method integrates models in a consecutive
order of inference, driven by their respective empirical performance and uses the
model confidence to integrate the prediction. To maximize the combined pipeline
F1micro, we arrange the models in the order of multiclass, extractive, and generative.
For each model’s prediction, if the confidence falls below the predetermined thresh-
old α, then we use the prediction from the subsequent component. For instance,
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if the multiclass model’s prediction has low confidence (< α), the prediction from
the extractive model is used instead. However, if the extractive model also has low
confidence (< β), the prediction from the generative model is used.

While this approach offers good performance and simplicity in implementation,
the complexity of threshold tuning presents a significant challenge. Particularly,
α and β need to be optimized on the validation dataset to determine the optimal
threshold, risking overfitting and increasing computational demands.

Unknown Class Method An alternative method was explored to address the com-
putational challenges of threshold tuning by incorporating an unknown class. Specif-
ically, we reassigned 10% of the classes in the training data as unknown, with spe-
cific label assignments for various tasks (e.g., 456 for multiclass, “unanswerable” for
EQA, [O, O...] for NER, and [0,0...] for token classification). The multiclass model’s
architecture was adjusted to classify into 456 categories, up from 455.

Models were subsequently fine-tuned with this newly incorporated unknown class.
Again, emails are assessed sequentially, in the order of multiclass, extractive, and
generative models. First, the email is fed to the multiclass model; if the multiclass
model predicts “unknown”, the extractive model processes the email, and if it finds
no target, it is fed to the generative model. While this approach avoids threshold
tuning, it necessitates including the unknown class in training, which leads to sub-
optimal data utilization.

Figure 3.7: Illustration of the ensemble pipeline
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Ensemble approach To expedite inference, this section explores pipeline integra-
tion with the ensemble method. This approach combines the top k = 10 predictions
from extractive models with the prediction from generative and multiclass classifi-
cation models for target identification. The combination process is graphically illus-
trated in Figure 3.7.

The predictions are mapped into a vector of size 1 × 456, with the first 445 in-
dices corresponding to predetermined targets. Indices 446 to 456 correspond to i-th
unknown targets, where i ∈ {1 . . . 11}. For the i-th extractive and generative pre-
diction, if the predicted target has not appeared before, we append that target to
the existing ones at index 445 + i. Then, we average the confidence for each of the
456 targets across the multiclass, extractive, and generative prediction. Although
a weighted sum can combine the confidence instead of simple averaging, finding
the weight for each model is non-trivial and requires careful tuning and thus is not
used. In contrast to confidence threshold and unknown class sequential methods,
the ensemble method allows parallel inferencing, reducing the inferencing time by
approximately 3.2 times.

3.4 Pipeline Overview

Figure 3.8: Illustration of overall pipeline

The final pipeline consists of phishing detection and target identification steps, as
shown in Figure 3.8. For each email, we first use the binary classification model for
phishing detection. If it is phishing, multiclass, generative, and extractive models
are used for target identification.

3.5 Additional Improvements

This work attempted various methods to improve pipeline performance and tackle
problems encountered:
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• Joint Training: To reduce the long inference time

• Hard Example Mining: To increase the performance on minority classes

• KNN Ensemble: To improve unknown class generalizability

• Domain-Specific Pretraining: To improve pipeline performance

The details of the methods are explained in subsequent sections.

3.5.1 Joint Training

Figure 3.9: Illustration of the single multiclass model pipeline

To mitigate computational and inference costs, this work explores the joint train-
ing of models across multiple tasks. Specifically, we investigate the following strate-
gies:

Single Multiclass This strategy replaces binary and multiclass models with a sin-
gular BERT multiclass model trained on phishing and benign data, as illustrated in
Figure 3.9.

Bi-Task Joint Training In this strategy, we replace the binary and multiclass model
with a single model (BERT) trained on binary and multiclass objectives. The intu-
ition behind the fusion of the two tasks is that both tasks use the BERT encoding for
classification. Thus, jointly training BERT on those two tasks may improve BERT’s
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Figure 3.10: Illustration of the 3 component join training pipeline

capability in feature extraction, thus potentially improving overall performance. The
combined loss for this approach is formulated as follows:

α× Lossbinary + (1− α)× Lossmulticlass = Losscombined, (3.1)

where α is a predetermined hyperparameter constrained within [0,1].

Tri-Task Joint Training This strategy ventures further by jointly training models on
binary classification, multiclass classification, and token classification using a single
model (BERT), as illustrated in Figure 3.10. The associated combined loss is:

α× Lossbinary + β × Lossmulticlass + ω × Losstoken = Losscombined, (3.2)

subject to α + β + ω = 1 and each parameter lies within [0,1]. The underlying
intuition here is that BERT can effectively address all three tasks. Since generative
objectives require decoders and are incompatible with BERT, and EQA and NER
tasks benefit from pretrained information, the token classification task is chosen as
the extractive task for joint training.

Additionally, we masked multiclass loss during joint training when the data
was benign. We also masked token classification loss when the data does not
contain an explicit target. This is because we only require the multiclass model to
focus on phishing target identification and the extractive model to focus on explicit
targets.

Moreover, though we initially use fixed weights for α, β, and ω, empirical obser-
vation indicates superior performance when these weights are trainable. Thus, we
turn them into parameters and optimize them through backpropagation.
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3.5.2 Hard Example Mining

In our endeavour to optimize model performance, we identified a predominant issue:
unbalanced classes in datasets resulting in low F1 in minority classes. For instance,
the class “novo banco” only has four samples in the training dataset. The scarcity of
samples for such classes makes it challenging to correctly classify instances within
them, resulting in neglect from the model in favour of more dominant classes. To
address this, we introduce two hard example mining strategies: focal loss and a
novel dynamic weighted loss.

Focal Loss Tailored to prioritize hard, underrepresented classes, focal loss (Lossfl)
is formulated as:

Lossfl = −(1− pt)
γ log(pt) = (1− pt)

γLossce (3.3)

Where we set γ to 2 in our implementation. By adding a factor of (1 − pt)
γ to the

standard cross entropy loss (Lossce), the loss of examples with pt > 0.5 is reduced,
while the loss for misclassified samples with pt < 0.5 remains relatively unchanged.
This allows focusing on updating the loss of hard examples, increasing the model’s
ability to handle hard examples.

Dynamic Loss This approach, drawing inspiration from boosting, dynamically
assigns weights to samples’ losses based on its last epoch classification result
(classificationprev). Initially, this approach stores the last epoch classification result
and down weights losses (Losscur) for examples that were previously classified cor-
rectly, as described in the equation:

Losscur =

{
Losscur classificationprev is correct
α× Losscur otherwise

(3.4)

Where α ∈ [0, 1] is a hyperparameter. However, explorative experimentation demon-
strated that this method causes substantial fluctuation in performance and prevents
loss convergence, as the update of hard examples causes the model to “forget” how
to predict the new examples. Therefore, a refined method was introduced wherein
the past loss Lossprevi are stored as follows:

Lossprevi = Losscuri + α× Lossprevi−1
(3.5)

with α ∈ [0, 1] as the decaying factor for the history of losses, where a higher
value α > 0.5 puts more focus on the past misclassified data. The dynamic loss
(Lossdynamici) for each ith epoch is then computed as the sum of the current cross-
entropy loss (Losscuri) and the past loss (Lossprevi−1

):

Lossdynamici = Losscuri + Lossprevi−1
(3.6)

This method adds a “momentum” of loss for each sample based on classification
history. By amplifying the focus on often misclassified samples, this method mitigates
the issue associated with class imbalance and hard examples, thus improving the
model’s performance.
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3.5.3 K-Nearest Neighbors (KNN) Ensemble

Figure 3.11: Illustration of the KNN ensemble technique

This work introduces a KNN ensemble strategy to improve the model’s general-
ization ability. Our empirical results highlight a lack of robustness in the model’s
prediction. Particularly, we found misclassifications of emails that, despite sharing
similarities with correctly predicted instances, are assigned wrong labels with low
confidence.

The KNN ensemble approach was explored to address this issue, as illustrated in
Figure 3.11. For binary and multiclass classification models, our method dynamically
integrates the target prediction with its neighboring predictions with the following
procedure:

Neighbor Identification Utilizing the first entry of BERT last layer hidden state
(BERT encoding) of current and previous data, we calculate the cosine similarity to
identify the k nearest neighbors. Due to computational limitations, the similarity
is only computed between the current data and a maximum of 10,000 other data,
and only the ten nearest neighbors are selected. This work explored using training
data (KNN TD) and inference data (KNN ID) as neighbors. For KNN TD, the BERT
encoding is stored during training, and the data label is used as the prediction. For
KNN ID, the BERT encoding and its prediction vector are dynamically stored during
inference instead. A basic threshold is applied to exclude the neighbors with non-
positive cosine similarity.

Prediction Integration Upon the identification of the k nearest neighbors, the
method proceeds to combine the neighbor prediction vector (predi) weighted by
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the cosine similarity (similarityi) score as follows:

predknn = w × predoriginal + (1− w)×
k∑

i=1

similarityi × predi (3.7)

where predoriginal is the original prediction, predknn is the KNN ensemble prediction
and w∈ [0, 1] is the combining hyperparameter. Using neighbors’ predictions during
inference time improves the model’s confidence in the neighbors close to the data
while decreasing the model’s confidence when they are far away. Thus, it improves
the threshold-based unknown classification performance and generalization ability.

While initial efforts leveraged TF-IDF vectors for neighbor identification, ex-
plorative experimentation shows that using the BERT encoding led to superior
performance. Moreover, preliminary attempts ensemble BERT encoding rather than
predictions. However, initial testing revealed comparable outcomes between the two
strategies, with predictions ensemble being used due to their more straightforward
implementation.

3.5.4 Domain-Specific Pretraining

This work applied domain-specific pretraining on the BERT model for classification,
as prior research suggests this result in superior empirical performance [45]. Partic-
ularly, using the pretrained BERT [17], this work further pretrained it on dataset2
for five epochs, with MLM and SOP objectives, before fine-tuning it on the classifica-
tion tasks. Preprocessing for domain-specific pretraining includes applying specific
masks for the MLM task and necessary pairings for SOP tasks in accordance with
standard practices.

3.6 Hyperparameter Tuning

A comprehensive search for hyperparameters was conducted for each model, explor-
ing various configurations as specified in Appendix A. All models were fine-tuned for
five epochs on dataset2train, and their performances were assessed using the F1micro

on dataset2valid. This work selects learning rate, weight decay, dropout, optimizer,
and scheduler as they significantly affect the model’s performance. Though batch
size is also an important parameter, GPU memory constraints mandated using a
batch size of 64 with an accompanying loss accumulation strategy for all models.
The tuning of these hyperparameters occurs in the order of their expected influence
on model performance:

• Learning Rate: Given its substantial impact on the learning process, the learn-
ing rate was the first hyperparameter-tuned

• Weight Decay and Dropout: These parameters were tuned together as they
both affect model regularization.
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• Optimizer and Scheduler: These were tuned last in light of their relatively
minor influence on model performance and more on the converging speed.

This approach ensures good performance is achieved while preserving computa-
tional resources by prioritizing the tuning of hyperparameters according to their
influence on model performance. To tune the models, 4 × 24GB 3090 Nvidia GPUs
with mixed precision floating point are used. The tuning time for each transformer
model is 5.3 hours.

In addition to these parameters, this study also ventured into experimenting with
different activation functions. Particularly for the transformer models, GeGLU and
ReGLU activations were attempted, given their better performance over GeLU and
ReLU counterparts [46]. The mathematical formulations for these activation func-
tions are provided below:

GeGLU(x,W, V, b, c) = GeLU(xW + b)⊗ (xV + c), (3.8)
ReGLU(x,W, V, b, c) = max(0, xW + b)⊗ (xV + c). (3.9)

Where x is the hidden state, W and V are the weight matrix, and b and c are the
biases. However, empirical results demonstrate that changing the activation func-
tion of pretrained models leads to worse performance. Hence, the ReLU activation
function is used instead for all models.
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Chapter 4

Evaluation

This chapter analyzes and evaluates models’ performance for phishing detection and
target identification. Firstly, we introduce the metrics used to evaluate models’ per-
formance. Secondly, we analyze and compare models’ performance for phishing
detection. Thirdly, we present and compare models’ performance for multiclass,
generative and extractive tasks. Then, we analyze the performance of joint training,
hard example mining, and KNN ensemble techniques. Lastly, this chapter conducts
an ablation study for the final pipeline.

4.1 Evaluation Metrics

In this study, we use F1micro for classification, extractive and generative tasks. For
extractive and generative prediction we consider it positive if it matches the target
string and negative otherwise. Using the true positives (TPi), true negatives (TNi),
false positives (FPi), and false negatives (FNi) for each ith class the micro-averaged
F1micro score is calculated as:

F1micro =
2×

∑n
i=1 TPi

2×
∑n

i=1 TPi +
∑n

i=1 FPi +
∑n

i=1 FNi

(4.1)

The F1micro score, being the harmonic mean of precision and recall, offers a more
comprehensive perspective than accuracy. Despite this, the micro-averaged F1micro

can sometimes mislead, skewing towards the majority class, especially in imbalanced
datasets. As an illustration, a model might predict every instance as “dhl”, yielding
a high F1micro, which seems acceptable but is fundamentally flawed. To mitigate
the limitation, we supplement the analysis with the macro F1macro when necessary.
Particularly, the macro F1macro score is defined as:

F1macro =
1

n

n∑
i=1

2× TPi

2× TPi + FPi + FNi

(4.2)

Essentially, the F1macro calculates the F1 scores for each class independently and
then averages them, ensuring balanced consideration for each class. In addition to
the F1 scores, this work also presents the micro-averaged precision and recall in
Appendix B.
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4.2 Phishing Detection

Model Previous work dataset1test dataset2test dataset2test−unk

AlBERT - 0.958 0.919 0.828
BERT - 0.961 0.923 0.830
RF [29] 0.988 0.986 0.901 0.823
LR [29] 0.989 0.984 0.896 0.811
CNN [7] 0.992 0.987 0.911 0.824
RNN [8] 0.989 0.985 0.903 0.809

Table 4.1: Binary classification models’ phishing detection F1micro

Phishing Non Phishing
Total

Count Ratio % Count Ratio %
dataset1 2000 50.0 2000 50.0 4000
dataset2 334434 42.2 458683 57.8 793117
[29] 9135 59.2 6295 40.8 15430
[7] 2279 35.4 4150 64.6 6429
[8] 4572 39.7 6951 60.3 11523

Table 4.2: Distribution of phishing and benign data in different datasets

Model Previous Work
dataset1test adjusted

[29] [7] [8]
ALBERT - 0.963 0.945 0.950
BERT - 0.966 0.947 0.952
RF [29] 0.988 0.990 0.976 0.980
LR [29] 0.989 0.981 0.967 0.971
CNN [7] 0.992 0.989 0.982 0.984
RNN [8] 0.989 0.988 0.978 0.981

Table 4.3: Adjusted binary classification model phishing detection F1micro

This section analyzes the performance of various phishing detection models across
dataset1test, dataset2test, and dataset2test−unk, with their F1micro scores depicted in
Table 4.1.

Since the data distributions between dataset1test and those of [8, 7, 29] is differ-
ent, as highlighted in Table 4.2. To make a better comparison with results in previous
work, this work adjusted the F1micro of dataset1test as follows:

TPtest adjusted = TPtest ×
Nliterature phishing

Ndataset1 phishing
(4.3)
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FNtest adjusted = FNtest ×
Nliterature phishing

Ndataset1 phishing
(4.4)

FPtest adjusted = FPtest ×
Nliterature benign

Ndataset1 benign
(4.5)

Based on the adjusted F1micro in Table 4.3, our model slightly underperforms
compared to previous works. The RF model achieves a comparable F1micro of 0.990
in line with [29]’s 0.988. However, our CNN, RNN, and LR models F1micro are
around 0.009 lower than those in [7, 29, 8]. This difference in F1micro is tolerable as
different model architectures, datasets, and hyperparameters are used in this work.
Thus, we argue that the RF, LR, CNN, and RNN implementations are sufficiently
accurate, and the comparison is relatively conclusive.

Additionally, Table 4.2 reveals that models consistently achieve higher F1micro

scores on dataset1test compared to dataset2test and dataset2test−unk. This might be
due to NetCraft’s dataset’s diversity in users, attack types, and targets, making clas-
sifying it more challenging.

Furthermore, models’ F1micro on dataset2test−unk is only slightly lower than
dataset2test, despite half of email in dataset2test−unk are from unknown class. This
underlines the models’ good generalization ability, which can distinguish unknown
phishing emails rather than guessing.

Interestingly, transformer models, while underperform traditional ML models on
dataset1test, surpass them on dataset2test. This divergence may stem from the trans-
former models’ effectiveness in using dataset2test large-scale data (793,117 entries)
while potentially overfitting on the small dataset1test (4,000 entries). Due to the
BERT model’s high performance on dataset2, it is used as the binary classification
component in the final pipeline.

4.3 Target Identification

4.3.1 Multiclass Classification

Model dataset2test dataset2test−unk dataset3test dataset3reference
AlBERT 0.882 0.434 0.956

0.954

BERT 0.891 0.446 0.963
RF 0.864 0.422 0.936
LR 0.867 0.417 0.938

CNN 0.875 0.424 0.945
RNN 0.872 0.421 0.946

Table 4.4: Multiclass classification models’ target identification F1micro

This section compares models’ performance across various multiclass models.
Since there is no existing phishing target identification multiclass classification
dataset, we only compare models’ performance on dataset3test with the Bi-directional
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Figure 4.1: Confusion matrix of top 7 class for multiclass classification

LSTM results provided by Netcraft’s team (dataset3reference). We also compare model
performance across dataset2test and dataset2test−unk, and the micro F1micro is shown
in Table 4.4.

First, we observe that the evaluated model achieves comparable performance on
dataset3test compared to dataset3reference. Particularly, we notice that RNN and CNN
achieve slightly lower F1micro, while the transformer model achieves superior per-
formance compared to dataset3reference. Interestingly, we observe that F1micro on
dataset3test is significantly higher than that of dataset2test. This is perhaps due to
unbalanced data classes and differences in training sample size.

Table 4.4 reveals that the transformer models, AlBERT and BERT, outperform
other ML models. This difference in performance highlights transformer models’
effectiveness in handling complex relationships within the data.

Furthermore, we observe that the F1micro on dataset2test−unk are lower across all
models compared to dataset2test. The decreases in F1micro scores indicate a shared
challenge in dealing with unknown or unseen classes. This aligns with expectations,
as multiclass models inherently can not predict a class not seen during training, thus
achieving 0 recalls for the unknown classes.

Moreover, we observe that the model performs better on binary classification than
multiclass classification. This is intuitive as a data imbalance issue exists and a
larger number of classes to predict in the multiclass setting, thus resulting in a more
complex task.
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Lastly, we plot the confusion matrix of the top 7 classes in Figure 4.1. The con-
fusion matrix shows that the multiclass model often confuses “Canada pharmacy”
with “Health product”, as shown by the respective 321 and 274 FP. Additionally, we
observe that some of the “Royal mail” are predicted to be “Webmail”, as shown by
the 166 FN.

Since BERT achieves the highest F1micro on dataset2test and dataset2test−unk, this
work uses it for multiclass classification in the final pipeline.

4.3.2 Generative Models

Objective Model Fine-Tuning Strategy dataset2test dataset2test−unk

AS PEGASUS
Default 0.164 0.167

Fine-Tuned 0.236 0.155

TG T5
Default 0.356 0.354

Fine-Tuned 0.362 0.303

Table 4.5: Generative models’ target identification F1micro

This section compares and evaluates the performance of PEGASUS and T5. Two
fine-tuning strategies have been employed for both models, where we compared
the performance of the default pretrained model without fine-tuned with the model
F1micro on the dataset2test and dataset2test−unk is shown in Table 4.5

Immediately, we observe that T5 achieve better F1micro compared to PEGASUS,
regardless of the fine-tuning strategy. This hints that the TG task may be more
suitable for the target identification. Since the summarisation models are being
trained to summarize semantic meaning rather than pinpoint specific keywords.

Upon fine-tuning, both models demonstrate improved performance on dataset2test
but worse performance on dataset2test−unk, suggesting catastrophic forgetting. Par-
ticularly, T5 model F1micro increased from 0.356 to 0.362 on dataset2test while de-
creased from 0.354 to 0.303 on dataset2test−unk.

Interestingly, T5 can achieve 0.354 F1micro on dataset2test−unk without any fine-
tuning, while PEGASUS is able to achieve 0.167 on dataset2test−unk. This highlights
the utility of already using fine-tuned models for downstream tasks.

While fine-tuned models demonstrate good performance with known targets, this
work uses the default T5 as the generative model for the final pipeline and in subse-
quent sections due to its capability to detect unknown targets.

4.3.3 Extractive Models

This section compares and evaluates the performance of various extractive models.
We detail the F1micro of the default and fine-tuned model on the dataset2test in Table
4.6.

As inferred from Table 4.6, default NER and EQA models exhibit strong generaliza-
tion capability. However, the fine-tuned NER and EQA show superior performance
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Objective Model Fine-Tuning Strategy dataset2test dataset2test−unk

TC BERT Fine-Tuned 0.439 0.207

NER BERT-NER
Default 0.338 0.339

Fine-Tuned 0.351 0.324

EQA BERT-EQA
Default 0.264 0.257

Fine-Tuned 0.276 0.246

Table 4.6: Extractive models’ target identification F1micro

on dataset2test but decreased performance on dataset2test−unk, indicating diminished
generalizability. Again, the decrease in performance of the fine-tuned models on
dataset2test−unk suggests catastrophic forgetting occurring.

Furthermore, the effect of fine-tuning varies significantly across objectives. Token
classification benefits the most from fine-tuning, while EQA demonstrates the least
improvement. This disparity might be due to the similarity between the previously
fine-tuned task and target identification, with more similar tasks receiving more
performance improvement.

While model performance appears low, it is important to mention that these mod-
els are solely trained on email with explicit targets. Given that roughly half of
dataset2test and dataset2test−unk have no explicit targets, performance metrics would
be substantially better when assessed against explicit-only text. For instance, while
the default NER achieves 0.338 F1micro on dataset2test, its F1micro increased to ap-
proximately 0.652 on dataset2test−explicit.

Additionally, the bad performance of extractive and generative models may also be
a result of counting only exact matches, even when the prediction from the extractive
model shares a common span with the target label, such as the prediction “apple
computer” with the label “apple”, it is counted as a misprediction.

Overall, this work uses the default NER model as the extractive model for the final
pipeline and in the subsequent sections, as it achieves decent performance for known
targets while achieving good generalization ability for unknown targets.

4.3.4 Integration Method

This section analyzes the performance across various combining strategies on
dataset2test and dataset2test−unk. These strategies are confidence thresholding, un-
known classes, and ensemble. For each strategy, the target identification F1micro of
integrating each component is shown in Table 4.7.

First, we observe that integrating the extractive and generative models results in
F1micro increase for both confidence thresholding and unknown class strategies. For
confidence thresholding, integrating the extractive and generative models results
in 0.012 and 0.286 F1micro improvements on dataset2test and dataset2test−unk com-
pared to a single multiclass model. For the unknown class strategy, integrating the
extractive and generative models leads to 0.005 and 0.208 F1micro improvement on
dataset2test and dataset2test−unk, respectively.

Conversely, for ensemble strategy, integrating extractive and generative models

35



Integration Method Component dataset2test dataset2test−unk

Confidence Threshold
Multiclass 0.891 0.446
+Extractive 0.899 0.685
+Generative 0.903 0.732

Unknown class
Multiclass 0.842 0.424
+Extractive 0.843 0.632
+Generative 0.847 0.696

Ensemble
Multiclass 0.891 0.446
+Extractive 0.893 0.532
+Generative 0.885 0.587

Table 4.7: Integration methods’ target identification F1micro

did not significantly impact the model’s performance. This phenomenon is be-
cause extractive and generative models have low performance; thus, ensembling
those models’ predictions may skew the originally correct prediction, resulting in
decreased F1micro.

Furthermore, we observe that the unknown class method achieves the lowest
F1micro on dataset2test. This low performance may be due to suboptimal data utiliza-
tion (as 10% of data is reassigned to the unknown class), and the assigned unknown
class types may not be representative of the actual unknown class.

Interestingly, while the extractive method offers a consistent performance boost,
generative integration leads to only marginal improvements, hinting at a potential
overlap in correct predictions between the multiclass, extractive, and generative
models.

Overall, among the evaluated strategies, the confidence threshold strategy outper-
forms both the unknown class handling and ensemble strategies and is thus used for
the final pipeline and the subsequent sections.

4.4 Additional Improvements

This section compares the performance difference between joint training meth-
ods, hard example mining, and KNN ensemble against the baseline in our final
pipeline. This pipeline comprises Binary classification (BERT), multiclass classifi-
cation (BERT), extractive (BERT-NER), and generative (T5) components, with the
confidence threshold integration method.

4.4.1 Joint Training

In this section, we assess the efficacy of various joint training strategies. The F1micro

of the confidence threshold pipeline is shown in Table 4.8.
We observe that the bi-task joint training approach outperforms the single multi-

class model, highlighting the advantage of decomposing complex tasks into jointly
trained subtasks. Particularly, the bi-task joint training achieves F1micro scores of
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Model
Phishing Detection Target Identification

dataset2test dataset2test−unk dataset2test dataset2test−unk

Baseline (No JT) 0.933 0.830 0.903 0.732
Single Multiclass 0.906 0.816 0.889 0.702
Bi-Task JT 0.926 0.821 0.893 0.717
Tri-Task JT 0.902 0.803 0.882 0.597

Table 4.8: Different joint training (JT) strategies’ pipeline F1micro

0.926 and 0.893 phishing detection and target identification on dataset2test, respec-
tively, surpassing the single multiclass model’s scores of 0.906 and 0.889.

Despite this, the tri-task joint training strategy underperforms relative to the single
multiclass model, underlining that joint training effectiveness depends on the spe-
cific sub-task and model architecture. In this case, the bi-task approach benefits as
both classification tasks leverage BERT’s encoding. In contrast, the tri-task strategy
necessitates training the entire BERT’s last layer hidden state for the token classifi-
cation, resulting in underfitting. Moreover, tri-task joint training’s low F1micro score
in target identification (0.882 and 0.597) highlights its inability to fit the extractive
model due to its complex objective.

Furthermore, the joint training approach leads to slightly decreased performance
compared to the sequential baseline, highlighting the inherent trade-off between
computational complexity and performance. For instance, the bi-task joint training
strategy achieves 0.926 and 0.893 F1micro on dataset2test for phishing detection and
target identification, respectively, which is behind the baseline’s 0.933 and 0.903.
Therefore, joint training strategies are not employed for the final pipeline to optimize
performance.

4.4.2 Hard Example Mining

Loss
Phishing Detection Target Identification

dataset2test dataset2test−unk dataset2test dataset2test−unk

Baseline (CE Loss) 0.933 0.830 0.903 0.732
Focal Loss 0.932 0.821 0.900 0.727
Dynamic Loss 0.941 0.832 0.908 0.731

Table 4.9: Different hard example mining strategies’ pipeline F1micro

This section compares the pipeline performance with baseline CE loss, focal loss,
and dynamic loss. Only binary and multiclass classification models are retrained
with the new loss, and the F1micro of the threshold-based pipeline is shown in Table
4.9 and 4.10.

Initial observations underscore a notably low macro F1macro of baseline model
for both known and unknown targets. Particularly, the baseline achieves 0.223 and
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Loss
Target Identification

dataset2test dataset2test−unk

Baseline (CE loss) 0.223 0.192
Focal Loss 0.422 0.287
Dynamic Loss 0.342 0.216

Table 4.10: Different hard example mining strategies’ pipeline F1macro

0.192 F1macro respectively, highlighting the difficulty when handling hard minority
classes.

Compared to the baseline (CE loss), focal loss demonstrates a substantial improve-
ment, achieving 0.422 and 0.287 F1macro on the respective dataset. Dynamic loss
also enhances baseline performance, albeit less significant, with 0.342 and 0.216
F1macro.

Despite the improvement in F1macro, focal loss F1micro decreased, highlighting
the trade-off between micro and macro F1. Particularly, focal loss decreased micro
F1micro by 0.005 and 0.003 for phishing detection and target identification, respec-
tively. In contrast, dynamic loss increased both F1micro and F1macro for target iden-
tification, albeit less significant; therefore, dynamic loss is employed for the final
pipeline.

4.4.3 KNN Ensemble

Figure 4.2: Illustration of KNN ensemble model’s confidence (with known class (A, B,
C) and unknown class D.)

This section delves into the performance implications of using KNN ensembles
with training and inference data. Mainly, the KNN ensemble technique is employed
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Inference Strategy
Phishing Detection Target Identification

dataset2test dataset2test−unk dataset2test dataset2test−unk

Baseline (No KNN) 0.933 0.830 0.903 0.732
KNN TD 0.947 0.822 0.915 0.726
KNN ID 0.941 0.842 0.907 0.749

Table 4.11: Different KNN ensemble strategies pipeline F1micro

on the binary and multiclass classification models, and the F1micro score of the
pipeline using confidence thresholding is presented in Table 4.11.

On the one hand, we observe that utilizing KNN with training data (KNN TD)
yielded noticeable F1micro improvements (0.014 and 0.012) for known target phish-
ing detection and target identification. For unknown targets, however, the F1micro

decreased by 0.008 and 0.006. This highlights the limitation of KNN with train-
ing data: weak generalization for unknown classes. Conversely, despite only minor
improvements on known data, employing KKN with inference data (KNN ID) sig-
nificantly improves performance for known and unknown targets, highlighting its
superior generalization ability.

The underlying mechanism is further elucidated in Figure 4.2. This figure il-
lustrates the KNN ensemble model’s confidence (with weight hyperparameter w)
through a contour plot accompanied by a scatter plot of inference data. Notably,
the first row integrates the KNN ensemble using training data, while the second row
employs it with the inference data. We observe that through reweighting prediction
confidence with its high cosine similarity neighbors, the KNN ensembles regularize
the decision boundary into “circular sectors”, assigning data with similar angular
characteristics into one class. Doing so reduces the effect of outliers and improves
the model’s performance, as in NLP vectors with similar angular characteristics often
contain similar semantic characteristics.

Additionally, KNN ensembles also reduce the confidence in the region where few
neighbors are found (as shown on the bottom right and top left of Figure 4.2),
thereby more data are labelled unknown and fed into subsequent components, im-
proving pipeline unknown target detection and generalization ability.

Furthermore, the confidence of prediction explains the difference in performance
between KNN with training and inference data. Mainly, since the one-hot vector of
the training label is more confident than the model’s predictions, KNN TD achieves
overall higher confidence than KNN ID, resulting in KNN ID favoring unknown
classes, while KNN TD tends to favor known classes. Moreover, KNN ID adjusts
the model’s prediction based on inference data distribution (i.e., if most inference
data classes are A, then most of the neighbors have class A, resulting in the model
favoring class A), making the model more adaptable when encountering distribution
shifts.

Despite this, KNN with inference data requires the storage of N (10,000) past
prediction and hidden state during inference. This can pose challenges under limited
inference data, while KNN with training data mitigate this problem. Both approaches
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do not affect the training duration but require O(NM) additional inference time for
calculating cosine similarity and O(N) data storage for hidden state, where M is the
number of inference data.

Our analysis reveals that applying KNN ensembles, particularly with inference
data, can yield performance and generalization gains. Hence, the KNN ensemble
on inference data is employed for the final pipeline.

4.5 Ablation Study

Model
Phishing Detection Target Identification

dataset2test dataset2test−unk dataset2test dataset2test−unk

Single Multiclass 0.909 0.816 0.889 0.436
Binary 0.933 0.830 - -
+ Multiclass 0.933 0.830 0.891 0.446
+ Extractive 0.933 0.830 0.899 0.685
+ Generative 0.933 0.830 0.903 0.732
+ DS Pretraining 0.941 0.842 0.911 0.736
+ Dynamic Loss 0.945 0.843 0.912 0.736
+ KNN Ensemble 0.956 0.849 0.916 0.741

Table 4.12: Ablation study showcasing pipeline F1micro with and without individual
components, where DS Pretraining refers to Domain-Specific Pretraining

This work performs an ablation study on the final pipeline to understand the con-
tribution of individual components and techniques. With the confidence threshold
integration method, we assess the incremental value of each component, namely
Multiclass (BERT), Extractive (BERT-NER), and Generative (T5), relative to a stan-
dalone multiclass model. Subsequently, we analyze enhancements like domain-
specific pretraining, dynamic loss, and the KNN (ID) ensemble. Based on the F1micro

scores in Table 4.12, the following key observations can be made:

• Component-Wise Performance: Compared with a singular model, the
pipeline yields better results when integrating additional components. First,
we observe that binary and multiclass classification models achieve higher
F1micro than a singular multiclass model in phishing detection and target iden-
tification. Following on, integration of the extractive model significantly im-
proves unknown target identification, from 0.446 to 0.685 F1, while only
slightly improving known target identification from 0.891 to 0.899. In com-
parison, the performance gain of integrating the generative model is much
smaller, with merely 0.004 and 0.053 F1micro improvement for target identifi-
cation for known and unknown targets.

• Domain-Specific Pretraining: This work also observes that further pretraining
BERT with dataset2 before fine-tuning it on binary and multiclass tasks leads
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to an average of 0.010 and 0.006 F1micro improvement in phishing detection
and target identification respectively. This highlights the benefit of further
pretraining.

• Dyanmic Loss: The application of dynamic loss results in a 0.004 and 0.001
F1micro improvement for known and unknown phishing detection. However,
dynamic loss results in 0.001 and 0 F1micro increase for known and unknown
target identification. This highlights that while dynamic loss can improve
F1macro, its effect on F1micro improvement is small.

• KNN Ensmeble: Again, this work observes that by integrating KNN techniques
using inference data, the pipeline performance on known and unknown data
increased. This highlights the KNN ensemble’s ability to improve performance
and generalization.

This ablation study underlines that integrating additional components, domain-
specific pretraining, and KNN ensemble consistently improves phishing detection
and target identification performance across known and unknown targets. Notably,
the integration of binary and multiclass models leads to the largest performance
improvement for known targets, while the integration of extractive mode leads to
the largest performance improvement for unknown targets.

Despite this, the performance improvement of additional components comes with
increased inference time. Specifically, the generative model and KNN ensemble re-
sult in large computation complexity. In contrast, the single multiclass method also
has the fastest inference time despite exhibiting the least performance. Given this
trade-off, employing those techniques should be carefully chosen based on the task
and dataset considerations.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This research was driven by the need to combat the surge in phishing emails by
detecting and identifying the target of phishing emails. In a landscape where tra-
ditional countermeasures like heuristics and blacklisting have shown declining effi-
cacy, this work’s exploration of phishing detection and target identification with DL
methodology is pivotal.

This work developed a robust pipeline for phishing detection and target identifica-
tion by comparing and combining various state-of-the-art ML, DL, and transformers-
based models. The successfully realized pipeline combines classification, extractive,
and generative models to achieve high performance and strong generalization.

The merit of the pipeline, however, lies not just in its detection capability but in its
ability to adapt and identify unknown phishing targets. By evaluating and improving
pipeline performance against unknown phishing targets, this work ensures that not
only were current phishing targets addressed, but the system also remains resilient
to future, unforeseen phishing attacks.

This work attempted various techniques to improve pipeline performance further.
Distinctively, the proposed KNN ensemble technique significantly improves detection
performance for both known and unknown targets, while the dynamic loss enhances
the model’s ability to handle minority classes.

Nonetheless, there are a few limitations of the model developed in this project:

• Hyperparameter Optimization: Due to computational limitations, hyperpa-
rameter tuning was only performed for individual baseline models and not the
combined pipeline. Additionally, the absence of cross-validation led to slight
variability in the model’s performance, potentially affecting the comparison
between models.

• Evaluation Metrics: This work’s evaluation predominantly relied on micro-
F1micro scores. Incorporating more metrics, such as the ROC AUC scores or
weighted accuracy, would offer a more comprehensive understanding of the
pipeline’s capabilities.
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• Proposed Technique Evaluation: This work proposed and evaluated the data-
based dynamic loss and KNN ensemble techniques. However, their evaluation
was restricted to classification tasks on dataset2. This limitation necessitates
further exploration across varied tasks and datasets to understand their effi-
cacy.

• Class Imbalance and Overfitting: The dataset2 exhibited class imbalance,
causing the model to favor majority classes and neglect minority ones. While
this work utilized focal loss and dynamic loss to solve such problems, the model
still displayed overfitting tendencies, compromising its real-world applicability.
Future works could explore additional hard example mining, data sampling,
and augmentation strategies to alleviate this challenge.

• Inference Time and Memory Usage: While our primary emphasis was on
model performance, computational complexity and inference times were rel-
atively overlooked. The final pipeline, integrating four components, demands
significant memory (≈ 33.2 GB) and extended inference time (3.47 seconds).
This poses challenges for practical, production-level deployment.

5.2 Future work

In light of these limitations, subsequent research efforts can focus on addressing
these challenges, refining the model, and ensuring more robust real-world applica-
bility through the following options:

• Weight Freezing: Given the superior performance of the pretrained NER and
T5 models over fine-tuned versions, future research could explore weight freez-
ing techniques to overcome catastrophic forgetting. A promising direction
could be freezing the BERT encoder while fine-tuning only the linear head.
Alternatively, gradual unfreezing and weight clipping, as indicated in [47],
might also avert catastrophic forgetting and improve performance.

• Task-Wise Ensemble: This work trained a diverse number of models for clas-
sification, extractive, and generative tasks. A logical future direction would be
to delve into task-specific ensembling techniques to combine the models and
enhance the pipeline’s performance.

• Inference Time Reduction: Despite the good performance of the final model,
a reduction in inference time and memory usage is necessary to meet the pro-
duction standard. Potential strategies include leveraging compact architectures
like Tiny BERT [48] or employing knowledge distillation techniques [49].

• Unsupervised Learning Ensemble: The positive outcome from the KNN en-
semble indicates the potential benefits of applying unsupervised methods on
the BERT hidden state. This suggests further exploring other unsupervised
learning methods, such as clustering algorithms, to improve the model’s per-
formance.
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• Phishing Type Identification: This work only focuses on phishing detection
and identifying the target company of the email, while in practice, it is also
important to identify the type of phishing. To address this, future research
can preprocess and reframe target identification into a multilabel classification
task, whereby emails are categorized based on their phishing status, target,
and attack type. Furthermore, the methods used in this work can be adapted
to develop a pipeline for identifying new types of phishing attacks.
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Appendix A

Hyperparameter Settings

Model Parameter Search space

DL models

Learning rate [5e-6, 5e-4]
Weight decay [0, 1e-2]
Dropout [0.1, 0.5]
Optimizer AdamW, Adam, Adagrad, SGD
Scheduler polynomial, cosine, linear

RF
N estimators [50, 200]
Split criterion “gini”, “entropy”, “log loss”

Table A.1: Hyperparameter search range of classification, extractive, and generative
models
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Appendix B

Additional Evaluation Results

Model
dataset1test dataset2test dataset2test−unk

Precision Recall Precision Recall Precision Recall
ALBERT 0.967 0.949 0.921 0.916 0.820 0.835

BERT 0.963 0.958 0.918 0.927 0.839 0.820
RF 0.976 0.996 0.899 0.903 0.820 0.825
LR 0.974 0.979 0.900 0.891 0.811 0.810

CNN 0.986 0.987 0.916 0.905 0.821 0.826
RNN 0.982 0.987 0.902 0.903 0.811 0.806

Table B.1: Precision and recall values for binary classification model

Model
dataset2test dataset2test−unk dataset3

Precision Recall Precision Recall Precision Recall
ALBERT 0.881 0.882 0.437 0.430 0.964 0.948

BERT 0.890 0.891 0.442 0.450 0.962 0.962
RF 0.865 0.862 0.425 0.418 0.928 0.943
LR 0.868 0.865 0.409 0.424 0.944 0.931

CNN 0.874 0.875 0.430 0.417 0.942 0.947
RNN 0.874 0.869 0.425 0.416 0.940 0.951

Table B.2: Micro averaged precision and recall values for multiclass models
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Model Training Strategy
dataset2 dataset2test

Precision Recall Precision Recall

PEGASUS
Default 0.157 0.171 0.166 0.167

fine-tuned 0.377 0.375 0.215 0.214

T5
Default 0.357 0.354 0.355 0.352

fine-tuned 0.404 0.380 0.305 0.300

Table B.3: Micro averaged precision and recall values for generative models

Model Training Strategy
dataset2 dataset2test

Precision Recall Precision Recall
BERT fine-tuned 0.210 0.202 0.201 0.211

BERT-NER
Default 0.334 0.343 0.334 0.344

fine-tuned 0.322 0.325 0.331 0.316

BERT-EQA
Default 0.251 0.262 0.263 0.250

fine-tuned 0.237 0.255 0.251 0.240

Table B.4: Micro averaged precision and recall values for extractive models
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