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Abstract

Native staking is the process of using an amount of native token as a collateral in
the Proof of Stake mechanism of a blockchain and it offers several benefits for the
stakeholder and the blockchain.

Therefore, it would be fair to suggest that ensuring accessibility to every user, regard-
less of their wealth or knowledge, is favourable for the whole blockchain network.
However, the existing staking pools charge fees that make it infeasible to stake or
unstake small amounts.

The objective of this individual project is to solve this problem through proposing a
protocol that makes staking accessible to everyone.

Over the course of this project, we suggest and study multiple ideas to mitigate
the gas fees associated with native staking. These ideas are moulded into design
approaches for gas efficient staking vaults.

Furthermore, a full-stack novel staking protocol is designed, developed, deployed,
tested, evaluated and compared to existing staking protocols that handle assets
worth hundreds of millions of pounds.

We view this project as a complete journey. A journey that starts with the need for
solving a real-world problem, goes through all the computer science, mathematical
and finance aspects of designing and building, concluding with a real-world solution.
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Chapter 1

Introduction

1.1 Motivation

Blockchain technology took the world by storm since it was first proposed in 2008
by Satoshi Nakamoto[1]. By leveraging the economic crisis and people’s mistrust
of central authority systems, it transformed an idea into a trillion-pound industry
within a span of 15 years.

Furthermore, the introduction of the Proof of Stake (PoS) consensus mechanism, as
an alternative to the energy inefficient Proof of Work (PoW), unlocked even more
opportunities for blockchain systems. By adopting PoS, blockchains became signifi-
cantly more eco-friendly, more safe and more scalable [2].

At the same time, PoS incentivised every user to be a part of the consensus mecha-
nism in a mutually beneficial way for both the users and the blockchain. By staking
native coins, stakeholders can receive an almost risk-free passive income with an
annual percentage yield (APY). At the same time, by increasing the total staked
amount, the blockchain becomes more decentralised and more resistant to major-
ity attacks since accumulating a considerable percentage of the total staked amount
becomes increasingly difficult for a malicious user.

In theory, blockchains are meant to be decentralised and accessible to everyone fol-
lowing the principles set out by Nakamoto. In practice, staking benefits only holders
of sufficient funds. After all, PoS works as long as a user does not behave dishonestly
as they have a lot to lose by doing so since malicious users are penalised on their
staked funds. For this reason, some services providers designed solutions based on
staking pools. These combine many users’ funds into a single pool thereby mutu-
alising transaction fees, making staking accessible to retail cryptocurrency holders
[3, 4].

Ostensibly, many staking pools already exist and offer staking services to everyone
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1.2. OBJECTIVES Chapter 1. Introduction

without a minimum limit on the deposit amount. Upon closer examination, there
are hidden gas fees that make it infeasible to stake small amounts. In fact, the gas
fees are so high that if a user wishes to stake 100 pounds, for the major chains, they
would have to wait years until the accrued rewards would be enough just to cover
the staking and unstaking fees.

What is proposed in this project is a protocol that mitigates the gas fees associated
with staking and make it genuinely accessible to retail users. We are also designing
and deploying a prototype as a proof of concept.

1.2 Objectives

First of all, we are planning to research existing staking pools and discuss their
advantages and pitfalls. Through this we demonstrate quantitatively the lack of
options for retail staking and obtain ideas that could potentially be combined to
solve the problem. Additionally, we aim to present the thought process and all the
intermediate solutions that led up to the final solution.

The primary objective of this project is to design and implement a protocol that
will make staking accessible to retail cryptocurrency holders. Our goal is not to
differentiate the users in two categories of retail users and whales. On the contrary,
our protocol wishes to combine the potential and the capabilities of all users in a
way that will benefit everyone.

Apart from the main goal, the project has a series of secondary objectives. We intend
to promote staking as a means to improve blockchain’s robustness and ability to
handle transactions. Finally, our aspiration is to promote staking as a passive source
of income which is also:

• mainly trustless (code replaces the need for a trusted centralised authority)

• non-custodial (participants maintain control of their funds)

• risk-free (modulo slashing and smart contract risk)

All in all, we hope that this project will take some steps towards the decentralisation
originally envisioned by Satoshi Nakamoto.

1.3 Contribution

The initial contribution of this project is identifying the problem of high gas fees
prices that make native staking infeasible for small amounts. To formalise the

2
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problem, we conduct a gas fees comparison among some of the most popular stak-
ers.

The project suggests some core ideas that can be used to reduce gas fees. These
ideas could be adopted by existing staking vaults without the need of radically
changing their code.

Taking it a step further, we designed four (4) different approaches for new staking
vaults that could potentially reduce the gas fees for native staking in many different
Blockchains.

Furthermore we selected one of the four approaches and designed a complete pro-
tocol based on it. The design contains a description for the functions, variables and
data structures it consists of. We also provide the methodology for determining the
values of parameters of the protocol.

Finally, we developed the full-stack prototype of a staking vault based on the
complete protocol as a proof of concept. The prototype achieves its goal and proves
that, under conditions, it is possible to achieve lower gas fees than the state of the
art stakers that stake hundreds of millions of MATIC.

1.4 Legal, Social and Professional Requirements

The data used for this project were retrieved from the Ethereum mainnet. As in-
formation in the Ethereum blockchain is public, there is no concern about personal
data. Same principle applies for code that is deployed and verified on the blockchain.

Some of the code produced in this project was built on top of existing code of Field-
labs. In order to have access to the code of Fieldlabs, a Non-Disclosure Agreement
(NDA) was signed. Any pre-existing code that was used for this project is public
and clearly marked in the git repo. The final git repo was inspected by the CTO of
Fieldlabs to ensure that there will not be any legal complications or violations of the
NDA.

Furthermore, even though blockchains have been used before for malevolent and
criminal activities, the current project is dedicated on native staking and cannot be
used for malicious purposes.

Lastly, this project could potentially be used to produce a software product. Never-
theless, there are no copyright licensing implications since the code is either devel-
oped by me or it is already public.

3



1.5. REPORT STRUCTURE Chapter 1. Introduction

1.5 Report Structure

Chapter 2 - Background: The background report consists of two parts. The former
part contains fundamental knowledge and concepts which are required for the
comprehension of the rest of the report, such as the Proof of Stake protocol,
native staking, pooled staking and gas fees.

The latter part contains a report on the existing native staking solutions. There
is also an analysis of their gas fees. This analysis justifies the need for a protocol
like the one proposed in this project and is used in chapter 5 to evaluate the
developed prototype.

Chapter 3 - Design: The design chapter describes the sequence of procedures that
transformed the initial idea to a complete and formal design of a protocol that
reduces the gas fees for native staking. It includes the rationale for choosing
the Polygon blockchain, the intermediary designs and the full description of
the final design. It also covers the methodology for determining the values for
the parameters that control the operation of the final protocol.

Chapter 4 - Implementation: The implementation chapter describes the process of
giving substance to the final design by developing a prototype with a UI. It
incorporates information about the smart contract, the frontend and the auto-
tasks that automatise the control of the prototype.

Chapter 5 - Evaluation: The evaluation chapter contains an analysis of the gas fees
of the prototype and a comparison with the gas fees of other existing stakers.

Chapter 6 - Conclusion: The final chapter contains a summary of the achievements
of this project. It also includes suggestions for further improvements of the
prototype as well as ideas for future projects and applications.
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Chapter 2

Background

2.1 Staking

2.1.1 Blockchain

A blockchain is an immutable distributed ledger maintained by a network of nodes.
It is based on the idea that every node of the network possesses an identical copy of
the ledger. The ledger consists of blocks and every block is connected to the previous
one, thus creating a chain. In order to ensure that the state of the blockchain is
unique and universally accepted, there is a need for a consensus mechanism [5].

2.1.2 Proof of Work(PoW)

Bitcoin, the first blockchain that was proposed by Satoshi Nakamoto [1] uses the
Proof of Work (PoW) consensus mechanism. The PoW secures the integrity by mak-
ing the nodes (or miners) solve a computational problem. The first miner to solve
the problem is awarded the right to add a block to the blockchain in exchange for a
reward. Since the problem is complex and requires significant computational power,
the blockchain is safe from malicious attacks as long as the majority of the computa-
tional power of the network is controlled by honest nodes.

The idea of a blockchain was revolutionary and the PoW mechanism has proven to
be robust and reliable. However, the increase of the popularity of Bitcoin revealed
some significant disadvantages of PoW:

1. It demands non-trivial amounts of electrical energy which makes it expensive
[6, 7, 8] and has harmful effects on the environment [9].

2. Computational power is wasted on relatively meaningless calculations.

5



2.1. STAKING Chapter 2. Background

3. Existing miners posses very powerful computational machines. This makes it
extremely expensive for new miners to enter the market and can lead to de-
facto centralisation [10].

4. It leads to the creation of two different types of users, the mining pools that
explicitly perform mining and the rest of the users who explicitly perform trans-
actions [11].

5. It does not scale well as the more users join the system, the more amount of
computations is required [11].

6. Finality (assurance that a transaction is added to the blockchain and will not
be reverted) is not explicit but probabilistic [10, 2].

7. The need for huge amounts of energy, sophisticated hardware and warehouse
facilities make it less censorship resistant as these purchases can potentially be
traced [12].

2.1.3 Proof of Stake (PoS)

Since the early days of Bitcoin, multiple alternative consensus mechanisms were
proposed. The most popular of them is the Proof of Stake (PoS) mechanism. PoS
was initially proposed by Sunny King and Scott Nadal in the PPCoin whitepaper [13]
in 2012 in a hybrid mechanism that combined PoS and PoW. The main argument for
the proposal was that PoW was very energy inefficient. As described by S.King and
S.Nadal, proof of stake can be viewed as a proof of token ownership. The idea
behind of that mechanism was to use the concept of coin age, i.e., the product of
currency amount times the holding period to increase the value of unspent coins. By
spending coin age, users are awarded the right to generate a new block.

This primitive version of PoS influenced various other proposals for PoS consensus
mechanisms. BlackCoin [14] was the first blockchain that used a pure PoS mecha-
nism. In the whitepaper, it is explained why coin age should be dropped. It is also
suggested that it is important for the safety of a PoS mechanisms to have as many
nodes online as possible.

Later innovative adaptations of pure PoS mechanisms include Nxt [15], Algorand
[11] and Cardano which is based on the Ouroboros protocol [16].

The Nxt blockchain[15] is an effort to provide an agile architecture that does not
depend on powerful machines. Additionally, the blockchain does not support the
minting of new coins and it relies on the tokens that were issued in the genesis
block. Therefore, the reward of the node that creates a new block consists solely
of transaction fees. It also uses the idea of explicit finality as transactions located
in a block with depth < 10 are considered safe. Lastly, it adopts the concept that

6



Chapter 2. Background 2.1. STAKING

the probability of a node to be selected to create a new block is proportional to the
number of tokens held by the node.

In Algorand [11] blockchain, the creation of a fork is nearly impossible thus a ev-
ery new block remains in the blockchain forever and all transactions in a block are
considered final. The block generation procedure has two phases. First, a node is
randomly selected to propose a block and secondly, a committee of nodes is ran-
domly selected to validate the proposed block. As in Nxt, the probability of selecting
a node to build a block is proportional to the node’s staked assets in the system. The
selection is made using algorithmic randomness which also inspired the name of the
blockchain.

The Cardano blockchain, based on the Ouroboros protocol [16], uses random selec-
tion of nodes that propose blocks proportionally to their staked amount. According
to the team behind Ouroboros, their innovation is that the protocol uses a coin
flipping algorithm to introduce truly unbiased randomness unlike other implemen-
tations. In Cardano, time is split to slots. In each slot, a slot leader is randomly
selected to add a new block to the blockchain and a slot endorser is selected to
endorse the new block.

Similarly to other PoS blockchains, in Cardano it is important to have honest and
punctual nodes that are always online and ready to act as slot leaders and slot en-
dorsers. Therefore, Ouroboros protocol [16] introduces the concept of a stake del-
egation mechanism. The delegation mechanism leads to the creation of so called
”stake pools”. More specifically, a group of stakeholders is selected to act as del-
egates. The rest of the stakeholders authorise a delegate to stake their funds on
their behalf. In order to have the right to stake, a delegate is required to accumulate
funds that exceed a threshold. This ensures that the delegate does not gain by acting
maliciously since this will lead to penalties and devaluation of the currency.

2.1.4 Proof of Stake (PoS) in Ethereum

At the time of writing, the most popular blockchain that uses a PoS consensus mech-
anism is Ethereum [17]. Ethereum, proposed in 2014 by Vitalik Buterin, was orig-
inally based on a PoW mechanism. However, the benefits of PoS over PoW led to
what was called “The Merge” in September 2022 when the network transitioned
from a PoW mechanism to a PoS mechanism. Post-merge, Ethereum became able
to facilitate further scalability upgrades and its energy consumption was reduced by
99.95% [18].

Ethereum’s PoS is using the Gasper protocol [19]. Gasper is a combination of the
Casper finality gadget [20] and the LMD-GHOST fork choice algorithm. Finality is a
state in which a block can be considered a safe and immutable part of the blockchain.
Following Casper, Ethereum splits time in epochs which are then split in slots. In
each slot a new block is added to the chain. The block of the first slot of each epoch

7



2.1. STAKING Chapter 2. Background

is considered a checkpoint. Once the two thirds of the validators attest to a pair of
checkpoints, the blocks between them are finalised.

Meanwhile, the LMD-GHOST (latest message-driven greedy heaviest observed sub-
tree) fork choice recognises as valid the chain with the heaviest chain in regards of
attestations. In case of receiving multiple messages from a validator, the latest one
is the one considered accurate [19, 21].

The Gasper protocol incentivises benevolent behaviour by applying rewards and
penalties [19, 21]. A validator is rewarded for proposing a valid new block or for
validating a proposed block. Conversely, the amount that a stakeholder stakes acts
as a collateral and if slashing conditions are met, the validator is penalised on their
staked amount. Malevolent behaviour that leads to slashing includes: proposing
more than one block in a single time slot, attesting to multiple blocks on the same
time slot or contradicting previous checkpoint votes.

By applying penalties, Gasper solves the ”Nothing at stake” problem which is com-
mon in other PoS implementations. In blockchains that do not penalise dishonest
behaviour, upon the creation of a fork, users can create blocks on top of every branch
to maximise the probability of profit. Ethereum users are penalised for such a be-
haviour therefore the problem of the existence of multiple chains is quickly resolved
[19, 22].

Furthermore, in order to become a validator, a node needs to stake an amount of
32 ETH. The validator’s duties are to create new blocks or attest (vote in order to
validate) to newly created blocks by other validators whenever they are selected by
the system. The probability of a validator to be selected to create a new block or
participate in an attesting committee is proportionate to their staked amount [2].

2.1.5 Gas fees in Ethereum

As this project concentrates on designing a protocol that mitigates the gas fees in
Ethereum, it is important to explain why gas fees exist and how they are calculated.
Gas is a unit to measure computational labour required to execute a transaction on
Ethereum. Gas fees are calculated as the amount of gas units required to execute a
transaction multiplied by the gas price (i.e. cost per unit gas) [23]. The formula to
calculate gas fees in ETH is:

total fee = units of gas used × gas price
= units of gas used × (base fee + priority fee)

(2.1)

The gas price is the addition of two components, base fee and priority fee. The base fee
is the minimum amount for a transaction to be considered valid. The priority fee is
an additional tip offered to validators to increase the likeliness of the transaction be
included in a block by a validator [23].

8
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Even though just paying the base fee is enough for a transaction to be considered
valid, the validators are free to execute and add to the blockchain any transaction
they wish. This means that they would choose to include the most profitable trans-
actions first. Therefore, the higher the priority fee, the faster the transaction will
be included in a block. On the contrary, transactions without priority fee are very
unlikely to be included in a block.

The units of gas used depend exclusively on the computation effort required to exe-
cute a transaction. The value is invariant of the gas price and ETH’s dollar value.
It is also invariant to the Ethereum network that the transaction is executed. This
proves to be very useful as it allows comparing the gas fees of transactions executed
on Ethereum’s mainnet with transactions executed on testnets.

Moreover, gas fees serve multiple purposes. As already described, they are a method
of payment for the node that provides the computational power needed to execute
the transactions which change the state of the blockchain. They also create a virtual
meaning of priority amongst the pending transactions.

More importantly though, they practically solve the halting problem in Ethereum.
According to the halting problem, it is impossible, given an arbitrary piece of code, to
determine whether or not it will terminate of create an infinite loop. As transactions
in Ethereum are executed using the network’s computational power, infinite loops
could consume the network resources. If a user, intentionally or unintentionally,
creates an infinite loop, the transaction will be processed until it runs out of gas.
Then, it will revert but the sender will lose the fees as they will be claimed by the
validator who (partially) processed it [17].

2.1.6 Proof of Stake (PoS) in Polygon

The blockchain selected for our proof of concept is Polygon, previously known as the
Matic Network [24]. Rationale for this choice will be given in the following chapters.
For now, it is important to explain that Polygon is not precisely a blockchain but a
scaling solution that enables the existence of sidechains that are connected to a main
chain like Ethereum.

Polygon’s purpose is to solve scalability and user experience issues that Ethereum
struggles with. As argued by the Polygon team, Polygon offers high transaction
throughput, low transaction fees, faster and deterministic finality as well as security.
At the same time, Polygon maintains Ethereum-compatibility [25].

To achieve these, Polygon uses an architecture in three layers. The first layer is
the Ethereum layer which contains Polygon’s smart contracts deployed on Ethereum
mainnet. The second is the Heimdall or PoS validation layer. The third and final
layer is the Bor or sidechain block producer layer.

9



2.1. STAKING Chapter 2. Background

In the Bor layer, the block producers create blocks with transactions on the sidechain.
Periodically, the Heimdall nodes or validators, validate a set of blocks in the Bor layer
and calculate the Merkle tree of these blocks’ hashes. The Merkle root hash is stored
on the Ethereum mainnet thus creating a checkpoint. Transactions included in a
checkpoint are considered final [26].

2.1.7 Native Staking

The term native staking (or simply staking) refers to the process of using an amount
of a blockchain’s native token as a collateral in the PoS mechanism of that blockchain.
By doing this, a user becomes a validator of that blockchain. A validator is re-
quired to store data and process transactions to create or validate blocks. Each PoS
blockchain that supports staking has its own requirements, rules and limitations
about staking but the main idea is similar in all of them.

The main benefit of native staking is that the stakeholder receives rewards which can
be seen as a source of passive income, similar to putting money in a savings account
[27]. In most cases, the percentage yield from the staking is affected by multiple and
unpredictable factors (different for each blockchain) but usually APY varies from 5%
to 20% [28], generally significantly higher than a bank’s interest.

Depending on the Blockchain, the rewards can be given for block creation and/or
block attestation. The funds for the rewards are collected by minting new coins
and/or by collecting transaction fees. In Ethereum, the creation of a new block
initiates the minting of new coins but the number of newly minted coins is not
constant for every block creation [29, 30]. In Polygon, 12% of the total supply of 10
billion MATIC is reserved to be used as staking rewards [31].

At the same time, staking benefits the blockchain as it improves its security and
operational resilience. This happens because the validators are discouraged from
acting dishonestly as this would negatively affect the price of the cryptocurrency
that they hold [27]. Furthermore, since anyone is allowed to stake, staking leads to
decentralisation. The more tokens are staked, the less vulnerable the blockchain is
to a majority attack. Additionally, some blockchains give stakeholders voting rights
as a way to govern the blockchain in a decentralised way [32].

Nonetheless, native staking has its own risks, apart from the obvious exposure to the
extremely volatile dollar values of cryptocurrencies. A stakeholder takes slashing
risk as most blockchains penalise malevolent or lazy behaviour. Therefore, in cases
where a stakeholder is delegating their stake, trust to the third-party that acts as
a validator node is necessary. Meanwhile, staking requires trust in the code of the
smart contracts that manage staking. Any software bug or mistake can have serious
implications. In addition, a user that desires to withdraw staked funds is usually
obliged to wait a certain waiting period. This allows the network to ensure that the
user has not added any invalid blocks to the blockchain [32].
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There are multiple ways for a user to stake[33, 32]:

As a validation node: This is the traditional method, it is the most profitable but
it also has the most responsibilities and requirements. A validation node is
required to have the hardware, the knowledge and constant connection to the
internet. Any misbehaviour can lead to penalties or slashing of the node’s
collateral. In many cases, the validation node is required to stake more than
a specific amount. The benefit of running a validation node is that the user
needs to trust nobody and receives the full amount of rewards.

Using a staking-as-a-service platform: With this method the user is still required
to have the minimum staking amount but does not require to own and man-
age the hardware to run a validation node. Instead, the user delegates their
funds to a provider that runs the validation node on their behalf. This method
requires trust in the third-party provider which also gets a fee for its service.

Using pooled staking: With this method, users delegate their funds to a pool that
runs a validation node on their behalf. The validation node collects the re-
wards, keeps a fee and distributes the rest to the users. It is ideal for users
that do not possess enough funds to run a validation node or use staking-as-
a-service or simply do not want to stake such a large amount. Some staking
services offer liquidity tokens that represent the staked funds with their ac-
crued rewards and can be traded like any other token or used in DeFi.

Using centralised cryptocurrency exchanges: Some of the exchanges offer stak-
ing through their platforms. With this method, the users have no control of
their funds and they are completely dependent on the centralised provider.
This also can lead to centralisation as these providers accumulate wealth in
their accounts. Using exchanges is a good solution for users with very limited
knowledge that do not feel comfortable owning their own wallet.

2.1.8 Pooled Staking

This project focuses exclusively on pooled staking. The main idea of pooled staking
is combining staking power of multiple users to improve the probability of being
selected as validators, thus receive more rewards which are then shared. The actual
validation node is run by a third-party service provider. Staking pools are designed
to enable retail cryptocurrency holders to become stakeholders and make staking
accessible to everyone [4].

Running a staking pool has its own operational costs. Apart from that, the owners of
the pools are expected to make some profit for offering their services to delegators.
The rest of the rewards accrued by the pool are shared to the delegators. Rewards
are shared shared following a reward sharing scheme. In general, this scheme is not
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enforced by the Blockchain but is selected by the service provider and that is what
makes staking pools different from each other [3].

During the following chapter we will describe and compare existing staking pools by
different service providers. We will discuss their advantages and disadvantages and
explain the reasons that led to the need for the solution proposed in this project.

2.2 Existing Stakers for Polygon’s MATIC

2.2.1 TruStake vault by TruFin

TruStake [34] is a staking vault for MATIC pool staking on the Ethereum mainnet.
It utilises the Twinstake [35] service as a validator node. TruStake offers compli-
mentary restaking of the rewards. More specifically, the protocol uses gas from new
users’ transactions to claim the accrued rewards and restake them without burdening
the old users with the cost of restaking.

Upon staking, the user receives an ERC-20 liquidity token called TruMatic that rep-
resents their shares in the vault. When a user wishes to withdraw, they have to wait
for an 80 checkpoint waiting period. The user’s TruMATIC tokens are burnt when the
request is made, and the user claims the corresponding MATIC after the checkpoints
have passed.

TruStake currently charges a 10% fee on the user’s rewards. The user is also required
to pay the gas fee for any new staking or unstaking. The gas fee for restaking is paid
by the protocol (or other users that stake/unstake).

For example, if a user A wishes to stake 100k USD worth of MATIC, they should
pay the gas fees for calling the stake() function. These gas fees also cover the cost
of restaking the accrued rewards for all the users of the protocol. After a year, this
amount will have accrued approximately 5k USD worth of MATIC (APY in Polygon
is approx. 5%). Out of these 5k USD, the protocol keeps 500 USD as commission
(10%) and the other 4.5k USD belongs to user A. Should user A desire to unstake
the 104.5k USD worth of MATIC, they will have to pay the gas fees for calling the
unstake() function. Meanwhile, if any other user initiates a staking or unstaking, the
accrued rewards of every user are restaked. In that case, the rewards of user A after
a year will be a bit more than 4.5k USD.

TruStake also offers the ability to allocate portions of the rewards to different ac-
counts from the one that stakes the funds [36].

TruStake’s current smart contract deployment can be viewed here: https://etherscan.
io/address/0xa43a7c62d56df036c187e1966c03e2799d8987ed
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2.2.2 Lido on Polygon

Lido [37] is a liquid staking provider which offers staking in multiple blockchains,
including Polygon. Lido on Polygon is a DAO governed liquid staking protocol for
staking MATIC on the Ethereum mainnet. Similar to TruStake, it also offers auto-
matic restaking of the rewards.

Lido charges a 10% on the user’s reward. On top of that, the user is required to pay
gas fees in multiple transactions. During staking, the user needs to pay gas fees for
unlocking their MATIC which allows the stMATIC contract to spend the tokens on
the user’s behalf. After that the user needs to pay the gas fees for calling the stake
function. Similarly, when a user wishes to unstake, they must unlock their stMATIC
and submit a withdrawal request by calling the unstake function. When the un-
bonding period ends (approximately 9 days) the user can claim their rewards. Every
single one of these transactions requires gas fees paid by the user [38].

Users who stake MATIC through Lido on Polygon receive an ERC-20 liquidity token
called stMATIC. This token can be traded like any other ERC-20 token. In fact, a
user can trade MATIC for stMATIC, or vice versa, through a centralised exchange to
skip the procedure described in the previous paragraph. However, this is not actual
staking, does not help strengthen the blockchain and contributes to centralisation.

Lido’s current smart contract deployment can be viewed here: https://etherscan.
io/address/0x9ee91f9f426fa633d227f7a9b000e28b9dfd8599

2.2.3 Stader

Stader [39] is a non-custodial contract-based staking platform that offers liquid stak-
ing for Polygon and other blockchains. Stader’s ERC-20 liquidity token is called
MATICX and has similar functionality to the stMATIC.

Stader offers staking on both the Ethereum mainnet and the Polygon mainnet via a
DEX. However, at the time this report is written, direct unstaking is only available
for Ethereum mainnet staking. Depending on the network used for staking, users are
required to pay gas fees using ETH or MATIC for any transactions related to staking
and unstaking.

Additionally, Stader promotes decentralisation through the use of small validators
that own less than 1% of the total staked amount. Stader’s validators also charge
commission less or equal to 5% which helps Stader maintain a relatively high APY
[40].

The waiting period for withdrawal is approximately 2-3 days and they charge a 10%
fee on the user’s rewards. Regarding restaking, Stader’s documentation does not
explicitly make any references [41].
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Stader’s current smart contract deployment can be viewed here: https://etherscan.
io/address/0xf03a7eb46d01d9ecaa104558c732cf82f6b6b645

2.2.4 Comparison

Feature Comparison

Table 2.1 is a comparison between the features of the stakers:

Service
Staker

TruStake Lido Stader
Commission on rewards 10% 10% 10%

Withdrawal waiting period 2-3 days 9 days 2-3 days
Liquid staking ✓ ✓ ✓

Automatic reward restake ✓ ✓ ✗

Reward allocation ✓ ✗ ✗

Liquidity token tradable in DEX ✗ ✓ ✓

Table 2.1: Feature comparison

Gas fees Comparison

Even though the smart contracts of these stakers vary a lot, the procedure of staking
and unstaking is similar. More specifically, using any of these 3 stakers requires, at
least, 3 separate transactions. One for depositing, one for requesting a withdrawal
and one for claiming the requested amount.

As explained in section 2.1.5 - Gas fees in Ethereum, by extracting the units of gas
used for the transactions, we can make an unbiased comparison of the gas fees be-
tween these stakers. To do that we traced the deployed smart contracts for each
staker on Etherscan, retrieved a large amount of data from users’ transactions with
them, and made the following data analysis.

Tables 2.2, 2.3 and 2.4 present a comparison between the three stakers for the func-
tions deposit(), requestWithdraw() and claimWithdraw() correspondingly.

Average Median Min Max Std
TruStake 364,069 371,680 324,875 402,599 22,744
Lido 642,379 622,858 511,319 752,113 99,965
Stader 568,917 576,743 510,748 620,062 35,239

Table 2.2: Gas units comparison for the deposit() function
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Average Median Min Max Std
TruStake 436,289 430,863 405,885 524,322 33,033
Lido 1,174,935 1,181,122 885,344 1,456,518 133,575
Stader 779,693 790,863 720,614 846,189 39,874

Table 2.3: Gas units comparison for the requestWithdraw() function

Average Median Min Max Std
TruStake 172,892 172,896 172,866 172,908 18
Lido 226,251 220,299 211,488 290,394 22,985
Stader 167,478 164,369 164,369 181,469 6,917

Table 2.4: Gas units comparison for the claimWithdraw() function

To provide a more intuitive comparison without loss of generality, we can multiply
the gas units values with last month’s (July 2023) average gas price and ETH value
in dollars. These values are: ¯gas price = 30.45 Gwei and ¯ETH value = 1896 $.

deposit() requestWithdraw() claimWithdraw() Total
TruStake 21.02 $ 25.19 $ 9.98 $ 56.19 $
Lido 37.09 $ 67.83 $ 13.06 $ 117.98 $
Stader 32.85 $ 45.01 $ 9.67 $ 87.53 $

Table 2.5: Average gas fees in dollars ($)

Figure 2.1: Gas fees comparison (in $)
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Chapter 3

Design

3.1 Why Polygon?

As discussed above, there are multiple blockchains that could support the develop-
ment of the proposed protocol of this project. Polygon was selected as it has various
advantages and can be used as to build a prototype that could be adapted for other
blockchains.

Polygon is compatible with the Ethereum Virtual Machine (EVM) which means that
it can leverage the Ethereum ecosystem standards, tools, programming languages,
etc [25]. Also, Polygon’s staking management contracts are deployed on Ethereum.
This means that the staking procedure is made on the Ethereum mainnet and not on
the Polygon mainnet.

Staking in Polygon offers a very decent APY around 5% and allows everyone to
stake MATIC tokens as a delegator and earn staking rewards [26] using one of the
100 validators. Meanwhile, if a user wishes to become a validator, they are required
to have an amount larger than one of the 100th validator.

As opposed Ethereum, Polygon currently does support slashing and has a very low
minimum deposit required for staking, just 1 MATIC (currently around $0.85). By
comparison, Ethereum requires validators to have batches of exactly 32 ETH (around
$60,000). Furthermore, until recently, Ethereum did not offer a method to unstake.
Unstaking was only possible through trading staking liquidity tokens for ETH.

Additionally, Polygon does not offer automatic compound rewards restaking. Users
wishing to restake their rewards need to do it manually and in most cases, the cost
of doing so exceeds the benefit. Instead of viewing this as a disadvantage, we view
this as an opportunity to offer an automatic restaking service without requiring extra
gas fees from the user.
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It should also be mentioned that unstaking in Polygon has a delay by design. With-
drawals are generally processed after a 80 checkpoint waiting period (approximately
2-3 days).

Finally, this project is designed to be compatible with the TruStake vault by TruFin
which is already built for Polygon’s native token.

3.2 Proposed Approaches

3.2.1 Preliminary Observations

In order to design a protocol that makes staking feasible for retail cryptocurrency
holders, it is vital to reduce gas fees. To do that we need to:

• Minimise the interactions with the validation node, have as less calls to stake()

and unstake() functions as possible.

• Avoid calling the stake() and unstake() functions for small amounts as the
cost of calling these functions is invariant to the amount.

• Avoid loops if possible, if they cannot be avoided reduce the number of loops.

• Keep it simple and avoid complex and expensive functions or data structures.

• Minimise the changes of the blockchain state.

The approaches described in the following sections have noticeable differences be-
tween them. Even so, they share some core ideas and mechanisms which are:

• There is a vault controlled by a smart contract that accumulates funds from
the users and interacts with the validator node by staking and unstaking. Its
purpose is to act as an intermediary between the users and the validation node
(see Figure 3.1). Note that funds sitting in the vault do not accrue rewards.

• Users submit deposit (stake) and withdrawal (unstake) requests to a vault.
From a user’s point of view, depositing is staking on the validator node and
withdrawing is unstaking from the validator node. In reality they are just
depositing and withdrawing funds from the vault. When necessary, the vault
will interact with the validator node to stake or unstake.

• Instead of interacting with the validator node for every deposit or withdrawal
request, requests of the opposite type can be netted. This is done by swapping a
user’s shares for another user’s deposit amount without affecting the validator
node.

• Users pay a fee on their rewards, approximately 10%. As we saw in the Existing
Stakers section, this is common practice.
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• Users do not pay the gas fees for calling stake() and unstake() functions on
the validator node. Instead, they pay a small percentage fee on deposits/withdrawals
which is gathered and used to cover the gas fees for the interaction with the
validation node. Inevitably, the users also need to pay the gas fees for call-
ing other functions on the smart contract but these fees will be substantially
smaller.

• As Polygon does not offer automatic restaking of rewards. The protocol will
use the gas fees for every call of stake() or unstake() functions, to also claim
the accrued rewards.

• Whenever the stake() function is called, the claimed rewards will also be
restaked.

• If a user’s withdraw request can be netted with another user’s deposit, they do
not have to wait 80 checkpoints.

Figure 3.1: overview of the general approach

3.2.2 Approach A: Staking Rounds

Main Idea

1. There is a vault with two stacks, one for deposit requests and one for with-
drawal requests. The funds from the submitted deposit requests are stored in
the vault.

2. At the end of every round (eg. every month) the requests are netted. After
netting, one of the stacks will be empty and the other will have some pending
requests that were not netted and should be staked or unstaked. Consequently,
at the end of every round, only a single validator operation needs to be per-
formed, either stake of unstake.

Mechanics

• In order to make the protocol self-funded and independent of external fund
injections, we make an initial deposit to the validation node called Stake &
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Figure 3.2: overview of approach A: Staking Rounds

Unstake Funds (SUF). SUF is calculated so that the rewards accrued by it over
the period of a single round, cover the fee for staking or unstaking.

Assumptions

• To make the protocol profitable, total deposits need to generate more profit
than the rewards from staking the initial capital (SUF). I.e., the protocol is
profitable if: Total deposits ∗ percentage fee on rewards (%) > SUF.

For the advantages and disadvantages of this approach see Table 3.1, for the profit
analysis of this approach see Appendix A.1, for the simulation see here.

Advantages Disadvantages

• Simple

• Self-funded (does not require any
additional fund injections)

• No minimum staking/unstaking
amount

• Does not require users to pay fee for
deposit/withdrawal

• Minimal number of interactions
with the validator

• Not instant

• Gas inefficient because of looping
through the stacks and the end of
every round

• Requires a percentage fee on the
rewards substantially higher than
10% to be profitable

• Profitable only under specific condi-
tions

Suitable for environments with ex-
tremely sparse requests

Unsuitable for environments with even
moderately frequent requests

Table 3.1: Advantages and Disadvantages of approach A: Staking Rounds
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3.2.3 Approach B: S-U level

Main Idea

1. There is a vault with two thresholds S, U with S > U .

2. Initially, an amount S is staked on the validator and an amount U is placed in
the vault.

3. Users submit deposit (stake) and withdrawal (unstake) requests to the vault.

4. When a user submits a deposit request, their funds are transferred to the vault
and the user is assigned shares in the vault.

5. When a user submits a withdrawal request, they receive funds straight from
the vault and their shares are burnt.

Figure 3.3: overview of approach B: S-U level

Mechanics

• When funds in vault reach the threshold S, we stake everything except amount
U .

• When funds in vault are insufficient to cover the withdrawal requests, we un-
stake enough to cover the requests plus an amount U that stays in the vault.

• The rewards from the staked amount in the validator are shared equally to
all users regardless of whether their funds are in the validator or in the vault.
This means that large amounts of funds sitting in the vault, reduce the average
percentage yield.
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Assumptions

• To make the protocol profitable, total deposits need to generate more profit
than the rewards from staking the initial capital (S + U). I.e., the protocol is
profitable if Total deposits ∗ percentage fee on rewards (%) > S + U .

For the advantages and disadvantages of this approach see Table 3.2, for the profit
analysis of this approach see Appendix A.2, for the simulation see here.

Advantages Disadvantages

• Instant, except when funds in the
vault are insufficient

• Self-funded

• No minimum staking/unstaking
amount

• Gas efficient

• Minimal number of interactions
with the validator

• Complex

• Many parameters

• Non-linear, unstable and unpre-
dictable percentage yield

• A large amount of funds is con-
stantly not staked and does not ac-
crue rewards, this lowers the aver-
age percentage yield

• Vulnerable to attacks (quick
deposit-withdraw attacks)

• Requires a percentage fee on the
rewards substantially higher than
10% to be profitable

• Profitable only under specific condi-
tions

Suitable for environments with bal-
anced requests of small amounts

Unsuitable for environments with un-
balanced requests or requests of large
amounts

Table 3.2: Advantages and Disadvantages of approach B: S-U level

3.2.4 Approach C: Queues with Batches

Main Idea

1. There is a vault with two queues, the D queue for deposits and the W queue
for withdrawals.

2. The two queues contain batches.
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3. Each queue has a current batch and cached (or complete) batches.

4. Every deposit request is added to the current batch of D queue and every
withdrawal request is added to the current batch of W queue.

5. Once the total amount in current batch reaches a threshold, the batch is con-
sidered complete. If there is a complete batch of the opposite type, they are
netted, else it is cached.

6. Complete batches have an expiry date such that if they are not paired with a
batch of the opposite type, they are staked/unstaked along with every other
complete batch.

Figure 3.4: overview of approach C: Queues with batches

Mechanics

• At every point, only one of the two queues has cached batches.

• Users get preshares in the vault for pending requests in the D queue. Pre-
shares do not accrue rewards. Once requests are processed, their preshares are
swapped for shares in the validator.

• Batch size is set so that the total of the deposit/withdraw fees from the users
cover the cost of staking/unstaking the batch. If the batch is netted instead of
being staked/unstaked, the fees are kept as a reward for the protocol.

• It is complicated when a user wants to withdraw funds that are not yet staked
and sit in the D queue. Removing deposit requests from complete batches
would require rearranging the batches which would be excessively expensive.
A simple solution is to prohibit a user from posting a withdrawal request while
having preshares.

• To keep the cost of looping through each batch low, we need to set a minimum
stake/unstake amount:

min amount for every request & set batch size

⇒ capped number of requests per batch
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Assumptions

• The volume of requests exceed the batch size after a reasonable amount of
time. If not, the current batches remain incomplete indefinitely.

For the advantages and disadvantages of this approach see Table 3.3, for the profit
analysis of this approach see Appendix A.3, for the simulation see here.

Advantages Disadvantages

• Does not require an initial capital

• Self-funded

• Low transaction latency in a state
with balanced deposits and with-
drawals

• Relatively low transaction latency
in a state with frequent and/or
large requests of one type only

• Reduced number of interactions
with the validator

• Incomplete batches do not expire

• User cannot withdraw while having
a pending deposit request

• Minimum stake/unstake amount

• Transactions may be executed in
parts

Suitable for environments with very fre-
quent requests of any amount or less
frequent requests of large amounts

Unsuitable for environments where the
requests of one type are very sparse and
have low amounts

Table 3.3: Advantages and Disadvantages of approach C: Queues with batches

3.2.5 Approach D: Directly Connected Queues

Main Idea

1. There is a vault with two queues, the D queue for deposits and the W queue
for withdrawals.

2. The two queues contain requests.

3. Every deposit request is added to the D queue and every withdrawal request
is added to the W queue.

4. Once a request is added to a queue, we check for requests on the other queue.
If there is, we net them.

5. There are two types of deposit and withdraw functions.
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6. Once the total summed amount in a queue reaches a threshold, we stake/unstake
depending on the queue. That threshold is selected so that the total of fees
from deposits/withdrawals collected until reaching the threshold are enough
to cover the staking/unstaking fee.

7. Requests have an expiry date. Once the oldest request of a queue expires, we
stake/unstake the whole queue.

Figure 3.5: overview of approach D: Directly Connected Queues

Mechanics

• At every point, at most one of the queues has requests.

• Users get preshares in the vault for requests in the D queue. Preshares do not
accrue rewards. Once requests are processed, their preshares are swapped for
shares in the validator.

• If a user with pending deposit requests submits a withdrawal request, the re-
quest is netted with their pending deposit requests first (this solves the similar
problem in Approach C).

• There are two types of deposit functions that a user can call:

– indirectDeposit(): vault charges the user a percentage fee on their de-
posit amount called a deposit fee (approximately 0.1%). The user’s re-
quest is then added to the D queue and is processed within its expiry
period.

– directDeposit(): the user pays the gas to call the stake() function.
The user’s request is processed immediately along with all the pending
requests in the D queue.

• There are two types of withdraw functions that a user can call.
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– indirectWithdraw(): vault charges the user a percentage fee on their
withdrawal amount called a withdrawal fee (approximately 0.1%). The
user’s request is then added to the W queue and is processed within its
expiry period.

– directWithdraw(): the user pays the gas to call the unstake() function.
The user’s request is processed immediately along with all the pending
requests in the W queue.

• To keep the cost of looping through the queue low, we need to set a minimum
stake/unstake amount:

min amount for every request & set queue size threshold

⇒ capped number of requests in the queue

Assumptions

• A request expires when for period of time:

– there are no requests of the opposite type.

– there are no calls of the direct function of the same type.

– the total amount of the indirect requests of the same type does not exceed
the threshold.

When a request expires, all the requests in the same queue are processed and
some of the cost of staking/unstaking, burdens the protocol. We assume that
as long as this is not common, the protocol does not require any fund injections
and it remains profitable.

For the advantages and disadvantages of this approach see Table 3.4, for the profit
analysis of this approach see Appendix A.4, for the simulation see here.

3.3 Final Design

3.3.1 Idea

As described in the previous section, each one of the proposed approaches has its
own advantages and disadvantages. Moreover, each one is more suitable for differ-
ent environments. The final design is based on approach D: Directly Connected
Queues. This approach appears to have the most advantages and it is also more
suitable for a broad range of different environments while being relatively simple
and sleek.
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Advantages Disadvantages

• Relatively simple and straightfor-
ward

• Does not require an initial capital

• It can be integrated to the TruStake
vault

• Very low transaction latency in a
state with balanced deposits and
withdrawals

• Low transaction latency in a state
with with frequent requests only of
one type

• Transactions are processed within a
predefined time limit

• User can add deposit and withdraw
requests whenever they like

• The parameter values like min
stake/unstake amount or D/W
queue threshold, are adjustable

• It is suitable both retail users and
whales

• Reduced number of interactions
with the validator

• Minimum stake/unstake amount

• When a request expires, the proto-
col to pay a portion of the fees for
staking/unstaking

• Not completely self funded, it might
require fund injection in the un-
likely event of very long periods
with scarce, low amount and unbal-
anced requests

• Transactions may be executed in
parts

Suitable for environments with at least
moderately frequent requests of any
type and size

Unsuitable for environments with very
sparse requests

Table 3.4: Advantages and Disadvantages of approach D: Directly Connected Queues

Additionally, the final design exploits ideas proposed by the existing vaults presented
in section 2.2. More specifically, the final protocol offers automatic reward restake
and liquid staking using an ERC-20 token similar to TruMATIC. The commission
rate on the rewards is 10% following the general norm.

Withdrawal waiting period varies for the indirect withdrawals as the protocol seeks
to net them with deposit requests. For the the direct withdrawals, waiting period is
80 checkpoints (2-3 days) as enforced by Polygon network. However, should ade-
quate deposit requests exist, the process of a withdrawal request can be immediate
as the unstaking is omitted. This is unique compared to other stakers. Lastly, due to
smart contract size limitation, the final design does not support reward allocation.
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3.3.2 Functions

The final protocol’s design is composed of multiple functions. The most important
functions of the protocol are described in Table 3.5.

There are two ways to separate these functions into categories. The first way to
categorise them is based on the who calls them. A function can be called by a user
who wishes to interact with the vault or by the owner of the protocol to prevent
single users from paying gas fees that should be covered collectively by the protocol.
Finally, some functions are internal and are initiated from within the protocol by
other functions.

Functions can also be divided into view and write based on whether they change
the state of the blockchain. The former type of functions requires gas fees paid by
the caller of the function. If a write function is called internally from a different
function, gas fees are paid by the user who called the initial function.

Function Parameters Returns Caller Type Description
sharePrice - price any view Returns the current share price
indirectDeposit amount - user write user transfers amount plus de-

posit fee to the vault, receives pre-
shares and the request is added to
the dQueue

directDeposit amount - user write user transfers amount to the vault
and initiates the stake() func-
tion

indirectWithdraw amount - user write user adds a withdrawal request
to the wQueue and their shares
are burnt

directWithdraw amount - user write user adds a withdrawal request
to the wQueue, their shares are
burnt and unstake() is initiated

indirectStake - - owner view when dQueue threshold is reached
or the oldest deposit request ex-
pires, this function initiates the
stake() function

indirectUnstake - - owner view when wQueue threshold is
reached or the oldest withdrawal
request expires, this function
initiates the unstake() function

unstakeClaim - - owner write owner claims the funds from the
validator (after the waiting period
of 80 checkpoints) and distributes
them to the users with withdrawal
requests
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stake - - internal write funds in the vault along with any
claimed rewards, are staked on
the validator, every deposit re-
quest is processed, all preshares
are swapped for freshly minted
shares and dQueue is cleared

unstake - - internal write an amount of funds is requested
to be unstaked from the valida-
tor to cover all the withdrawal re-
quests in the wQueue and wQueue
is cleared

reduceDRequests user

address,

amount

- internal write if a user submits a withdrawal re-
quest while owning preshares, the
amount is subtracted from their
pending deposit requests

pairQueues - - internal write requests from the two queues are
netted until one of the queues is
empty

expiryCheck - - internal view the oldest deposit and withdrawal
requests are checked whether they
expired and if so, a call of the
stake() / unstake() function is
initiated

Table 3.5: Basic functions of the final design

3.3.3 Parameters

The final protocol’s design relies on multiple variables. The most important variables
of the protocol are described in Table 3.6. These parameters can be separated into
two categories, the protocol’s constants that are set by the owner of the protocol and
the variables whose values change frequently.

Protocol is designed in a way that enables owner to change constants’ values. The
values presented in Table 3.6 show the initial values selected based on theoreti-
cal analysis which used an approximation for the gas fees for interacting with the
validation node.

In the Chapter 5 - Evaluation, we retrieve enough data from the prototype to con-
duct a more substantiated analysis. Using the same methodology proposed for the
selection of the initial values, we will adjust the values of the parameters to be more
realistic.
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Parameter Type Value Description
totalStaked variable ∈ [0, cap] total amount of MATIC that are staked

in the validator node
vaultBalance variable ∈ [0, cap] total amount of MATIC sitting in the

vault
unclaimedRewards variable ≥ 0 amount of unclaimed rewards in MATIC
totalShares variable ≥ 0 total amount of shares (liquidity to-

kens)
totalPreshares variable ≥ 0 total amount of preshares (equal to

dQueueBalance)
sharePrice variable ≥ 1 exchange rate between MATIC and the

ERC-20 liquidity token
dQueueBalance variable ∈ [0, 15000] current total amount of MATIC accu-

mulated in the dQueue from requests
wQueueBalance variable ∈ [0, 15000] current total amount of MATIC from re-

quests in the wQueue
latestUnbondingNonce variable ≥ 0 integer value indicating the nonce of the

latest unbonding nonce created from an
unstaking. The first unbonding nonce is
equal to 0

fee constant 10% protocol’s commission on users’ rewards
cap constant 1, 000, 000 maximum capacity of the vault in

MATIC
depositFee constant 0.1% percentage fee on deposit amount for in-

direct deposits
withdrawalFee constant 0.1% percentage fee on withdrawal amount

for indirect withdrawals
minDepositAmount constant 100 minimum amount in MATIC for an in-

direct deposit
minWithdrawalAmount constant 100 minimum amount in MATIC for an in-

direct withdrawal
expiryPeriod constant 7 days time until a request expires
dQueueThreshold constant 15, 000 limit of the total amount of MATIC ac-

cumulated in the dQueue from requests
for triggering the stake() function

wQueueThreshold constant 15, 000 limit of the total amount of MATIC from
requests in the wQueue for triggering
the unstake() function

Table 3.6: Basic parameters of the final design
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3.3.4 Variables’ value analysis

Vault balance

Vault balance is the total amount of MATIC sitting in the vault. It consists of funds
from: (1) pending deposit requests in the dQueue, (2) deposit fees, (3) withdrawal
fees, and (4) claimed rewards:

vaultBalance = dQueueBalance+depositFees+withdrawalFees+ claimedRewards
(3.1)

Shares - Funds equilibrium

Shares and preshares represent units reflecting the total amount of funds in the
protocol. Funds are stored in three places: (1) staked in the validator, (2) rewards
in the validator that are not staked, and (3) sitting in the vault. Also, as soon as
a withdrawal request is submitted, the user’s shares are burnt immediately but the
funds remain in the protocol. Therefore, at any given time, the following equilibrium
should hold:

totalShares ∗ sharePrice+ totalPreshares = totalStaked+ unclaimedRewards

+ vaultBalance− wQueueBalance

(3.2)

Share price

Share price is the exchange rate between MATIC and the ERC-20 liquidity token (LT).
I.e., the price of one LT share in MATIC. It is a very efficient method to calculate the
rewards for each user without keeping track of the timestamps and the amounts for
each deposit and withdrawal.

Share price is not affected by deposits and withdrawals. It only changes when re-
wards accrue. Therefore, it is constantly increasing with a relatively stable rate. Its
initial value is 1.

Whenever a user wishes to make a deposit / withdrawal of an amount X in MATIC,
the protocol calculates the number of LT shares that should be minted / burnt as:

XLT = XMATIC/sharePrice (3.3)

As long as there are no deposits / withdrawals, the number of a user’s share remains
stable as rewards accrue. Therefore the user’s balance in MATIC is calculated as:

BalanceMATIC = BalanceLT ∗ sharePrice (3.4)
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Share Price is calculated as:

sharePrice =
totalAmountFromSharesMATIC

totalSharesLT

=
totalStaked+ vaultBalance− dQueueBalance− wQueueBalance

totalShares

+
(1− fee) ∗ unclaimedRewards

totalShares
(3.5)

Notes:

• dQueueBalance needs to be subtracted as it is included in vaultBalance, but
the shares for this amount have not yet been minted (they are still in the form
of preshares).

• wQueueBalance needs to be subtracted as the shares for it have been burnt (to
avoid further reward accruing), but the amount is still in the protocol.

• unclaimedRewards needs to be multiplied by 1−fee to subtract the amount the
the protocol keeps as commission on the rewards. The amount unclaimedRewards∗
fee can be considered as a deposit by the treasury yet to happen. As soon as
these rewards are claimed, shares are minted for the treasury.

• claimedRewards (included in vaultBalance) is not multiplied by 1 − fee be-
cause shares are minted for the treasury as soon as the rewards are claimed.

3.3.5 Constants’ value analysis

Polygon has an implicit currency risk. Its native token is MATIC however staking
is performed on Ethereum using ETH for the gas fees. As a result, the network is
greatly affected by disruptions in the exchange rate between the two currencies and
so is this protocol.

More specifically, when a user calls the directDeposit() function, they pay for staking
in ETH. On the other hand, a user that calls the indirectDeposit() function, pays fees
in MATIC and the protocol takes the currency risk of covering the staking gas fees in
ETH.

As explained during the early stages of the design, stakingFee and unstakingFee, i.e.
the cost of calling the stake()/unstake() function of the validator node, are vital
parameters for this protocol. These gas fees are paid in ETH and their value varies
depending on the network’s congestion. During the following analysis, we consider
a constant average price equal to 15 MATIC for both parameters ¯stakingFee and

¯unstakingFee.
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All these factors were taken into consideration during the selection of the values for
the protocol’s constants. Additionally, many parameters are co-dependent creating
trade-offs. In Chapter 5 - Evaluation, we will use the prototype to obtain more
information about the gas fees and adjust the values of the constant parameters.

Deposit fee - dQueue threshold trade-off

In order for the protocol to be viable, it is important that the funds collected from de-
posit fees in MATIC are sufficient to cover the staking gas fees in ETH. If this doesn’t
hold, protocol will operate at a loss. To prevent this, the parameters depositFee and
dQueueThreshold need to satisfy a certain relationship.

To illustrate this, consider a scenario where users exclusively use the indirectDeposit()
function and there are no withdrawals. This means that no request is netted and no
user directly deposits and pays the staking gas fees for everyone else. In that case,
the protocol will initiate the stake() function whenever dQueueBalance reaches
dQueueThreshold.

The idea behind the deposit fee is that each user pays a small percentage fee for every
indirect deposit so when dQueueThreshold is reached, the funds collected from the
deposit fees are sufficient to cover the gas fees for calling the stake() function.

Therefore, it is vital that the following inequality holds:

dQueueThreshold× depositFee(%) ≥ ¯stakingFee (3.6)

As it emerges from inequality 3.6, depositFee and dQueueThreshold are inversely
proportional. Ideally, users would like depositFee to be as small as possible. On the
other hand, if the dQueueThreshold is too large, it is harder for dQueueBalance to
reach it within the expiry period, and the protocol will suffer a loss.

The overall aim is to keep depositFee relatively insignificant to the APY (approxi-
mately 5%) while keeping dQueueThreshold relatively small. Using the assumption
that ¯stakingFee = 15MATIC we concluded that a depositFee = 0.1 with a dQueue-
Balance = 15,000 are viable values for these constants.

Indirect - direct deposit fees

As long as inequality 3.6 holds, the protocol is not suffering a loss. Taking it a step
further, by not setting a threshold and letting the user decide whether they want to
use directDeposit or indirectDeposit, the protocol not only is it not losing but it can
be profitable.
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To explain this, the first step is to compare the total cost of calling the directDeposit()
and the indirectDeposit() functions. Each function has an individual cost in gas
fees independent of the cost of calling validator’s stake() function. Nevertheless,
these costs are very similar since the code for the two functions is nearly identical.
Thus, the individual costs of each functions are omitted for this comparison. Further-
more, the actual cost of stake() function can be calculated by subtracting the aver-
age cost for indirectDeposit() function from the average cost for directDeposit()
function.

Besides that, directDeposit() has the additional cost (in ETH) of the staking gas
fees and indirectDeposit() has the additional deposit fee (in MATIC). To sim-
plify the calculations, we convert all values to MATIC. Consequently, the cost of
directDeposit() is constant while the cost of indirectDeposit() is proportional
to the deposit amount:

Cost[directDeposit()] = ¯stakingFee (3.7)

Cost[indirectDeposit()] = depositFee(%) ∗ depositAmount (3.8)

Figure 3.6: Cost comparison

It is safe to assume that a rational user would always chose the cheapest option
when depositing. As shown in Figure 3.6, this means that for deposit amounts
smaller than the dQueueThreshold, user would chose indirectDeposit() (orange
region) and for larger amounts they would chose directDeposit() (blue region).

However, the protocol does not explicitly inform the user for the values of dQueueThreshold
and ¯stakingFee. It does not have a strict threshold to oblige users to use one or the
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other function depending on the deposit amount either. Hence, the user might not
make the cheapest choice every time and when they do not, the protocol makes a
profit equal to the vertical distance between the two lines of Figure 3.6.

Min deposit amount - dQueue threshold trade-off

Another trade-off that arises through the selection of constants’ values is the one
between minDepositAmount and dQueueThreshold. From the user’s perspective, the
minimum deposit amount for indirect deposits should be as low as possible to make
staking tiny amounts possible. From the protocol’s perspective, low minDepositAmount

means large number of loops when iterating through the dQueue which increases the
gas fees. The upper bound for the number of loops is:

⌈NumberOfLoopsdQueue⌉ = dQueueThreshold/minDepositAmount (3.9)

For dQueueBalance = 15,000MATIC, it was decided it is reasonable to set minDe-
positAmount = 100MATIC (currently around 68$) which lowers the upper bound
of loops to 150.

Expiry period - dQueue threshold trade-off

Lastly, there is the trade-off between expiryPeriod and dQueueThreshold. On one
end, users would like to have their indirect requests processed as soon as possi-
ble. On the other end, lowering the expiryPeriod means that there is less time for
dQueueBalance to reach dQueueThreshold. This implies that the possibility of the
collected deposit fees to be insufficient to cover the staking gas fees increases.

For dQueueBalance = 15,000MATIC, it was decided it is reasonable to set ex-
piryPeriod = 7 days

Withdrawals

The same trade-offs that were explained for the deposits, exist for withdrawals too. The
approach for selecting the values remains the same. The equations for withdrawals are
the following:

wQueueThreshold× withdrawalFee(%) ≥ ¯unstakingFee (3.10)

Cost[directWithdraw()] = ¯unstakingFee (3.11)
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Cost[indirectWithdraw()] = withdrawalFee(%) ∗ withdrawalAmount (3.12)

⌈NumberOfLoopswQueue⌉ = wQueueThreshold/minWithdrawalAmount (3.13)

3.3.6 The queues

The D queue and the W queue are two identical FIFO data structures modified to
support the functionality of the protocol. Using a queue ensures that all the requests
are processed sequentially in a chronological order. Furthermore, the pending re-
quests are always located in consecutive positions without any processed requests in
between.

As Solidity does not offer a built in implementation for a FIFO data structure, these
queues were implemented manually using a mapping. The initial implementation
was using an array but that made it more complex and increased the gas fees.

General form Each queue has two integers first and last indicating the front and
the back of the queue correspondingly. The queue contains structs of type Request
(see figure 3.7).

Since this is a custom queue implementation using a mapping, any element can be
accessed directly using its key in O(1). Furthermore, the elements that are dequeued
are not automatically deleted. Figure 3.8 shows a visualisation of a queue.

Figure 3.7: Request struct

Enqueueing Whenever a new request is enqueued, it is placed on the back of the
queue with a mapping key equal to last and last is increased by one (see Figure
3.9).

Dequeueing When a request is dequeued, it is extracted from the front of the
queue, first is increased by one and the request is deleted (see Figure 3.9).
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Figure 3.8: Visualisation of a queue

Figure 3.9: Enqueueing and Dequeueing

W queue modification As described previously, after unstaking, it takes 2-3 days
to claim the amount from the validator node. However, the W queue needs to be
emptied immediately as soon as unstake() function is called. If the requests were
deleted though, it would be impossible to share the claimed funds to the users.
Therefore, we came up with a clever trick to resolve this issue.

When the unstake() function is called, the protocol stores the current first and
the last integers along with the corresponding unbonding nonce and clears the W
queue by setting first = last. This makes the W queue virtually empty but the
requests are not deleted.

After the waiting period, the funds are claimed and the previously stored first and
the last values are retrieved. By looping through these requests, the funds can be
shared to the users and the requests are finally deleted permanently (see Figure
3.10).

Figure 3.10: The unstaking trick on W queue
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Implementation

4.1 Technical Architecture

Figure 4.1: Technical Architecture

The technical architecture of the protocol’s full-stack prototype for Polygon is illus-
trated in Figure 4.1. The prototype is called TruStake Picanha vault. The basic
components of the prototype are:

The validator node: is the node used by protocol for staking. The vault interacts
with the validator node using functions from the node’s smart contract.

The vault: is a smart contract deployed on the blockchain. The Prototype’s smart
contract is deployed on Goerli testnet.

Frontend: is a website that supports user’s interaction with the vault
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Autotasks: are code scripts that monitor the vault and initiate transactions on behalf
of the protocol’s owner

4.2 Smart Contract

The prototype’s smart contract was developed, tested and deployed using Hardhat
framework [42]. We used Trufin’s [34] code as basis for this prototype and built on
top of it. The code of the final GitHub repo is clearly marked to indicate what is
existing code of Trufin and what is new additions for this prototype.

Before writing the Smart Contract the first step was to create a mock-up in Python to
test the functionality of the Prototype on a higher level. The mock-up implemented
the functions and the parameters described in Section 3.3 - Final Design. This mock-
up helped identify logical errors, test different parameter values and correct the
equations in the analysis for the parameters. It can be found in the repo in the fol-
lowing url: https://github.com/demKyr/PicanhaStaker-MScIndividualProject/
tree/main/SmartContracts/python-mockup

Following that, the smart contracts were written in Solidity. There are four (4) smart
contracts in total (url: https://github.com/demKyr/PicanhaStaker-MScIndividualProject/
tree/main/SmartContracts/contracts/main):

QueueWithMap.sol custom implementation of a queue data structure using a map-
ping

Types.sol implementation of structs that are used by TruStakeMATICv2.sol and Queue-
WithMap.sol

TruStakeMATICv2Storage.sol declaration of the variables of TruStakeMATICv2.sol

TruStakeMATICv2.sol the main smart contract of the prototype which contains the
implementation of all the functions described in section 3.3.2 - Functions and
a few other functions

The final phase before deployment was testing. As the framework used was Hardhat,
the tests were written in Javascript using Mocha [43] and Ethers [44]. A complete
list of the tests can be found in Appendix B and the code can be found here: https:
//github.com/demKyr/PicanhaStaker-MScIndividualProject/tree/main/SmartContracts/

test.

After thorough testing, the prototype was ready to be deployed on the Goerli test-
net. The contract can be seen on Etherscan on: https://goerli.etherscan.io/

address/0x9437eff6e8713cf1619d9507695489a6639b758d
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4.3 Frontend

Prototype’s frontend was developed using Javascript and the NextJS framework [45]
and it serves two purposes. Primarily, it makes the user’s interaction with the vault
easier and improves the whole user experience. The user simply connects their Meta-
mask wallet [46] to the website and uses the UI. Besides that, it allows the owner of
the protocol to monitor the smart contract and initiate transactions.

The frontend consists of the home page, the stake page, the unstake page and the ad-
min page which (visible to the owner only). The final version of the frontend is con-
nected to the deployed smart contract and deployed using Vercel [47] here: https:
//picanha-staker.vercel.app/ and the code can be found here: https://github.
com/demKyr/PicanhaStaker-MScIndividualProject/tree/main/Frontend

4.3.1 Home page
A screenshot of the Home Page is shown in Figure 4.2. This is the landing page of
the frontend and it only contains some minimal information about the protocol.

Figure 4.2: Home page
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4.3.2 Stake page

A screenshot of the Stake Page is shown in Figure 4.3. Through this page a user
can deposit funds that will be staked on the validator. Initially, the user is required
to approve the amount they wish to stake. This step is vital because, otherwise,
the protocol is not authorised to access the user’s MATIC. As long as the amount
is approved, the user can choose whether they wish to stake indirectly or directly.
Clicking the Indirect Stake button initiates a call of the indirectDeposit() function
while the Direct Stake button initiates the directDeposit() function.

Figure 4.3: Stake page

Additionally to staking, this page presents some important information to the user:

Balance: user’s shares converted to MATIC using equation 3.4

Preshares: user’s funds in pending deposit requests

Available in wallet: user’s MATIC balance in their wallet

Max Deposit: vault’s cap minus the total funds that are already deposited

Approved Balance: amount of MATIC in user’s wallet that the user has approved to
the protocol
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4.3.3 Unstake page

A screenshot of the Unstake Page is shown in Figure 4.4. Through this page a user
can request an amount to be unstaked and returned to their wallet. Similarly to the
Stake Page, the user can select whether they want to indirectly or directly unstake.
They can choose either option regardless of the staking method they have used be-
fore. Clicking the Indirect Unstake button initiates a call of the indirectWithdraw()

function while the Direct Unstake button initiates the directWithdraw() function.

Following the same pattern as Stake Page, this page displays some information. The
only new information is the Max Withdraw value that displays the sum of Balance
and Preshares which is the maximum amount that the user can request to unstake.
Finally, this page displays a warning about the waiting period and the additional
costs of unstaking while having pending deposit requests.

Figure 4.4: Unstake page
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4.3.4 Admin page

A screenshot of the Admin Page is shown in Figure 4.5. This page is only visible
to the owner of the protocol and it serves a monitoring purpose. Due to the nature
of Blockchain, all these information can be viewed by everyone through a tool like
Etherscanner. Nevertheless, they are presented here in a convenient and straightfor-
ward way.

The parameters monitored on this page were explained previously in table 3.6.
The only new parameter is Treasury Balance which is the Balance of the Trea-
sury’s shares converted to MATIC. This page also allows user to manually call the
indirectStake or the indirectUnstake functions.

Figure 4.5: Admin page
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4.4 Autotasks

Autotasks are short Javascript code scripts that automate the monitoring of the the
protocol and enable it to operate autonomously, without the need of external inter-
vention. The tool used for this is Open Zeppelin defender [48].

4.4.1 Relay

A relay is an Ethereum account with a designated purpose. It has a balance and it is
used to sign transactions that are sent using an autotask [49]. The relay created for
this prototype can be viewed on Etherscan in this URL: https://goerli.etherscan.
io/address/0x814fF0BEAcF489FD963D51b4B58aC86eedF6cf81

4.4.2 Sentinels

Sentinels are used to monitor transactions of a contract [49]. For this prototype
they act as event listeners. Apart from triggering the autotask, they can also be
programmed to send a notification to the owner by email. The sentinels programmed
for the prototype are:

StakeRequired: This sentinel is triggered when the event StakeRequired() is emit-
ted

UnstakeRequired: This sentinel is triggered when the event UnstakeRequired() is
emitted

UnbondNonceCreated: This sentinel is triggered when the event
UnbondNonceCreated(unbondNonce, currentEpoch) is emitted

UnbondNonceClaimed: This sentinel is triggered when the event
UnbondNonceClaimed(unbondNonce) is emitted

4.4.3 Autotasks

Autotasks are code snippets that run on regular basis or when invoked by a sentinel.
They can also integrate a relay to sign transactions [49]. This prototype is monitored
using the following autotasks:

Stake: This autotask is invoked from the StakeRequired sentinel and it calls the
indirectStake() function.
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Figure 4.6: Sentinels

Unstake: This autotask is invoked from the UnstakeRequired sentinel and it calls
the indirectUnstake() function.

ExpiryCheck: This autotask is invoked every 24 hours and it calls the expiryCheck()
function that checks whether the oldest requests in any queue expired.

ClaimCheck: This autotask is invoked every 24 hours and it checks whether there
are any unbonding nonces to be claimed. If so, it calls the unstakeClaim()

function for all of them.

The code for these autotasks can be found here: https://github.com/demKyr/

PicanhaStaker-MScIndividualProject/tree/main/autotasks

Figure 4.7: Autotasks
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Chapter 5

Evaluation

In this chapter we will evaluate the performance of the TruStake Picanha vault pro-
totype. We will make an analysis on the gas fees of the Picanha prototype and a
comparison with the gas fees of the other stakers seen in section 2.2 - Existing Stak-
ers.

The developed prototype differs a lot from the existing stakers. A main difference is
that the functions for the stake/unstake operations are not static but dynamic and
dependent on various factors. For the existing stakers, the functions behind these
operations are rather static and executed in similar ways every time with similar gas
fees costs.

For this prototype, there are not only two different types of functions for each op-
eration (direct and indirect), but the execution of the same function can also vary
significantly depending on the existence of other pending requests. Therefore, be-
fore calculating the average gas fees for transactions in the prototype, we had to
divide them into types.

5.1 Types of functions executions

5.1.1 User functions

Diagrams 5.1 - 5.4 show the different types of execution for each of the function
that a user can call to stake or unstake. The following list analyses the factors that
affect the gas fees for each type:

no pair (indirect functions): This type does not depend on any factors. The re-
quest is simply added to the end of the corresponding queue and gas fees for
this type are relatively stable.
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Figure 5.1: Types of executions for indirectDeposit() function

Figure 5.2: Types of executions for directDeposit() function

Figure 5.3: Types of executions for indirectWithdrawal() function
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Figure 5.4: Types of executions for directWithdrawal() function

pair (indirect functions): This type depends on the number of requests of the op-
posite type that this request is paired with. Under normal circumstances, this
number is small and in many cases its just equal to one. Nevertheless, the more
requests that need to be paired, the more expensive the function. Also, the cost
is independent of whether the request is fully netted on not.

stake only (direct deposit function): This type depends on the number of pending
deposit requests. The more requests in the dQueue, the more expensive the
gas fees. Under the worst circumstances, this number is equal to the number
of loops calculated using equation 3.9. However, this is highly unlikely as it
will only happen if all the requests have the minimum amount and the queue
is almost full.

unstake only (direct withdraw function): This type does not depend on any fac-
tors. There is no loop through the pending withdrawal requests, just a call to
the unstake() function.

pair only (direct functions): This type is identical to the pair type of the indirect
functions and depends on the number of requests of the opposite type that this
request is paired with.

pair + stake/unstake (direct functions): This type depends on the number of re-
quests of the opposite type that this request is paired with. Nonetheless, it is
more expensive than the pair only because stake()/unstake() function is also
called.

It must be noted that for the unstake operation, the gas fees can increase significantly
if the user has preshares (i.e. pending deposit requests). Even so, this is omitted from
this evaluation since the users are strongly advised against it. Users that choose to
perform this operation are warned about the high fees and should only perform this if
they urgently wish to withdraw their funds.
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5.1.2 Internal functions

For the evaluation of the prototype, we also need to take into consideration the
gas fees for the functions that are called internally by the protocol and paid by the
owner. These functions are always executed in the same way but the gas fees depend
on other factors. More information can be found in the following list:

indirectStake(): The gas fees of this function depend on the number of requests
in the dQueue. Under the worst circumstances, this number is equal to the
number of loops calculated using equation 3.9

indirectUnstake(): This function does not depend on any factors.

unstakeClaim(): The gas fees of this function depend on the number of requests
in the wQueue. Under the worst circumstances, this number is equal to the
number of loops calculated using equation 3.13.

5.2 Experiments

For the evaluation of the prototype, we performed multiple transactions (txs) in the
Goerli testnet using the frontend of the prototype. Fieldlabs very generously offered
an abundance of GoerliETH and Test MATIC for this purpose.

For evaluation purposes, six (6) different accounts were used. The first account was
the account that deployed the contract and it was used as the owner and the treasury
of the smart contract. Another account was used as a whale user and the remaining
four were used as retail users.

The first step was to change the constant parameter values by lowering the queue
thresholds, the minimum amounts for deposit and withdrawal, and shorten the ex-
piry period enabled more. This enabled more extensive and quick testing.

Afterwards, we conducted the simulations. Each simulation consisted of a series
of transactions, thoughtfully selected to replicate every type of function execution
outlined in the preceding section. The aggregate count of transactions surpassed
250, all of which were manually executed through the frontend. This process also
served as a secondary testing procedure for the prototype. The full list of transac-
tions can be found on Etherscan in this URL: https://goerli.etherscan.io/txs?
a=0x9437eff6e8713cf1619d9507695489a6639b758d&ps=100&p=1

The average gas fees values in gas units for every type of function execution can
be found in Table 5.1. For some functions the gas fees depend on the number of
transactions (requests) they process. For those functions the average gas fees are in
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the form: a× txs + c. The methodology used to calculate the parameters a and c is
the following:

1. We calculate samples of average gas fees Y for different numbers of txs X in
the form: Xtxs → Ygas units (like the ones seen in Table 5.1)

2. For every pair of samples Xi → Yi and Xj → Yj , let Xj > Xi we calculate
different values for the parameter a as:

aij = (Yj − Yi)/(Xj −Xi)

3. We calculate a by averaging all the aij parameters

4. For every sample we calculate a different value for the parameter c as:

ci = Yi −Xi × a

5. We calculate c by averaging all the ci parameters

5.3 Observations and outcomes

5.3.1 Observations

• The prototype achieves its primary goal of reducing the gas fees but they still
remain significant.

• The initial accepted upper bound of 150 loops was an overestimation. A for
loop with 150 iterations can be exceedingly expensive.

• As a result of the previous point, the initial value for the deposit/withdrawal
fee was an underestimation.

• The gas fees of the indirect functions were underestimated. The users still need
to pay noticeable gas fees even without interacting with the validation node.

• The dQueue threshold was underestimated. A successful staking vault is very
likely to have more than 15k of MATIC deposited/withdrawn weekly. Mean-
while the USD price of MATIC dropped significantly from around $0.85 to
around $0.60 in the last three months when the first draft of this report was
first released.
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function Avg gas fees (in gas units)
indirectDeposit()

no pair 281,518
pair (1-3 txs) 372,717

directDeposit()

stake only
1 tx 405,287
5 txs 432,715
7 txs 506,881
10 txs 590,878
25 txs 846,712
on average 21,615 × txs + 348,988

pair only (1-3 txs) 322,729
pair + stake (1 tx) 452,455

indirectWithdrawal()

no pair 268,481
pair (1-3 txs) 369,196

directWithdrawal()

unstake only 559,261
pair only (1-3 txs) 335,122
pair + unstake (1 tx) 601,128

indirectStake()

1 tx 306,806
4 txs 371,043
5 txs 389,921
7 txs 377,590
11 txs 511,035
25 txs 759,663

on average 17,180 × txs + 300,920
indirectUnstake() 382,002
unstakeClaim()

1 txs 206,213
2 txs 230,749
5 txs 286,047
10 txs 384,841

on average 20,299 × txs + 185,616

Table 5.1: Average gas fees per type of function execution (gas units)

• The individual costs of indirect and direct deposit excluding the stakingFee
are not equal as predicted in paragraph 3.3.5 - Constants’ value analysis. In
practice, the individual cost of indirect functions is larger because it includes
an additional minting of shares for the treasury from the deposit/withdrawal
fee. This could have been avoided but it would require significant changes
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in the smart contract and redeployment. Therefore the cost of stake only
directDeposit() minus the no pair indirectDeposit() is not equal to the
cost of indirectStake() for the same number of transactions. Consequently,
Figure 3.6 is not accurate in practice and directDeposit() can be cheaper
than indirectDeposit() even for amounts smaller than dQueueThreshold.

• The individual costs of indirect and direct withdrawal excluding unstakingFee
are similar as predicted in paragraph 3.3.5 - Constants’ value analysis. For
this reason the cost of unstake only directWithdrawal() minus the no pair
indirectWithdrawal() is similar to the cost of indirectUnstake()

• The gas fees of indirectstake() and stake only directDeposit() depend on
the number of deposit requests. This happens because for each request there is
a minting of shares and burning of preshares. This cost should be covered by
each user through deposit fee. The analysis in paragraph 3.3.5 uses a constant
stakingFee. This constant is calculated by using maximum number of Loops
from equation 3.9.

• The gas fees of unstakeClaim() depend on the number of withdrawal requests.
This happens because for each request there is a transfer of MATIC to the user.
This cost should be covered by each user through withdrawal fee.

• stakingFee is equal to the gas fees of indirectStake() for maximum number
of loops

• unstakingFee is equal to the gas fees of indirectUnstake() plus the gas fees
of unstakeClaim() for maximum number of loops

• when converted to MATIC using ¯gas price = 30.45 Gwei and ¯ETH value = 1896 $
from paragraph 2.2.4 and the average USD value in MATIC for the same period
(July 2023) USD value = 1.3751MATIC, the ¯stakingFee and the ¯unstakingFee
in MATIC are:

¯stakingFee = (17, 180× txs+300, 920) gasunits = (1.36× txs+23.89)MATIC
(5.1)

¯unstakingFee = (20, 299×txs+567, 618)gasunits = (1.61×txs+45.06)MATIC
(5.2)

This means that they were initially underestimated.

5.3.2 Outcomes

• The deposit/withdrawal fee should be increased.
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• The upper bound of loops should be decreased.

• The expiry period can be shortened and/or dQueue/wQueue threshold in-
creased. However since the latter would also increase the upper bound of
loops, it was decided to do the former.

• The minimum deposit/withdrawal amount could be increased slightly to lower
the number of loops.

5.4 Adjustment of constant parameters

Following the observations and outcomes from paragraph 5.3, it was decided that
the following parameters should maintain their values:

• dQueueThreshold = 15,000 MATIC

• wQueueThreshold = 15,000 MATIC

Meanwhile, the following parameters need to be adjusted:

• expiryPeriod

• depositFee

• withdrawalFee

• minDepositAmount

• minWithdrawalAmount

For the adjustment of these parameters (except expiry period) we need to reuse the
following equations:

dQueueThreshold× depositFee(%) ≥ ¯stakingFee (3.6)

⌈NumberOfLoopsdQueue⌉ = dQueueThreshold/minDepositAmount (3.9)

wQueueThreshold× withdrawalFee(%) ≥ ¯unstakingFee (3.10)

⌈NumberOfLoopswQueue⌉ = wQueueThreshold/minWithdrawalAmount (3.13)
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¯stakingFee = (17, 180×txs+300, 920)gasunits = (1.36×txs+23.89)MATIC (5.1)

¯unstakingFee = (20, 299× txs+ 567, 618) gas units = (1.61× txs+ 45.06)MATIC
(5.2)

Since the numberOfLoops is equal to the number of txs, we only need to choose a
value for that parameter for determining the value of the rest of the parameters. For
numberOfLoops = 100:

• expiryPeriod = 3 days

• depositFee = 1.1%

• withdrawalFee = 1.4%

• minDepositAmount = 150 MATIC

• minWithdrawalAmount = 150 MATIC

5.5 Gas fees comparison

Indirect staking Direct staking
TruStake - 364,069
Lido - 642,379
Stader - 568,917

no pair pair
stake only

(1 tx)
stake only
(10 txs)

pair only
(1-3 txs)

pair + stake
(1 tx)

Picanha 281,518 372,717 405,287 590,878 322,729 452,455

Table 5.2: Staking gas fees comparison (in gas units)

Indirect unstaking Direct unstaking
TruStake - 609,181
Lido - 1,401,186
Stader - 947,171

no pair pair unstake only
pair only
(1-3 txs)

pair + unstake
(1 tx)

Picanha 268,481 369,196 559,261 335,122 601,128

Table 5.3: Unstaking gas fees comparison (in gas units)
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Figure 5.5: Staking gas fees comparison

Figure 5.6: Unstaking gas fees comparison
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5.6 Comparison findings

It appears that the prototype achieves its goal very successfully for unstaking and
partially achieves its goal for staking. For unstaking, Picanha is always cheaper than
any other staker. For staking, Picanha is generally, but not always, cheaper than the
other stakers.

In order to improve the protocol’s performance for the staking operation is impor-
tant to split the staking and the share minting procedures in different functions. This
will make the directDeposit() function invariant to the number of requests in the
dQueue for stake only and have relatively stable gas fees like directWithdraw() -
unstake only. A way to do this is by creating a new function that loops through the
requests in dQueue and mints shares after the stake() function is called. Neverthe-
less, there is a better way that takes advantage of the fact that the expiry period is
reduced.

For the second version of the Picanha, we suggest that the concept of preshares is
removed completely and every user immediately receives freshly minted shares for
every direct or indirect deposit. The drawbacks of this decision is that users will
receive rewards for funds sitting in the vault and lower the APY for everyone. In
the worst case, these funds are equal to the dQueueThreshold and stay unstaked for
the whole expiryPeriod every time. However, if the totalStaked amount is a few
millions, that amount is insignificant and the effect on the APY is infinitesimal. The
benefits of removing the preshares are:

• the staking gas fees will significantly be reduced

• the gas fees of directDeposit() will be invariant to the number of requests in
the dQueue

• the equations of paragraph 3.3.4 - Variables’ value analysis will be simplified
and therefore the complexity of the code of the vault will be reduced

• unstaking while having pending deposit requests will no longer be a problem

It must be noted that this is a comparison in gas units. As a result it does not include the
fees for indirect staking/unstaking and it is invariant to the staking/unstaking amount.
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Conclusion

6.1 Summary of Achievements

Through this project we initially identified and formalised the need for a retail-
friendly native staking protocol. To solve this problem we suggested some core ideas
for reducing the gas fees associated with native staking. By utilising these ideas we
designed four (4) different approaches for gas efficient staking vaults. Furthermore,
we expanded one of the approaches and designed a complete protocol with a de-
tailed description of how it should be build and adjusted to create a staking vault.
Lastly, we developed a prototype of a fully functioning staking vault based on the
designed protocol to demonstrate that the ideas suggested in this project can be
implemented successfully in the real world.

We hope and believe that we made a meaningful contribution that promoted the
benefits of native staking and combined the potential of whale and retail users in a
way that is advantageous for everyone.

To elaborate further, this protocol benefits the retail users as it:

• reduces the gas fees associated with staking and unstaking

• provides a user friendly interface that makes staking simple and quick

• does not distinguish between whale and retail users and everyone has the same
rights and advantages

At the same time, it has notable benefits for the whale users as it:

• is the only protocol that provides instant withdrawals if the request can be
paired
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• can potentially offer very low fees if the request can be paired

• offers complimentary fund claiming

Meanwhile, it can be a fully functioning and successful product that can be more
profitable for the owner that the existing stakers due to the additionaal earnings
from deposit and withdrawal fees.

6.2 Future work

The suggestions for future work can be split into two categories, changes for the pro-
totype that can potentially turn it into a complete product and methods that the work
of this project can be exploited for creating other projects or relevant applications.

Picanha improvements:

• Observation of the gas price of the network to perform the daily autotasks
(ClaimCheckAutotask and ExpiryCheckAutotask) when the gas price value.
This a very simple way to significantly reduce the gas fees.

• Split of the share minting and sharing procedures by removing the concept of
preshares (as explained in the paragraph 5.6 - Comparison findings).

• Not mint shares for treasury immediately for every indirect deposit/withdrawal
to avoid the extra transaction. Instead mint shares with every staking/unstaking
when new shares are already minted from the rewards.

• Pairing a request with many requests of the opposite type can be expensive.
Therefore, the number of pairings should be limited.

• Indirect requests that are fully paired should not pay deposit/withdrawal fees.

• Reevaluation of the parameters’ values frequently (e.g. every month).

• Rewriting some of the code in a more gas efficient manner.

Ideas for future projects / applications:

• Use the final design or any of the other approach for staking on blockchains
other than Polygon (like Ethereum or Solana).

• Make a hybrid protocol that implements more than one of the suggested ap-
proaches and adjusts to the environment (frequency and size of the requests).

• Integrate some of the core ideas suggested in this project in already existing
stakers to reduce the gas fees.
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6.3 Epilogue

Reaching the end of this project, I feel like a journey that started last January is
coming to an end. Even though it was not always easy and smooth, I enjoyed it and
will look back to these months as a happy memory.

Through this project I got a better understanding of the world of Web3 and blockchains.
I fathomed how gas fees work, how dApps are built, and familiarised with the finan-
cial and mathematical aspects behind designing a DeFi protocol. It was a well-
rounded experience that involved research and fullstack development and involved
Computer Science, Mathematics and Finance.

Additionally, I had the chance to work in a corporate environment and be a part of
a team. I met great people and gained valuable experience.

I hope this project contains ideas that will inspire people and help build great things
in the future.
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Appendix A

Profit Analysis

A.1 Approach A: Staking Rounds

Figure A.1: Profit analysis for a round period of 7 days
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A.1. APPROACH A: STAKING ROUNDS Chapter A. Profit Analysis

Figure A.2: Profit analysis for a round period of 30 days
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Chapter A. Profit Analysis A.2. APPROACH B: S-U LEVEL

A.2 Approach B: S-U level

Figure A.3: Profit analysis for different percentages for fee on rewards wrt daily deposits
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A.2. APPROACH B: S-U LEVEL Chapter A. Profit Analysis

Figure A.4: Profit analysis around the staking threshold

66



Chapter A. Profit Analysis A.2. APPROACH B: S-U LEVEL

Figure A.5: Profit analysis with various U and S values
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A.3. APPROACH C: QUEUES WITH BATCHES Chapter A. Profit Analysis

A.3 Approach C: Queues with Batches

Figure A.6: Profit analysis for a single user
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Chapter A. Profit Analysis A.4. APPROACH D: DIRECTLY CONNECTED QUEUES

A.4 Approach D: Directly Connected Queues

Figure A.7: Profit analysis when daily deposits > daily withdrawals
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A.4. APPROACH D: DIRECTLY CONNECTED QUEUES Chapter A. Profit Analysis

Figure A.8: Profit analysis when daily deposits = daily withdrawals
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Appendix B

Testing Screenshots
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Chapter B. Testing Screenshots

Figure B.1: Testing screenshots
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