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Abstract

The auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in
their hardware performance. While recent research has investigated various speculative decoding
techniques for multi-token generation, these efforts have primarily focused on improving processing
speed such as throughput. Crucially, they often neglect other metrics essential for real-life deploy-
ments, such as memory consumption and training cost. To overcome these limitations, we propose
a novel parallel prompt decoding method that requires only 0.0002% additional trainable parame-
ters compared to the total trainable parameters. By predicting multiple prompt tokens in parallel
for approximating outputs generated at future timesteps, PPD partially recovers the missing con-
ditional dependency information for multi-token generation, achieving up to 28% higher acceptance
rate for long-range prediction as compared to the state-of-the-art parallel decoding method. Fur-
thermore, we present a hardware-aware dynamic sparse tree technique that adaptively optimizes
this decoding scheme to fully leverage the computational capacities on different GPUs. Through
extensive experiments across LLMs ranging from MobileLlama to Vicuna-13B on a wide range of
benchmarks, our approach demonstrates up to 2.49× speedup and maintains a minimal runtime
memory overhead of just 0.0004%. More importantly, our parallel prompt decoding can serve as
an orthogonal optimization for synergistic integration with existing speculative decoding, showing
up to 1.22× further speed improvement.
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Chapter 1

Introduction

1.1 Motivation

Large language models (LLMs) [1, 2] are increasingly gaining influence in the landscape of artificial
intelligence (AI) due to their exceptional capability in solving a wide range of language tasks, in-
cluding machine translation, natural language understanding, summarization, question answering,
etc. These models are characterized by both their impressive parameter sizes and their ability to
perform certain tasks at a level comparable to humans. Open AI’s GPT-3 model [3], for instance,
boasts an extraordinary 175 billion parameters and possesses the capability to produce textual
content indistinguishable from that created by humans. LLMs’ presence extends beyond Natural
Language Processing (NLP), influencing a wide range of fields such as code development [4], circuit
design [5], and music composition [6].

However, the exceptional success of LLMs has also introduced a number of challenges, with
the most significant being their considerable computational demands during inference. Due to
their unprecedented model size and complexity, the inference process for LLMs imposes significant
demands on computational resources, memory capacity, and energy consumption. Among the
various challenges faced by LLMs, one of the most critical is the limited parallelism inherent in
autoregressive generation. [7]. Autoregressive generation, the de facto approach employed in LLM
inference, suffers from inadequate hardware performance due to its inherent sequential nature [8].
In autoregressive generation, each step produces only one single token, leading to a situation where
the latency of LLMs’ request is dominated by the response’s length. Each decoding step has a
strong dependency on the previous step so it fails to utilize the parallel processing capabilities of
contemporary GPUs, frequently leading to sub-optimal GPU utilization. Such inefficiencies pose
significant challenges for many real-life LLM applications that need to generate sequences with
minimal delay.

A possible solution to the problem is speculative decoding [9]. Speculative decoding employs a
guess-and-verify framework, whereby a smaller draft model predicts the next few tokens and the

0.0004% memory overhead 
16-hour GPU training

2.24X speedup 

Figure 1.1: Comparison of memory consumption, speedup, and training cost (GPU hours), eval-
uating on MT-Bench with Vicuna-7B. The diameter of circles represents the GPU hours required
for training.
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original LLM concurrently verifies the draft. The effectiveness of this method is limited by the
ability of the draft model to recover the same token distribution as the original LLM. If the draft
token acceptance rate is low, a great portion of the computation will be spent on the verification
of wrong tokens, potentially slowing the decoding process significantly. Unfortunately, developing
a draft model that consistently achieves a high acceptance rate is often complex, and draft mod-
els often struggle to perform uniformly across different base models and datasets. Additionally,
the extra runtime memory overhead for executing draft models poses a significant barrier to the
broader adoption of speculative decoding, particularly in edge and mobile environments where
memory capacity is limited. Considering the growing need for user privacy and personalization,
deploying LLMs on devices urges a more memory- and cost-efficient solution for accelerating LLM
inference. Recent efforts have explored the possibility of generating multiple tokens in parallel
without relying on a separate transformer draft model [10]. Approaches such as inserting ad-
ditional decoding heads [11] and retrieving frequently used tokens [12] are employed to enhance
performance. However, these methods either aggressively assume conditional independence among
the tokens generated in a single step [11, 12], or use placeholder tokens (e.g., [PAD] token) that do
not convey enough contextual information [10]. Therefore, they often suffer from low acceptance
rates or degradation in output quality due to the lack of sufficient conditional information during
inference.

1.2 Proposed approach: Parallel Prompt Decoding

To alleviate the complexity and overhead associated with the use of draft models while maintaining
a high acceptance rate, we propose Parallel Prompt Decoding (PPD), a novel architecture-agnostic
and memory-efficient framework that adopts prompt tuning for non-autoregressive LLM inference.
PPD introduces the use of prompt tokens, the meticulously trained embeddings, for multi-token
prediction. Specifically, these trained prompt tokens are appended to the original input sequence
in parallel, enabling the concurrent generation of multiple output tokens in a single forward pass
and facilitating parallel execution of verification and prediction to ensure the quality of generated
tokens.

The key intuition of PPD lies in the observation that if trained properly, prompt tokens ap-
pended to the input could approximate tokens generated at future timesteps, hence partially recov-
ering the missing conditional dependency information for multi-token generation. By positioning
trained prompt tokens at proper places, PPD achieves up to 28% higher acceptance rate when
predicting long-range tokens as compared to Medusa. This is one of the most exciting features of
PPD , as it significantly enhances the performance on long-range predictions while using very few
additional trainable parameters.

To further increase the token acceptance rate, we generate multiple candidate continuations
with each prompt token and use them in combination with a tree attention mask [13] to minimize
the computation and memory overhead. The capability of PPD to use low-cost prompt tokens for
accurate multi-token prediction forms the foundation for accelerating LLM inference. As shown
in Figure 1.1, PPD achieves a comparable speedup to the state-of-the-art speculative decoding
approaches with negligible memory overhead and reduced training cost. Moreover, to facilitate the
optimized implementation of PPD across different hardware platforms, we propose a hardware-
aware dynamic sparse tree technique that adaptively refines the prompt structure during runtime
based on the computational and memory resources available on the specific hardware.

To demonstrate the effectiveness of our approach, we evaluate PPD on MobileLLaMA [14],
Vicuna-7b and Vicuna-13b [15]. Running on a single A100-40GB GPU, our method achieves a
speedup ratio from 2.12× to 2.49× across a diverse range of popular datasets including MT-Bench,
HumanEval, and GSM8K. Our experiments demonstrate that PPD not only achieves comparable
throughput to the state-of-the-art speculative decoding method, but it also manages this with
significantly fewer trainable parameters—specifically, 0.0002% of trainable parameters compared
to the total number of parameters—and incurs only a minimal memory overhead (0.0004%). PPD
is extremely cost-efficient and memory-efficient. The training of prompt tokens can be completed
in 8 hours using four GeForce RTX 3090 GPUs and in just 4 hours on four A100-40GB GPUs,
compared to the 1-2 days required for Eagle [16]. Furthermore, since PPD does not require the
modification of the original LLM nor the addition of extra networks, it is highly adaptable and
orthogonal to other decoding techniques. For instance, it can be effectively combined with a draft
model to further reduce inference latency.
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Figure 1.2: Overview of PPD The left section shows the location of trainable parameters and the
middle section displays the combined guess-and-verify process during inference. The "prompt
token" denotes the special token with separately trained embeddings to perform parallel prediction.

1.3 Challenges and contributions
We summarize the challenges and our proposed solutions below:

Low acceptance rate of current parallel decoding methods. To address this, we
introduce Parallel Prompt Decoding (PPD), which uses cost-effective prompt tokens for non-
autoregressive LLM inference, achieving a high acceptance rate for long-distance token prediction
while maintaining output quality.

High training cost and memory overhead of speculative decoding methods. Our
method eliminates the need for a separate draft model by training only additional word embeddings,
significantly reducing training costs and memory overhead.

Compute resource constraints of LLM inference. We developed a hardware-aware dy-
namic sparse tree technique that adaptively optimizes the prompt structure of PPD at runtime,
based on available computational and memory resources, facilitating efficient deployment on vari-
ous hardware platforms.

We have open-sourced the implementation of PPD , along with comprehensive evaluations on
various models and benchmarks. Our experiments demonstrate that PPD achieves significant
speed improvements with negligible memory overhead and reduced training costs.

Our approach can be categorized as parallel decoding, with three novel features distinguishing
it from other methods: 1) PPD trains the embeddings of parameterized ensemble prompt tokens,
2) it utilizes a dynamic sparse tree, adapting its structure at every inference step, and 3) we
propose a hardware-aware algorithm for designing a dynamic sparse tree tailored to each hardware
platform.
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Chapter 2

Preliminaries

Firstly, we introduce some relevant background information which the problem statement and the
proposed approach are based upon. Section 2.1 explains the basics of LLMs and the lifecycle of
foundation models. After that, Section 2.2 introduces process of LLM inference and explain the
current challenges, which forms the motivation of our method. Finally, Section 2.4 and Section 2.5
discusses and compares the two popular families of fine-tuning methods.

2.1 LLM Basics

2.1.1 Transformer Architecture
The Transformer-based LLMs, pivotal in the advancement of NLP, represents a significant shift in
the way natural languages are generated and processed. The Transformer model [17] is fundamen-
tally different from the previous sequence-to-sequence models as its attention-based mechanism
enables the effective capture of long-range dependencies in a textual context. The Transformer
model has the following components:

1. Embedding and encoding. The embedding layer is a learned function that maps discrete
input tokens into continuous vector representations. The word embeddings encapsulate the
semantic relationship between words, representing the meaning of each token. Differing from
recurrent neural networks (RNNs), Transformers have no information of the order of a se-
quence of tokens. To mitigate this limitation, the architecture adds positional encodings to
the word embeddings, providing positional information of each token for the subsequent lay-
ers. The original Transformer paper uses sin and cosine functions for the positional encoding:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
PE(pos,2i+1) = cos

( pos

100002i/dmodel

)
2. Multi-head self-attention. The self-attention component is the core of the Transformer

model, assigning different weights to different input tokens when making predictions for each
output token. The attention function could be described by the following formula:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headn)W

Here, Q, K, and V are the query, key, and value matrices, obtained by a learned trans-
formation of the input x. dk is the dimension of the key vector. W is a learned linear
transformation. In multi-head self-attention, the self-attention function is executed with
disjoint sets of parameters in parallel. The outcomes are then concatenated and then trans-
formed through a matrix. Its purpose is to identify different patterns and relationships in
the sequence, enriching the overall representation.
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For the decoder block, masking is applied in self-attention to prevent the previous tokens
from attending to subsequent tokens. The masking mechanism, together with shifting the
output embeddings by one position, makes sure the prediction for a token at position i only
depends on the tokens on the left of position i.

3. Feed-Forward Network (FFN). FFN, positioned in every layer of the Transformer model,
contributes greatly to the model’s computational demand. An FFN generally comprises two
linear transformations, separated by a non-linear ReLU function. This can be mathematically
represented as:

FFN(x) = max(0, xW1 + b1)W2 + b2

W1, W2, b1, b2 are all learned parameters. Following the calculation of the multi-head
attention, where information from different segments of the text is aggregated, the FFN
processes this combined information independently at each position. This capacity for parallel
processing is a fundamental strength of the Transformer model, facilitating efficient handling
of sequences. The combination of FFN and self-attention empowers the Transformer model
to capture a variety of linguistic contexts.

2.1.2 Types of Language Models

There are conventionally three types of language models:

• Encoder-only. Encoder-only language models, like BERT [18], produce vector representa-
tions of the input sequence, but they do not generate text directly. The primary objective of
encoder-only models is to identify and comprehend patterns and semantics within the input
data, making them useful in text classification and sentiment analysis.

• Decoder-only. Decoder-only language models, such as GPT-3 [3], are the standard au-
toregressive models that sequentially generate text. These models produce both contextual
embeddings of the input sequence and the probability distribution over the next token. They
are well-suited for tasks that involve text generation and completion.

• Encoder-Decoder. Encoder-Decoder language models, such as T5 [19], encompass a two-
part structure: an encoder that converts input text into vector representations and a decoder
that utilizes these representations to generate output text. This architecture is particularly
adept at handling sequence-to-sequence tasks, such as machine translation, where the goal is
to transform an input sequence into a new, contextually related output sequence.

This project primarily focuses on the Decoder-only models and Encoder-Decoder models as our
objective is to accelerate the inference of text generation tasks.

2.1.3 Lifecycle of Foundation Models

Foundation models are any models that are first trained on expansive datasets to gain general
capability, often using self-supervision, and then adapted to a wide range of downstream tasks.
They are named for their pivotal role and the need for further tuning. With the appearance of
models like BERT [18], DALL-E [20], GPT-3 [3], foundation models marked a paradigm shift in
the field of machine learning [21]. Key stages of the development and deployment of foundation
models are listed below:

• Data Creation and Curation: Data creation is intrinsically a human-centric process as
all data are collected from human activities. The collected data are then filtered and pre-
processed to form datasets.

• Pre-training: Foundation models are trained on curated datasets with pre-training objec-
tives such as Language Modelling [3], Masked Language Modeling [18], and Prefix Language
Modeling [19]. The choice of the pre-training objective hugely influences the data efficiency
and hence the performance of the foundation model.
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• Fine-tuning: Fine-tuning is a critical step before deployment. This stage involves not only
modifying the foundation model to ensure accurate and relevant output for specific tasks like
question answering but also calibrating it to avoid the generation of unethical or inappropriate
content.

• Inference: During deployment, the model is used for inference. There are a few important
objectives of efficient LLM serving: 1) Latency and response time, 2) Throughput, and 3)
Hardware compatibility and acceleration.

Various optimization techniques are proposed to target each of the 4 stages above. In this
project, while we aim to accelerate the inference stage, techniques from fine-tuning stage are
applied. We carefully design our approach to make sure it is agnostic to the data stage and
pre-training stage of the model used.

2.2 LLM Inference

2.2.1 Prefill Phase
LLM inference contains two distinct phases with different characteristics. The first phase is the
prefill phase, or the prompt phase, where all user-provided prompt tokens are processed in par-
allel by the model to produce intermediate states. The intermediate states contains the vector
representations of the keys and values, which will be used later to generate new tokens.

2.2.2 Autoregeressive Sampling Phase
Following the prefill phase is the autoregressive sampling phase, or the token-generation phase,
where the LLM predicts the next token based on the given tokens. Assume the given sequence is
x1:L and L is the sequence length, the joint probability of the sequence could be expressed using
the chain rule of probability:

p(x1:L) =

L∏
i=1

p(xi|x1:i−1)

To generate the next token xL+1, we could sample it from the conditional probability:

xL+1 ∼ p(xL+1|x1:L)
1
T

T ≤ 0 is the temperature hyperparameter that determines how random the generation process
is. When T = 0, the most probable token is deterministically chosen. When T = 1, the next
token is sampled exactly following the conditional probability. When T = 1, the next token is
randomly selected among the entire vocabulary. The distribution is re-normalized to make sure its
summation is equal to 1.

For the generation of the token xL+2, we first obtain a new sequence x1:L+1 by appending the
newly generated token xL+1 and then repeat the sampling process. The iterative process continues
until a stopping criteria is met. This generation process is called autoregressive generation, as
shown in Algorithm 1.

Here, sampley is a sampling function based on the conditional probability, usually generated
by the LLM decoder. A frequently used stopping condition in token generation is the production
of a special token, denoted as EOS, marking the end of the sequence. In LLM inference, the
autoregressive decoding plays a pivotal role in producing text that not only exhibits coherence but
also aligns with the context. This method effectively conditions the generation of each new token
on a detailed comprehension of the entire sequence of tokens already generated. Most analyses of
the performance of Transformer-based LLM inference in the community, which includes evaluating
the floating-point operations per second (FLOPS), and the input/output and memory demands,
are based on auto-regressive decoding algorithm.

When the generated sequence is sufficiently long, the inference latency is dominated by the
autoregressive sampling phase. Consequently, various methods have been proposed to accelerate
this phase. These methods are discussed in more detail in Chapter 3.
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Algorithm 1 Autoregressive Generation for LLM Inference
1: Initial sequence x1:L from a given context or user input
2: for i = (L+ 1) to MAX_LEN do
3: Predict the next token xi = sampley(p(y|x1:i−1))
4: x1:i ← Append xi to x1:i−1

5: if x1:i meets stopping criteria then
6: break
7: end if
8: end for
9: return x1:L+N

2.2.3 Key-Value Cache

The concept of a Key-Value (KV) cache is an important aspect in LLM inference, particularly in
improving the efficiency and reducing cost. A KV cache in LLMs is a mechanism that stores in
cache previously computed key and value pairs used in the attention mechanism of models. The
KV cache is initially populated in the prefill phase and persists throughout the token-generation
phase. During autoregressive decoding, the self-attention requires the key-value pairs for each
token currently in the sequence. By caching these pairs, the model can refer back to previously
computed information without recalculation, thus saving computational resources. However, since
the size of KV cache increases sequence length, it could also put pressure on memory consumption.
It is worth noting that KV cache only happens in the decoder.

2.2.4 Accelerators

The remarkable progress of LLMs can be significantly attributed to advancements in accelera-
tors, which provides the necessary hardware for effective model execution. The use of Graphics
Processing Units (GPUs), dominates the field of deep learning due to their exceptional ability to
perform parallel processing. Different from traditional Central Processing Units (CPUs) tailored
for general-purpose sequential tasks, GPUs are built with thousands of efficient cores in order to
execute a large number of operations in parallel. Thus, GPUs are well-suited for tasks that needs
parallel computation, such as matrix multiplication, video decoding , and deep learning.

Streaming Multiprocessors (SMs) are the building blocks of GPUs. Each SM has several cores
and shares one instruction unit. Independent threads run one SM in parallel. The shared memory
(SRAM) within each SM facilitates data exchange and synchronization between threads, while
the high-bandwidth memory (HBM) enables quicker data transfers and alleviates memory access
bottlenecks in large-scale calculations. With these components, GPUs excel in handling the high
demand of LLMs for computational resources and data transfer. Advanced GPUs, like NVIDIA
A100 Tensor Core GPU [22], offer increased memory bandwidth, and specialized computing units
like Tensor Cores for matrix math operations. The support for a full range of data types and pre-
cision allows for a balance between computational speed and precision, a key aspect in optimizing
LLMs.

Programming languages for GPUs, such as NVIDIA’s CUDA, provide custom control over
thread operations, enabling maximal exploitation of GPU parallelism. This has facilitated the
development of GPU applications, contributing to a vibrant software ecosystem and advancing
LLM research.

In addition to GPUs, a number of hardware platforms is used for LLM deployment, including
ASICs [23], TPUs [24], FPGAs [25], and other AI chips from various manufacturers. While these
hardware platforms offer distinct advantages in specific scenarios, the extensive body of research
and development around GPUs positions them as a central reference point for understanding LLM
inference methodologies.

Software-hardware co-design is an engineering methodology where software and hardware com-
ponents of a system are designed in a coordinated manner, rather than independently. This ap-
proach aims to optimize system performance, efficiency, and flexibility by allowing hardware and
software to be more closely integrated and tailored to each other’s capabilities and requirements.
When developing acceleration algorithms for LLM inference, the constraints and strengths of the
hardware should also be taken into account.
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2.2.5 Batch Inference

Accelerators like GPU are massively parallel computing units, so it is important for LLMs to fully
utilize the parallel processing power to increase throughput. Batching is a simple and effective way
to increase parallelism, and GPU utilization. Many input sequences are collected and batched to
process at once, efficiently reducing memory bandwidth use and increasing compute utilization.
There are several ways to implement batching for LLM inference.

• Static batching. Static batching is the naive implementation of batching and the size of
the batch remains constant until the completion of inference. Multiple prompts from clients
are batched and processed by the LLM, only returning the output sequences if the inference
for all prompts is complete. Static batching could either be done at the client side or the
server side. Static batching could be inefficient as the inference of some requests might finish
at earlier time steps and these requests have to wait for others, leading to under-utilization of
compute resources. Static batching is only desirable if the output sequence length is uniform,
for example, in a classification task.

• Continuous batching. To address the limitations of static batching, continuous batching
[26] is proposed. In continuous batching, instead of waiting until all requests in a batch have
completed generation, the server uses iteration-level scheduling to determine the batch size
dynamically per iteration. A new request could be added to the batch once an old request has
finished, leading to saturated GPU utilization. Unfortunately, the detailed implementation is
more complicated as the computational patterns in prefill phase and token generation phase
are different, making it more difficult to add new requests to a in-process batch.

2.3 Challenges of LLM inference
Several studies [7, 27, 28] have analysed and pointed out the computational difficulties of LLM
inference. Relating to what we have discussed above, we summarize the key challenges of LLM
inference:

1. Low parallelizability. Due to the sequential nature of the autoregressive generation stage,
inference must produce output token by token. Although batching could partially address
this problem by generating output sequence for multiple prompts at once, only throughput
increases and the latency is still high. This problem is especially significant for latency-
sensitive applications like chatbots.

2. Large memory footprints. The large size of both the trained model parameters and the
transient state needed (KV cache) contributes to the large memory footprints during LLM
inference. While model parameters are usually loaded in the prefill stage, transient state are
stored during decoding time and grows with sequence length. KV cache also increases with
batch size. With a batch size of 512, the KV cache could grow to 3TB, 3 times the model size
[28]. In general, at small batch sizes and sequence length, the time to load model parameters
is much larger than that to load KV cache, and vice versa.

3. Scalability. The inference cost scales quadratically with input sequence length [7]. Hence,
there is usually a limit on the context length.

2.4 Full Parameter Fine-Tuning
As mentioned in Subsection 2.1.3, foundation models are generally not production-ready as the
pre-training objectives are usually different from the objectives of the downstream applications.
The fine-tuning phase serves to align the pre-trained capabilities of foundation models and the
goals of downstream tasks.

2.4.1 Transfer Learning

Different from retraining model based on new data for new tasks, the concept of model fine-
tuning, which hinges on transfer learning, efficiently utilizes the common capabilities learned by
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the foundation model. The foundation model parameters are used as efficient initialization for new
tasks to reduce the end-to-end training costs and risks of insufficient data.

In short, transfer learning is a machine learning method where a model trained on one task is
re-purposed on a different but related task. Transfer learning is not a new concept. It was proposed
decades ago and used in a wide range of tasks, such as climate models [29], disease prediction [30],
and computer vision [31].

2.4.2 Limitations of FPFT

As the name suggests, Full-Parameter Fine-Tuning (FPFT) modifies all pre-trained parameters.
It is a simple and straightforward way to implement fine-tuning. However, it faces the following
key challenges, which justifies the employment of additional fine-tuning optimizations:

• Computational costs. FPFT requires substantial computational resources as all model
parameters are optimized. Foundation models with good performance are usually large, en-
compass billions of parameters. The computational overhead is even more severe in resource-
constrained settings [32] and in applications that have multiple downstream tasks.

• Storage overhead. Distinct copies of model parameters need to be saved for different tasks.
This adds significant maintenance costs to model deployment.

• Overfitting Risk. When the size of training datasets is limited, FPFT is prone to overfit-
ting, where model generalize poorly to unseen data while performing exceptionally well on
the training data.

• Catastrophic Forgetting. Fine-tuning on new data might lead to a phenomenon called
"Catastrophic Forgetting" where the model lose its previously learned capabilities. If the
model forgets foundational or general knowledge learned during pre-training, its ability to
generalize to a broader range of scenarios or datasets can be compromised.

• Model Stability. Fine-tuning might compromise the stability of the model. The process
might distort the patterns initially learned by the model in ways that are neither desirable nor
easily understandable, resulting in a loss of consistency in the model’s overall performance.

As will be discussed in greater detail in Section 2.5, Parameter-Efficient Fine-Tuning (PEFT)
techniques focuses on solving some of the challenges listed above.

2.4.3 Memory-Efficient Fine-Tuning

To reduce the cost of FPFT, many recent works [33, 34, 35] target at minimizing memory consump-
tion. Selective Fine-Tuning [33] selectively retains a subset of transient activations with non-zero
gradients from the forward pass to optimizes memory consumption. This approach only reduces
two-thirds of the GPU memory used. Another method called LOMO (Low-Memory Optimization)
[34] proposes a new optimizer that combines the gradient computation and parameter update in
one single trainig step, effectively achieving constant memory usage for gradient tensors. As a re-
sult, the FPFT of a 65B model only needs less than 192GB GPU memory using LOMO. MeZo [35]
estimates the gradients with enhanced zeorth-order method using only two forward passes and
fine-tunes LLMs with no memory overhead as compared to inference. MeZo is able to train a 30B
parameter model on one GPU with 55GB memory using FPFT. These techniques effectively lower
the cost and barrier for practitioners to conduct FPFT.

2.5 Parameter-Efficient Fine-Tuning

2.5.1 Objectives

An alternative method to fine-tune an LLM to a specific downstream task is Parameter-Efficient
Fine-Tuning (PEFT). PEFT encompasses a range of methods that only updates a small subset of
model parameters during model fine-tuning, with the remaining model parameters frozen.

As compared to FPFT, PEFT has much fewer parameters to modify, hence reducing the com-
putation cost by a large margin. A recent study [36] has shown that FPFT takes around 3-5 times
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the time cost of Low-Rank Adaptation (LoRA) fine-tuning, which is a technique within the cate-
gory of PEFT methods. PEFT also consumes much less GPU memory than FPFT. Another study
[37] has shown that PEFT methods, as compared to FPFT, decrease the trainable parameters
between 140 and 280 times and the training time between 32% and 44%. Moreover, PEFT enables
LLMs to adapt to new tasks without catastrophic forgetting [38].

On the other hand, FPFT has a greater learning capacity and expressive power than PEFT due
to its larger number of trainable parameters. In general, FPFT converges faster than PEFT [39].
Moreover, FPFT could lead to better performance than PEFT [36]. However, this phenomenon is
heavily task-dependent and it is reported that PEFT performs better than FPFT on tasks with
a lack of language diversity [37]. The performance difference between FPFT and PEFT decreases
as the size of the training data decreases [37]. It is also shown that as the model size scales up,
the performance gap between FPFT and PEFT closes and PEFT methods are able to match the
good performance of FPFT [40].

From a high-level view, PEFT could be grouped into four categories: low-rank adaptation,
adapter-based tuning, prompt tuning, and prefix tuning. We will dive into each one of them in the
following subsections.

2.5.2 Adapter-based Tuning

In adapter-based tuning, additional lightweight layers, called adapters, are injected into the original
layers of pre-trained models. During fine-tuning, only the parameters of the adapters are trainable,
while the original parameters remain frozen [41, 42]. As compared to vanilla fine-tuning of deep
networks where only the top layer is modified, adapter-based tuning is a more general approach to
modify the architecture. There are two types of adapters: series adapters and parallel adapters.

Series adapters insert additional learnable modules sequentially inside the Transformer layers.
For each Transformer layer, two adapter modules are added after the attention and FFN layers
[41]. The adapter module first project the input into a smaller dimension, apply a non-linear
transformation, and then project the result back to its original dimension. The dimension pro-
jection is added to effectively limit the number of additional parameters. This module can be
mathematically expressed as:

Hout ← Hout + f(HoutWdown)Wup

Here, Hout is the output of a specific layer. Wdown is a matrix that down-projects the input,
while Wup up-projects the intermediate result back to its original dimension. f is a non-linear
function. A skip connection is added to avoid overfitting.

Parallel adapters [43] are proposed to unify different PEFT strategies, including Prefix Tuning,
sequential adapters, and LoRA. The parallel adapters could be formulated as:

Hout ← Hout + f(HinWdown)Wup

where Hin and Hout are the input and output of a specific layer. Multi-head parallel adapter
enhances the parallel adapter by applying parallel adapters to change the head attention outputs.
Scaled parallel adapter is another variant that incorporates elements from LoRA into adapters.

2.5.3 Low-Rank Adaptation

Despite their usefulness, adapter-based methods add to inference latency as they extend the model
depth. To address the limitations of adapters, Low-Rank Adaptation (LoRA) [44] was proposed,
which does not introduce latency overhead during inference. LoRA was inspired by the observation
that a very low "intrinsic rank" exists in pre-trained language model and fine-tuning in this low
dimension is as effective as the full parameter space [45]. From a mathematical perspective, the
original model parameter matrix W0 is modified to W0 + ∆W where ∆W is the learned update.
LoRA decomposes ∆W into two low-rank matrices A ∈ Rm×r and B ∈ Rr×n such that ∆W = A·B.
The rank r is much smaller than both d and k to reduce the fine-tuning computational cost. LoRA
can be considered as an example of Reparameterization-based learning. During fine-tuning, only
the small matrices A and B are optimized, while the large model weight matrix are kept fixed.
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Since LoRA still needs to modify the parameters of the low-rank matrices for all layers of the
model during finetuning, additional techniques were proposed to further improve the efficiency.
LoRA-FA [46] holds the ’projection-down’ matrix A frozen, while optimizing the ’projection-up’
matrix B. This approach only modifies the weight in the low-rank space, so there is no need to store
the full-rank input activations. LoraHub [47] extends the application of LoRA by investigating its
composability for generalizing across various tasks. It integrates LoRA modules, each trained on
different tasks, to achieve good performance on new, unseen tasks. One limitation of LoRA is that
the rank used in the fine-tuning process is static and not subject to adjustment during training. To
overcome this, Dylora is introduced [48]. Dylora is designed to train LoRA blocks across multiple
ranks instead of just a single fixed rank. This method saves the effort of searching for the optimal
ranks, as it organizes the representations learned by the adapters according to their respective
ranks.

2.5.4 Prompt Tuning

Prompt tuning, or soft prompting, [40], is a simple yet effective method for learning prompts to
re-purpose the pre-trianed language models.

Prompt tuning draws inspiration from prompt design [3], which shows promising capabilities to
modulate the behavior of LLMs by simply applying prompt templates to the input sequence. These
templates usually contain task descriptions and crafted example answers. Instead of requiring a
different model for every task, a single LLM can perform different tasks with just different prompt
templates. However, the performance of prompt design is not comparable to that of model tuning
because it is difficult to manually design the optimal task description and the model’s input is
also limited. Although enhanced prompt design methods are proposed, such as a search algorithm
over the discrete space of words [49], there is still a gap in the performance as compared to model
tuning.

Prompt tuning proposed a trainable version of prompt design methods. For each downstream
task, an additional k trainable tokens are added to the input text. During fine-tuning, while the
entire pre-trained model is frozen, the trainable tokens are updated to learn the optimal prompt.
Given the input X and prompt tokens P , the probability of the model output Y is expressed as
Pθ,θP (Y |[P ;X]). θ, the original model parameters, remains fixed, while θP are updated during
fine-tuning. As compared to prompt design where prompt tokens are selected, prompt tuning uses
a fixed set of special tokens as the prompt and select the optimal embeddings of these tokens
through training.

As compared to adapter-based tuning and LoRA, prompt tuning generally requires much fewer
additional trainable parameters. It only needs additional EP parameters, where E is the embed-
ding dimension and P is the prompt length. Despite its simplicity, prompt tuning is especially
effective, matching the performance of standard model tuning for the 11B T5 model [40]. It is
reported that the gap between standard model tuning and prompt tuning closes as the model size
scales up.

Here are the key hyperparameters that influence the performance of prompt tuning:

• Prompt length. To achieve good performance, it is generally preferrable to have the prompt
length larger than one. However, The performance gain vanishes once the prompt length
exceeds a certain threshold.

• Prompt initialization. The random uniform embedding initialization generally performs
worse than the copied initialization from the model’s vocabulary. Unfortunately, there is
currently no effective method to interpret the learned prompt.

• Pre-training objectives. Some foundation models are pre-trained with objectives (span
corruption e.g.) such that they do not see natural input text during training. For these pre-
trained models, prompt tuning might not be as effective because the decoder input cannot
be modified.

2.5.5 Prefix Tuning

Different from prompt tuning which only adds trainable vectors to the input embedding layer,
prefix tuning [50] adds an array of prefix tokens to every layer in the LLM. Each set of prefix
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tokens correspond to a single downstream task. Prefix tuning is generally more expressive than
prompt tuning and has a greater learning capability. The prefix tuning could be formulated as:

Hout = Attn(HinWQ, [PK ;HinWK ], [PV ;HinWV ])

Here, Hout and Hin are the input and output of the attention layer. PK and PV are the
trainable prefix to the keys and the values respectively.

2.6 Summary
In this chapter, we summarize the basics of LLM inference and various techniques for fine-tuning
LLMs. We also introduce the computational challenges inherent in LLM inference. In the next
chapter, we will discuss strategies at different abstraction layers to address these challenges.
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Chapter 3

Related Work

To address the challenges faced by LLM inference mentioned in Section 2.3, various optimization
techniques are proposed. In this chapter, we aim to explain different methods for LLM inference
acceleration. At a high level, the techniques for efficient LLM inference can be grouped into
two categories: 1) system-level optimization, and 2) algorithm-level optimization. Both system-
level and algorithm-level techniques are essential for enhancing the efficiency of LLM inference,
as they address different aspects of the problem. Although our proposed solution is more related
to the decoding algorithm of LLM, it is beneficial to briefly discuss system-level optimizations
in Section 3.1 to offer a comprehensive view of the optimization landscape. The primary focus
is on the algorithm-level optimization techniques, which are further classified into autoregressive
optimization methods 3.2 and non-autoregressive optimization methods 3.3.

3.1 System-level Optimization
The performance of LLM inference can be optimized through better hardware and system infras-
tructure. Deja Vu [51] introduces the concept of contextual sparsity, which uses a small set of
attention modules and MLP to approximate the result of a dense model. They show that accurate
predictors can be trained to identify contextual sparsity dynamically and the inference speed can
be increased with kernel fusion and memory coalescing. Orca [26], as mentioned in batch infer-
ence, decide the batch size dynamically using iteration-level scheduling. FlexGen [52] develops a
high-throughput LLM inference engine using constrained resources, such as limited GPU memory.
This method employs a linear programming approach to optimize tensor operations and integrates
the storage and compute resources from different media like disk, GPU, and CPU. To increase
the batch size as large as possible, weights and attention cache are quantized to 4 bits with in-
significant accuracy drop. FlexGen speeds up the inference process of OPT-175B on a single 16GB
GPU with a throughput of 1 tokens/s. DeepSpeed-Inference [53] proposes a multi-GPU inference
solution for both dense and sparse Transformer models when they are stored in the combined GPU
memory. Moreover, a heterogeneous architecture is developed to employ CPU and NVMe mem-
ory, in addition to GPU memory, leading to high-throughput inference of large models which the
GPU memory only cannot contain. Flash-Decoding [54] is motivated by the problem that during
inference, the batch size for long contexts needs to be small to fit in GPU memory, leading to
low parallelization and low GPU utilization. As a solution, the key/values sequence is split into
pieces, for which the attention is calculated in parallel. The splits are aggregated at the end to
produce the final result. It is reported that Flash-Decoding is able to achieve up to 8 times faster
generation for long contexts.

3.2 Autoregressive Algorithm-level Optimization

3.2.1 Early Exiting
Early exiting [55] is first introduced to reduce the latency and energy consumption of very deep
neural network architectures by skipping the computation of deeper layers. This method is based
on the intuition that feature representations learned at an early layer of a neural network is often
sufficient to model the target distribution, especially when the input sample has a simple structure.
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Internal classifiers are added to predict the exit position. The concept of early exiting is then
applied to the context of LLMs [56, 57, 58]. Since these methods dynamically decide the amount
of computation per request to achieve a low amortized inference cost, they are also called by
adaptive computation [59].

A number of early-exit criterion are proposed, including entropy [60], softmax scores [61], con-
vergence of intermediate predictions [62], and more complex methods that combine confident scores
from consecutive layers [63]. However, the insufficient information from the internal representa-
tions might lead to sub-optimal exit decisions made [64], making it difficult to devise an efficient
exit criteria for all Transformer models. The performance improvement of early-exit methods are
further limited by their incompatibility with batch inference and KV cache, the two critical meth-
ods for efficient LLM serving [65]. When processing a batch of requests, the computation time
of early-exit methods is bottlenecked by the most computation-heavy request. Another challenge
arises with the use of KV cache, which needs to be modified if tokens generated at different time
steps exit at different positions of the decoder.

3.2.2 Cascade Inference

Cascade inference is an approach motivated by the fact that different inference requests vary
in complexity. This method involves assembling a collection of LLMs of different sizes, each
possessing distinct capabilities, to handle requests of different difficulties. During serving, tasks
considered less complex are allocated to smaller LLMs to minimize the response time, dynamically
allocating computational resources based on the specific demands of each request. For instance,
CascadeBERT [66] arrange a chain of models of different depths in a cascading manner, employing
internal classifiers to select models to use on the fly according to request difficulties. Tabi [67]
employs a similar technique to serve discriminative models. FrugalGPT [68] assign queries to
different LLM APIs based on a learned policy. To further decrease the inference cost, FrugalGPT
compresses and concatenates queries and cache LLM responses locally.

In general, cascade inference is an effective approach to reduce inference latency but the prac-
tical implementation is difficult due to the complexity in designing a dispatching policy that guar-
antees the inference quality [64].

3.2.3 Speculative Decoding

The decoding step during autoregressive LLM inference, which involves deciding the next token
to generate, can be conceptualized as running a program that contains conditional branches in its
control flow. Hence, speculative execution, a popular method to speed up instruction execution,
can be transferred to the context of LLMs. Speculative decoding is proposed [9]. In speculative de-
coding, a smaller draft model is used to produce a draft output of length K autoregressively. Then
the draft is verified by the larger, more capable target model. Only the draft tokens that preserve
the distribution of the target model are accepted and kept, while the other tokens are discarded.
The algorithm implementation is shown in Algorithm 2. It is worth noting that generation process
of draft models is still in the auto-regressive manner.

This approach relies on two important intuitions: 1) a small draft model is able to produce the
same output as the large target model for a significant portion of input sequences; 2) the latency of
verifying a draft of length K in parallel is comparable to that of generating a single token from the
target model. The first intuition underlines the potential of using smaller draft models to reduce the
inference latency, given their ability to frequently generate correct tokens. The second intuition
ensures that the additional computational overhead of speculative decoding remains reasonably
low. Furthermore, unlike early exiting and cascade inference, speculative decoding guarantees the
output quality using the verification step.

Building on the speculative decoding scheme, various studies have been conducted to further
optimize its inference speed. To improve the accuracy of the draft model and its token acceptance
rate, Eagle [16] incorporates the hidden features into the draft model’s forward pass. To en-
hance token drafting with retrieval-augmented generation [69], Rest [12] introduce retrieval-based
speculative decoding tailored for specific scenarios. SpecInfer [13] adopts a tree-based speculative
inference and verification scheme, improving the diversity of speculation candidates. Sequoia [70]
optimizes the sparse tree structure by considering the capability of the underlying hardware plat-
forms.
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Algorithm 2 Speculative Decoding
1: Given draft length K, minimum target sequence length T , target model Mt, draft model Md,

and initial prompt sequence x1, ..., xt

2: Initialize n← t
3: while n < T do
4: for l = 1 to K do
5: Sample draft autoregressively x̃1, ..., x̃l from Md

6: end for
7: In parallel, verify the draft x̃1, ..., x̃K using Mt and obtain K + 1 boolean values b1, ...,

bK+1

8: for l = 1 to K + 1 do
9: if l ≤ K and bl then

10: xn+l ← x̃l and n← n+ 1
11: else
12: sample xn+l and exit the loop
13: end if
14: end for
15: n← n+ 1
16: end while
17: return x1:T

However, there are still several challenges when using speculative decoding for LLM inference
[11]. First, it remains difficult to develop a systematic way of designing an ideal draft model that
is both computation-efficient and capable enough. Second, additional complexity, in particular for
distributed systems, is introduced by maintaining multiple LLMs in a cooperative manner. Lastly,
if multiple samples are required, there is extra computational overhead with speculative decoding.

3.3 Non-Autoregressive Generation

3.3.1 Overview

Given the low parallelism causes by the autoregressive decoding mechanism, one line of work to
improve LLM inference latency is to find alternatives to the autoregressive decoding paradigm
and produce multiple tokens in parallel. Non-Autoregressive Decoding (NAD)1 aims to relax the
constraints of token dependencies and assume a certain level of conditional independence during
decoding. The early work of NAD focuses on a specific application, such as machine translation [71].
Despite its improved latency, the major challenge with parallel decoding is the quality degradation
of the generated tokens caused by the lack of information on target dependency of target tokens
[72]. Various methods are proposed to address this challenge. For instance, semi-autoregressive
translation model [73] strikes a balance between the two paradigms, generating multiple target
tokens in parallel in one step and autoregressively depending on these generated tokens for the
next step. Iteration-based methods [74], on the other hand, generate tokens in parallel in a single
step and refine the generated target through iterations. DePA [75] improves the translation quality
by modeling conditional dependencies in the target.

Inspired by the success of NAD in the field of neural machine translation, researchers has
been exploring the possibilities of NAD in the general context of text generation. In this project,
we focus on the methods proposed for general-purpose NAD text generation, without the need
of pre-training. At a high level, we categorize the techniques in two groups: 1) adapter-based
methods, and 2) Jacobi decoding. Adapter-based methods modify the architectures of LLMs by
inserting adapter-like modules and carry out fine-tuning to enable the LLMs to generate tokens non-
autoregressively. On the other hand, Jacobi decoding does not need further training, reformulating
the decoding algorithm based on Jacobi iteration. Both methods are explained in greater detail in
Subsection 3.3.2, 3.3.3.

1Recently, an alternative name for NAD is proposed, which is parallel decoding. We used these two terms
interchangeably throughout the report.
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3.3.2 Adapter-based Method
Blockwise parallel decoding [8] modifies the original LLM by inserting a single multi-output feed-
forward layer at the top to make token predictions at different positions in parallel. Then the new
LLM can be re-purposed by either full-parameter fine-tuning or adapter-based fine-tuning. This
method involves a three-stage non-autoregressive token generation process:

• Predict. k tokens (y1, ..., yk) are generated in parallel by the multi-output feed-forward
layer. It is assumed that these k tokens are conditionally independent from each other. The
prediction process takes 1 forward pass.

• Verify. The prompt combined with generated k tokens is passed to the original model for
verification. The largest k′ is found such that y1, ..., yk′ follows the distribution of the original
model. The verification process takes another invocation of LLM inference.

• Accept. The target output is extended with y1, ..., yk′ and we go back to the Predict step
if the generation is not finished yet. This step requires trivial computation.

The Verify step effectively guarantees the generated output follows the same distribution as
the autoregressive version of the LLM, ensuring the prediction quality. However, in one generation
step, two inference runs are required. Hence, unless the accepted token length k′ is sufficiently
large, the latency improvement will be limited. To address this problem, the Verify step and
Accept step are combined into a single Verify-Predict step. In the Verify-Predict step, all
possible target sequences from the last step are passed to the LLM, which verify and produce
tokens for each sequence simultaneously. This is essentially very similar to speculative execution of
branches in the instructions, where the program state is rolled back if a wrong branch prediction
happens.

To further speed up the inference, the authors propose that the output sequences do not need
to follow exactly the same distribution as an autoregressive model. Techniques like top-k selection,
distance-based selection, and minimum block size can be used to provide an approximate output
distribution.

Another adapter-based method is Medusa [11], which adopts a token generation approach
similar to the Blockwise parallel decoding but uses a different token acceptance mechanism. Medusa
adds and trains feed-forward layers on top of the base LLM with the parameters of the original
model fixed. Like the Blockwise parallel decoding, Medusa also combines the token generation
step with verification step but uses the tree-based attention mechanism from [76].

3.3.3 Jacobi Decoding
To avoid resource-intensive fine-tuning and modification of LLM structure, Jacobi decoding [77]
provides an alternative implementation of NAD. In Jacobi decoding, the greedy autoregressive de-
coding is reformulated as solving a system of nonlinear equations, which could be done in parallel.
Despite its simplicity, the fixed-point iteration methods proposed by Jacobi decoding mathemat-
ically ensures the convergence of the parallel decoding to an autoregressive output. The greedy
autoregressive sampling approach can be expressed as:

yi = argmax pθ(yi|x, y1:i−1) (3.1)

Here, yi is the generated token at position i and x is the user-provided input. We can extend
Equation 3.1 to all generated tokens:

y1 = argmax pθ(y1|x)
y2 = argmax pθ(y2|x, y1)

...
ym = argmax pθ(ym|x, y1:m)

(3.2)

This system of equations has m non-linear equations with m unknowns (y1, ..., ym). Notice
that the sequential autoregressive generation basically solves the system from top to bottom, one
equation at a time by substitution. To allow for parallel solving, an initial draft solution, ỹ1, ...,
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TIldeym, is proposed and refined through iterations. In the original paper, a naive initial draft of
[PAD] tokens are used. The solution is guaranteed to converge and a common convergence criterion
is obtaining the same results across consecutive iterations. Since this process is equivalent to Jacobi
iteration, it is named Jacobi decoding. Although computational overhead is incurred due to longer
input sequence length, the parallel processing power of GPUs can potentially hide the additional
latency.

In practice, it is observed that Jocabi decoding often has trouble with positioning tokens cor-
rectly in the sequence, leading to the convergence speed degrading to the worst case, which is
the auto-regressive generation case. To address this problem, Lookahead Decoding [78] improves
upon this method by generating parallel n-grams and employing a caching memory pool. To cap-
ture more information while using multiple special tokens at distinct positions, PaSS [79] trains
additional tokens with embedding layers for parallel decoding. To enhance token drafting with
retrieval-augmented generation [69], Rest [12] introduce retrieval-based Jocabi decoding tailored
for specific scenarios.

3.3.4 Limitations of NAD
In conclusion, the key challenge of NAD is how to balance the trade-off between prediction quality
and speed. While methods like Jacobi decoding are guaranteed to generate the same results as the
autoregressive decoding process, they might not improve the inference latency significantly enough.
Blockwise parallel decoding attempts to relax the quality requirement by adopting approximate
acceptance schemes, but the prediction accuracy drops as a result. Moreover, the adapter-based
methods need to modify the model architectures, making them less effective in cases where the
model is not directly accessible or the training resources are limited. Hence, we think a new NAD
method is needed to address these challenges.

3.4 Summary
In this chapter, we discuss various techniques to optimize LLM inference performance. We believe
NAD is one of the most promising methods to address the limited parallel computation in LLM
inference. To overcome the challenges faced by the current NAD method, we will propose a new
NAD approach in the next chapter.
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Chapter 4

Parallel Prompt Decoding

In this chapter, we introduce Parallel Prompt Decoding (PPD), a method designed to enable
non-autoregressive multi-token generation using a variant of prompt tuning. We cover the core
components of PPD , its training procedures, and the inference implementation. Key innovations
include the strategic placement of prompt tokens, the introduction of Ensemble Prompt Tokens
(EPTs), and advanced training techniques such as random insertion and knowledge distillation.
Our approach provides insights into alternative uses of prompt embeddings, exploring their poten-
tial to enhance representation power by filling in missing conditional dependency information in
non-autoregressive generation.

4.1 Prompt Tokens

PPD trains embeddings for prompt tokens1 rather than developing a separate model. Thus,
the prompt tokens are the key component of PPD to realize multi-token generation. Initially
introduced in [80] to adapt LLMs for specific tasks, prompt tokens are typically prepended to the
input, with outputs generated in an autoregressive manner. Consequently, the produced logits
corresponding to the prompt tokens are usually ignored, as show in Figure 4.1, due to the lack of
semantic interpretation.

Figure 4.1: ’S1’ and ’S2’ are prompt tokens prepended to the input sequence "A B C". The tokens
labeled ’-’ correspond to logits generated from the prompt tokens. These logits are ignored and
not used.

1In this report, a "prompt token" denotes the special token with separately trained embeddings to perform
parallel prediction.
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In this work, we propose a novel approach of utilizing prompt tokens by strategically posi-
tioning them at locations where tokens are anticipated to be generated, allowing an innovative
approximation approach for non-autoregressive generation. Figure 4.2 illustrates the basic use of
prompt tokens.

Figure 4.2: In this example, we add prompt tokens ’S1’ and ’S2’ at positions where we anticipate
generating specific tokens. For instance, ’S1’ stands in for the missing letter ’D’, and ’S2’ for the
missing letter ’E’. The goal is to train the embeddings of ’S1’ and ’S2’ so they can approximate
these missing tokens through the LLM’s decoder layers by taking in semantic information from the
input tokens.

This strategic placement allows for an innovative approximation approach. For adapter-based
parallel decoding techniques [8, 11] that presume complete conditional independence among tokens
decoded in a single step, the exact conditional probability p is approximated by:

p(yi+k+1|x, y1:i+k) = pθ(yi+k+1|x, y1:i)

where k > 0 indicates the token distance, x is the given input tokens, and y1:i is the generated
sequence with length i.

However, we observe that as k increases, the gap between the actual probability and its approx-
imation expands, primarily due to the absence of relevant conditional dependencies. We propose
that prompt tokens can bridge this gap by more accurately modeling the conditional probability
as:

p(yi+k+1|x, y1:i+k) = pθ(yi+k+1|x, y1:i, ti+1:i+k)

where ti is the prompt token that is i token distance away. Through this forward pass in the
decoder layers, these causally linked prompt tokens facilitate the flow of information along the
sequence of speculative tokens, thus restoring the conditional probability.

4.2 Ensemble Prompt Tokens
Inspired by prompt ensembling [80], which uses multiple prompts to generate diverse responses
and averaging these to derive a single answer, we introduce the concept of ensemble prompt token
(EPT). This additional abstraction allows us to decouple each prompt token from the fixed em-
bedding dimension. For every prompt token, there exist multiple corresponding EPTs, each with
its distinct embedding. Figure 4.3 illustrates the use of EPTs.

We modify the attention mask to ensure that each nth EPT only depends on the corresponding
n EPTs from preceding prompt tokens. This selective visibility is maintained for both training
and inference, where the speculative token for each prompt token is determined by averaging the
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Figure 4.3: Here, each prompt token is associated with two distinct embeddings rather than just
one. Specifically, ’V1’ and ’V2’ are the embeddings of EPTs for the prompt token ’S1’, while ’V2’
and ’V3’ are for ’S2’. To determine the tokens corresponding to ’S1’, we average the logits ’L1’
and ’L2’, which are generated from ’V1’ and ’V2’, respectively.

logits of its EPTs. The use of EPTs not only enables direct and flexible control over the trainable
parameters, but also leads to an increase in prediction accuracy. The approximate probability is
expressed as:

p(yi+k+1|x, y1:i+k) =
1

n

n∑
j=1

pθ(yi+k+1|x, y1:i, vji+1:i+k)

where vji+m denotes the jth EPT at a token distance of m.
The space complexity of the trainable parameters is represented as O(n · demb), where n is the

number of virtual tokens per prompt token and demb is the embedding dimension. In practice, n
is 3 to 4 orders of magnitude smaller than demb, so the space complexity simplifies to O(demb).

4.3 Training

The correct training approach for prompt tokens is crucial for the effectiveness of PPD . During
training, only the embeddings of prompt tokens are changed, with the parameters of the original
LLM2 remaining frozen. We adopt the following two training techniques:

4.3.1 Random Insertion of Prompt Tokens

Randomly inserting prompt tokens throughout the input sequence reduces contextual bias associ-
ated with appending them only at the end. 3 This bias tends to restrict the learning of prompt
tokens to a narrow vocabulary range, such as <eos> and punctuation. Random placement helps
broaden the predictive capacity of prompt tokens.

Moreover, the random insertion of prompt tokens allows PPD to work effectively across a
variety of context window lengths.

4.3.2 Knowledge Distillation

To align the predictive behavior of prompt tokens with the original LLM, we employ the knowledge
distillation approach. Instead of using hard labels, prompt tokens are trained against the logits

2The "original LLM" denotes the LLM to accelerate.
3Since we only require the logits generated by the prompt tokens, this method is essentially equivalent to randomly

truncating the input sequence and appending prompt tokens at the end.
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produced by the original LLM. The loss function is formulated as:

LPD =
1

N

N∑
i=1

DKL(Pi ∥ Qi) · αi (4.1)

where Pi represents the predicted probability distribution of the ith prompt token, Qi denotes the
corresponding probability distribution generated by the original LLM, and α is the decay ratio.
This decay ratio is applied to balance the influence of predictions at different token positions,
following the methodology used in Medusa [11].

Additionally, knowledge distillation serves another crucial functionality: it can generate training
datasets for PPD when the original model’s training dataset is unavailable, inaccessible, or too
small. By leveraging the logits produced by the original LLM, we can create a sufficiently large
training set that aligns with the original LLM to effectively train PPD .

4.4 Extensions
In this section, we discuss the possible extensions to PPD . We examine the effectiveness of these
extensions in Chapter 6. We only include the extensions in the final method used if they prove to
be helpful.

4.4.1 Prefix Tuning + Prompt Token
Prefix tuning [50], similar to prompt tuning, provides a parameter-efficient approach to finetune
a pretrained model. Unlike prompt tuning, it modifies the KV cache of every attention layer by
prepending trained vectors. We hypothesize that the combination of prefix tuning and prompt
tokens can lead to greater learning capacity and higher prediction accuracy. This hypothesis is
based on the intuition that prompt tokens should see a different context than the input tokens
when predicting long-range tokens. For example, if the input sequence is "Once upon a time,"
then enhancing the input with a prompt template might provide more suitable semantic context
for long-range prediction. An enhanced input like "Predict the next-next token. Once upon a
time" might empower the prompt token to predict the correct next-next token. Prefix tuning
serves as the prompt template to enhance the hidden states visible to the prompt tokens.

Figure 4.4: ’P1’ is the prefix token for the prompt token ’S1’ and ’P2’ for ’S2’. ’C’ is the input
token. The green tick means visibility during attention calculation. For instance, ’S1’ can see ’P1’
but cannot see ’P2’. ’C’ does not see any prefix tokens so the generated output corresponding to
’C’ is not altered by the use of prefix tuning.

To retain the original model’s distribution, we modify the attention mask so that prefix tokens
are only visible to prompt tokens. This ensures that we can generate outputs that preserve the
original model’s distribution. We posit that prompt tokens at different positions should see different
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contexts so we allow a prompt token at a specific position to see a distinct set of prefix tokens, as
shown in Figure 4.4.

4.4.2 Custom Decoding Heads + Prompt Token

It has been demonstrated that a fine-tuned decoding head alone can effectively predict long-range
tokens [8, 11]. Thus, we hypothesize that combining a separately fine-tuned decoding head with
prompt tokens might further enhance the potential of PPD . As shown in Figure 4.5, we trained a
separate decoding head to transform only the hidden states of prompt tokens into logits. A key
distinction from Medusa is that this decoding head is responsible for generating tokens at multiple
positions, rather than just one.

Figure 4.5: Custom decoding head with PPD . The feature extractor refers to the LLMs without
the decoding heads. ’H1’ is the generated hidden state for the input token ’C’. ’H2’ is the hidden
state for prompt token ’S1’ and ’H3’ for ’S2’. ’LM1’ is the original LLM’s decoding head and it
takes in the hidden states of input tokens. ’LM2’ is the custom decoding heads for PPD and only
takes in the hidden states of prompt tokens.

We propose two training methods. In the first method, the custom decoding head and prompt
tokens are trained together from scratch in a single stage. In the second method, the prompt tokens
are initially trained for 2 epochs, followed by training both the prompt tokens and the decoding
head with a smaller learning rate in a two-stage process.

4.4.3 Attention Masking for EPTs

In this report, we proposed a specialized attention mask for EPTs to achieve the effect of prompt
ensemble. However, there are alternative masking strategies available. Here, we describe and
compare three types of attention masks that we implemented and experimented with.

Ensemble Attention Masking

The ensemble attention masking is the masking strategy we previously described. In this approach,
EPTs are divided into n disjoint groups, where n is the number of EPTs per prompt token. All kth
EPTs across prompt tokens are placed in the same group. An EPT v in group i can only attend to
EPTs that meet the following two criteria: 1) they must belong to group i, and 2) their position
ids must be smaller than the position id of v. Since this masking strategy effectively averages the
results of disjoint groups of EPTs, we refer to it as the "ensemble attention masking". Figure 4.6
provides an example of the ensemble attention masking.

Decoder-like Attention Masking

Decoder-like attention masking is a simple strategy where EPTs can only attend to EPTs with
smaller position ids. This results in a triangular-shaped attention mask, similar to the one used in
decoder layers, hence the name "decoder-like attention masking". Figure 4.7 provides an example
of this masking strategy.
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Figure 4.6: Ensemble Attention Mask. ’C’ is an input token. ’V1’ and ’V2’ are the EPTs for
prompt token ’S1’ and ’V3’ and ’V4’ for ’S2’.

Encoder-like Attention Masking

In encoder-like attention masking, an EPT corresponding to a prompt token P can attend to all
EPTs with smaller position IDs as well as all EPTs associated with P . This allows EPTs to see
both preceding and succeeding EPTs, similar to the token visibility in an encoder layer, hence the
name "encoder-like attention masking". Figure 4.8 illustrates this masking strategy.

4.4.4 Aggregation Method for EPTs

In addition to simply averaging the logits from EPTs, we explored more advanced aggregation
methods. For instance, we applied learned weights to aggregate the logits. The final logit p can
be expressed as:

p =

n∑
i=1

wi · pi

where n is the number of EPTs and wi is the learned scalar weight for the ith EPT.

4.4.5 Multi-exit Ensemble

While using EPTs for prompt ensemble improves prediction accuracy, it also increases input length,
resulting in higher computational overhead and forward pass latency. To address this, we propose
the use of a multi-exit ensemble method. In multi-exit ensemble, the hidden states of a prompt
token from the last k decoder layers are extracted and averaged to produce the final hidden state,
which is then decoded by the decoding head into a guess token4, as illustrated in Figure 4.9. This
approach achieves prompt ensemble without the associated computational costs.

The hypothesis is that taking the hidden states from the last few decoder layers for ensemble
might work because these layers capture increasingly abstract and high-level representations of the
input sequence. By averaging the hidden states from multiple layers, we can combine diverse but
complementary information, leading to a more robust and accurate final hidden state. Addition-
ally, since the final layers are closest to the output, they are more likely to contain refined and
contextually relevant information, making the ensemble more effective.

4A "guess token", also referred to as a "candidate token", is a draft token generated from a prompt token from
the forward pass of the LLM.
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Figure 4.7: Decoder-like Attention Mask. ’C’ is an input token. ’V1’ and ’V2’ are the EPTs for
prompt token ’S1’ and ’V3’ and ’V4’ for ’S2’.

4.5 Inference
During inference, our method integrates three substeps into a single decoding step, following the
guess-and-verify strategy:

1. candidate prediction. We generate guess tokens, which are to be verified in the next
decoding step.

2. candidate verification. We verify the guess tokens from the previous decoding step based
on the outcome of the LLM forward pass.

3. candidate acceptance. We add newly accepted tokens to the input and update KV cache
accordingly.

We now explain the details of each substep.

4.5.1 Candidate Prediction
Candidate prediction shows two distinct patterns for the initial and subsequent predictions. For
the initial prediction, with no guess tokens, there is only one candidate continuation requiring the
appending of prompt tokens. Figure 4.2 illustrates the prediction phase of this initial prediction.
Guess tokens ’E’ and ’X’ are produced from the logits generated from prompt tokens ’S1’ and ’S2’
respectively.

In the prediction phases following the initial prediction, guess tokens are generated after each
accepted candidate continuation. Since the length of accepted guess tokens can only be determined
in the subsequent verification step, multiple candidate continuations are fed into the LLM. For
example, Figure 4.10 illustrates the second prediction phase following the initial prediction phase
shown in Figure 4.2. In this example, ’E’ and ’X’ are the guess tokens generated at token distances5
of 1 and 2, respectively. There are three possible correct candidate continuations:

1. Both ’E’ and ’X’ are correct predictions.

2. ’E’ is a correct prediction, but ’X’ is incorrect.

3. Neither ’E’ nor ’X’ are correct.

Thus, three distinct candidates, each appended with a unique set of prompt tokens, are passed
into the LLM for verification and to predict the next set of guess tokens.

5The "token distance" is the number of tokens between the last input token and the predicted token.
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Figure 4.8: Encoder-like Attention Mask. ’C’ is an input token. ’V1’ and ’V2’ are the EPTs for
prompt token ’S1’ and ’V3’ and ’V4’ for ’S2’.

Figure 4.9: Multi-exit ensemble. ’D1’, ’D10’, ’D11’, and ’D12’ are the decoder layers in order. ’S1’
is a prompt token and ’H1’, ’H2’, ’H3’ are the corresponding hidden states from the last 3 decoder
layers. ’H4’ is obtained from averaging these 3 hidden states. The decoding head ’LM’ translates
’H4’ into a token ’E’.

4.5.2 Candidate Verification
Candidate verification and candidate prediction are completed in a single forward pass of the
LLM. Two different verification schemes, exact matching [78] and typical acceptance [11], are
implemented.

Exact Matching

Exact matching [78, 8] aims to achieve lossless acceleration of the LLM by ensuring that the gen-
erated outputs are identical to those of the original LLM. In speculative decoding, this verification
process involves passing guess tokens to the LLM, which then produces an output token for each
token. The output token corresponding to the last guess token is progressively checked to ensure
it exactly matches the guess token. We adopt this verification scheme for PPD . See Algorithm 3
for the detailed scheme.

For example, Figure 4.10 illustrates the verification process using exact matching. The verifi-
cation outcomes for the three candidates are summarized as follows:

• Candidate 1. Candidate 1 is accepted because it does not contain any guess token.

• Candidate 2. Candidate 2 is accepted because the guess token ’E’ matches ’E’ generated
from the input token ’D’.

• Candidate 3. Candidate 3 is rejected because the guess token ’X’ does not match ’F’
generated from the input token ’E’.

Typical Acceptance

We adopt typical acceptance [11] to address the inefficiencies of rejection sampling in speculative
decoding, especially at higher sampling temperatures. Traditional rejection sampling is designed
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Figure 4.10: Verify and Predict combined in one single forward pass.

to produce diverse outputs matching the original model’s distribution, but it becomes inefficient
as the sampling temperature increases. If the draft model is identical to the original and uses
greedy decoding, all outputs will be accepted, which is desirable. However, at high temperatures,
the independent sampling of draft and original models leads to a high probability of misalignment
between distributions of the draft and original model, which leads to unjustified rejection of drafts.

In contrast, typical acceptance leverages the prediction probabilities from the original model to
select plausible candidates that are not highly improbable. Typical acceptance is based on 2 key
insights:

1. Tokens with relatively high probability are usually meaningful.

2. When entropy is high, diverse plausible continuations should be accepted.

This method sets an acceptance threshold based on the probability distribution of the original
model. Specifically, a candidate sequence xn+1:n+K+1 given input sequence x1:n is accepted if:

po(xn+k | xn+1:n+K+1) > min(ϵ, δ exp(−H(po(· | x1:n))))

where po is the probability generated by the original LLM, ϵ, δ are hyperparameters provided by
the user, and H(·) is the entropy function.

After the forward pass of the original LLM, the first token is verified using greedy decoding and
hence, always accepted. Subsequent tokens are evaluated using the typical acceptance criterion.

4.5.3 Candidate Acceptance
Based on the outcomes of the verification stage, the longest accepted candidate is chosen as the
final correct continuation and added to the output sequence. The corresponding guess tokens are
saved for the next decoding step. The KV cache is then updated to reflect the state of the current
output sequence. For instance, candidate 2 is accepted in Figure 4.10. The new output sequence
will be "D E F" while the guess tokens are "G H". Note that ’F’ is accepted despite not being
verified because it is generated from a correct continuation. The KV cache now contains the keys
and values of "D E F".
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Algorithm 3 Exact Matching Verification
1: Given candidate continuations c1...cK , target model Mt

2: Initialize Set accepted← {}
3: In parallel, pass the candidates c1...cK to Mt and obtain K output sequences s1, ..., sK
4: for k = 1 to K do
5: for l = 1 to K + 1 do
6: Let the sequences of token for ck be cseq1:lk where lk is the length of the sequence
7: Let the sequences of token for sk be tseq1:lk where lk is the length of the sequence
8: if cseq2:lk == tseq1:lk−1 then
9: Add ck to accepted

10: end if
11: end for
12: end for
13: return accepted

4.5.4 Custom KV Cache Implementation
PPD requires a different implementation of the KV cache compared to conventional inference. In
conventional inference, the KV cache is simply appended to, whereas PPD needs to modify the
KV cache. This is because, during the forward pass of the LLM, the key and value states of guess
tokens are also added to the KV cache, but only a subset needs to be retained.

The Hugging Face implementation of the KV cache uses a list of tensors. However, a list
is not optimized for parallel modifications. Therefore, we preallocate a tensor with an additional
dimension to serve as the KV cache. Modifications can then be efficiently performed using advanced
indexing of the tensor. The tensor is kept on GPUs, while its metadata, such as cache length, is
kept on the CPU for maximum efficiency. We optimize performance by pruning the KV cache at
the conclusion of each decoding step rather than right after each attention computation, thereby
reducing read/write overhead.
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Chapter 5

Dynamic Sparse Tree

In this chapter, we explore the use of customized tree attention during inference and introduce a
hardware-aware dynamic sparse tree to optimize the effectiveness of PPD . We adapt the shape
of the Dynamic Sparse Tree based on hardware constraints and optimize the prediction power of
PPD . By formulating a constrained optimization problem, we propose a systematic solution to
maximize the expected acceptance length.

5.1 Top-k Candidate

In Chapter 4, we discuss candidate generation, where only the most probable candidate at each
position is used. However, to leverage the entire probability distribution predicted by a prompt
token, the top-k most likely tokens can be selected as candidates for a single position. Previous
studies [11] have found that sampling multiple candidates leads to increased acceptance lengths
during decoding. Hence, during inference, PPD selects multiple candidates from a single prompt
token. As shown in Figure 5.1, three guess tokens are derived from a single prompt token, and if
any of the three tokens are accepted, a correct prediction is achieved at this position.

Figure 5.1: Top-3 candidate prediction. ’E’, ’D’, ’F’ are the top-3 tokens predicted from ’S1’ while
’X’, ’Y’, ’Z’ are the top-3 tokens predicted from ’S2’.

5.2 Tree Attention

The top-k candidate generation results in a tree-structured input for verification, as shown in
Figure 5.2. In this candidate tree, each node corresponds to a possible valid candidate continuation.
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For instance, the node ’B’ in Figure 5.2 represents the continuation "A B". Nodes at the same
depth are generated from the same prompt token at a specific token distance. For example, nodes
’B’ and ’b’ at depth 1 are the top-2 predictions from the prompt token at 1 token distance. For
verification, the candidate tree is flattened in a level-by-level order and passed to the LLM. The
resulting logits are then used to decide the accepted candidate based on either exact matching or
typical acceptance.

Figure 5.2: Tree-structured input. ’A’ is an accepted token. ’B’ and ’b’ are the guess tokens derived
from the top-2 predictions of a prompt token at a 1 token distance. ’C’ and ’c’ are the guess tokens
derived from the top-2 predictions of a prompt token at a 2 token distance. The linearized input
sequence for this tree is "A B b C c C".

However, the increased number of candidates leads to computational overhead. To minimize
the computation demands, PPD utilizes a specialized tree attention to process multiple candidates
within a single decoding step efficiently, similar to other parallel decoding methods [11, 13]. In tree
attention, input tokens are organized into a tree structure, with each node representing a token,
and each path corresponding to a candidate sequence. A token attends only to its ancestors and
itself, with the attention mask adjusted accordingly. Nodes at the same tree depth i correspond
to the top-k predictions of the ith prompt token. This structure enables parallel processing of
multiple candidates without expanding the batch size.

Figure 5.3: Full Sparse Tree vs Dynamic Sparse Tree.

5.3 Full Sparse Tree: A Naive Implementation
Various tree structures have been proposed [76, 11, 70]. In particular, PPD employs a sparse
tree [11, 70], designed to be unbalanced to prioritize candidates with higher prediction accuracy.
One key distinction from the sparse tree used in previous work is the appending of a sequence
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of prompt tokens to each tree node as shown in Figure 5.3. Due to the hardware constraint,
the size of the sparse tree, which is the sum of candidate nodes and prompt token nodes, must be
limited to prevent significant forward pass latency overhead. Therefore, to maximize the amortized
acceptance length across the decoding steps, a careful balance between these two types of nodes is
essential.

The acceptance length of the current decoding step increases with the number of candidate
nodes. On the other hand, the maximum tree depth for the next decoding step is equal to the
number of prompt tokens at the currently accepted candidate node, as each tree level directly
corresponds to an individual prompt token. Each decoding step accepts precisely one candidate
path, corresponding to a single candidate node; in the worst-case scenario, the root node - which
represents the one predicted token from the original LLM - is guaranteed to be accepted.

A straightforward solution is to append the maximal number of prompt tokens to each candidate
node in the sparse tree. This solution is simple to implement, and we call it the Full Sparse Tree
method. The left figure in Figure 5.3 shows an example of a full sparse tree.

5.4 Dynamic Sparse Tree: Be Hardware-Aware

Despite its simplicity, the Full Sparse Tree method suffers from inflexibility and limited adapt-
ability to hardware with restricted computational resources. To address these issues, we propose
the Dynamic Sparse Tree method, which adapts the tree shape based on the available hardware
resources. Instead of appending a uniform number of prompt tokens to every candidate node, we
allocate them based on each candidate’s probability. This approach is based on the observation
that candidates are accepted at different probabilities; thus, reducing the number of prompt to-
kens for less likely candidates can maximize the overall number of tree nodes. Consequently, the
maximum depth of the tree varies with each decoding step, making the sparse tree dynamic, as its
structure changes each step based on the number of prompt tokens at the accepted candidate.

A dynamic sparse tree consists of multiple trees with different maximum depths for candidate
tokens. The right figure in Figure 5.3 illustrates an example of a dynamic sparse tree with a total
of 2 trained prompt tokens. For each candidate token, we append either 1 or 2 prompt tokens. At
least one prompt token is appended to each guess token to ensure there are guess tokens generated
at this decoding step. The maximum number of prompt tokens appended is equal to the total
number of prompt tokens trained. In this example, for the dynamic sparse tree at a maximum
depth of 2, if the continuation "A B C" is accepted, then the dynamic sparse tree at the next
decoding step will have a maximum depth of 1 since the corresponding candidate token has only
1 prompt token. On the other hand, all possible continuations for the dynamic sparse tree at a
maximum depth of 1 lead to a maximum depth of 2 in the next decoding step because all candidate
tokens have 2 prompt tokens appended.

5.5 Customized Attention Mask for Tree Attention

During inference, we linearize the dynamic sparse tree into 1 input sequence. To preserve the tree-
structured visibility during attention calculation, we adopt a customized attention mask. Unlike
the default causal attention mask which has a triangular shape, our customized attention mask
has a special shape that depends on the tree structure as shown in Figure 5.4. As the dynamic
sparse tree adjusts its shape, the attention mask also changes correspondingly.

5.6 Construction Algorithm for Dynamic Sparse Tree

5.6.1 Problem Formulation

We aim to construct a dynamic sparse tree which maximizes the amortized number of tokens
generated with a limit on the number of candidate nodes and prompt token nodes. We first define
the tree construction algorithm as a constrained optimization problem and then propose a pruning
algorithm to solve it.

Definition 5.6.1. Let m be the maximum number of prompt tokens. The dynamic sparse tree T
can exist in m distinct states, each denoted by Tk for the kth state sk. Define C(Tk) as the subtree
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Figure 5.4: Customized Attention Mask for the Dynamic Sparse Tree from Figure 5.3 at max
depth=2. "p{k}" refers to the prompt token with the label "k". Yellow block means the token is
visible while purple block means the token is invisible.

of Tk consisting only of candidate nodes, excluding any prompt token nodes. The maximum depth
of subtree C(Tk) is k.

Proposition 5.6.1. For a dynamic sparse tree state Tk with candidate nodes v, where each v
follows a path Path(v) from the root, and the acceptance probability pk at each path position k,
the expected number of tokens f(Tk) generated is given by:

f(Tk) =
∑

v∈C(Tk)

∏
i∈Path(v)

pi

where
∏

i∈Path(v) pi represents the contribution of node v to the expected number of tokens.

5.6.2 Solve the Optimization Problem
We then propose an approximation of the amortized number of tokens generated by considering
the tokens generated at the current and the next decoding step.

Proposition 5.6.2. The expected total number of tokens F (Tk) generated for the dynamic sparse
tree state F (Tk) at the current and the next decoding step is given by:

F (Tk) = f(Tk) +

m∑
i=1

p(si|sk)f(Ti)

where p(si|sk) represents the state transition probability from state sk to state si.

We are now ready to introduce Proposition 5.6.3, which we use in the pruning algorithm.

Proposition 5.6.3. For a dynamic sparse tree state Tk with candidate subtree ck = C(Tk), the
change in expected total tokens F (Tk) due to the removal of a prompt token at candidate node c
is given by:

∆F = p(c) · (f(Ti)− f(Ti−1))

where p(c) is the acceptance probability of candidate c, i denotes the number of prompt tokens
prior to removal. We assume that i > 1.

To construct an approximately optimal dynamic sparse tree with specified numbers of candidate
and prompt token nodes, the process includes:
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1. Optimal Candidate Trees: Constructing trees using only candidate nodes at varying
depths, employing the algorithm from Medusa [11] and Sequoia [70] to maximize f(Tk) as
stated in Proposition 5.6.1.

2. Appending Prompt Tokens: Attaching the maximum allowable prompt tokens to each
candidate node from the first step.

3. Greedy Removal of Prompt Tokens: Removing prompt tokens greedily to minimize ∆F
(Proposition 5.6.3), continuing until the desired prompt token count is reached.

We now introduce the formulation of the real amortized number of tokens generated.

Proposition 5.6.4. The amortized number of tokens R(Tk) generated for the dynamic sparse tree
state F (Tk) is given by:

R(T ) =

m∑
i=1

p(si)f(Ti)

where p(si) is the steady-state probability of state si, and f is the function defined in Proposition
5.6.1.

5.6.3 Hardware-Aware Tree Construction
All the probabilities used in above can be approximated on a validation dataset. The dynamic
sparse tree construction algorithm can now be formulated as finding the dynamic sparse tree T
with nc candidate tokens and np prompt tokens to maximize R(T ):

c(nc, np) = max
T,|C(T )|=nc,|T |=nc+np

R(T )

For a fixed tree size n, we explore all combinations of nc and np where n = nc +np, to identify
the dynamic sparse tree that maximizes R(Tk). To determine the optimal tree size n, we define
two key functions:

1. Acceptance length τ(n) (hardware-independent),

2. Forward pass latency Lfp(n) (hardware-dependent).

The theoretical speedup ratio for a tree of size n is given by:

Speedup(n) =
τ(n)

Lfp(n)

Both functions are approximated using a validation dataset. Notably, function 1) requires a single
evaluation, whereas function 2) needs evaluation on each type of hardware. We then find the value
of n that maximizes Speedup(n).
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Chapter 6

Experiments

In this chapter, we evaluate PPD across diverse benchmarks using a range of performance metrics.
Through extensive experiments across LLMs from MobileLLaMA to Vicuna-13B, PPD achieves
notable speedups of up to 2.49x, while maintaining an exceptionally low runtime memory overhead
of just 0.0004%. Additionally, we demonstrate that PPD achieves 28% higher prediction accuracy
and exhibits strong synergistic capabilities with other speculative decoding methods.

6.1 Evaluation Setup

6.1.1 Models and testbeds
We conducted all the experiments using MobileLLaMA-1.4B [14], Vicuna-7B and Vicuna-13B [15].
We used 3 prompt tokens and 1 EPT per prompt token for all inference experiments. The inference
throughputs of the models are evaluated on a single NVIDIA A100 GPU with 40GB of memory
and a GeForce RTX 4090. Previous parallel decoding methods test the inference throughput using
a batch size of 1 [11, 78] so we followed the same setting for inference. For the baseline models,
we chose the Huggingface’s implementation of Vicuna models and the leading parallel decoding
methods including Medusa [11], LOOKAHEAD DECODING [78], REST [12], and PLD [81].

6.1.2 Training
All the trainable parameters of the original LLM were frozen. The v1.3 versions of the Vicuna
models (7B, 13B), fine-tuned from Llama-2 models with a sequence length of 2048, were utilized.
During training, we used 4-bit quantized LLMs. For both models, the embeddings of the prompt
tokens were trained using the distillation logits from the ShareGPT dataset [82] over two epochs.
We used a batch size of 4, a maximum context window length of 1024, a cosine learning rate
scheduler, and an initial learning rate of 0.01, without any warmup steps. The batch size, initial
learning rate, and warmup steps are determined through a preliminary, albeit not exhaustive,
hyperparameter search. The maximum context window length is chosen based on GPU memory
constraints and training time considerations. We used the Accelerate framework for distributed
training [83]. We trained 3 special tokens and set the decay ratio to 0.8. We found that, given
the limited tree size and the tree construction algorithm used, utilizing more than 3 special tokens
does not further contribute to the expected acceptance length. The decay ratio follows the setting
of Medusa [11]. We initialize the embeddings of the prompt tokens with the normal text token
embeddings.

6.1.3 Datasets
We assess the throughput performance of PPD across various tasks and datasets. Specifically, we
evaluated PPD using the MT-bench dataset [84] in both non-greedy and greedy settings (temper-
ature=0), applying the same temperature values as those found in the default MT-bench config-
uration. MT-bench features a diverse collection of 80 multi-turn questions designed to evaluate
various aspects of language model performance. MT-bench contains manually crafted challenging
questions to differentiate model performance across common use cases. The questions are cate-
gorized into 8 topics, including writing, roleplay, extraction, reasoning, math, coding, stem, and
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Figure 6.1: Comparative evaluation of throughput speedup between PPD and other parallel decod-
ing methods. The experiments were conducted using the MT-Bench dataset, with the temperature
set to MT-Bench’s default configuration for Medusa and PPD . We found that PPD is the best-
performing parallel decoding methods in terms of wall-time speedup ratios, which is one of the
most exciting results in this report.

humanities. This comprehensive set of categories ensures a thorough assessment of the model’s ca-
pabilities across different types of interactions and tasks. We used the GSM8K [85] and HumanEval
[4] datasets only in the greedy setting. The GSM8K dataset consists of grade school math prob-
lems, and we used the first 500 questions of the test split for our evaluations. HumanEval includes
coding tasks, for which we set a maximum new token limit of 512 to control the length of the
generated sequences. We used the Alpaca [86] dataset as the validation dataset to produce the
latency and accept lengths used for dynamic sparse tree construction.

6.1.4 Additional Experimental Details
For the throughput experiments, each result is obtained by averaging three separate runs. The
standard deviations of these runs are reported as error bars in the bar charts. To ensure a fair com-
parison in our comparative experiments, we maintained consistent hardware settings and software
versions.

We selected 3 prompt tokens because adding more would not further increase the expected
acceptance length due to the tree size limit. The number of EPTs per prompt token was optimized
to maximize throughput.

In Fig. 1.2, the temperature settings for PPD , Eagle [16], and Medusa [11] follow the default
configuration, while the other models use a greedy setting (temperature=0). This choice is based on
findings that retrieval-based methods perform significantly worse in non-greedy settings. Similarly,
LOOKAHEAD DECODING [78], REST [12], and PLD [81] in Fig. 6.1 also use a temperature setting of
0 for the same reasons.

6.2 Speedup Ratios Compared to Other Parallel Decoding
Methods

We compare the speedup ratios and other performance metrics of PPD with leading parallel
decoding methods on MT-Bench in non-greedy settings in Figure 6.1 and Table 6.1. PPD achieves
throughput up to 7.3% higher than Medusa while maintaining the same output quality, achieving
about the same score on MT-Bench. The memory overhead of PPD is negligible, primarily because
it arises solely from additional embeddings, which are insignificant compared to the original model
size. The reasons for the increase in speedup ratios are two-fold. Firstly, PPD produces candidate
tokens with a higher acceptance rate than Medusa when utilizing a sparse tree of the same size.
Notably, PPD continues to achieve a comparable or slightly better acceptance rate even when
employing a much smaller sparse tree – ranging from one-third to half the size. Secondly, PPD
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benefits from lower forward pass latency due to its ability to use smaller sparse tree sizes and hence
shorter input lengths. PPD also eliminates the computational overhead associated with separate
decoding heads. The speedup improvements are particularly pronounced in the Vicuna-7B models,
likely because the larger forward pass latency in the Vicuna-13B models hides the computational
overhead introduced by Medusa heads.

Model Method T τ Lfp (s) Quality Ptr (%) Str Sinput

M Vanilla 50.2 1.00 0.020 - NA NA 1
PPD 108.7 2.43 0.022 Same 4.50e−4 (10,84,89) (40,285,285)

V-7B
Vanilla 39.2 1.00 0.026 5.99 NA NA 1
Medusa 82.0 2.51 0.0307 5.98 8.07 63 63
PPD 88.0 2.54 0.029 5.93 1.82e−4 (10,33,34) (40,105,105)

V-13B
Vanilla 30.4 1.00 0.0330 6.38 NA NA 1
Medusa 63.4 2.59 0.0408 - 5.52 63 63
PPD 66.1 2.44 0.0379 6.32 7.87e−5 (10,20,20) (40,60,60)

Table 6.1: Comparative performance metrics of MobileLLaMA (M) for greedy setting, Vicuna-
7B (V-7B) and Vicuna-13B (V-13B) for non-greedy setting using different decoding methods. The
table details throughput (T in tokens/s), average accept lengths (τ in tokens), forward pass latency
(Lfp in seconds), quality scores on MT-benchmark, percentages of additional trainable parameters
(Ptr) and input lengths (Sinput) after the prefilling phase. PPD employs a dynamic sparse tree
with variable tree sizes (Str), represented as tuples. Same means the output matches with that of
the original LLM.

Figure 6.2 displays the throughput of PPD on MT-Bench, HumanEval, and GSM8K with
temperature equal to 0. PPD achieves consistent wall-time speedup ratios from 2.12× to 2.49× on
different GPUs. In general, PPD performs better in coding and math reasoning tasks, achieving
speedups between 2.21× and 2.49×. This can be attributed to the fact that both code and math
equations often contain fixed patterns and repetitive symbols, which narrows the range of plausible
candidates and simplifies the prediction. We also found that with typical acceptance, the speedup
increases with temperature. Another notable trend is that the speedup ratios for larger models, like
Vicuna-13B, are limited as compared smaller models. This observation echoes the results presented
in LOOKAHEAD Decoding [78]. Both PPD and LOOKAHEAD Decoding aim to generate more
tokens per step at the expense of increased computation. For larger models, which require more
computational resources, the size of the sparse tree must be limited to avoid the increased latency
that results from reaching the GPU’s utilization cap. Consequently, the acceptance lengths per
step are reduced, resulting in lower speedups. One potential solution is to insert the prompt tokens
only at the final few decoder layers, a strategy we plan to explore in future work.

6.3 Long-range Token Prediction

For a specific sparse tree, the accumulative accuracy provides a theoretical upper bound for the
number of generated tokens per step and the maximum possible speedup ratio. Hence, maximizing
accumulative accuracy is crucial for the effectiveness of PPD . Figure 6.3 demonstrates the accu-
mulative accuracy of the tokens predicted at various positions. We summarize the following three
key insights from the results.

PPD excels at predicting more distant tokens. As depicted in Figure 6.3a, PPD con-
sistently outperforms Medusa in accuracy across all token positions. The accuracy gap between
PPD and Medusa widens with the increased distance from the last prompt token (e.g., the top-10
accuracy difference is 0.01 for the ‘next next’ word versus 0.1 for the ‘next next next next’ word).
This improvement can be attributed to PPD ’s ability to partially recover conditional dependency
information through causally connected prompt tokens.

PPD performs well at generating a broader array of plausible token candidates.
For example, in predicting the token at position 3, the top-10 candidates exhibit an accuracy
improvement of 0.1 over Medusa, compared to only 0.02 for the top-1 candidate. This demonstrates
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Figure 6.2: Throughput of PPD and vanilla models across different tasks. The temperature for
experiments are set to 0 and the generated output of PPD exactly matches that of the original
LLM. We do not show results of Vicuna-13B on RTX 4090 as it does not fit into the GPU memory.

the value of using tree attention and the largest viable tree size during inference, as multiple
candidate continuations further boost accuracy improvement.

Multiple EPTs per prompt token and larger model sizes yield modest improvements
in prediction accuracy. Figure 6.3b shows that using 100 EPTs per prompt token leads to
accuracy improvement, ranging from 0.018 to 0.044. This highlights the need to optimize the
number of EPTs to balance accuracy gains with computational costs. Figure 6.3c displays that PPD
with Vicuna-13B outperforms Vicuna-7B with an accuracy gain of 0.011-0.034. This increase is due
to Vicuna-13B’s greater embedding dimensions and deeper layers, which enhance the expressive
power of prompt tokens. However, these gains are modest and can be offset by the increased
computational burden of larger model.
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Figure 6.3: Accumulative accuracy comparisons across different model configurations and predic-
tion distances. ‘V7’ for Vicuna-7B, and ‘V13’ for Vicuna-13B. The notation ‘@i’ refers to a token
distance of i. ‘100 EPT’ represents 100 EPTs per prompt token. Accumulative accuracy is defined
as top-k accuracy (e.g., a prediction is correct if the top-k candidates contain the ground truth).
These measurements were obtained from the Alpaca Eval dataset with a maximum of 20 steps.
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6.4 Inference Memory Efficiency and Synergistic Integration

6.4.1 Memory efficiency

The memory overhead of PPD is just 0.004% of Medusa’s and 0.007% of speculative methods like
Eagle. This efficiency arises from using embeddings, which are significantly smaller than decoding
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heads and draft models, both of which scale with vocabulary size. As depicted in Figure 6.4,
PPD utilizes approximately the same amount of memory as the vanilla model, whereas speculative
decoding and parallel decoding methods incur significantly more noticeable memory overhead.

6.4.2 PPD + Speculative Decoding

PPD can be easily integrated with speculative decoding [87] to speed up the draft model using
prompt tokens. We applied PPD to Vicuna-68M [88] and used it as the draft model for Vicuna-
7B. This combination resulted in a speedup of up to 1.22× for speculative decoding on Vicuna-7B
compared to using speculative decoding alone.

6.5 Comparison of Throughputs on Different GPUs

In this section, we evaluate the performance of PPD on 2 different GPUs to gain insights into its
scalability. Table 6.2 compares the throughput of PPD between the A100 and RTX 4090 GPUs
across different tasks. For all tasks where data is available, the RTX 4090 shows higher throughput
than the A100. The throughput ratio (4090 over A100) ranges between 1.15 and 1.30, indicating
that PPD on the RTX 4090 is consistently faster.

A100 4090 4090
Task Model Throughput Throughput Faster By

(tokens/s) (tokens/s) (times)
Multi-turn Dialogue MobileLLaMA 108.7 141.6 1.30
Multi-turn Dialogue V-7B 86.1 102.5 1.19
Multi-turn Dialogue V-13B 64.1 - N/A

Coding MobileLLaMA 113.6 144.8 1.28
Coding V-7B 93.5 108.9 1.16
Coding V-13B 67.6 - N/A
Math MobileLLaMA 124.9 159.4 1.28
Math V-7B 91.5 104.7 1.15
Math V-13B 65.8 - N/A

Table 6.2: Comparison of Throughput of PPD between A100 and RTX 4090 across different tasks
and models. V-13B model does not fit into the memory of RTX 4090 so its results are not included.

The throughput improvement of the RTX 4090 over the A100 shows low variance across different
tasks, indicating a consistent performance advantage. However, the RTX 4090’s smaller memory
capacity limits its ability to handle larger models like the V-13B, which is a significant consideration
for high-end inference tasks. A possible solution is to partition the LLM on multiple GPUs for
training [89].

The difference in the performance can be partially accounted by the hardware architecture
differences. The RTX 4090 has a significantly higher number of tensor cores (512) and a higher clock
speed (2235 MHz) compared to the A100 (432 tensor cores, 1095 MHz clock rate), contributing
to the faster computation speed. Given that PPD trades computation for step compression, the
inference with PPD is likely to be compute-bound and have a high arithmetic intensity, which
could benefit more from the architectural features of the RTX 4090.

In conclusion, GPUs with more computational resources tend to achieve higher throughputs
with PPD , whereas GPUs with larger memory capacities offer advantages for inference with large
models.

6.6 Training Loss

We study the training loss of PPD with different EPTs and loss functions. When knowledge
distillation is applied, the loss function used is the KL divergence. Without knowledge distillation,
the cross entropy loss function is utilized.

Figure 6.5a and Figure 6.5c shows that, with 1 EPT, the initial loss is quite high, starting above
5. There is a sharp decrease in loss within the first epoch, dropping below 2. After this initial
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Figure 6.5: Training Loss. ’KD’ means the model is trained with knowledge distillation, while
’without KD’ means the model is trained with hard labels. All experiments follow the same
training hyperparameters.

drop, the loss stabilizes and oscillates around a value slightly below 2 for the remainder of the
training epochs (up to epoch 12). The loss oscillations remain within a narrow range, indicating
consistent performance. The fluctuation can be attributed to the insertion of prompt tokens at
random positions, while the initial sharp decrease is due to the prompt tokens quickly adapting to
reasonable embeddings.

On the other hand, Figure 6.5b and Figure 6.5d, with 100 EPTs, shows the initial loss starting
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below 3, significantly lower than PPD with 1 EPT. Similarly, there is a sharp decrease within
the first epoch, with the loss dropping to around 2.5. However, unlike PPD with 1 EPT, the loss
continues to decrease gradually over the epochs, showing a downward trend. Similarly, Figure 6.5e,
Figure 6.5f, Figure 6.5g, and Figure 6.5h show that with an increased number of EPTs, the final
training loss decreases and the magnitude of fluctuations diminishes. This suggests that increasing
the number of EPTs enhances the model’s learning capacity and more effectively reduces training
loss over time.

When comparing training with knowledge distillation to training without it, we found that
knowledge distillation helps stabilize the training process and also leads to lower training loss.
This can be attributed to the fact that knowledge distillation provides a smoother and more
informative training signal by leveraging the logits of the original LLM, aligning the prompt tokens
more effectively and preventing overfitting.

6.7 Comparison of Training of PPD with Medusa

In this section, we compare the training performance of PPD , with Medusa. Table 6.3 provides
a detailed comparison of the training performance between PPD and Medusa. We provide the
detailed analysis of each metric in the following discussion.

Method Ttr Mtr Tfp Tbp @1 Top-10 @2 Top-10 @3 Top-10
(minute) (MiB) (sec) (sec)

PPD 15780 18545 0.21 1.65 0.837 0.690 0.583
Medusa 8908 10163 0.18 0.83 0.784 0.567 0.431

Table 6.3: Comparison of Training Performance of PPD with Medusa. Both models are trained
for 1 epoch using 2 RTX 4090 GPUs with the same training hyperparameters. Ttr stands for the
total training time, Tfp for the time of one forward pass, and Tbp for the time of one backward
pass. Mtr represents the memory usage during training. @1 Top-10, @2 Top-10, and @3 Top-10
are the top-10 prediction accuracies on the evaluation dataset at the end of 1 training epoch at a
token distance of 1, 2, 3 respectively.

Training Time and Memory Usage. The total training time for PPD is significantly higher
(1.77 ×) than that for Medusa, with PPD requiring 15780 minutes compared to Medusa’s 8908
minutes. Additionally, PPD consumes more memory (1.82 ×) during training, with a usage of
18545 MiB, whereas Medusa utilizes 10163 MiB. This discrepancy in training time and memory
usage can be attributed to the different positions of the trainable components of PPD and Medusa
in the LLM. Specifically, PPD needs to train embeddings, which necessitates the computation
and storage of all intermediate gradients from the embedding layer to the last decoder layer. In
contrast, Medusa adds decoding heads at the end of the LLM backbone, so it only requires the
computation of gradients of the feed-forward layer in the decoding heads. Hence, PPD incurs
higher computational and storage overhead in training.

Forward and Backward Pass Times. Following the previous discussion, it is expected that
PPD takes a longer backpropagation time due to the increased gradient computation required.
Specifically, PPD takes 1.98 × longer for backpropagation. Additionally, it is worth noting that
PPD also requires a slightly longer forward pass time (1.16 ×), likely due to the extended input
length resulting from the insertion of prompt tokens. We discuss possible ways to reduce the
computational demand in Section 7.4.

Prediction Accuracy. Despite the higher training costs, PPD demonstrates superior per-
formance in terms of prediction accuracy. Across token distances of 1, 2, and 3, PPD achieves a
performance improvement range of 1.07 to 1.35 times over Medusa. These results indicate that
PPD demonstrates better prediction accuracy across different token distances, echoing our finding
in Section 6.3.

43



6.8 Ablation Study

6.8.1 Dynamic Sparse Tree
Figure 6.6a shows that dynamic sparse trees consistently achieve longer acceptance lengths com-
pared to static and random ones across varying sizes. The acceptance length for dynamic sparse
trees shows a steady increase as the tree size extends, suggesting its good scalability. The conver-
gence of dynamic and static sparse trees at larger sizes suggests a structural similarity emerging
from constraints in tree depth and tree node count.
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Figure 6.6: Evaluation of Dynamic Sparse Tree Performance. The static sparse trees in (a) always
use the largest possible prompt tokens for each candidate. The theoretical speedup in (b) is cal-
culated as the ratio of acceptance lengths (hardware-independent) to latency overhead (hardware-
dependent). The optimal tree size is obtained from the peak value of the theoretical speedup. The
latency in (b) is obtained from inference on the same prompt for 512 forward passes. (c) shows
the actual speedup obtained by running inference on different GPUs with different tree lengths on
Alpaca Eval dataset.

6.8.2 Hardware-aware Tree Size
Figure 6.6b presents the theoretical speedup across different GPUs. Figure 6.6c validates that the
optimal sparse tree size, derived from theoretical speedup models, indeed results in the greatest
actual speedup observed.

6.8.3 Effect of EPTs on Prediction Accuracy
Table 6.4 presents the prediction accuracy of PPD using different EPTs. The results indicate that
increasing the number of EPTs generally enhances the prediction accuracy of PPD, particularly for
long-range token predictions. Higher EPT numbers (e.g., 100 and 50) consistently produce better
prediction accuracy compared to lower EPT numbers.

44



EPT @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
100 0.506 0.794 0.276 0.602
50 0.502 0.791 0.281 0.604
20 0.501 0.791 0.276 0.607
10 0.494 0.786 0.273 0.600
5 0.499 0.787 0.265 0.596
2 0.486 0.777 0.259 0.583
1 0.472 0.771 0.248 0.576

Table 6.4: Prediction Accuracy of PPD with different EPTs. ’@i’ denotes a token distance of i.
’Top-k’ denotes the top-k prediction accuracy. The results are obtained on Alpaca dataset with 20
steps.

6.8.4 Impact of Various Hyperparameters on Prediction Accuracy
Table 6.5 summarizes our results with different settings. We analyze the effect of each factor on
the prediction accuracy in the following discussion.

EPT KD Epoch Batch @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
100 True 1 4 0.504 0.793 0.273 0.598
100 True 2 4 0.512 0.797 0.288 0.611
100 True 6 4 0.520 0.802 0.302 0.620
100 True 8 4 0.524 0.804 0.307 0.619
100 True 10 4 0.523 0.804 0.305 0.623
100 True 12 4 0.525 0.805 0.308 0.625
100 False 12 4 0.506 0.794 0.276 0.602
100 True 12 1 0.530 0.809 0.309 0.626
1 True 12 1 0.484 0.775 0.259 0.581
1 True 2 4 0.474 0.773 0.247 0.574
1 True 6 4 0.480 0.773 0.250 0.580
1 True 8 4 0.484 0.778 0.257 0.583
1 True 10 4 0.482 0.777 0.257 0.584
1 True 12 4 0.485 0.779 0.261 0.586
1 False 12 4 0.472 0.771 0.248 0.576

Table 6.5: Prediction Accuracy for PPD with and without knowledge distillation (KD) for different
EPTs, epochs and batch size.

Training Epochs

We first investigates the effect of the number of training epochs on prediction accuracy. For
models using 100 EPTs with KD enabled and a batch size of 4, we observe a steady improvement
in prediction accuracy as the number of epochs increases. Specifically, the Top-1 accuracy at 1
token distance increases from 0.504 at 1 epoch to 0.525 at 12 epochs, while the Top-5 accuracy
at 1 token distance improves from 0.793 to 0.805. Similarly, Top-1 accuracy at 2 token distance
increases from 0.273 to 0.308, and Top-5 accuracy at 2 token distance improves from 0.598 to 0.625
over the same range of epochs. This trend demonstrates the positive impact of prolonged training
on the performance of PPD when KD is applied.

Knowledge Distillation

When KD is not applied, as shown for 100 EPTs at 12 epochs with a batch size of 4, the performance
metrics are generally lower. The improvement on prediction accuracy with KD is up to 12%. This
suggests that KD contributes significantly to prediction accuracy for PPD .

Effect of Batch Size

We also examine the impact of batch size on the prediction accuracy. For the model trained with
100 EPTs, KD enabled, and 12 epochs, reducing the batch size from 4 to 1 results in a slight
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improvement in prediction accuracy up to 1%.

6.8.5 Prefix Tuning + Prompt Token

Table 6.6 compares the prediction accuracy of PPD with and without the application of prefix
tuning. The results show that the models without prefix tuning outperform those with prefix
tuning up to 28%, which suggests that, in this setup, prefix tuning does not enhance the prediction
accuracy of PPD . Instead, it appears to degrade performance, potentially due to the complexity
introduced by modifying the KV cache of attention layers with the prefix token. Unlike prompt
tokens, prefix tokens do not interact with input tokens, meaning they do not change dynamically
through the transformer layers based on the input context. This lack of interaction and dynamic
adjustment could be a factor contributing to the decreased prediction accuracy observed with prefix
tuning.

Prefix Tuning @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
False 0.485 0.779 0.261 0.586
True 0.412 0.738 0.204 0.541

Table 6.6: Prediction Accuracy of PPD with and without prefix tuning. 1 EPT is used for all
models and 1 prefix token is used for prefix tuning.

6.8.6 Custom Decoding Heads + Prompt Token

Table 6.7 presents the prediction accuracy of PPD with and without a custom decoding head.
When trained using the single-stage method, PPD with the custom decoding head shows a 12%-
21% decrease in prediction accuracy compared to the vanilla PPD without the custom decoding
head. This suggests that the single-stage approach does not result in stable or effective training.

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
PPD without custom decoding head 0.485 0.779 0.261 0.586
PPD with custom decoding head (1-stage) 0.385 0.614 0.229 0.482
PPD with custom decoding head (2-stage) 0.506 0.795 0.276 0.602

Table 6.7: Prediction Accuracy of PPD with and without custom decoding head. 1 EPT is used
for all models. 1-stage and 2-stage refer to the training strategies of custom decoding head.

In contrast, the two-stage training method results in a limited improvement of 2.1%-4.3% in
prediction accuracy compared to the vanilla PPD . This suggests that adding a custom decoding
head may not be necessary, given the additional trainable parameters and the limited improvement
in prediction accuracy.

6.8.7 Attention Masking for EPTs

The results in Table 6.8 indicate that the ensemble attention mask outperforms the other masking
strategies. In comparison, the PPD with decoder attention mask shows 4.9%-8.0% lower prediction
accuracy. The PPD with encoder attention mask also underperforms in prediciton accuracy relative
to the ensemble attention mask by 3.7%-7.2%.

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
PPD with ensemble attention mask 0.506 0.794 0.276 0.602
PPD with decoder attention mask 0.465 0.755 0.262 0.572
PPD with encoder attention mask 0.473 0.765 0.256 0.573

Table 6.8: Prediction Accuracy of PPD with different attention masking strategies for EPTs. 100
EPT is used for all models.

These results suggest that the ensemble attention mask is the most effective strategy among the
three, likely due to its ability to effectively average the votes of disjoint groups of EPTs, thereby
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improving prediction accuracy. The decoder-like and encoder-like attention masks, while simpler,
do not provide the same level of performance, indicating that the structure and specificity of
the ensemble attention mask better facilitate accurate long-range token prediction. Additionally,
ensemble attention masking is more sparse, which offers greater potential for optimization.

6.8.8 Aggregation Method for EPTs
The results in Table 6.9 show the prediction accuracy of PPD with two different aggregation
methods for EPTs: simple averaging and learned weights. When using learned weights to aggregate
logits, the model shows a slight decrease of 0.6%-9.4% in prediction accuracy.

Aggregation Method @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
Average 0.506 0.794 0.276 0.602
Learned Weight 0.503 0.779 0.250 0.576

Table 6.9: Prediction Accuracy of PPD with different aggregation methods for EPTs. 100 EPT is
used for all models.

These results suggest that while learned weights provide a more flexible aggregation method,
they do not necessarily lead to improved prediction accuracy in this context. The simplicity and
stability of the averaging method appear to offer better performance, possibly due to the additional
complexity and potential overfitting introduced by learning the weights.

6.8.9 Multi-exit Ensemble
Table 6.10 shows the comparison of prediction accuracy of PPD with and without multi-exit
ensemble. The results indicate that the introduction of multi-exit ensemble with both 2 and 3
exits results in a 7%-18% decrease in prediction accuracy compared to the vanilla PPD model
without multi-exit.

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
PPD without multi-exit 0.485 0.779 0.261 0.586
PPD with 3 exits 0.422 0.723 0.214 0.517
PPD with 2 exits 0.420 0.723 0.213 0.518

Table 6.10: Prediction Accuracy of PPD with and without multi-exit ensemble. 1 EPT is used for
all models. k exits refer to the number of exits used.

These findings suggest that the multi-exit ensemble approach, as implemented, does not enhance
prediction accuracy and instead leads to a notable decrease in performance. This may be due to
the averaging of hidden states from multiple layers introducing noise or reducing the specificity of
the representations needed for accurate prediction. Further refinement of the multi-exit ensemble
may be necessary to achieve the desired improvements in accuracy.

6.9 Summary
In this chapter, we demonstrate the effectiveness of PPD in terms of speedup, inference memory,
and synergistic power. We also identify its limitation in slower training time compared to adapter-
based methods. The extensions of PPD are examined in detail in the ablation study.
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Chapter 7

Conclusion

7.1 Summary

We introduced PPD , a memory-efficient, cost-effective, and powerful parallel decoding method that
incorporates a hardware-aware dynamic sparse tree. Utilizing specially trained prompt tokens to
predict long-range tokens accurately, PPD achieves a speedup of up to 2.49× in inference while
employing only 0.0002% trainable parameters compared to the total number of parameters and
without incorporating new models or architectural components. Our technique stands out for three
key features:

• Orthogonal Optimization: Orthogonal to speculative decoding, PPD provides the poten-
tial for synergistic integration.

• Memory Efficiency: With a minimal runtime memory overhead of just 0.0004%, PPD is
highly suitable for edge and mobile settings.

• Training Efficiency: The training process is efficient, requiring only 16 hours on a single
A100-40GB GPU.

We believe that PPD offers a novel perspective on the capabilities of parallel decoding. In future
work, it could be synergized with other speculative or parallel decoding techniques to expedite
inference even further.

7.2 Limitations

Despite its efficiency, we have identified the following limitations of PPD :

1. Low prediction accuracy for very small models. We found that for very small models
like Vicuna-68M [88], which only has 2 decoder layers and an embedding dimension of less
than 1000, PPD suffers from low prediction accuracy. This is because the embedding dimen-
sion determines the expressive power of a prompt token, and the transformer architecture’s
depth is crucial for efficient information flow to the prompt tokens.

2. GPU compute resource constraint. Since PPD trades additional compute resources
for increased throughput, its effectiveness depends on the availability of idle GPU compute
resources. On a GPU with limited compute resources, the speedup ratios achieved by PPD
are expected to decrease.

3. Extended input length. The improvement in acceptance length with PPD is not as
significant as the gain in prediction accuracy compared to Medusa. This is because PPD
must reserve a substantial portion of the input for prompt tokens, which limits the size of
the sparse tree that can be used.
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7.3 Ethical Issues

In this paper, we proposed PPD to accelerate LLMs easily and cheaply. Since PPD reduces the
time required for handling a single inference request, it could bring down the cost of deploying
LLMs for both the companies and the public. This might lead to increased accessibility of LLM
services. Moreover, latency-sensitive applications like chatbots will benefit greatly from the usage
of PPD as it reduces the inference latency greatly, providing better use experience.

While PPD aims to make AI more accessible, there may still be a digital divide where cer-
tain communities lack the necessary infrastructure, such as stable internet connections or modern
hardware, to fully benefit from these advancements. This could further widen the gap between
technology-privileged and underserved populations. On the other hand, PPD might be misused
by malicious parties to manipulate the output of the original LLM, resulting in the generation of
unreliable information and fake data.

While the project does not involve human participants, it does involve human-provided data.
The dataset used for fine-tuning, shareGPT, comes from users who voluntarily contribute their
data. In this training dataset, all conversations are anonymised, conforming to the regulation
of GDPR. In the wider context of chatbots, problems like performance disparities between de-
mographic groups and social stereotypes might exist. However, since the project focuses on the
acceleration of LLM inference, it is not directly related to these issues.

7.4 Future Work

PPD has shown great promise in accelerating LLM inference in a cost-effective and memory-
efficient manner. It also demonstrates strong synergistic potential with fine-tuning methods across
various domains. Below, we discuss several possible directions for future work.

7.4.1 Further Reduce the Training Cost

Although PPD generally requires much less training time than speculative decoding methods, it
does not have a strong advantage over other parallel decoding methods in terms of training cost.
Efforts can be made to further reduce the training cost of PPD . For instance, Test-Time Prompt
Tuning [90] proposes optimizing the prompt at test-time, a methodology that could be applied to
PPD in a zero-shot manner, eliminating the training phase entirely. Observations indicate that
the training loss of PPD rapidly decreases to a stable value within the first few training samples,
suggesting that it does not require a large amount of data to provide reasonable predictions.
Another approach is to train PPD for fewer epochs and periodically adapt the prompt tokens at
test-time.

7.4.2 Minimize the Computational Overhead

While PPD accelerates LLM inference by compressing the steps in autoregressive generation, it
introduces computational overhead and additional latency for each decoding step. Given that this
overhead increases with model depth, we could strategically select where in the LLM to insert
prompt tokens. Speculative Streaming [91] suggests that embeddings need not be inserted at the
start of the LLM. Instead, adding embeddings at one of the middle or last layers could reduce
computation. The hidden states of input tokens may carry more contextual information and
meaningful representation in the last few layers, making the interaction of prompt tokens with
input tokens more significant in these layers. This late-entry approach can lead to faster inference
and training. Another alternative is to early-exit the hidden states of the prompt tokens if they
already incorporate meaningful information.

Although multi-exit ensemble methods did not yield positive results in our preliminary experi-
ments, they could potentially be enhanced with learned weightings and other advanced techniques
to improve performance.

In our proposed construction algorithm for dynamic sparse trees, we currently prioritize empir-
ical hardware latency as the primary constraint. In future work, we aim to incorporate more exact
measures like the Floating-point operations per second (FLOPS) into our optimization framework,
thereby solving the optimization problem under a limited FLOPS budget.
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7.4.3 Marry Acceleration with Downstream Task Customization
This report primarily examines the application of PPD for accelerating LLM inference while main-
taining the original model distribution. In different contexts, however, preserving the original
LLM’s distribution may not be necessary or even desirable. For instance, there might be scenarios
where customizing the LLM for a specific downstream task is more beneficial. By employing al-
ternative acceptance schemes or verification strategies, PPD can be effectively utilized to modify
the model distribution while achieving accelerated inference.

7.4.4 Combination of PPD with Other Acceleration Methods
Our preliminary attempts have demonstrated that PPD can synergize effectively with speculative
decoding methods to achieve enhanced acceleration. To further increase throughput, we propose
developing a unified framework that integrates PPD with other speculative methods. A critical
challenge will be designing a specialized attention mechanism to efficiently integrate the draft trees
of PPD with that of the speculative decoding methods.

In addition, PPD can benefit from enhancements such as KV compression, low-precision quan-
tization, cascade inference, or batch processing. Exploring the intersection of these acceleration
techniques presents a rich area for future research. Particularly promising is the combination of
PPD with KV compression, given its potential to optimize the size of the KV cache and increase
idle compute resources.
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