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Abstract

Congenital heart defects (CHDs) are the most prevalent birth anomalies that significantly
impact infant health, with adverse outcomes such as disability and even death. However,
prenatal detection in the UK remains low at 54%. We propose a deep-learning pipeline for
robust image analysis from ultrasound data to enhance neonatal prognosis. We demon-
strate the anatomical significance of the spine and introduce a novel blob-based method
for its localisation. Our pipeline uses a plane detection model to extract cardiac views and
performs semantic segmentation to predict the spine point. The spine serves as a landmark
for automated extraction of established features like the cardiac axis and a novel metric
- the angle between the aorta and duct vessels. We correlate these features with congen-
ital heart diseases using logistic regression to effectively detect anomalies. Our pipeline
achieves a notable accuracy of 90% in diagnosing Tetralogy of Fallot and 60% for Transpo-
sition of Great Arteries on held-out clinical data, surpassing the current clinical detection
rate. These results emphasise the value of cardiac biomarkers and the efficacy of deep
learning models for prompt detection of CHDs, leading to improved fetal outcomes.
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Chapter 1

Introduction

1.1 Motivation

Congenital heart diseases represent the various anomalies present at birth that affect nor-
mal cardiac structures. They are a significant challenge in prenatal care as they are the
most prevalent anomaly and a leading cause of perinatal mortality. In 2021, CHDs ac-
counted for 4.9 deaths per 10,000 live births in the UK, with 3.2 occurring within the first
month of life [1]. Timely diagnosis can enable prompt intervention, improving neonate
prognosis and helping parents make informed decisions about their child’s treatment [2].

The interpretation of a routine fetal ultrasound taken in the second trimester of pregnancy
should allow clinicians to detect up to 80% CHDs prenatally [3]. Despite this, diagnosis
occurs in only 54% of affected fetuses, contributing to 12% of all infant deaths [4]. This
low detection rate could be due to technical challenges posed by variability in fetal position
and morphology, which may obscure the accurate detection of congenital anomalies.

Advancements in Artificial Intelligence (AI), particularly Deep Learning (DL), are revolu-
tionising the field of medical imaging by enabling thorough analysis of ultrasound scans.
DL models can automatically learn relevant features and patterns from diverse medical
images, significantly aiding radiologists in detecting and diagnosing various anomalies.
DL-based early disease detection has led to superior patient care by optimising clinical
processes and treatment pathways [5, 6]. However, despite these advancements, there has
been limited application of deep learning for diagnosing congenital heart diseases, likely
due to its lower prevalence and greater heterogeneity compared to other medical conditions.

In a developing fetus, the spine is one of the earliest structures and can serve as a landmark
for extracting key measurements. One such metric, the cardiac axis, has been established
to correlate with CHDs [7, 8, 9]. However, these studies rely on manual techniques for
angle measurement, which are prone to intra and inter-observer variability.

This variability underscores the need for standardised methods to compute ultrasono-
graphic markers and encourages the development of automated tools for ultrasound anal-
ysis. While there have been few deep-learning pipelines that have outperformed clinicians
in CHD detection [10], they primarily focused on using ultrasound images as input to pre-
dict disease status, neglecting the potential of utilising parameters that can be extracted
from these images. In our study, we aim to address this diagnostic gap, by proposing a
fully automated DL-based approach to analyse biomarkers such as the cardiac axis from
ultrasound scans for the early diagnosis of CHDs.
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Fetal ultrasound scans typically capture images of the entire body, but when studying
the heart, we want to focus specifically on views that depict cardiac structures. Extracting
these views, however, necessitates a certain level of expertise from the sonographer and is
a time-consuming process. We will streamline this by using a convolutional neural network
to identify standard cardiac views from ultrasound scans automatically.

To compute features from these identified planes, we will evaluate machine learning tech-
niques to identify the spine since we hypothesise that the location of the spine together
with the identification of cardiac structures hold enough information for robust detection of
disease. Semantic segmentation, a technique that delineates anatomical structures through
pixel-level classification, shows promise in this regard. However, we only have access to
limited annotated spine points. We further hypothesise that by converting these points
into blobs and using them as ground truth masks to train a supervised semantic segmen-
tation model, we can achieve approximate spine point localisation. Given that congenital
defects are characterised by structural deformities, we will use spine and fetal structure
labels to measure their relative sizes and use their centroids as reference points to study
spatial configuration (Section 3.2).

After selecting relevant planes and extracted features, we can perform clinically valuable
tasks like disease diagnosis. This can be framed as a binary classification problem, where
the fetus is either diagnosed with CHD or classified as healthy. Since input ultrasound
images may contain multiple cardiac views, we may detect multiple features per plane. In
such cases, we will aggregate the features to provide a more holistic and robust estimate
to the classifier. In our study, alongside the cardiac axis, we introduce a novel feature, the
vascular angle (Section 3.2.3), and explore its efficacy in disease classification.

The ultimate goal of this project is to deploy an end-to-end deep-learning pipeline for the
early detection of congenital heart diseases like hypoplastic left heart syndrome, transpo-
sition of the great arteries and tetralogy of Fallot. We hypothesise that integrating robust
image analysis methods will enable the development of a comprehensive machine-learning
solution for streamlined disease diagnosis. We will build this pipeline in a modular fashion,
allowing for the flexibility to incorporate and interchange various detection, segmentation,
and classification models. Figure 1.1 shows the flowchart of our proposed approach.

1.2 Clinical Collaboration

This project aims to further the advancements in fetal cardiac analysis using deep learning
in collaboration with esteemed institutions such as St. Thomas Hospital London and King’s
College London, through the iFind [11] research group. We hope to deploy a pipeline for
automatic analysis of ultrasound scans of fetal echocardiograms. We believe this will
reduce the need for highly experienced sonographers, whose expertise demands significant
time and resources for training, and facilitate early detection of potential congenital heart
diseases. Prompt detection and intervention for CHDs has proven to dramatically reduce
fetal mortality rates. Thus, the potential deployment of our model into the clinic provides
a tangible motivation for this project and fuels our passion for this research.

1.3 Contributions

• Development of an Automated Deep-Learning Pipeline: We built and eval-
uated a comprehensive deep-learning pipeline for the early diagnosis of congenital
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heart diseases, translating the AI concepts of multi-class classification, semantic seg-
mentation, and binary classification into clinically valuable processes (Figure 3.1).

• Improvement in Detection Rates: Our pipeline significantly surpassed the cur-
rent UK TOF detection rate of around 76.6%, achieving a remarkable 90.91% sen-
sitivity and 88.89% specificity on real clinical data in diagnosing Tetralogy of Fallot
across two disease subgroups (Section 4.3.2).

• Introduction of Novel Features: We utilised the less-explored 3VT and RVOT
planes for TGA diagnosis and introduced a new feature, the vascular angle (Section
3.2), to study the spatial alignment of the aorta and duct. We also measured the
sizes of the duct and aorta, naming it the DA ratio. Together, these features obtained
80.61% accuracy for TGA classification (Section 4.2.3). To our knowledge, both these
features have not been previously correlated with CHDs.

• Unique Spine Localisation Method: We established a new method for localising
the spine in ultrasound scans by converting spine points to blobs and then taking
their centroid (Section 3.2.1). This automated the measurement of valuable biometric
parameters like the cardiac axis, which uses the spine as a landmark.

• Collaboration with iFind Group: We containerized the code for our pipeline
(Section 3.6.3) and provided it to the iFind Group as a scalable and efficient tool. The
modular nature of this tool enables further refinement for various clinical applications
in fetal cardiac analysis from ultrasound data.

1.4 Challenges

• Data Limitations: Deep learning algorithms use datasets which often contain thou-
sands or even ten thousands of data points. We explore disease classification, facing
the challenge of limited or no labelled data specific to the targeted fetal cardiac con-
ditions. Annotation and labelling is a time-consuming and costly process, requiring
the expertise of medical professionals. Hence, we have adopted transfer learning to
overcome this constraint.

• Data Privacy Concerns: Our research involves medical image analysis of fetal
ultrasound data acquired from a fetal cardiology clinic. Privacy is a major concern
when dealing with sensitive patient data and the dataset we have used has been
anonymised to protect the identity of the volunteer. We have addressed ethical
concerns in Chapter 6.

• Multiple Data Formats: The medical images provided to us were of a wide range
of formats including DICOM, PNG, NPZ, and NIfTI, with some files containing
metadata that had to be incorporated to interpret its contents. We were able to
handle this efficiently using SimpleITK, an open-source image analysis toolkit, which
provides a comprehensive set of image readers and writers compatible with a wide
array of medical image formats.

• Clinical Adoption: The deep learning algorithms used to develop models that will
be integrated into clinics must be accurate and reliable enough to aid in making
informed decisions. Thorough evaluation of the algorithms are essential, along with
a means to provide reasoning behind the diagnosis [5].
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Figure 1.1: Flowchart of the Proposed Approach from Input Ultrasound Images to CHD
Diagnosis. Steps 2, 3, and 4 are performed for each input image. The features extracted
from all retained images are then aggregated to detect the disease.
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Chapter 2

Background

Artificial intelligence is an umbrella term encompassing a broad array of technologies used
to develop machines with human cognitive abilities. In medical settings, these technologies
have been leveraged for diagnostic purposes with evidence of outperforming healthcare
professionals.

This chapter highlights some of the requisite medical knowledge to understand the context
of our research including the interpretation of the dataset, following which, we explain
some of the fundamental concepts and methods that are revolutionising AI in healthcare.

2.1 Fetal Echocardiography

2.1.1 Medical Imaging

Medical imaging is defined to be the methods used in the visualisation of various tissues
and organs of the human body. X-ray, ultrasound, MRI and CT scanners are common
imaging modalities used to capture these visuals in the form of images or videos which
can then be interpreted by trained physicians to diagnose underlying conditions, detect
abnormalities and refer the patient to appropriate treatment. [12]

2.1.2 Ultrasound

An ultrasound (US), also referred to as a sonogram, is a medical test that generates real-
time pictures or videos of the interior of the body using high-frequency sound waves.
During pregnancy, a fetal ultrasound provides a means of monitoring the baby’s health by
analysing delicate structures such as the heart. It is often performed by a skilled sonog-
rapher using a transducer or probe which, when held in different positions, can capture
different anatomical cross-sections of the heart.

In England, the NHS offers at least two ultrasound scans during gestation, which take
place between 11 and 14 weeks and 18 and 21 weeks. As part of their Fetal Anomaly
Screening Programme (FASP) [13], the second scan examines the fetus for 11 physical
conditions including congenital heart diseases.

2.1.3 Congenital Heart Disease

Congenital heart disease represents the various anomalies present at birth that affect nor-
mal cardiac structures. The term "congenital" implies that the condition exists from birth
and is either hereditary or acquired during development in the uterus. 1 in 100 babies
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in the UK are born with a congenital heart disease, making it one of the most prevalent
congenital defects [14].

• Hypoplastic Left Heart Syndrome (HLHS): HLHS is a complex congenital
condition where the left side of the heart is underdeveloped, including the left ven-
tricle, aorta, and mitral valve, significantly affecting the normal pumping of blood
around the body. This condition causes lower-than-normal oxygen-saturation levels
in neonates which, when untreated, can result in fatal outcomes within the first hours
or days of life.[15]

• Transposition of the Great Arteries (TGA): As the name implies, TGA is a
heart condition characterised by the abnormal switch in positions of the two primary
arteries, the aorta and pulmonary artery, responsible for carrying blood away from
the heart. This disrupts the normal blood flow, causing the circulation of oxygen-
poor blood through the body. Thus, it poses a life-threatening risk, with a mortality
rate of 50% if left untreated within the first month of infancy [16]. In the UK,
prenatal diagnosis takes place in around 84.9% of affected infants.[17]

• Tetralogy of Fallot (TOF): TOF is a disease described collectively by four cardiac
alterations. The first is pulmonary stenosis, a constriction of the pulmonary valve
that restricts blood flow from the right ventricle to the lungs. This causes the right
ventricle to work harder, causing right ventricular hypertrophy, a thickening of its
muscle. Also, there is a large hole, referred to as the ventricular septal defect (VSD),
in the wall separating the ventricles. Finally, an overriding aorta, abnormally posi-
tioned, which allows some deoxygenated blood from the right ventricle to mix with
oxygenated blood from the left ventricle before reaching the body. While TOF is de-
tected antenatally in 76.6% of cases [18], it can lead to cyanosis (a bluish appearance
of the baby) during infancy due to insufficient oxygenation of the blood.[19]

2.1.4 Standard Views

Four-Chamber View

The Four-Chamber (4CH) view (Figure 2.1a) is the most common screening examination,
obtained through a transverse scan of the thorax and helps visualise the four chambers of
the prenatal heart through which blood circulates as follows[20]:

1. Right Atrium: It receives a mixture of oxygenated and deoxygenated blood.

2. Left Atrium: It receives oxygenated blood from the right atrium through a shunt
(foramen ovale). The two atria are observed to be of the same size in a normal fetal
heart.

3. Right Ventricle: It receives less-oxygenated blood from the right atrium and sends it
to the lungs to be oxygenated, with the majority being shunted through the ductus
arteriosus.

4. Left Ventricle: It receives oxygenated blood from the left atrium and passes it to the
aorta. In a healthy fetus, the ventricles are roughly of equal size.

Three Vessels and Trachea View

The mediastinum is the central region within the thorax that lies between the cavities
enclosing the lungs and holds vital structures such as the heart and its vessels, the trachea
and a network of nerves.
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The Three Vessels and Trachea (3VT) view (Figure 2.1d) is obtained through a transverse
scan of the upper mediastinum, providing a simultaneous view of the spatial depiction of
the arch formed between the aorta and duct along with their proximity to the trachea. It
also allows for the identification of the superior vena cava, thus completing the depiction
of all the major vessels in a developing fetus [21].

In a normal scan, the three vessels are arranged in a straight line in decreasing order
of their diameter from left to right:

1. Pulmonary Trunk (PT): It is the most anterior vessel, carrying blood deficit of oxygen
from the heart to the lungs. However, in fetuses, due to incomplete lung functionality,
blood in the pulmonary artery is shunted into the aorta via the Ductus Arteriosus
(Duct).

2. Aorta (Ao): It is an artery that lies in the centre and supplies the body with oxy-
genated blood.

3. Superior Vena Cava (SVC): It is a vein that is present posterior to the aorta and
brings oxygen-poor blood from upper parts of the body into the heart.

Left Ventricular Outflow Tract View

The Left Ventricular Outflow Tract (LVOT) (Figure 2.1b) is a muscular channel in the left
ventricle that transports blood outward and into the aorta. This view is acquired by angling
the transducer anteriorly towards the fetal right shoulder from the 4CH plane. The aorta is
visible in a normal heart, with its anterior wall extending from the interventricular septum.

Right Ventricular Outflow Tract View

The Right Ventricular Outflow Tract (RVOT) (Figure 2.1c) is the pathway through which
blood flows out of the right ventricle and into the pulmonary trunk. In this view, the
pulmonary artery, depicted to the left of the aorta, bifurcates into the Ductus Arteriosus
and the right pulmonary artery. The SVC is located to the right of the aorta.

Figure 2.1 illustrates how these views contribute to understanding fetal circulation.

2.1.5 Cardiac Angle

The cardiac axis is one of the basic morphological features of the fetal heart which describes
its rotational inclination within the thoracic cavity. [23] The thorax is divided into two
equal halves: the left (L) and the right (R), by a conceptual line extending from the
posterior spine to the anterior sternum (spinosternal line). Typically, the normal fetal
heart is situated predominantly on the left side, and its apex is oriented to the left at an
angle of 45°± 20° with respect to the longitudinal axis of the chest cavity. This angle is
referred to as the "cardiac angle."[24]

2.2 Deep Learning

Machine learning is a sub-field of AI that allows computers to make data-guided predictions.
These traditional algorithms, however, rely on structured data and human-guided pre-
processing. This limitation paved the way for deep learning, a branch of machine learning,
which unlocks the potential to harness unstructured data and automate feature extraction,
opening the doors to exciting applications across various industries.
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Figure 2.1: Labelled diagram of the fetal circulation showing the anatomical structures
described under the four cardiac views: 4-CH, 3VT, LVOT and RVOT illustrated below.
LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle;

(a) 4CH View (b) LVOT View

(c) RVOT View (d) 3VT View

Figure 2.2: Labelled diagrams of standard views in a fetal echocardiogram. The 4CH
view is obtained by an axial scan across the fetal chest. Tilting the probe from this view
towards the fetal head sequentially reveals the other views: LVOT, RVOT, and 3VT. L:
left; R: right; LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle;
D. Aorta: descending aorta; PA: pulmonary artery; RPA: right pulmonary artery; SVC:
superior vena cava; Source [22]
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Figure 2.3: (a) Grayscale 4-CH view ultrasound image (b) Cardiac position and axis where
LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle; dAo: descending
aorta; Source [24]

Figure 2.4: Sigmoid Function

2.2.1 Logistic Regression

Supervised learning is a sub-paradigm of machine learning which trains a model using la-
belled inputs along with their desired outputs. Logistic Regression is a supervised machine
learning algorithm that studies relationships between independent variables (features) and
a dependent variable (outcome). It uses the logistic (sigmoid) function to perform classi-
fication with range [0, 1], which is defined as:

σ(z) =
1

1 + e−z

where z denotes the sum of the products between features and model parameters:

z = w0 + w1x1 + w2x2 + . . .+ wnxn

For binary logistic regression, the output is dichotomous in nature i.e. it can have only
two possible values - 1 (positive) or 0 (negative). Setting the threshold to 0.5, the output
label is determined as:

Output =

{
1 if σ(z) ≥ 0.5

0 if σ(z) < 0.5

2.2.2 Semantic Segmentation

Semantic Segmentation is a computer vision task that aims at performing per-pixel clas-
sification, grouping pixels belonging to the same class. This has largely benefited medical
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image analysis by helping identify structures of anatomical interest. In this study, we
employ this technique to generate label maps of 4-CH and 3VT US scans, which are then
utilised for subsequent analysis.

2.2.3 Neural Networks

A neural network is a layered connection of neurons or nodes that mimics the intricacies of
the human brain, forming the core building block of deep learning. The smallest individual
unit of this network, the neuron, has the following components: [25]

• Input: These are the set of values or features from the dataset that the model receives
for training purposes. They are often passed as numerical representations of images
and other types of data in the form of pixel values.

• Weights: These are values associated with each feature to convey the influence that
feature has on the final output.

• Transfer function: This is also known as the summation function and is responsible for
introducing scalar multiplication between the inputs and their corresponding weights
and computing their sum.

• Activation function: This performs a non-linear transformation of the weighted sum
to enable the network to learn complex patterns.

• Bias: This shifts the result of the activation function by a constant amount.

A layer is an aggregated collection of neurons and multiple layers can be arranged sequen-
tially to create a multi-layer neural network. In deep learning, neural networks comprise
three types of layers:

1. Input Layer: This is the first (conceptual) layer of the network and simply passes
the raw data that we feed into the network to the latter layers without performing
any computation.

2. Hidden Layer(s): This layer is present between the input and output layers and is
often variable in number depending on the complexity of the task. Earlier hidden
layers usually learn simpler features from the data whilst latter layers are able to
identify more intricate patterns thus leading to hierarchical feature extraction.

3. Output Layer: This is the final layer of the network which returns the result or
output of the task.

A wide variety of neural network architectures can be produced by experimenting with
different numbers of layers, neurons, and types of activation functions used, providing it
with the capability of approximating any desired function.

2.2.4 Convolutional Neural Networks

Convolutional neural network (CNN), a powerful tool in computer vision, is a widely used
deep learning algorithm. Within healthcare, while medical imaging provides a means of
early detection and diagnosis of diseases, it has shortcomings due to human error and lack
of experienced technicians, which are overcome using CNNs. It has especially gained pop-
ularity due to its cutting-edge performance, at par with radiologists [27, 28]. These models
are capable of directly learning relevant features from grid-like data and are comprised of
three types of layers:
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Figure 2.5: Source [26]

Figure 2.6: Basic CNN architecture; Source [29]

1. Convolutional Layer: This layer uses a filter or a kernel to extract features from
the input image by performing a convolution operation. This operation produces a
feature or activation map.

2. Pooling Layer: This layer reduces the computational cost by down-sampling the
feature maps produced by the convolutional layer. This operation decreases the
spatial dimensions of the convolved maps. An activation function is applied to its
output to make it non-linear. The function essentially assigns an importance to each
neuron, which tells the following layers whether that particular neuron is activated
or not.

3. Fully Connected Layer: This layer operates on a flattened input where multidimen-
sional data is converted into a 1-dimensional array and each neuron in this array is
connected to all neurons of the next layer.

Their architecture consists of many convolutional layers, each followed by a pooling layer
and together they perform feature extraction. Finally, there are numerous fully connected
(FC) layers which classify the output.

A kernel is a small array of weights which slides over the input image and performs a dot
product with the sub-region of the image it is currently covering and finally produces a
single output pixel by computing the sum of the element-wise multiplication. It has several
tunable hyperparameters, namely:[30]

• Kernel Size: This refers to the dimensions of the filter applied to the image. It
plays an important role in determining the size of the region in the input image that
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Figure 2.7: Convolving an input image padded with 0s using 3x3 kernel with stride = 2;
Source [29]

corresponds to an output feature, a term coined as the receptive field of a neuron.
Image characteristics can influence the size of the kernel, as sharp images often require
smaller kernels to detect edges while blurry images need larger kernel sizes.

• Stride: This indicates the distance in pixels by which the window moves after a
convolution or pooling task is performed.

• Padding: This is the process of adding pixels to the boundary of an image to preserve
spatial dimension and retain information in the image after filters are applied.

These models are more computationally efficient than traditional neural networks as the
use of convolutional layers and kernels enables parameter sharing which reduces the number
of parameters required to be trained.

2.2.5 VGG-16

VGG-16 model, introduced by A. Zisserman and K. Simonyan of the Visual Geometry
Group, is one such milestone in CNN architecture. It derives its name from the number
of constituent layers (13 convolutional + 3 fully connected) and is an object detection and
classification algorithm. The VGG’s novel contribution was the idea of grouping layers into
"blocks" to offer a more organised and modular approach to developing deeper networks.

2.2.6 U-Net

The U-Net is a prevalent deep learning model, specifically developed for BioMedical Image
Segmentation. Its name is due to its distinctive U-shaped architecture which comprises a
contracting and an expansive path interconnected via a bottleneck layer. The contracting
path is made up of encoder layers of increasing depth that perform convolutional opera-
tions on the input to diminish its spatial resolution while capturing progressively abstract
representations of the data. The bottleneck layer then applies a single convolution to the
output of the last encoder layer and passes the resulting feature map to the expansive
path. The expansive path works at expanding or increasing the spatial resolution of the
feature map and reducing the number of channels through the use of upsampling layers.
These layers are assisted by skip connections arising from the encoder that help identify
and enhance the features within the image. The output is a semantic segmentation map.
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Figure 2.8: VGG-16 Architecture; Source [31]

Figure 2.9: Original U-Net architecture; Source [32]

2.2.7 nnU-Net

In the biomedical domain, remarkable diversity is observed across image datasets due to
variations in dimensionality, modalities and image sizes. To tackle the challenging prob-
lem of manually adapting to each task, nnU-Net was proposed as a semantic segmentation
method that automatically sets-up a U-Net-based segmentation pipeline tailored to the
intricacies of the provided dataset. The name nnU-Net or "no new U-Net" was coined as
it achieved state-of-the-art performance across various tasks without the introduction of
novel architectures, loss functions or training strategies. Instead, it replaced cumbersome
manual tuning or empirical methods with systematic and efficient approaches.

nnU-Net offers comprehensive pre-processing, which includes z-score intensity normalisa-
tion, image and annotation resampling and diverse data-augmentation techniques such as
random rotations, scaling, Gaussian noise and blurring to increase the size of the dataset.
It is trained using fivefold cross-validation as it was designed with the assumption of ab-
sence of test data. Additionally, connected-component based post-processing is applied to
eliminate isolated noise or artefacts while maintaining the segmentation accuracy. Lastly,
nnU-Net trains an ensemble of 2D, 3D and 3D-Cascade U-Net configurations, to determine
the best configuration that can then used to produce predictions for the test data.
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Figure 2.10: Proposed self-configuring pipeline of nnU-Net; Source [33]

2.3 Related Work

2.3.1 Traditional Approaches to Fetal Cardiac Analysis

Several studies published before 2020 have demonstrated the use of manual and semi-
automatic approaches to find the correlation of the fetal cardiac axis with congenital dis-
eases. One such noteworthy tool, FINE [34], is a semi-automatic software that leverages
healthcare expertise to identify key anatomical landmarks. From this information, it con-
structs a virtual 3D map and calculates the cardiac axis for fetal echocardiography views.
This axis has also been established as a reliable diagnostic indicator by [9, 35, 36] who
have manually extracted this measure from the 4CH view.

However, these approaches rely heavily on the domain expertise of the sonographer and
are prone to inconsistencies in image interpretation, which can lead to inter-operator vari-
ability. The widespread use of the 4CH view has likely been due to its ease of acquisition
and has primarily benefitted the detection of defects like HLHS that are characterized by
variations in the cardiac chambers. There has been limited exploration of vascular abnor-
malities for the assessment of conditions like TGA.

We aim to address this gap with a two-fold approach. Firstly, we introduce an automated
pipeline to streamline cardiac axis measurement. Secondly, we leverage the understudied
3VT and RVOT views to delve deeper into vascular anatomy. We introduce a novel feature,
the vascular angle, and investigate its potential as an indicator for TGA diagnosis.

2.3.2 Deep Learning Pipeline for Predictive Analysis of Risk Factors in
Congenital Heart Disease

Pachiyannan et al. [37] implemented a Cardiac Deep Learning Model (CDLM) to deter-
mine the risk of prenatal mortality caused by CHD. Indicators such as maternal health
history, which offers insights into environmental exposures during pregnancy as well as
gestational age which reflects the development stage of various cardiac structures, were
factored in to curate treatment recommendations tailored to each patient. The system
analyses MRI images and performs segmentation on them to isolate the cardiac structures.
From the segmented regions, it measures morphometric features which are used to identify
potential causes of CHD-related complications, including death. The study employed a
comprehensive array of datasets, including open-source clinical data, CHD datasets, and
cardiac MRI scans to develop and evaluate the CDLM against existing predictive models.
The system outperformed other frameworks with high accuracy in detecting CHD (over
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Figure 2.11: Workflow of proposed CDLM

90% sensitivity and specificity). The authors propose leveraging the CDLM’s capabilities
to develop more advanced models to flag high-risk cases and improve the survival of infants
with CHD.

One pitfall we notice however is the reliance on MRI images. While powerful, these are
significantly more expensive and resource-intensive compared to ultrasound, limiting cost-
effectiveness and widespread adoption of the CDLM. Our study, in contrast, analyses
available ultrasound data. While Athalye et al. [10] have presented a deep learning model
that outperformed clinicians through view classification of ultrasound data, we will focus
on analysing biomarkers, to establish their effectiveness in the early diagnosis of CHDs.

2.3.3 Automated Identification and Visualisation of Fetal Landmarks in
Freehand Ultrasound

Baumgartner et al. [38] introduced a novel automated tool to assist operators in the
complex tasks of identifying and interpreting anatomical structures during freehand fe-
tal ultrasound examinations. Their proposed deep neural network architecture, SonoNet
(Sonography Network), which builds upon the VGG16 model performs instantaneous frame
detection and retrospective retrieval of fetal standard scan planes. The method uses confi-
dence maps to localise the corresponding anatomical structures via bounding boxes under
weak supervision. The reliance on only image-level labels for training, poses a significant
advantage as it reduces the need and effort for labor-intensive manual annotations by sono-
graphers.
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Figure 2.12: SonoNet Overview: (a) 2D fetal ultrasound video is processed in an automated
fashion to identify and isolate fetal standard plane (b) if a standard view is detected (4
chamber view (4CH) in this case), a backward pass is performed through the network to
localise the structure via bounding box; Source [38]

While SonoNet demonstrated exceptional performance for most fetal standard planes, it
struggled to localise heart anatomies with its retrieval accuracy dropping to an average of
0.82. A contributing factor to this was the high similarity between the 3VT and RVOT
views, which led SonoNet to misclassify them. Fortunately, since both planes depict the
main vessels of the fetal heart, differentiating between them is not crucial for vessel bio-
metrics calculations. Thus, in our study, we use SonoNet and SonoNext, a model that uses
the same underlying architecture but has been tested in a real clinical setting.

2.3.4 Prior Collaboration with St. Thomas Hospital for CHD Detection
using Segmentation

To promote the interpretability of automated diagnosis, Budd et. al [39] developed a
novel extension of the Atlas-ISTN framework for neonatal detection of hypo-plastic left
heart syndrome (HLHS). Unlike previous classification efforts which processed videos or
numerous images, the model utilised a single 4-Chamber View (4CH) scan thus reducing
computational costs. Further, the classifier used the area of each anatomical segment as
a proportion of the whole, achieving state-of-the-art performance, comparable to manual
annotations by experienced sonographers.

While this provides a promising approach for diagnosing HLHS, a subsequent study by
Jakubowski [40] improved upon the segmentation of 4CH dataset by a 4.06% margin and
also evaluated performance on the 3VT dataset. The research involved a comprehensive
analysis of nine adaptations of the baseline U-Net architecture using the nnUnet frame-
work. To address lack of substantial quantities of annotated image data, artificial images
were fed into the model which improved segmentation accuracy and demonstrated excep-
tional accuracy in live clinical settings. Our study will further these efforts by exploring
the potential of extracting features such as precise angles and anotomical measurements
from the outflow tract views, LVOT and RVOT, in addition to 4CH and 3VT.
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Figure 2.13: Overview of modified Atlas-ISTN with a disease prediction branch (H), Seg-
mentation network (S), Atlas to image mapping module (D) and Transformation compu-
tation module (C); Source [39]
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Chapter 3

Methods

In this chapter, we describe the design and implementation of the automated machine
learning pipeline developed in this project. The proposed pipeline processes frames from
ultrasound videos to detect standard planes, compute biometric measurements and predict
the disease status of the fetus.

3.1 Pipeline Overview

Figure 3.1: Overview of proposed pipeline with constituent deep learning tasks, models
and their applications in the pipeline. Here, we show a single pass of a 2D frame through
the following stages of the pipeline for HLHS disease classification: (1) Plane Detection: A
multi-class classification model, SonoNext, is used to identify fetal standard cardiac planes
(Output: 4 chamber view (4CH)) (2) Spine Point Localisation: A 2-D U-Net architecture
model, nnU-Net, is used to perform semantic segmentation on the cardiac scan for spine
point localisation, and features such as the cardiac angle are geometrically extracted (Out-
put: 36.83°) (3) Disease Diagnosis: A logistic regression model is used to perform binary
disease classification from the input biometric features (Output: 0 or NORMAL); Model
Architecture Sources: SonoNet [38], nnU-Net [33], Logistic Regression [41]
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3.2 Cardiac Biometrics

Congenital heart diseases are often associated with deformities in the development and
structure of fetal anatomy. To study these deviations from their normal arrangement, we
aim to identify biometric parameters that can serve as features to predict disease status.
We use segmentation masks to extract metrics that have either been medically shown to
detect certain congenital heart diseases (CHDs) or those that we hypothesise could assist
in their diagnosis. These masks allow us to delineate the boundaries of various structures
within the fetal heart, thus facilitating the measurement of various biometric parameters.

3.2.1 Spine Point Localisation

Spine development is one of the earliest processes during pregnancy, occurring in the ini-
tial stages of gestation. A well-developed spine provides a stable and consistent reference
structure within the fetal anatomy and is used by clinicians to study the arrangement of
cardiac structures. Hence, we incorporate the spine label into the dataset.

The annotated data provided to us contains coordinates of the spine point for most im-
ages. We convert this spine point into a circle of radius 5 pixels using the Open Source
Computer Vision Library (cv2) [42]. This blob is then passed as an additional label to our
model. The transformation from a point into a blob is performed to account for potential
variability in the location or annotation accuracy of the spine. Further, given that ground
truth markings of structures are typically represented as regions rather than points, using
a circular blob ensures consistency in data representation.

In instances where multiple spine blobs are predicted, we determine the final spine point
by computing the centroid of the largest blob. We use this approach to ensure that only
the most significant and likely accurate prediction is used for further analysis.

3.2.2 Cardiac Angle

As described in Section 2.1.5, the cardiac angle is defined as the angle between a line
passing through the spine and sternum and another line passing along the interventricular
septum. In our study, we draw one line from the spine to the centroid of the whole heart
mask as a close approximation of the anteroposterior spinosternal line and another along
the interventricular septum, by connecting the midpoints of the centroids of the atria and
the ventricle masks. We record the angle between these two lines as the cardiac angle.

This ultrasonographic marker has been utilised in previous studies to investigate potential
correlations with congenital heart diseases as well as non-cardiac and chromosomal defects
[43, 9, 44]. While these research papers published promising results, the cardiac angle was
measured manually, introducing the possibility of human error and bias. By automating
the measurement process through deep learning, we anticipate improvements in diagnostic
accuracy and reliability.

3.2.3 Vascular Angle

We introduce a new angle measurement for detecting heart defects, particularly those in-
volving abnormalities of the two main vessels: the aorta and the pulmonary artery (or
the ductus arteriosus in our study). CHDs such as TGA and TOF (Section 2.1.3) are
characterised by deviations from normal arrangements of either or both vessels. Aruna-
mata et al. [45] evaluated a DNN for detection of d-TGA (identified by the absence of
crossing over of great arteries) and Arnaout et al. [46] proposed a deep learning pipeline
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which uses cardiac axis to detect TOF. But, we hypothesise that the computation of our
new feature, the angle between the great arteries, can also assist in the diagnosis of these
diseases. Our study explores two different methods of calculating this from segmentation
masks, as explained below.

Via Skeletons:

• Selecting Masks: We identify the aorta and duct by selecting the largest connected
regions in each mask.

• Skeletonization: We apply the skeletonize function available in the skimage.morphology
module of scikit-image to these masks. This function reduces the binary masks to
their skeletal representations, which are 1-pixel-wide outlines that retain the original
shape.

• Endpoint Selection: To obtain straight lines from the skeletons, we calculate the
endpoints of these simplified shapes using a kernel. If more than two endpoints are
found, we choose the pair farthest apart based on the Euclidean distance (straight-
line distance).

• Angle Calculation: Finally, we record the angle between the lines drawn by connect-
ing the selected endpoints as the vascular angle.

Via Centroids: We extract the centroids of the largest connected components for the
aorta, duct, and spine. We then calculate the vascular angle, using the centroids of the aorta
and duct as points, with the spine centroid serving as the vertex. This approach is chosen
to address any issues that may be encountered with the previous approach, specifically the
calculation of incorrect inverted or obtuse angles due to inaccurate masks. By using the
spine point as a reference in our calculations and avoiding the use of skeletonization, we
aim to achieve more accurate and reliable angle measurements.

3.2.4 DA Ratio and Distance between Centroids

In cases of TGA, a distinguishing finding is the observation of only two vessels in the
3VT view, rather than the usual three seen in healthy cases. To incorporate this clinical
observation into our research and enhance disease diagnosis, we include additional features
based on the arrangement and size of these vessels. We calculate the ratio, a measurement
we abbreviate as DA ratio, between the areas, determined by the number of pixels, of
the largest connected duct and aorta masks. We also measure the distance between the
centroids of these two structures.

3.3 Model Architectures and Implementation

3.3.1 SonoNet and SonoNext

The first step in the pipeline is to detect the standard planes from the input frames. For
this task, we use SonoNet [38] and SonoNext [47], two AI tools that can automatically
detect 13 standard planes in ultrasound imaging. While SonoNet’s validation primarily
stemmed from retrospective data analysis, SonoNext was tested in a prospective random-
ized controlled trial. It achieved a sensitivity of 88.9% and specificity of 98%, providing
robust evidence of its clinical contributions. Given our focus on detecting congenital heart
diseases, we target the identification of the four fetal cardiac views: 4CH, 3VT, LVOT and
RVOT. SonoNet and SonoNext are used as filters to extract these cardiac planes from the
input image or video streams.
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In the original paper, Baumgartner et al. propose 4 distinct model architectures (Figure
3.2) and conclude that SonoNet-32 achieves real-time execution and superior performance
in detection and localisation. Based on this, we choose SonoNet-32 for our work and use
its PyTorch implementation found at [48]. SonoNext, also based on the SonoNet-32 archi-
tecture, is provided to us in the ONNX format. Both models are pre-trained and are used
for inference within our pipeline.

Figure 3.2: Architecture of three versions of SonoNet and SmallNet. SonoNet-64 takes its
initial 13 layers from the VGG-16 architecture and has 64 kernels in its first convolutional
layer. SonoNet-32 and SonoNet-16 are derived from SonoNet-64 architecture by halving
and quartering the number of kernels respectively. SmallNet is a simpler architecture
inspired by AlexNet. Source [38]

3.3.2 nnU-Net

We use the nnU-Net model defined in a previous project [40] for the semantic segmentation
task with the hyperparameters shown in Table 3.1. Most of the changes we made were
in the steps concerning the curation of the datasets as it involves extending the current
model to accommodate the spine point and other new labels. We also updated some of the
outdated code to version 2.5 by referring to the original nnU-Net GitHub repository [49].
The model in the paper was trained for a constant 150 number of epochs. We introduced
early stopping as we noticed convergence in the accuracy around 75 epochs itself. After
the training process, two models were retained: the best performing which was selected
based on the highest-scoring Dice coefficient and the final model. We perform evaluation
on the test set using the best-performing model.

Parameter Value
Initial learning rate 0.001

Learning rate scheduler PolyLRScheduler
Weight decay 3× 10−5

Optimizer SGD
Momentum 0.99
Nesterov True

Oversample foreground percent 0.33
Number of iterations per epoch 500
Number of validation iterations 50

Number of epochs 150
Early stopping patience 5

Batch size 4CH 16
Batch size 3VT 36

Table 3.1: Hyperparameter Values for nnUNet Architecture
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(a) 4-CH (b) 3VT

Figure 3.3: Training Curves for nnUNet Model

3.3.3 Logistic Regression

For the final step in our disease diagnosis pipeline, we employ a Logistic Regression model
from scikit-learn’s linear_model library. Logistic regression is a well-established machine-
learning technique for binary classification tasks. In our case, it aims to predict the presence
or absence of a specific fetal CHD based on the extracted biometric features. The model
takes a vector of features as input along with their ground truth disease labels. The output
is a probability score between 0 and 1 for each data point to which we apply a threshold of
0.50. A score greater than 0.5 indicates the presence of disease (positive class, labelled as
1), while a score lesser than 0.5 indicates a lower likelihood (normal class, labelled as 0).

3.3.4 VGG-16

To assess the importance of biometric markers in CHD detection, we compare the per-
formance of the above logistic regression model with a VGG-16 model imported from
the PyTorch library’s torchvision.models subpackage. It is pre-trained on the large-scale
ImageNet [50] dataset, and we fine-tune it on our ultrasound image dataset for disease
classification. We adapt the first convolutional layer to accept single-channel greyscale
ultrasound images and replace the final layers with a classifier suitable for binary clas-
sification (Table 3.2). We apply the sigmoid activation function to the output layer to
generate binary class labels, again using a threshold of 0.5.

3.4 Datasets

3.4.1 Spine Point Localisation

The nnU-Net uses supervised learning and requires ground truth labels during training.
For this purpose, we utilise a comprehensive dataset of labelled ultrasound images of the
4-CH and 3VT view. An experienced sonographer manually extracted those images which
provide optimal 4-CH and 3VT views from videos of ultrasound scans performed at 18–24
weeks of pregnancy that were recorded using the Toshiba Aplio i700, i800 and Philips
EPIQ V7 G devices. These images were further annotated using LabelBox [51] platform
by a fetal cardiologist and three experienced sonographers.

4-CH: In the 4-CH dataset, we use ground truth masks for the left atrium, right atrium,
left ventricle, right ventricle, whole heart, spine, and thorax. There were a total of 1895
US images which were distributed into the training (1137 images), validation (379 images)
and test (379 images) datasets. These scans varied widely in size, with dimensions ranging
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Parameter Value
Input channel adaptation nn.Conv2d(1, 64, kernel_size=3, padding=1)

Classifier replacement nn.Sequential(
nn.Conv2d(512, 4096, kernel_size=7),

nn.ReLU(inplace=True),
nn.Dropout(),

nn.Conv2d(4096, 4096, kernel_size=1),
nn.ReLU(inplace=True),

nn.Dropout(),
nn.Conv2d(4096, 1, kernel_size=1)

)
Output activation Sigmoid

Loss function nn.BCELoss()
Optimizer optim.Adam(model.parameters(), lr=0.0001)
Batch size 32

Table 3.2: Hyperparameter Values for VGG-16 Model

from 224x288 pixels to 1024x1280 pixels. Due to this, the earlier plotting of the spine as
a fixed radius blob of 5 units was modified to utilise a threshold-based scaling approach.
The provided spine points were first converted from world coordinates to voxel space using
an affine transformation matrix associated with the segmentation map.

3VT: In the 3VT dataset, we focus on the labels for the aorta, ductus arteriosus, SVC,
thorax and spine point. Our dataset consisted of a total of 892 US images and was further
split into training (651 images, 605 with spine), validation (79 images, 70 with spine) and
test (162 images, 150 with spine) set.

While only some images contained the ground truth spine point, we use those images
which do not contain spine points as well, since we believe that the distribution of spine-
positive and negative images across our datasets will prepare our model for real-world
application by simulating diverse clinical scenarios.

3.4.2 Disease Detection

The logistic regression and VGG-16 models used for disease diagnosis require ground truth
disease labels during training. We had disease status for CHDs such as HLHS and TGA and
normal cases in the 4CH, RVOT and 3VT view. The data was derived from anonymised
ultrasound scans of patients. The initial characters of the patient IDs indicated whether
the fetus was healthy (NORM or FN short for Fetal Normal) or was diagnosed with HLHS
(HLH) or TGA. The images were in PNG format and had dimensions of 288 x 224 pixels.
While splitting patient images into training and test sets, we ensured no overlap of images
from the patient in both sets.

HLHS Classification: We used two datasets for this task in 4-CH and RVOT views.

• 4-CH dataset: This contained a total of 962 ultrasound images obtained from 8
patients. The main objective of this dataset was to predict the spine point, which
would then be used to compute the cardiac angle. This was done using the best-
performing model nnU-Net pre-trained on the 4-CH dataset. Notably, we found
that out of 85 images belonging to one patient from the normal case, 84 lacked the
spine point, hence we excluded this patient (FN006) from the dataset. This also
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helped reduce the imbalance between the NORM and HLHS classes. The remaining
7 patients were split into the training and test datasets, as summarised in Table 3.3.

• RVOT dataset: This consisted of 1087 ultrasound images derived from 13 patients.
Initially, images of only good quality which offer a clear visualisation of anatomical
structures typically seen in an RVOT view were sampled. However, this resulted in
an imbalanced dataset (1024 HLHS and 358 normal cases). To address this, medium
and lower-quality scans were included to augment the normal dataset. Figure A.1
shows that vascular angles computed for a patient in three randomly selected images
were consistent, irrespective of scan quality, supporting our decision to include these
scans in the dataset. The final dataset was created by considering the number of
scans per patient where the vascular angle could be computed and is summarised in
Table 3.4. Vascular angles were computed using skeletonization.

Split Patient ID No. of Images

Train

NORM012 180
NORM019 138
HLH004 130
HLH049 131
HLH031 19

Test NORM028 160
HLH048 136

Table 3.3: HLHS Classification 4CH Dataset
Total HLHS images: 416
Total NORM images: 478

Total Train images: 598 (66.89%)
Total Test images: 296 (33.11%)

Split Patient ID No. of Images

Train

FN006 130
FN008 251

HLH004 2
HLH016 34
HLH029 170
HLH031 43
HLH033 8
HLH039 6
HLH049 140
HLH060 13

Test
NORM012 94
NORM019 14
HLH048 155

Table 3.4: HLHS Classification: RVOT
Dataset

Total HLHS images: 598
Total NORM images: 489

Total Train images: 797 (73.32%)
Total Test images: 290 (26.68%)

TGA Classification: The dataset used for this task contained a total of 939 ultrasound
images captured in the 3VT view from 10 patients. To measure the biometric features,
we first segmented the images using the best-performing nnU-Net model pre-trained on
3VT images. We constructed balanced datasets to mitigate misclassification resulting from
imbalanced datasets, by ensuring an equal number of images (400 for training and 200 for
testing) from each class for which vascular angles could be computed. The dataset was
then split into a training set and test set as summarised in Table 3.5. Vascular angles were
computed using centroids and additional features such as DA ratio and distance between
centroids were measured.

3.4.3 Pipeline Evaluation

Finally, we utilised a specialised dataset obtained through a tertiary health screening pro-
gram to evaluate our machine learning pipeline. This screening was conducted after refer-
rals from initial screenings and involved focused cardiac ultrasound examinations at King’s
College Hospital and Evelina London Children’s Hospital. This sensitive dataset has been
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Split Patient ID No. of Images

Train

FN008 148
NORM012 270
NORM019 2
TGA002 200
TGA009 49
TGA027 155

Test

FN006 34
NORM028 15
TGA033 52
TGA037 14

Table 3.5: TGA Classification Dataset (3VT plane)
Total TGA images: 470

Total NORM images: 469
Total Train images: 824 (87.75%)
Total Test images: 115 (12.25%)

ethically approved as part of the iFind3 study. To protect patient privacy, folder names
were formatted as "patientID_diseaseID," where "patientID" was an anonymised identi-
fier and "diseaseID" was a code for the diagnosed CHD. Table 3.6 summarises the disease
IDs used to test our pipeline.

Preprocessing: The files were provided to us in the DICOM format. Upon inspec-
tion, we noticed that some files contained artefacts that may mislead the model, impacting
its segmentation performance. As a result, we removed frames containing split views and
colour Doppler overlays. Then, while running the pipeline, we leveraged SonoNet to retain
only the cardiac views. In this step, SonoNet also returned a saliency map of the detected
(plane) class which we used to guide image-cropping. We extracted the centroid of this
saliency map and cropped the image to a centred region with dimensions 50% of the orig-
inal width and height. This choice was made to make sure the spine point was visible
in the final image. The cropping ensured that the model prioritised the most relevant
anatomical features in each view, and also removed irrelevant information like ultrasound
controls often present in scans.

ID CHD
4 TGA with no VSD
5 TGA with VSD
14 TOF with left aortic arch
15 TOF with right aortic arch

41, 42 NC

Table 3.6: Summary of Disease IDs. VSD: Ventricular Septal Defect;

3.5 Metrics

3.5.1 Distance between Spine Points

We did not consider DICE score to be a useful indicator of the performance of the se-
mantic segmentation model on spine point localisation. Instead, we employed distance
metrics to gain insights into the spatial accuracy of the predictions in comparison to the
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ground truth. Each metric (mean, standard deviation, maximum and minimum) reports
the distances in millimetres, between the centroids of the largest predicted spine blob and
the corresponding ground truth spine blob across the dataset, accounting for voxel sizes of
(1.0mm, 1.0mm) after image processing.

Additionally, we generated confusion matrices to visualise the segmentation performance
of the model, categorising image pairs based on specific rules. These rules include:

• True Positives (TPs): These represent the cases where the spine point was correctly
predicted for both images. Euclidean distance was computed to measure the distance
between the ground truth spine point and the largest predicted spine point.

• True Negatives (TNs): These represent the cases where there was no spine point
predicted, and there was no spine point in the ground truth mask. For these pair of
images, the distance between the spine points was recorded as 0.

• False Positives (FPs): These represent the cases where the spine point was predicted,
but there was no spine point in the ground truth mask. These pairs of images were
skipped from the distance calculation.

• False Negatives (FNs): These represent the cases where the spine point was not
predicted, but there was a spine point in the ground truth mask. These pairs of
images were skipped from the distance calculation.

3.5.2 Accuracy

Accuracy is the most common metric that is a measure of how often the model’s predictions
align with the actual disease status. It represents the proportion of cases where the model
correctly classifies the presence (TP) or absence of the disease (TN) as a fraction of the
total number of predictions (TP + TN + FP + FN), given by the formula:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.

3.5.3 Precision

Precision is a measure of the quality of positive cases identified by the model, representing
the proportion of true positives (TP) among all instances the model predicted as positive
(TP + FP).

Precision =
TP

TP + FP

3.5.4 Sensitivity/Recall and Specificity

Sensitivity and specificity are two crucial metrics used to evaluate the performance of a
disease classification model. They offer complementary insights into the model’s ability
to correctly identify both healthy and diseased cases. Sensitivity or recall measures the
ability of the model to correctly identify individuals diagnosed positive for the disease while
specificity measures the ability to correctly identify normal cases.

Sensitivity =
TP

TP + FN
Specificity =

TN
TN + FP
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3.5.5 F1-Score or DICE

F1-Score, also known as the DICE coefficient, is a metric that balances precision and recall
by computing the harmonic mean of the two. It evaluates the overall accuracy of the model
by considering both false positives and false negatives. It is particularly useful when there
is a class imbalance in the data. The formula is given by:

F1 =
2× Precision × Recall

Precision + Recall

3.5.6 McNemar Test

McNemar Test is a statistical hypothesis test used to determine if there are significant
differences in the performance of two classifiers when evaluated on the same data. For
binary classification tasks, it specifically checks whether there is a systematic difference in
labels predicted by both models.

3.5.7 Mann–Whitney U Test

The Mann–Whitney U Test (or the Wilcoxon Rank Sum Test) is a non-parametric statis-
tical hypothesis test used to compare the distributions of two independent groups. This
test is applicable when the dependent variable is continuous and does not follow a normal
distribution. It is useful for studying statistical differences in features computed for normal
and disease groups, thereby supporting their feasibility for binary classification tasks.

3.6 Technical Details

3.6.1 Pipeline Implementation

We set up a virtual environment to isolate the project dependencies and used Python v3.10
as our coding language. We trained two nnU-Net models on normal 4CH and 3VT datasets
respectively. By default, nnUNet trains configurations using a 5-fold cross-validation ap-
proach. We utilised fold 0 for our training process. These models were saved as pth files.
Several metrics from Scikit-Learn (v1.2) were used to assess the performance of various
binary classification models. The final logistic regression models chosen were pickled into
binary streams.

To efficiently handle the medical data provided in DICOM, PNG, and NIfTI formats for
the various tasks, we employed SimpleITK, an open-source image analysis toolkit. This
toolkit provides a comprehensive set of image readers and writers compatible with a wide
array of medical image formats.

To build the pipeline, we created an instance of SonoNext and unpickled the binary clas-
sifiers. We also instantiated an object of the nnUNetPredictor class for the 4CH and 3VT
view with the weights of our saved nnU-Net models. We first used SonoNext to extract
cardiac views from the input folder of DICOM files. Each file either represented a single
image or a collection of images. When a cardiac view was detected, we used its saliency
map to crop the image to a small region of interest. The 14x18 saliency map was resized
using the cv2 library to match the image dimensions and guide the cropping process.

For the subsequent tasks of feature extraction and disease diagnosis, we leveraged sev-
eral popular machine-learning libraries. We visualised the cardiac and vascular angles
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using Matplotlib (v3.7) and used scipy.ndimage.label function from SciPy (v1.13) for iden-
tifying the largest connected component. Finally, to filter and aggregate the results, we
used NumPy (v1.24) for efficient numerical computations.

The modular design of our pipeline, which first instantiates the different models and then
separates the tasks of plane detection, feature extraction, and disease diagnosis into dis-
tinct functions, ensures scalability and flexibility. The structured approach also allows for
easy updates, maintenance, and integration of additional components or functionalities as
needed.

3.6.2 Hardware

The nnU-Net models in our study were trained on a 24 GB NVIDIA RTX GPU with a
total training time of around 1 hour 30 minutes each with early stopping. For inference
within the pipeline, which involves tasks like plane detection and dense segmentation, we
used a remotely connected 12 GB NVIDIA TITAN Xp GPU.

3.6.3 Deployment

We packaged our pipeline into a Docker [52] image for Fraiya [53], a start-up company
associated with the iFind group. A Docker image is a compact, self-contained, and ex-
ecutable software package that includes all essential libraries and dependent components
to run an application within a container. Using Docker isolates our application from the
host system, allowing users to deploy the pipeline seamlessly across their local machines,
virtual machines, or cloud environments without encountering compatibility issues. This
simplifies deployment, enhances portability, and supports scalability, making it ideal for
collaborative projects.

Docker images are built from Dockerfiles, which define the steps to create the image.
Our Dockerfile includes dependencies specified in the ‘requirements.txt‘ file, the nnU-Net
for model execution, and a script to set environment variables and initiate the pipeline.
The Docker image is designed to accept runtime arguments, allowing users to specify input
data paths, output directories, and the acronym of the CHD for diagnosis (’hlhs’, ’tof’
or ’tga’). Ultrasound scans can be provided in various formats such as folders containing
DICOM files, individual PNG images, or a single MP4 video. This ensures compatibility
with diverse imaging modalities and data sources. Note that the presence of split images
or Doppler overlays will impact the performance of the pipeline. Therefore, it is preferable
that these elements are absent from the input data.

Our pipeline requires GPU acceleration for efficient processing. During development, we
utilised Docker Engine (v23.0) with a 24 GB NVIDIA TITAN RTX GPU to build and test
our image.

All code developed for this project, including the saved models and implementation of
the pipeline, can be found at https://github.com/ish2002/Masters_HLHS_Unet
Due to the nature of our dataset, we have made this GitHub repository private.
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Chapter 4

Evaluation

In this chapter, we present the results obtained from various experiments performed to
form the pipeline, both qualitatively and quantitatively.

To assess the accuracy and reliability of our proposed blob-based spine localisation method,
we calculate several distance metrics for the semantic segmentation tasks on the 4-CH and
3VT datasets using nnU-Net. Typically, segmentation maps and their associated Dice
scores are used to assess segmentation accuracy. However, our method focuses on identi-
fying key anatomical landmarks through the centroids of the largest connected component
rather than full segmentations. Therefore, distance metrics serve as alternative measures
to quantify the proximity of our localised points to their true anatomical counterparts.

For disease diagnosis, we use patient data with known ground truth disease statuses for
HLHS and TGA, comparing the accuracy, sensitivity and specificity of different classi-
fiers. Initially, we evaluate two classifiers for HLHS, a logistic regression model and a
pre-trained VGG-16 model. As our results indicate that the logistic regression model out-
performs VGG-16, we extend the use of logistic regression to the TGA task. We then
compare its performance when trained on different combinations of features. For all clas-
sifiers, we use the Mann-Whitney U test to examine correlation between the angles of the
two distributions.

Once the models for spine localisation and disease diagnosis are finalised, we proceed
to select a plane detection model. We use a small subset of patients with known ground
truth plane and disease labels, and run our pipeline to evaluate the consistency of SonoNet
and SonoNext. We prioritise consistency over accuracy as it is more suggestive of reliable
and predictable performance in identifying the correct cardiac view across varying scan
qualities and clinical settings.

Finally, combining all the chosen models, we build the final pipeline as shown in Fig-
ure 3.1. To validate our hypothesis whether deep learning based robust image analysis
methods improve the early detection rates for CHDs, we demonstrate its performance on
the diagnosis of CHDs such as Tetralogy of Fallot and Transposition of the Great Arteries.

4.1 Spine Point Localisation

For the task of spine point localisation, the analysis of confusion matrices (Figure 4.1)
revealed that both models achieved high accuracy in spine point detection, 95.5% for 4CH
and 83.9% for 3VT. The mean and standard deviation distance metrics (Table 4.1) were
lower for the 3VT view, indicating superior localisation performance.
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(a) 4-CH (b) 3VT

Figure 4.1: Confusion Matrices illustrating the segmentation accuracy of spine point pre-
dictions

Dataset Mean Dist. ± SD (mm) Max Dist. (mm) Min Dist. (mm)
4-CH (362/379) 10.911 ± 12.507 136.618 0.061
3VT (136/162) 4.817 ± 6.252 34.684 0.0

Table 4.1: Summary of Ground Truth and Predicted Spine Point Distance Metrics. Brack-
ets indicate the number of images included in the calculation of the distance metrics.

The high number of true positives for both views (4CH and 3VT) demonstrated the nnU-
Net model’s ability to correctly predict spine points in most cases, thus confirming our
hypothesis of using blobs to achieve spine point localisation. The 3VT view achieved lower
mean and standard deviation distances, indicating more accurate and consistent predic-
tions. However, that could have been partly because we had fewer images for this view
(162 compared to 379 for 4-CH), which may have reduced variability and enhanced model
performance. It also achieved a minimum distance of 0 mm because of our evaluation rule
for true negative pairs.

Further, both views had false negatives, as the model sometimes confused the spine with
other white specs found on the ultrasound scans, likely due to similar visual features, noise,
or resolution and contrast issues. This primarily contributed to the maximum distances
reported in the table and can be visualised in the figures below.

Figure 4.2: Examples of spine localisation for 4-CH dataset. Top: maximum distance
(136.618 mm), Bottom: minimum distance (0.061 mm) (ground truth / image / prediction)
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Figure 4.3: Examples of spine localisation for 3VT dataset. Top: maximum distance
(34.684 mm), Bottom: minimum (non-zero) distance (0.127 mm) (ground truth / image /
prediction)

4.2 Disease Diagnosis

4.2.1 HLHS Classification using 4CH dataset

We drew a box plot to visualise the cardiac angle distribution for NORM and HLHS cases.
From Figure 4.4, it is evident that the median cardiac angle for normal hearts (NORM) was
lower and the distribution had lesser variability than that for hearts with HLHS (HLH). The
Mann-Whitney U test performed at a significance threshold of 0.05, revealed an extremely
significant difference between the cardiac angle measurements of normal fetuses and those
with HLHS with p-value << 0.0001 (= 4.977 × 10−108). This result indicates that the
cardiac angle is a highly reliable diagnostic indicator for detecting HLHS.

Patient ID Cardiac Angle Range Mean ± SD
NORM012 (180/180) 24.7° to 45.6° 32.5 ± 5.3°
NORM019 (123/138) 28.0° to 40.8° 34.5 ± 3.0°
NORM028 (160/160) 17.4° to 26.1° 21.8 ± 2.1°
HLH004 (130/130) 23.8° to 48.3° 39.4 ± 6.2°
HLH031 (12/19) 36.3° to 59.4° 48.3 ± 6.1°

HLH048 (136/136) 3.8° to 162.6° 50.4 ± 13.9°
HLH049 (131/131) 35.4° to 71.4° 50.5 ± 9.3°

Table 4.2: Cardiac Angles Computed per Patient
Images in which the spine was not detected in the corresponding segmentation mask were
skipped i.e. not evaluated. Brackets indicate the number of images evaluated per patient.
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Figure 4.4: Box Plot of Cardiac Angle Distribution

To apply the identified significant difference in cardiac angles for disease diagnosis, we
compared two machine-learning models on our dataset for HLHS disease classification:
a Logistic Regression model and a VGG-16 model. Both models were passed the same
training data, which was shuffled and divided into training and validation sets for the
VGG-16 model. It was likely due to the higher number of NORM (318) images than
HLHS (280) images in the training set, that both models achieved a higher classification
accuracy for patient NORM028. The higher overall accuracy and per-patient accuracies
of the logistic regression model suggested that it outperformed the VGG-16 model for the
HLHS disease classification task.

Patient/Accuracy Logistic Regression Model VGG-16 Model
Overall (296) 95.27% 84.12%
NORM028 (160) 100% 85%
HLH048 (136) 89.71% 83.09%

Table 4.3: Results for HLHS Classification. Brackets indicate the number of images. The
test set includes samples from only two patients: NORM028 and HLH048. Hence, values
reported for NORM028 correspond to the Specificity (True Negative rate) of the models,
and values reported for HLH048 correspond to the Sensitivity (True Positive rate) of the
models.

We used the McNemar test (at significance level of α=0.05) to compare the performance
of the logistic regression model and VGG-16 model under the following hypotheses:

• H0: The two classifiers have similar performance.

• H1: There is a difference in performance between the two classifiers.

The test revealed a significant difference in classification outcomes between the two models
as the p-value (p = 8.699 × 10−6) was much smaller than α. Thus, we reject the null
hypothesis and conclude that there is a significant difference in performance between the
two classifiers. This supports the selection of the logistic regression model for HLHS
classification in the pipeline.
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Figure 4.5: Contingency Matrix for McNemar’s Test

The high accuracy of 95.27% achieved by the logistic regression model reinforced the find-
ing from the Mann-Whitney U test, indicating a significant decision boundary between
HLHS and NORM and further supporting the reliability of using the cardiac angle for
HLHS diagnosis. Surprisingly, we noticed that both the lower bound of NORM (around
25°) and the upper bound of HLHS (around 55°) fell within the clinically expected range
of 45°±20° that was shown in Figure 2.3. We suppose this could be attributed to differ-
ences in the orientation and transformation of the scans in our dataset, which affected the
appearance and measurement of the cardiac angles.

Note that the model used for inference was pre-trained on normal cases. Hence, seg-
mentation masks predicted by the model for normal patients appeared satisfactory (Figure
A.2) but some anomalies were observed in cases with HLHS (Figure A.3). Despite these
anomalies, we proceeded with the computation of cardiac angles between the spino-sternal
line and interventricular septum, as these landmarks were still discernible in most cases.

4.2.2 HLHS Classification using RVOT dataset

The box plot of vascular angle distribution for NORM and HLHS cases shown in Figure
4.6 provided interesting insights. There was only a minimal difference of 0.88° between
the median vascular angle for normal hearts (21.95°) and for hearts with HLHS (22.83°),
indicating similarity in the vascular angles computed for the two groups. The Mann-
Whitney U test revealed a p-value of 0.192 at a significance threshold of 0.05, further
supporting that there is no statistically significant difference between the vascular angles
of normal and HLHS hearts for the RVOT plane.

We can also see that there were quite a few outliers for both NORM and HLHS cases, with
the number and range being more for HLHS. In some cases, the vascular angle was also
computed incorrectly, as shown in Figure 4.7. These inaccuracies were either due to an
inverted or an obtuse vascular angle being measured due to an irregular direction of the
aorta and duct skeletons.

To evaluate the performance on the task of HLHS disease classification on our dataset,
we trained a logistic regression model using the vascular angles computed for the training
set as the input to classify outputs as 1 (HLHS) or 0 (NORM). The model achieved an
accuracy of 59.4%, with a precision and recall of 59.4% and 100%, respectively (Table
4.4). However, a specificity of 0% indicated that the model incorrectly classified all nega-
tive cases as positive. Due to this misclassification, we did not use this particular model
trained on RVOT data for HLHS classification.
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Figure 4.6: Box Plot of Vascular Angle Distribution (RVOT plane).
Median Vascular Angle for NORM cases: 21.95°
Median Vascular Angle for HLHS cases: 22.83°

Figure 4.7: Examples of images with incorrect vascular angles. Top: train images. Bottom:
test images. Left: images with inverted vascular angles measured in opposite direction.
Right: images with obtuse vascular angles due to the orientation of the duct skeleton.

Metric Value
Accuracy 59.4%
Precision 59.4%
Sensitivity 100%
Specificity 0%

Table 4.4: Performance of model trained on RVOT data for HLHS Classification.

The low accuracy highlighted the need for robust feature selection and a balanced dataset.
Overlapping box plots indicated limited discriminative power of the vascular angle alone,
and the slight dataset imbalance, with more HLHS cases, may have biased predictions.
Additionally, the RVOT view’s limited focus on left heart structures, primarily affected
by HLHS, likely contributed to misclassification and low specificity. Thus, underscoring
clinical relevance of selecting appropriate imaging modalities for accurate classification.
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4.2.3 TGA Classification using 3VT dataset

For TGA classification, we computed the vascular angle using the centroid approach, which
incorporates the spine as its vertex. We anticipated that this method would yield more
accurate angles and eliminate the issues of inverted and obtuse angles observed in the
previous experiment.

From Figure 4.8, we can see that the box plots for NORM and TGA had minimal overlap,
suggesting that most cases were distinguishable based on their angles, making this a valu-
able feature for classification. The Mann-Whitney U test confirmed the significance of our
findings, returning a p-value of 2.095× 10−85.

The median angle for NORM cases (20.09°) was significantly higher than that for TGA
cases (14.43°). Interestingly, the outliers for NORM seemed to fall within the whiskers of
TGA, suggesting that some normal cases exhibited characteristics similar to those observed
in unhealthy fetuses. Figure 4.9 shows one scenario in which this was observed.

Figure 4.8: Box Plot of Vascular Angle Distribution (3VT plane).

To apply clinical knowledge in feature selection, we introduced the DA ratio and distance
between centroids in addition to the vascular angle. The findings of a previous study
[54] had revealed that a similar metric, the pulmonary artery/aorta ratio, correlates with
congenital outflow tract anomalies. To test this, we evaluated the performance of four
classifiers for detecting TGA: one using all features (vascular angle, DA ratio, and distance
between centroids), one using the vascular angle and DA ratio, and two others using either
the vascular angle or the DA ratio alone.

As shown in Table 4.5, the classifier trained on DA ratio performed well across all metrics
with high results for Accuracy, Precision, and F1-Score. This aligned with the findings
of the previous study. But the classifier trained on the vascular angle and DA ratio, out-
performed this, achieving the highest accuracy, precision, and F1-score. These superior
results obtained by using the vascular angle in conjunction with the DA ratio highlighted
its potential as a novel feature. Therefore, we selected this classifier as the final model for
detecting TGA in our pipeline.
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Figure 4.9: Examples of images for which small acute vascular angles were computed.
Top: NORM outliers in the box plot. Bottom: TGA cases present within the whiskers.
These images illustrate that significant overlap between the aorta and duct masks results
in small angles. This occurs in TGA cases due to the aortic arch being positioned beneath
the pulmonary trunk or duct.

Metrics/Features All Features Angle + Ratio Vascular Angle DA Ratio
Accuracy 61.22% 80.61% 58.16% 74.49%
Precision 65.71% 94.12% 55.40% 92.86%
Sensitivity 46.94% 65.30% 83.67% 53.06%
F1-Score 54.76% 77.10% 66.67% 67.53%

Table 4.5: Results for TGA Classification.

4.3 Pipeline Performance

To finalise the pipeline, we assessed the performance of both SonoNet and SonoNext at the
task of plane detection. This involved running the entire pipeline on a few patients with
known ground truth disease statuses to determine the optimal choice. Finally, employ-
ing the chosen models, we conducted a comprehensive evaluation of our machine-learning
pipeline using specialised patient data sourced from hospitals on a random selection of
patients.

For this evaluation, we made a few assumptions based on findings from the previous ex-
periments. For HLHS or TOF classification, we used 4CH and LVOT planes, and for
TGA or TOF classification we used 3VT and RVOT planes. This was done due to their
morphological similarity as both the LVOT and RVOT views show anatomies which are
found in 4CH and 3VT respectively and can thus be used to approximate their features.
Further, we noticed that although the boxes representing chosen classifiers did not overlap,
there were instances where the whiskers of NORM and HLHS/TGA overlapped, poten-
tially leading to a blurred decision boundary and misclassification. Due to this, we only
considered features whose values fell within the interquartile ranges of their distribution.
The images were preprocessed to remove split views and Doppler overlays.

4.3.1 Plane Detection: SonoNet vs SonoNext

This experiment specifically aimed at plane detection, hence we have only displayed re-
sults for 3 patients in Table 4.6. The dataset is formatted similarly to that used for HLHS
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classification, but images from these patients were not used to train or test the classifier,
thus constituting a held-out dataset. Detailed results for SonoNet, involving FN/NORM
patients as well as all unique planes detected, can be found in Appendix B. For this ex-
periment, we did not crop the images using the saliency map and utilised only 4CH views
to compute the cardiac angle, as the ground truth plane was known to be 4CH.

Patient Quality SonoNet SonoNext
Planes Angle Status Planes Angle Status

HLH007

Good 43 4CH 40.32° True 75 4CH 51.46° True
(141/162) 7 LVOT 2 LVOT
Medium 68 4CH 36.57° False 1 4CH 7.51° False
(79/129) 35

LVOT
13

LVOT
Bad 22 4CH 41.23° True 1 4CH 37.84° False

(37/105) 9 LVOT 15
LVOT

HLH016

Good 0 4CH N/A N/A 0 4CH N/A N/A
(0/4) 0 LVOT 2 LVOT

Medium 0 4CH N/A N/A 0 4CH N/A N/A
(1/78) 0 LVOT 1 LVOT
Bad 0 4CH N/A N/A 41 4CH N/A N/A

(21/828) 0 LVOT 6 LVOT

HLH029

Good 0 4CH N/A N/A 2 4CH 21.04° False
(1/5) 0 LVOT 0 LVOT

Medium 0 4CH N/A N/A 4 4CH 36.08° False
(3/12) 0 LVOT 0 LVOT
Bad 0 4CH N/A N/A 1 4CH N/A N/A
(0/1) 1 LVOT 0 LVOT

Table 4.6: Plane Detection Results for SonoNet and SonoNext. ’Quality’ denotes image
quality. Brackets show the number of images with computed cardiac angles. N/A denotes
cases with no detected 4CH views or no computed cardiac angles for identified 4CH views.

The average cardiac angle was computed as the mean of all angles measured for the de-
tected 4CH planes, weighted by confidence scores returned by the model for each plane
detection. We used this approach because the confidence score, produced by the softmax
layer of the models, represented their certainty that a given frame was indeed a 4CH plane.
We assumed that higher confidence scores would likely indicate clearer anatomical features,
thus producing more accurate cardiac angle measurements. Therefore, we weighted the an-
gles with their respective confidence scores, to prioritise measurements that the model was
more certain about. The formula is as follows:

θ̄ =

∑n
i=1wiθi∑n
i=1wi

where θ̄ is the weighted average of the cardiac angles, n is the number of 4CH planes, θi is
the cardiac angle for the i-th 4CH plane, and wi is the confidence score for the i-th 4CH
plane.

Logging the unique planes detected highlighted that, despite SonoNext demonstrating
lower accuracy in HLHS detection, with 1 true positive and 4 false negatives, it consis-
tently identified 4CH and LVOT planes even in medium and low-quality images. Although
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LVOT is not the ground truth plane, it still provides views of the four chambers found in
4CH, which are required to compute the cardiac angle. This suggests that SonoNext is
more reliable for the task of plane detection of cardiac views. Thus, we selected SonoNext
for plane detection within our pipeline.

Figure 4.10: Bar chart to showcase consistent 4CH and LVOT plane detections by
SonoNext.

4.3.2 TOF Diagnosis

We surprisingly performed a successful diagnosis of TOF using our HLHS classifier in the
pipeline, achieving a high accuracy of 90% (Table 4.12). This indicated that an abnormal
cardiac angle value could aid in diagnosing both diseases. Table 4.7 presents the results
we obtained for both normal fetuses (41 or 42) and those diagnosed positive for Tetralogy
of Fallot with either a left (14) or right (15) aortic arch.

Patient ID Angles within IQR Avg. Cardiac Angle TOF Status
349_14 229/252 43.59° True
357_14 418/465 41.02° True
364_14 147/151 51.07° True
372_14 168/213 38.97° True
388_14 441/505 40.15° True
383_14 9/9 62.31° True
399_15 101/118 46.31° True
411_15 225/239 52.59° True
415_15 2/2 52.37° True
413_15 272/285 51.32° True
417_15 848/896 37.65° False
1099_41 9/10 37.26° False
1110_41 185/210 28.02° False
1374_41 129/130 31.45° False
1454_41 363/391 26.51° False
2333_42 199/200 37.78° False
2378_42 37/38 20.79° False
2011_42 6/6 99.75° True
2022_42 15/17 32.93° False
2048_42 1249/1322 30.89° False

Table 4.7: Results for TOF Classification using HLHS Classifier.
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Split Patient ID No. of Images

Train

1374_41 317
1454_41 237
349_14 104
372_14 215
384_14 125
411_15 38

Test

2378_42 73
2011_42 27
415_15 83
419_15 3

Table 4.8: TOF Classification Dataset
Total TOF images: 568

Total NORM images: 654
Total Train images: 1036 (84.78%)
Total Test images: 186 (15.22%)

Using this same dataset, we attempted to train a TOF classifier on the 3VT and RVOT
views. Unlike the HLHS and TGA classifiers, which were trained on images carefully se-
lected by an experienced sonographer, this TOF classifier would rely on planes extracted
by SonoNext. Hence, we anticipated that its performance would be influenced by the
accuracy of SonoNext’s plane detection. To mitigate this potential issue, we extracted
vascular angles for all identified planes and retained only those angles that fell within the
interquartile range. This approach aimed to protect the classifier from being trained on
outliers or incorrectly computed angles, with the hope of enhancing its reliability.

Next, we wanted to study similarities between the two TOF disease groups we had, TOF
with left aortic arch and TOF with right aortic arch. Figure 4.11a showed a large overlap
of the interquartile ranges of both distributions, thus suggesting similarity in their angle
values. The Mann-Whitney test also supported this observation, returning a p-value of
0.294, indicating no significant difference between the angle distributions of the two TOF
subgroups. Due to this, we merged both TOF subgroups into a single class labelled TOF
(or 1) and passed it to our classifier. The splits for the train and test cases are shown in
Table 4.8.

(a) TOF with Left and Right Aortic Arch (b) NORM and TOF cases

Figure 4.11: Box Plots of Vascular Angle Distribution for two scenarios.
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We first trained a logistic regression model. However, due to its limited performance,
we explored more sophisticated binary classifiers available in the sklearn library, known
for their ability to capture non-linear relationships and intricate patterns in data. Despite
these introductions, all four classifiers ultimately exhibited low performance, with the high-
est accuracy of 57% achieved by the SVM algorithm.

Table 4.9: Classifier Performance

Classifier Accuracy (%)
Logistic Regression 50.54%
Random Forest 54.84%
Support Vector Machine 57%
Neural Network 53.23%

This discovery was particularly noteworthy as it contrasted with our previous experiment
on HLHS classification using RVOT, where clinical relevance was not a factor. In the case
of TOF, a disease involving vessel abnormalities, especially pulmonary artery narrowing,
we expected the vascular angle to offer valuable insights. However, our analysis, supported
by the box plots of NORM and TOF cases (Figure 4.11b), revealed that the vascular angle
possessed limited discriminative power in TOF detection.

4.3.3 TGA Diagnosis

We performed TGA diagnosis with our selected TGA classifier in the pipeline, achieving an
accuracy of 60% (Table 4.12). Table 4.10 presents the results we obtained for both normal
fetuses (41 or 42) and those diagnosed positive for Transposition of the Great Arteries with
either no VSD (4) or having a VSD (5).

Patient ID Angles within IQR Avg. Feature TGA Status
Angle Ratio

091_4 213/234 22.05 5.4 True
127_4 7/7 48.87 1.99 False
101_4 189/200 12.61 2.44 False
115_4 110/118 18.2 4.09 True
123_4 1/1 4.29 1.42 True
147_4 2/2 4.4 3.1 True
157_5 3/3 35.47 5.27 False
163_5 2/2 19.2 9.95 True
173_5 3/4 13.69 4.65 True
169_5 2/2 29.06 2.38 False
176_5 3/3 55.1 4.16 False
172_5 13/13 17.43 9.65 True
158_5 3/3 28.44 1.06 False

1374_41 536/625 25.25 2.57 False
1454_41 449/474 20.18 4.43 True
2333_42 71/74 17.6 1.38 False
2378_42 145/1457 11.69 1.26 False
2011_42 48/52 22.09 1.977 False
2022_42 18/21 18.96 2.38 False
2048_42 2162/2491 25.97 6.19 True

Table 4.10: Results for TGA Classification.
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4.3.4 Summary Statistics

Tables 4.11 and 4.12 summarise the results obtained by the pipeline from the previous
sections for patients with normal hearts, and those diagnosed with TOF, TGA and their
subgroups.

Case n Pipeline decision correct (n) %
Normal 16 13 81.25%
TOF 11 10 90.9%

left aortic arch 6 6 100%
right aortic arch 5 4 80%

TGA 13 7 53.85%
no VSD 6 4 66.67%
with VSD 7 3 42.86%

Table 4.11: Pipeline decision compared to ground truth for CHDs and their subgroups.

CHD Accuracy Precision Sensitivity Specificity
TOF 90% 90.91% 90.91% 88.89%
TGA 60% 77.78% 53.85% 71.43%
Overall 75% 85% 70.83% 81.25%

Table 4.12: Performance of pipeline on detection of TOF, TGA and overall.

Our pipeline showcased a commendable level of accuracy (90%) and precision (90.91%)
for the detection of Tetralogy of Fallot (TOF). Additionally, the sensitivity and specificity
metrics, at 90.91% and 88.89% respectively, further affirmed the reliability of our pipeline
for TOF diagnosis.

All TOF cases with left aortic arch were classified correctly. Since the classification was
performed using a model trained and tested exclusively on HLHS cases, this underscores
the versatility and effectiveness of our automated method of spine point localisation and
cardiac angle computation as valuable diagnostic indicators for both Tetralogy of Fallot
and Hypoplastic Left Heart Syndrome.

On the other hand, the outcomes for Transposition of Great Arteries (TGA) detection
revealed a lower level of performance, with an accuracy of 60% and precision of 77.78%.
The sensitivity and specificity metrics, at 53.85% and 71.43% respectively, also indicated a
comparatively weaker performance in correctly identifying TGA cases. The low sensitivity
of 53.85% specifically revealed that for approximately half of the individuals who had the
disease, our pipeline produced a negative result, classifying the fetuses as healthy. TGA
with VSD proved to be the most challenging subgroup for classification.

The disparity in performance between TOF and TGA detection may have stemmed from
various factors. Firstly, the choice of features might have influenced the performance, as
some features might have been more indicative of TGA over others. Moreover, the quality
of the images utilised for detection could have significantly affected various stages of the
pipeline, with clearer and more defined images resulting in more accurate diagnoses.

During the training of our TGA classifier, the 3VT images exhibited a clear demarca-
tion of the constituent anatomies in the majority of cases, which enabled more accurate
feature computation. However, during the pipeline evaluation, the data comprised 3VT
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and RVOT images detected by SonoNext, which did not consistently depict a distinct de-
lineation. This inconsistency might have impacted the computation of the DA ratio and, in
some instances, even the vascular angle, which during the aggregation process, could have
led to an accumulation of inaccuracies and consequently resulted in incorrect diagnoses.

Furthermore, there were fewer 3VT and RVOT images available for each randomly selected
patient in the evaluation dataset, with most having less than 10 images. This scarcity of
diagnostic frames may have limited the development of a complete feature representation,
leading to variability in diagnostic accuracy.

Overall, while the TOF detection results demonstrate strong performance, the lower accu-
racy and precision observed in TGA detection highlight potential areas for improvement,
such as refining feature selection criteria, enhancing image quality, and optimising plane
detection algorithms. Over the next two pages, we show example images from our pipeline
evaluation.
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Figure 4.12: Examples of cardiac angles computed for patients with normal fetuses. There
is usually a clear delineation of the four chambers with occasional inaccuracies similar to
the TOF cases below.

Figure 4.13: Examples of cardiac angles computed by our pipeline for patients with Tetral-
ogy of Fallot. Angles were usually correct (Left) with occasional incorrect or missing angles
(Right).
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Figure 4.14: Examples of vascular angles computed for patients with normal fetuses. There
is a clear delineation of the aorta, duct, and spine in the segmentation masks, similar to
the training data, with minimal noise.

Figure 4.15: Examples of vascular angles computed by our pipeline for patients with Trans-
position of the Great Arteries. Left: correct angles, Right: incorrect angles. This shows
that in some cases, the centroid approach produces decent results despite noisy segmenta-
tions.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

We have developed and tested an automated deep-learning pipeline for the prenatal de-
tection of congenital heart diseases through detailed experimentation. Our results demon-
strate that our pipeline significantly outperforms the current early detection rate for Tetral-
ogy of Fallot (76.6%), achieving an impressive sensitivity of 90.91% and specificity of
88.89%, for subgroups with either a left or right aortic arch. Although the accuracy for
Transposition of the Great Arteries was lower at 60% and did not surpass the present rate
of diagnosis (84.9%), these findings reveal the clinical potential of deep learning-based au-
tomation. They support our hypothesis that robust image analysis methods can streamline
the early detection of congenital heart anomalies, leading to improved patient outcomes.

We also hypothesised that converting the spine point into blobs with semantic segmen-
tation could approximate spine point localisation. Our results for TOF classification using
our HLHS classifier showed that the cardiac angle, calculated using the predicted spine
point, not only classified HLHS with 95.27% accuracy but also identified TOF with a high
sensitivity of 90.91% in held-out clinical data. This confirms that our novel approach
effectively localises the spine and establishes the automated cardiac axis as a robust mul-
tipurpose diagnostic indicator.

We introduced a novel feature, the vascular angle, to examine the spatial alignment of
the aorta and duct in 3VT and RVOT scans. This angle, utilised in conjunction with the
DA ratio, showed promising results for TGA classification. Like the cardiac angle, the vas-
cular angle relied on the spine point, showcasing another application of our proposed spine
localisation method. However, we believe that segmentation for 3VT and RVOT planes
was sensitive to image quality, and the dataset used for TGA evaluation was limited. This
may not have fully reflected the true potential of this angle, and further research will be
required to establish its efficacy.

Throughout our research, we made several unique assumptions to enhance the perfor-
mance of our pipeline by emulating the clinical diagnostic process. For example, similar to
how clinicians focus on specific regions of interest when examining ultrasounds, we used a
saliency map to crop the images, ensuring that the segmentation model concentrated only
on relevant anatomies. This was done to mitigate noise found in real ultrasound data, such
as artefacts and varying levels of contrast, which tended to confuse the model in locating
the spine. Further, we also restricted the computation of features to only the interquartile
range due to observations made from the box plots for classification tasks.
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While we are pleased with our achievements within the given timeline, we believe there
is scope for further improvement of our study. We could explore methods to assess the
quality of anatomical representations in the scans that might enhance the accuracy of fea-
ture computations and improve the diagnosis of TGA. We can also try experimenting with
different sets of features or employing ensembling techniques to boost the robustness and
clinical viability of our pipeline.

5.2 Conclusion

Overall, we have met our objectives by contributing a novel end-to-end pipeline for early
diagnosis of fetuses, which has shown notable performance on real clinical data obtained
from patients diagnosed with two commonly occurring CHDs, TOF and TGA. We also
established a new method of localising the spine in scans, which was used as a landmark
to automate the computation of valuable biometric parameters. Additionally, we intro-
duced unique features, based on the clinical definitions of the disease, that have not been
previously correlated with these conditions. Furthermore, we recognise opportunities for
future research to enhance the accuracy of our pipeline and ultimately lead to more reliable
and widespread clinical adoption, improving prenatal care and outcomes for fetuses with
congenital heart anomalies.

5.3 Future Work

Automating Pre-processing: While most stages of our pipeline were automated using
deep learning techniques to replicate the clinical diagnostic process, real ultrasound data
often includes challenges such as split views and Doppler overlays that require manual in-
tervention. Although we initially experimented with basic functions to detect split views,
future work could focus on automating this process more robustly.

Identifying Inaccurate Feature Measurements: In our pipeline, we aggregated fea-
tures by computing their mean and then refined this approach to consider only angles
within the interquartile range, which improved our results. However, there remains the
challenge of developing mechanisms that can identify and mitigate incorrect measurements
across the numerous computed features. We could explore deep learning models for image
quality assessment. This will ensure a comprehensive representation of features, unaffected
by potential inaccuracies.

Incorporating Unique Identifiable Traits: A robust diagnostic model should effec-
tively accommodate diverse fetal morphologies, which can vary significantly and impact
congenital anomaly detection rates. Our datasets were anonymised for ethical reasons,
omitting patient-specific details. However, previous studies have demonstrated promising
results by correlating features such as maternal health history, gestational age, and demo-
graphic factors such as race with congenital anomalies. Integrating these characteristics
into our existing solution could potentially enhance its diagnostic accuracy and applicabil-
ity in clinical settings.

Exploring State-of-the-Art Models and Disease Datasets: Due to the modular
structure of our pipeline, further exploration of the most advanced models for each com-
ponent would have been beneficial, given sufficient time. Additionally, we could have
evaluated the pipeline on more nuanced congenital heart diseases with complex features to
generate potential valuable insights, but data availability limited our current scope.
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Chapter 6

Ethical Issues

The dataset we use in this study, is made up of ultrasound scans of volunteers in their 18-
24 week gestation period recorded in a fetal cardiology clinic. Since our research involves
processing fetal ultrasound images using deep learning, we acknowledge the ethical concerns
related to the use of medical information in a nonclinical setting. We would like to highlight
that the data is anonymised providing us with no means of tracing the personal information
of the volunteers. Further, we use the same resources with similar supervision as that of
the research conducted by Budd et al. [39] which received ethical approval from the NHS
R&D and ethical review boards such as the NRES (Reference no. 14/LO/1086) and the
LMIAI Centre for Value-Based Healthcare Anonymised Database (Reference no. REC
20/ES/0005). Due to similarities in data, supervision and research objectives, we conclude
that the approvals extend to our project. Finally, due to the aforementioned reasons,
we are confident that the dataset used and hence our project has no associated ethical
considerations or risks.
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Appendix A

Example Images Illustrating Model
Performance

A.1 Vascular Angle for Different Image Qualities

(a) Good

(b) Medium

(c) Bad

Figure A.1: Figure shows examples of randomly selected good, medium and bad quality
images obtained from patient FN008. Vascular angles computed in the three images are
similar regardless of the ultrasound scan quality. This consistency supports our decision
to include medium and lower-quality images in the dataset of normal cases.
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A.2 Cardiac Angles for Normal and HLHS cases

(a) (b)

Figure A.2: Examples of segmentations for NORM cases with clear delineation of anatom-
ical landmarks.

(a) (b)

Figure A.3: Examples of segmentations for HLHS cases showing irregular boundaries and
incomplete delineation of cardiac anatomy. These cardiac angles are observed as outliers
in the box plot.

A.3 Vascular Angles using Spine Centroid

Figure A.4: Examples of 3VT images for which vascular angles was computed as intended
using the centroid approach.
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Appendix B

Plane Detection Results on 4CH
View for HLHS & NORM Patients

B.1 SonoNet

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (141/162)

43 4CH
99 Abdominal
12 Background

1 Kidneys
7 LVOT

40.32° True

4CH-Medium (79/129)

68 4CH
20 Abdominal
6 Background

35 LVOT

36.57° False

4CH-Bad (37/105)

22 4CH
14 Abdominal
53 Background

9 LVOT
1 Lips

5 RVOT
1 Spine (sag.)

41.23° True

Table B.1: Results for Patient HLH007

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (1/5) 4 Abdominal
1 RVOT

N/A N/A

4CH-Medium (3/12) 4 Background
8 RVOT

N/A N/A

4CH-Bad (0/1) 1 LVOT N/A N/A

Table B.3: Results for Patient HLH029
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Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (0/4) 3 Abdominal
1 Lips N/A N/A

4CH-Medium (1/78) 9 Abdominal
69 Background N/A N/A

4CH-Bad (21/828)

85 Abdominal
715 Background
1 Brain (Cb.)

7 Femur
13 Lips
5 Profile

2 Spine (sag.)

N/A N/A

Table B.2: Results for Patient HLH016

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Medium (0/14)

4 4CH
5 Background

3 LVOT
2 RVOT

N/A N/A

4CH-Bad (0/7) 7 Background N/A N/A

Table B.4: Results for Patient HLH033

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (254/469)

1 4CH
386 Abdominal
78 Background

4 Lips

N/A N/A

4CH-Medium (385/1114)
452 Abdominal
593 Background

69 Lips
N/A N/A

4CH-Bad (302/1457)

286 Abdominal
984 Background
11 Brain (Cb.)

1 Femur
4 LVOT
171 Lips

N/A N/A

Table B.5: Results for Patient HLH037
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Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status
4CH-Good (2/2) 2 LVOT N/A N/A

4CH-Medium (7/7)
2 3VV
4 4CH

1 RVOT
47.46° True

4CH-Bad (2/2) 2 4CH 44.38° True

Table B.6: Results for Patient HLH039

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Medium (4/15)
2 4CH

1 Abdominal
12 Background

45.27° True

4CH-Bad (4/110)
4 Abdominal

105 Background
1 RVOT

N/A N/A

Table B.7: Results for Patient HLH046

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (0/5) 3 Abdominal
2 Background N/A N/A

4CH-Medium (0/16) 16 Abdominal N/A N/A

4CH-Bad (5/106)
10 Abdominal
93 Background
3 Brain (Tv.)

N/A N/A

Table B.8: Results for Patient HLH060
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Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (2/435)

151 4CH
55 Abdominal

217 Background
2 Brain (Tv.)

1 LVOT
9 Lips

N/A N/A

4CH-Medium (3/204)

115 4CH
4 Abdominal

33 Background
2 Femur
1 LVOT
49 Lips

33.13° False

4CH-Bad (78/502)

162 4CH
91 Abdominal

239 Background
3 Femur
7 Lips

46.7° True

Table B.9: Results for Patient FN006

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (289/944)
1 3VV

483 4CH
202 Abdominal

37.24° False

4CH-Medium (152/359)

22 4CH
35 Abdominal

133 Background
2 Femur
167 Lips

38.52° True

4CH-Bad (150/397)

90 4CH
70 Abdominal

137 Background
2 Brain (Tv.)

5 LVOT
92 Lips

1 Profile

41.92° True

Table B.10: Results for Patient FN008

60



Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (23/86)
19 Abdominal
65 Background

2 Profile
N/A N/A

4CH-Medium (0/29) 6 Abdominal
23 Background N/A N/A

4CH-Bad (20/39) 13 Abdominal
26 Background N/A N/A

Table B.11: Results for Patient NORM007

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (39/170)

6 4CH
102 Abdominal
7 Background

55 Lips

38.41° True

4CH-Medium (29/224)

72 4CH
58 Abdominal
1 Background

93 Lips

40.47° True

4CH-Bad (12/31)
14 Abdominal
1 Background

16 Lips
N/A N/A

Table B.12: Results for Patient NORM014
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B.2 SonoNext

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (141/162)

75 4CH
56 Background

2 LVOT
29 SPINE-SAGITTAL

51.46° True

4CH-Medium (79/129)

2 3VT
1 4CH

103 Background
13 LVOT
8 RVOT

2 SPINE-SAGITTAL

7.51° False

4CH-Bad (37/105)

1 4CH
83 Background

15 LVOT
3 RVOT

3 Spine (sag.)

37.84° False

Table B.13: Results for Patient HLH007

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (0/4) 2 Background
2 LVOT

N/A N/A

4CH-Medium (1/78) 77 Background
1 LVOT

N/A N/A

4CH-Bad (21/828)

1 3VT
41 4CH

3 Abdominal
713 Background

2 Lips
6 LVOT
1 RVOT

61 Spine (sag.)

N/A N/A

Table B.14: Results for Patient HLH016

Plane-Quality Planes Detected Avg. Cardiac Angle HLHS Status

4CH-Good (1/5) 2 4CH
3 Background 21.04° False

4CH-Medium (3/12)
4 4CH

4 Background
4 RVOT

36.08° False

4CH-Bad (0/1) 1 4CH N/A N/A

Table B.15: Results for Patient HLH029
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