
MENG INDIVIDUAL PROJECT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Towards Robust and Stable Deep
Learning Algorithms for Forward
Backward Stochastic Differential

Equations

Author:
Aadhithya A Naarayan

Supervisor:
Dr Panos Parpas

Second Marker:
Dr Ruth Misener

June 17, 2024

Submitted in partial fulfillment of the requirements for the MEng degree in
Computing Management and Finance of Imperial College London

Abstract

Before the 2008 financial crisis, the valuation of financial derivative contracts sig-
nificantly underestimated risks involving counterparty defaults and funding costs,
leading to substantial losses or bankruptcy. This exposed the need for a more com-
prehensive risk management framework governed by valuation adjustments known
as xVAs. The valuation of financial contracts, such as options and forwards, and
their corresponding xVAs can be represented as Partial Differential Equations (PDEs).
Most of these PDEs do not have closed-form solutions, necessitating methods such
as finite differences, spectral methods, and Monte Carlo simulations to solve them.
These methodologies suffer from the ”curse of dimensionality” as they do not scale
well in high dimensions, making the algorithms computationally intensive. These
PDEs can be converted into a set of Forward-Backward Stochastic Differential Equa-
tions, which can be approximated using deep learning. This project proposes an
alternative methodology to solve the Black-Scholes Equation, used in the valuation
of options and forward derivative contracts with both correlated and uncorrelated
underlying asset prices, and uses these values to solve the xVA backward stochastic
differential equations using a deep learning approach.

This project explores a residual neural network-based architecture called Nais-Net
and Multi-Level Monte Carlo discretisation schemes to improve the model’s perfor-
mance. Through experiments involving these techniques, we were able to reduce
the training time by approximately 85% from the initial setup while maintaining a
similar level of accuracy. The final algorithms proposed for the valuation of port-
folios of call options and forward contracts, including the xVAs and simulation of
collateral accounts, achieve an accuracy of approximately 0.1% for the initial xVA
values compared to another state-of-the-art approach, which achieves an accuracy
of approximately 1%.

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Panos Parpas, for
his support, guidance, and encouragement. His insights, feedback, and expertise
have been instrumental in shaping this work. I am deeply appreciative of the time
and effort he has invested in mentoring me through the duration of this project. I
would also like to thank Dr. Ruth Misener for her valuable feedback on my interim
report for this project.

My acknowledgments would not be complete without recognising my parents to
whom I am eternally grateful for their support throughout my degree.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Summary of the Report . 3

2 Background 4
2.1 Markov Process . 4
2.2 Wiener Process . 4
2.3 Stochastic Differential Equations . 5

2.3.1 Itô Process . 5
2.3.2 Linking Partial Differential Equations and Stochastic Differen-

tial Equations . 6
2.3.3 Forward Stochastic Differential Equations 7
2.3.4 Backward Stochastic Differential Equations 8

2.4 Black-Scholes Equation . 9
2.4.1 Partial Differential Equation Derivation 9
2.4.2 Closed Form Solution . 10
2.4.3 European Call Option Pricing 12
2.4.4 European Put Option Pricing 14
2.4.5 Forward Contract Pricing . 14

3 Neural Network 16
3.1 Initial Setup . 16

3.1.1 Forward-Backward Stochastic Differential Equations 16
3.1.2 Euler-Maruyama Scheme . 17
3.1.3 Loss Function . 17
3.1.4 Architecture . 17
3.1.5 Training Algorithm . 18
3.1.6 Black-Scholes Barenblatt Equation 19
3.1.7 Fully Connected Network Architecture 20
3.1.8 Experimental Results . 20
3.1.9 Analysis of Results and Comparison with Related Work 22

3.2 Nais-Net Architecture . 23
3.2.1 Residual Networks . 23
3.2.2 Fully Connected Nais-Net . 24
3.2.3 Results . 25

iii

CONTENTS Table of Contents

3.3 Loss Function . 27
3.4 Multi-Level Monte Carlo Technique 28

3.4.1 Definition . 28
3.4.2 Geometric Multi Level Monte Carlo 29
3.4.3 Non-Geometric Multi Level Monte Carlo 30
3.4.4 Generalisation at Finer Discretisation Levels 31

3.5 Bias Variance Trade-off . 33
3.6 Correlated Underlying Processes . 34

3.6.1 Cholesky Decomposition . 34

4 Risk Management Framework 36
4.1 Market Setting . 36

4.1.1 Time of Default . 36
4.1.2 Underlying Assets . 37
4.1.3 Cash Accounts . 38
4.1.4 Risky Bonds . 38
4.1.5 Claims . 38
4.1.6 Collateral . 38

4.2 xVA Framework . 39
4.2.1 Clean Market Portfolio Dynamics 39
4.2.2 Fair Value Stochastic Differential Equation 40
4.2.3 xVA Backward Stochastic Differential Equation 41
4.2.4 xVA Algorithms . 42

5 Numerical Results 45
5.1 Experimental Setup . 45
5.2 Forward Contracts . 46

5.2.1 Clean Values . 47
5.2.2 FVA calculations for Forward Contract Portfolios 48
5.2.3 FVA calculations with Collateral 49

5.3 European Call Option . 49
5.3.1 Clean Values . 50

5.4 European Call Option Basket . 51
5.4.1 Clean Values . 51
5.4.2 CVA and DVA Calculations . 52
5.4.3 FVA Calculations . 53

6 Conclusion 54
6.1 Achievements . 54
6.2 Future Work . 55

iv

Chapter 1

Introduction

1.1 Motivation

Following the 2008 financial crisis, it has become accepted by practitioners and aca-
demics that the valuation of financial products must take into account the possibility
of default of all parties involved in a transaction. This consideration has been incor-
porated into valuation equations via valuation adjustments. Valuation adjustments,
commonly termed xVAs, were first explored by Duffie and Huang [1] to study the
credit risk asymmetry for defaultable swap contracts. Bielecki et al. [2] and Brigo
et al. [3] [4] [5] explore the concepts where the default risks of the bank and the
counterparty are treated symmetrically using Credit Valuation Adjustments (CVA)
and Debt Valuation Adjustments (DVA). A single funding stream operating under
a unique, risk-free interest rate is no longer a realistic assumption, as trading is
financed through different liquidity sources, especially for financial derivative con-
tracts like options and forwards. Funding Valuation Adjustments (FVA) take this into
account while pricing derivatives and portfolios, and are derived in Pallavicini et al.
[6] and further discussed in Bielecki et al. [7]. Biagini et al. [8] and Bichuch et
al. [9] [10] provide a framework to calculate these xVA adjustments by representing
them as backward stochastic differential equations.

The Basel III accord [11] and The Fundamental Review of the Trading Book [12]
necessitate that banks perform timely and accurate xVA calculations, which are re-
quired for stress testing and simulating multiple scenarios to understand potential
risks and inform strategic planning. Joshi et al. [13] and Karlsson et al. [14] in-
troduced a regression-based least squares Monte Carlo approach to solve these xVA
equations, which is computationally expensive. Albanese et al. [15] provide a GPU-
based implementation using Monte Carlo methods to solve this problem, thereby
improving computational performance. However, these approaches suffer from the
“curse of dimensionality”, especially when considering calculations for large portfo-
lios that banks manage daily. This can be overcome by developing a deep learning
approach to approximate the solution of the xVA backward stochastic differential
equation. A deep learning approach could also improve a bank’s competitive ad-
vantage by allowing them to price their products accurately and reduce operational
costs associated with these computationally intensive techniques.

1

1.1. MOTIVATION Chapter 1. Introduction

Since their introduction by Jean-Michel Bismut [16] for the linear case and Pardoux
and Peng [17] for the general case, backward stochastic differential equations have
been widely used in mathematical finance. El Karoui et al. [18] explain the rele-
vance of backward stochastic differential equations in the theory of derivative pricing
and contingent claim valuation used for xVA calculations. The relationship between
forward-backward stochastic differential equations and parabolic partial differential
equation was introduced by Pardoux et al. [19]. In this project we represent the
Black Scholes partial differential equation and xVA equation as a system of forward-
backward stochastic differential equations which we can approximate using a neural
network.

Traditional methods for solving partial differential equations tend to encounter the
“curse of dimensionality”, a problem experienced by practitioners with financial con-
tract valuations and xVA calculations in high dimensions. Finite difference methods
require every dimension to be discretised whereas a Monte Carlo approach requires
sampling exponentially from a probability distribution. This issue of the “curse of di-
mensionality” stems from the reliance of these approaches on spatio-temporal grids,
as the number of computational operations increases exponentially with the dimen-
sions of the equation (see figure 1.1).

Figure 1.1: This figure illustrates an example where 5 discretised points suffice to sam-
ple a unit interval. We would need to sample 5d points for d dimensions indicating an
exponential growth in the sampling operation (figure from [20]).

Many new stochastic approximation methods have been proposed and studied to
circumvent this issue. These include backward stochastic differential equation-based
approximation methods, in which nested conditional expectations are discretised
through regression methods, as proposed by Gobet et al. [21] [22] and Bouchard
et al. [23], and deep learning techniques, as proposed by Uchiyama et al. [24],
M Raissi [25], Han et al. [26] [27], Sirignano et al. [28], and Beck et al. [29],
all exploring different algorithms to solve partial differential equations, including
the Black-Scholes equation, which is relevant to this report. These models learn
to predict future paths originating from the same distribution as the training set,
which consists of time-sequenced data generated from random Brownian motions.
Through this project, we build upon the work of Batuhan Guler et al. [30][31],
which has added to the work of Raissi [25][32] (refer to section 3.1.9 for a detailed
discussion about the reasons for choosing to add to this approach over the others).

2

Chapter 1. Introduction 1.2. CONTRIBUTIONS

1.2 Contributions

Our main contribution is that we developed a deep learning-based solution to solve
the Black-Scholes equation used to price options and forward contracts in high di-
mensions in a reasonable amount of time, and a deep learning-based algorithm to
solve the xVA backward stochastic differential equation for portfolios of these con-
tracts, taking into account the credit default, funding, and collateral-based risks of
all parties involved in the transaction. We first replicated the work of Raissi [25]
and Batuhan Guler et al. [30] and conducted further experiments using the Nais-
Net architecture as proposed by Ciccone et al. [33]. Through these experiments,
we identified that this architecture achieves the same relative error levels compared
to the closed-form solution of the Black-Scholes-Barenblatt equation in 25k itera-
tions, compared to 100k iterations of the feed-forward model proposed in [25].
We then proposed utilising a Non-Geometric Multi-Level Monte Carlo discretisation
technique, which reduced the training time by approximately 85%. Furthermore,
the models in [25] and [30] focused on the uncorrelated Black-Scholes-Barenblatt
equation for a terminal payoff as the squared value of the underlying at the ter-
minal time. Our approach works with more realistic payoffs such as portfolios of
European-style forward contracts and call options on correlated and uncorrelated
underlying assets. Finally, we proposed an algorithm to solve the xVA backward
stochastic differential equation that uses the results from our earlier experiments.
We compared our results to those of Gnoatto et al. [34], who achieved an error of
approximately 1% for the initial xVA value for portfolios of both forward contracts
and call options, compared to the values obtained using Monte Carlo simulations.
Our algorithm achieved an error of approximately 0.1% for the same experiments.

1.3 Summary of the Report

The first part of this report (chapter 2) introduces the mathematical background re-
quired to derive the equations used in the neural network and the closed-form solu-
tion of the Black-Scholes equation for European-style options and forward contracts,
which we use to evaluate the solution of our neural network in subsequent chapters.
The second part (chapter 3) explains the structure of the neural network and how
it solves the pricing problem. We identify and explore methodologies like the Nais-
Net architecture in section 3.2 and Multi-Level Monte Carlo techniques in section
3.4 to improve accuracy and reduce computational complexity. We also explore the
bias-variance trade-off for different network architectures and hyper-parameters in
section 3.5 and extend our network to approximate the pricing for portfolios hav-
ing correlated underlying assets in section 3.6. The third part (chapter 4) explains
the mathematics behind the risk valuation equations, which are used to include the
valuation adjustments to the prices obtained using the neural network in chapter
3. In this chapter, we also propose algorithms to solve the xVA backward stochastic
differential equation in section 4.2.4. The final part of the report (chapter 5) focuses
on the numerical experiments that compare the performance of the proposed model
and algorithms to another state-of-the-art implementation by Gnoatto et al. [34] for
portfolios of European-style call options and forward contracts.

3

Chapter 2

Background

This chapter focuses on the mathematical background required to set up the neural
network and derive the equations necessary for the approximation of forward back-
ward stochastic differential equations with a focus on the Black Scholes equation
used for pricing financial derivative contracts. We also derive the closed form solu-
tion of this equation for the pricing of call options and forward contracts which we
use to test the accuracy of our neural network in the subsequent chapters.

2.1 Markov Process

A random process {X(t), t ∈ T} is called a first-order Markov process if for any t0 <
t1 < · · · < tn the conditional CDF of X(tn) for given values of X(t0), X(t1), . . . , X(tn−1)
depends only on X(tn−1) [35]. That is,

P (X(tn) ≤ xn | X(tn−1) ≤ xn−1, X(tn−2) ≤ xn−2, . . . , X(t0) ≤ x0)

= P (X(tn) ≤ xn | X(tn−1) ≤ xn−1)

2.2 Wiener Process

A Wiener process, also known as a Brownian motion, is a type of Markov process
with the following properties:

1. It can be defined as a symmetric random walk W (t) over N periods of time ∆t,
with ∆t→ 0, such that,

W (tk+1) = W (tk) + ε(tk)
√
∆t

tk+1 = tk +∆t

for k = 0, 1, 2, . . . , N , where W (0) = 0 and the disturbance follows a standard
normal distribution: ε(tk) ∼ N (0, 1).

2. W (t) is a continuous time limit of a discrete random walk so it is continuous
in t with independent and stationary increments.

4

Chapter 2. Background 2.3. STOCHASTIC DIFFERENTIAL EQUATIONS

3. For all t1 < t2 ≤ t3 < t4 the random variables W (t2)−W (t1) and W (t4)−W (t3)
are independent.

4. For all j < k we have W (tk)−W (tj) ∼ N (0, tk − tj).

5. It is not differentiable with respect to time which can be proved as follows:

Consider the variance of the increment ratio as h→ 0,

E

[(
W (t+ h)−W (t)

h

)2
]
=

1

h2
Var[W (t+ h)−W (t)]

=
1

h

h→0−−→∞

2.3 Stochastic Differential Equations

The general form of a stochastic differential equation (SDE) is given by

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

where:

• Xt is the stochastic process that is the solution to the SDE.

• µ(t,Xt) is a function representing the drift term, which describes the determin-
istic trend of the process.

• σ(t,Xt) is a function representing the diffusion term, which models the random
fluctuations. It’s often associated with the volatility in financial models.

• dWt is the increment of a Wiener process (or Brownian motion), representing
the random input to the system.

• dt represents an infinitesimal increment in time.

Multi-dimensional SDEs involve vectors for Xt, µ, and σ, and a matrix for the dif-
fusion term to model the interactions between different components of the system
(See figure 2.1).

2.3.1 Itô Process

An Itô process Xt is defined as follows:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (2.1)

where µ(t,Xt) and σ(t,Xt) are two continuous functions representing the drift and
volatility terms, respectively, and Wt is a Wiener process.

5

2.3. STOCHASTIC DIFFERENTIAL EQUATIONS Chapter 2. Background

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

X_
t

SDE Realizations for Different Values of Constant Volatility and Drift
=0.2, =0.4
=0.4, =0.2
=0.5, =1.0

Figure 2.1: Stochastic process simulation

Now, consider a function f(t,Xt) where Xt is an Ito process. Using a Taylor expan-
sion, we get

f(t+ dt,Xt + dXt) = f(t,Xt) +
∂f

∂t
dt+

∂f

∂Xt

dXt +
1

2

∂2f

∂X2
t

(dXt)
2 + higher order terms

Approximating by taking the first order terms, rearranging and substituting Xt from
equation 2.1 we get

df(t,Xt) ≈
∂f

∂t
dt+

∂f

∂Xt

(µdt+ σdWt) +
1

2

∂2f

∂X2
t

(µdt+ σdWt)
2

In the expansion of the term (µdt+σdWt)
2, dt2 and dt.dW are ignored due to second

order degree whereas as the variance of a Wiener process is dt we have dW 2 = dt.
Applying this to the above equation and rearranging the terms we get Itô’s Lemma:

df(t,Xt) =

(
∂f

∂t
+ µ

∂f

∂Xt

+
1

2
σ2 ∂

2f

∂X2
t

)
dt+ σ

∂f

∂Xt

dWt (2.2)

2.3.2 Linking Partial Differential Equations and Stochastic Dif-
ferential Equations

Consider a function f(t, x) that is a solution to the following partial differential equa-
tion (PDE):

∂f

∂t
+ µ(t, x)

∂f

∂x
+

1

2
σ2(t, x)

∂2f

∂x2
= 0

with terminal condition f(T, x) = g(x), where T is a fixed time and g is a known
function.

Let Xt be a stochastic process described by the SDE:

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt

6

Chapter 2. Background 2.3. STOCHASTIC DIFFERENTIAL EQUATIONS

where µ and σ are the drift and volatility functions, respectively, and Wt is a Wiener
process.

Itô’s Lemma tells us how to find the differential df of a function f that depends
on a stochastic process. Applying Itô’s Lemma as given in equation 2.2, we get:

df(t,Xt) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2

Substituting dXt from the SDE into the above equation, we get:

df(t,Xt) =
∂f

∂t
dt+

∂f

∂x
(µdt+ σdWt) +

1

2

∂2f

∂x2
(σ2dt)

Simplifying and regrouping terms, and using the fact that f solves the PDE, all terms
involving dt cancel out, leaving:

df(t,Xt) =
∂f

∂x
σ(t,Xt)dWt

Integrating both sides from t to T , we obtain:

f(T,XT)− f(t,Xt) =

∫ T

t

∂f

∂x
(s,Xs)σ(s,Xs)dWs

Taking expectations and noting that the expectation of the stochastic integral of a
non-anticipative function with respect to Brownian motion is zero, we find:

E[f(T,XT) | Xt] = f(t,Xt)

Finally, using the terminal condition f(T,X) = g(X):

f(t,Xt) = E[g(XT) | Xt]

This result tells us that f(t,Xt) can be interpreted as the conditional expectation of
g(XT) given the current state Xt. This was introduced as the Feynman-Kac formula
and the expectation is traditionally calculated using a Monte Carlo simulation as in
Bouchard et al. [23].

2.3.3 Forward Stochastic Differential Equations

The general form of a Forward Stochastic Differential Equation is as follows:

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs

where µ(s,Xs) and σ(s,Xs) are two continuous functions representing the drift and
volatility terms, respectively, and Xs is a Wiener process.

7

2.3. STOCHASTIC DIFFERENTIAL EQUATIONS Chapter 2. Background

2.3.4 Backward Stochastic Differential Equations

As explained in Gobet [36], consider the stochastic processes Xt, Yt and Zt defined
as follows:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

Yt = u(t,Xt) and,
Zt = ∇u(t,Xt)σ(t,Xt).

with the terminal condition u(T, x) = g(x) and function u(t, x) such that:

∂u

∂t
+ µ(t, x)

∂u

∂x
+

1

2
σ2(t, x)

∂2u

∂x2
+ f(t, x, u(t, x),∇u(t, x)) = 0 (2.3)

Applying Itô’s lemma to Yt, we get

dYt =

(
∂u

∂t
+ µ(t,Xt)

∂u

∂x
+

1

2
σ2(t,Xt)

∂2u

∂x2

)
dt+∇u(t,Xt)σ(t,Xt)dWt.

Utilising the PDE in equation 2.3 and the definition of Zt, we get

dYt = −f(t,Xt, Yt, Zt[σ(t,Xt)
−1])dt+ ZtdWt.

By integrating between time periods t and T, we get

YT − Yt = −
∫ T

t

f(s,Xs, u(s,Xs), Zs[σ(s,Xs)
−1] ds+

∫ T

t

Zs dWs

using the terminal condition we derive the Backward SDE given by

Yt = g(XT) +

∫ T

t

f(s,Xs, u(s,Xs), Zs[σ(s,Xs)
−1] ds−

∫ T

t

Zs dWs. (2.4)

Together, the following set of equations are called Forward Backward Stochastic
Differential Equations (FBSDEs).

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs

Yt = g(XT) +

∫ T

t

f(s,Xs, u(s,Xs), Zs[σ(s,Xs)
−1] ds−

∫ T

t

Zs dWs

(2.5)

Backward SDEs are inherently complex to solve due to several key challenges. Unlike
forward SDEs, defined by an initial condition, backward SDEs are characterised by
a terminal condition, necessitating solutions that accommodate future information
using backward induction methods. Their solutions often involve a coupled system
of equations for the processes Yt and Zt, intertwined in complex, nonlinear rela-
tionships, complicating analytical and numerical approaches to solve them. These
computationally intensive methods require careful handling to ensure stability and
accuracy. The use of neural networks to solve a set of FBSDEs as an alternative to
traditional methods, as proposed by Raissi [25] and extended by Guler et al. [30],
which involves approximating the processes Yt and Zt (by differentiating Yt with
respect to Xt) leads to reduced computational complexity and produces promising
results. So, we build on this work in chapter 3 focusing on the Black-Scholes equa-
tion for financial derivative valuation.

8

Chapter 2. Background 2.4. BLACK-SCHOLES EQUATION

2.4 Black-Scholes Equation

The Black-Scholes Equation proposed by Black and Scholes [37] provides a model to
price financial derivative contracts and liabilities which is widely used as the foun-
dation for derivative pricing and risk management today. In this report, we will use
the PDE representation of this equation with a defined terminal condition to predict
prices and develop a risk framework using a neural network.

2.4.1 Partial Differential Equation Derivation

This section is based on the work of Hull [38].

Consider a stock with price S that follows an Itô Process given by

dS = µS dt+ σS dW

Where µ represents the drift, which describes the deterministic trend of the process
and σ represents the diffusion which models the volatility of the process.
Suppose f is a twice differentiable function of S and t and denotes the price of a
derivative contract contingent on S. Using Itô’s lemma as in equation 2.2 we get

df =

(
µS

∂f

∂S
+

∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+ σS

∂f

∂S
dW

The discretised versions of the above equations over a time interval ∆t are

∆S = µS∆t+ σS∆W (2.6)

and

∆f =

(
µS

∂f

∂S
+

∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
∆t+ σS

∂f

∂S
∆W (2.7)

respectively.

From the above equation, we can see that the processes representing the under-
lying S and f are the same. So we can construct a portfolio of the stock and the
derivative to eliminate the Wiener process to effectively price the derivative con-
tract. This portfolio involves selling one derivative contract and buying ∂f

∂S
of the

underlying asset. We can formally define the the value of the portfolio Π as

Π = −f +
∂f

∂S
S (2.8)

Over a time interval ∆t we have

∆Π = −∆f +
∂f

∂S
∆S

9

2.4. BLACK-SCHOLES EQUATION Chapter 2. Background

From equations 2.6 and 2.7 we get

∆Π = −
((

µS
∂f

∂S
+

∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
∆t+ σS

∂f

∂S
∆W

)
+

∂f

∂S
(µS∆t+ σS∆W)

On rearranging and cancelling out like terms we get

∆Π = −∂f

∂t
∆t− 1

2

∂2f

∂S2
σ2S2∆t =

(
−∂f

∂t
− 1

2

∂2f

∂S2
σ2S2

)
∆t (2.9)

This equation does not involve ∆W , so the portfolio is risk-less during time ∆t.
Assuming there are no transaction costs, all securities are perfectly divisible, there
are no dividends during the life of the derivative, there are no risk-less arbitrage
opportunities, security trading is continuous and the risk-free rate of interest, r, is
constant and the same for all maturities, this portfolio will earn the rate of return r
over the period ∆t. That is,

∆Π = rΠ∆t

Substituting equations 2.8 and 2.9 in the above equation we get,(
−∂f

∂t
− 1

2

∂2f

∂S2
σ2S2

)
∆t = r

(
−f +

∂f

∂S
S

)
∆t

On rearranging and cancelling ∆t on both sides we get the Black-Scholes Partial
Differential Equation given by

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf (2.10)

We can now use different boundary conditions depending on the payoff of the deriva-
tive contract to arrive at a specific solution to this equation.

2.4.2 Closed Form Solution

In this section we transform the Black-Scholes PDE to an initial value problem in
the form of the heat equation. Suppose we have a fixed expiry time T , the value of
f(T, S) is known and the exercise price of the derivative contract is K. Consider two
new independent variables τ and x such that

t = T − 2τ

σ2
,

S = Kex.
(2.11)

We also replace the variable f with V given by

f(t, S) = KV (τ, x) = KV (
1

2
σ2(T − t), log(

S

K
)). (2.12)

We now have an initial value problem where V is known as time τ = 0 and we are
interested in the behaviour of V for τ > 0.

10

Chapter 2. Background 2.4. BLACK-SCHOLES EQUATION

Since x = log(S
K
) and τ = 1

2
σ2(T − t), we have

∂x

∂S
=

1

(S/K)
× 1

K
=

1

S
,

∂x

∂t
= 0,

∂τ

∂t
= −1

2
σ2,

∂τ

∂S
= 0.

(2.13)

Using the equations in 2.13 we get

∂f

∂t
= K

(
∂V

∂x

∂x

∂t
+

∂V

∂τ

∂τ

∂t

)
= −1

2
σ2K

∂V

∂τ
,

∂f

∂S
= K

(
∂V

∂x

∂x

∂S
+

∂V

∂τ

∂τ

∂S

)
=

K

S

∂V

∂x

(2.14)

and
∂2f

∂S2
= K

∂

∂S

(
1

S

∂V

∂x

)
= K

(
− 1

S2

∂V

∂x
+

1

S

∂2V

∂x2

∂x

∂S

)
= K

(
− 1

S2

∂V

∂x
+

1

S2

∂2V

∂x2

) (2.15)

Substituting equations 2.14 and 2.15 in the Black-Scholes Partial Differential Equa-
tion in equation 2.10 we get

−1

2
σ2K

∂V

∂τ
+

1

2
σ2S2K

(
− 1

S2

∂2V

∂x2

)
+ rSK

∂V

∂x
− rKV (τ, x) = 0.

We can simplify this equation by taking

k = 2
r

σ2

to get

∂V

∂τ
=

∂2V

∂x2
+ (k − 1)

∂V

∂x
− kV (τ, x). (2.16)

To further simplify let us take

V (τ, x) = eαx+βτu(τ, x) (2.17)

where α and β are constants.

Differentiating equation 2.17 we get

∂V

∂τ
= eαx+βτ

(
βu+

∂u

∂τ

)
,

∂V

∂x
= eαx+βτ

(
αu+

∂u

∂x

)
,

∂2V

∂x2
= eαx+βτ

(
α2u+ 2α

∂u

∂x
+

∂2u

∂x2

)
.

(2.18)

11

2.4. BLACK-SCHOLES EQUATION Chapter 2. Background

Substituting equation 2.18 in equation 2.16 and cancelling eαx+βτ we get

∂u

∂τ
=

∂2u

∂x2
+ (k − 1 + 2α)

∂u

∂x
+ (α2 + αk − α− k − β)u. (2.19)

We choose values for α and β as follows

α =
1− k

2
,

β = −1

4
(k + 1)2.

(2.20)

to reduce the Black-Scholes PDE to the heat equation given by

∂u

∂τ
=

∂2u

∂x2
(2.21)

Assuming at time τ = 0, u(0, x) is known to be

u(0, x) = u0(x)

The heat equation admits the following solution:

u(τ, x) =
1√
4πkτ

∫ ∞

−∞
u0(s) exp

(
−(x− s)2

4kτ

)
ds (2.22)

2.4.3 European Call Option Pricing

A European call option gives the holder the right but not the obligation to buy the
underlying asset for fixed price at maturity. The boundary conditions for a European
call option on the Black-Scholes PDE in equation 2.10 with strike price K and a
maturity T with the risk-free interest rate assumed to be fixed and same for all
maturities at r are as follows:

f(t, 0) = 0 (f = 0 whenever St = 0 for any t)

limS→∞ f(t, S) = S −Ke−r(T−t) (discounted exercise price)
f(T, S) = max(S −K, 0) (payoff at expiration)

From equations 2.17 and 2.20 we have

V (τ, x) = e
1
2
(1−k)x− 1

4
(k+1)2τu(τ, x)

As f(t, x) = KV (t, x), the boundary conditions now become:
limx→−∞ V (0, x) = 0 (V = 0 whenever St = 0 for any t)

limx→∞ V (t, x) = ex − e−r(2τ
σ2) = ex − e−kτ (discounted exercise price)

V (0, x) = max(ex − 1, 0) (payoff at expiration)

So, in terms of u we get

u0(x) = e−
1
2
(1−k)x V (0, x) = max(e

k+1
2

x − e
k−1
2

x, 0) (2.23)

12

Chapter 2. Background 2.4. BLACK-SCHOLES EQUATION

Substituting equation 2.23 in the solution to the heat equation given in equation
2.22 we get

u(τ, x) =
1√
4πτ

∫ ∞

−∞
max(e

1
2
(k+1)s − e

1
2
(k−1)s, 0) exp

(
−(x− s)2

4τ

)
ds

Substituting y = s−x√
2τ

,

u(τ, x) =
1√
2π

∫ ∞

−∞

(
e

1
2
(k+1)(

√
2τy+x) − e

1
2
(k−1)(

√
2τy+x)

)
e−

1
2
y2 dy

=
1√
2π

∫ ∞

−x/
√
2τ

(
e

1
2
(k+1)(

√
2τy+x) − e

1
2
(k−1)(

√
2τy+x)

)
e−

1
2
y2 dy

=
1√
2π

∫ ∞

−x/
√
2τ

e
1
2
(k+1)(

√
2τy+x)e−

1
2
y2 dy

− 1√
2π

∫ ∞

−x/
√
2τ

e
1
2
(k−1)(

√
2τy+x)e−

1
2
y2 dy.

We can simplify this integral as follows:

u(τ, x) = e
1
4
(k+1)2τ+ 1

2
(k+1)x ·N(

x√
2τ

+
1

2
(k + 1)

√
2τ)

− e
1
4
(k−1)2τ+ 1

2
(k−1)x ·N(

x√
2τ

+
1

2
(k − 1)

√
2τ)

where N denotes the normalised Gaussian integral:

N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz

Let d1 = x√
2τ

+ 1
2
(k + 1)

√
2τ and d2 = x√

2τ
+ 1

2
(k − 1)

√
2τ . We have

V (τ, x) = e
1
2
(1−k)x− 1

4
(k+1)2τ · (e 1

4
(k+1)2τ+ 1

2
(k+1)x ·N(d1)− e

1
4
(k−1)2τ+ 1

2
(k−1)x ·N(d2))

= ex ·N(d1)− e−kτ ·N(d2)

Substituting based on equations 2.11 and 2.12 we get the price of a European call
option given by:

f(t, x) = S ·N(d1)−Ke−r(T−t) ·N(d2) (2.24)

with

d1 =
ln(S/K) + (r + σ2

2
)(T − t)

σ
√
T − t

d2 =
ln(S/K) + (r − σ2

2
)(T − t)

σ
√
T − t

13

2.4. BLACK-SCHOLES EQUATION Chapter 2. Background

2.4.4 European Put Option Pricing

A European put option gives the holder the right but not the obligation to sell the
underlying asset for fixed price at maturity. The price of this derivative contract can
be derived similarly to the European call option price given in the previous section.
The price of a European put option is:

f(t, x) = Ke−r(T−t) ·N(−d2)− S ·N(−d1) (2.25)

with

d1 =
ln(S/K) + (r + σ2

2
)(T − t)

σ
√
T − t

d2 =
ln(S/K) + (r − σ2

2
)(T − t)

σ
√
T − t

2.4.5 Forward Contract Pricing

A forward contract gives the holder the obligation to buy the underlying asset at a
specified price at maturity. The price of a forward contract can be derived from the
theory of put-call parity (see figure 2.2). The put-call parity can be expressed as
follows for a call and put option with strike price K, maturity T and initial price of
the underlying S:

Forward(K,T) = Call(K,T)− Put(K,T)

So, the value of a forward contract with forward price K, maturity T and initial price
of the underlying S can be replicated by creating a portfolio that is long a call option
and short a put option with strike K, maturity T and S is the initial price of the
underlying. Using this theorem and the equations for the price of a call and put
option given by equations 2.24 and 2.25 respectively we have

Forward(K,T) = S ·N(d1)−Ke−r(T−t) ·N(d2)−Ke−r(T−t) ·N(−d2) + S ·N(−d1)

=
S√
2π
· (
∫ d1

−∞
e−

z2

2 dz +

∫ −d1

−∞
e−

z2

2 dz)−

Ke−r(T−t)

√
2π

· (
∫ d2

−∞
e−

z2

2 dz +

∫ −d2

−∞
e−

z2

2 dz)

As the Gaussian integral is symmetric about 0, we have∫ −x

−∞
e−

z2

2 dz =

∫ x

∞
e−

z2

2 dz

14

Chapter 2. Background 2.4. BLACK-SCHOLES EQUATION

Therefore,

Forward(K,T) =
S√
2π
· (
∫ d1

−∞
e−

z2

2 dz +

∫ d1

∞
e−

z2

2 dz)−

Ke−r(T−t)

√
2π

· (
∫ d2

−∞
e−

z2

2 dz +

∫ d2

∞
e−

z2

2 dz)

=
S√
2π
· (
∫ ∞

−∞
e−

z2

2 dz)− Ke−r(T−t)

√
2π

· (
∫ ∞

−∞
e−

z2

2 dz)

= S −Ke−r(T−t)

Therefore, the value of a forward contract with forward price K, maturity T and
initial price of the underlying S is given by

Forward(K,T) = S −Ke−r(T−t) (2.26)

0.0 0.2 0.4 0.6 0.8 1.0
Time (Years)

85

90

95

100

105

St
oc

k
Pr

ice

Underlying Stock Price Process
Underlying Stock Price

0.0 0.2 0.4 0.6 0.8 1.0
Time (Years)

0

2

4

6

8

10

12

14

Op
tio

n
Pr

ice
Call Option Prices over Time

Call Option Price

0.0 0.2 0.4 0.6 0.8 1.0
Time (Years)

0

2

4

6

8

10

12

Op
tio

n
Pr

ice

Put Option Prices over Time
Put Option Price

0.0 0.2 0.4 0.6 0.8 1.0
Time (Years)

10

5

0

5

10

Op
tio

n
Pr

ice

Put-Call Parity and Forward Price over Time
Call Price - Put Price
Forward Price (S_t - K e^{-r(T - t)})

Figure 2.2: These figures represent the call option, put option and forward prices for
an underlying process of 1-Dimension with initial value S0 = 100, K = 100, r = 5%,
σ = 0.2 and T = 1. The figure on the bottom right verifies the put-call parity.

In the following sections, we focus on pricing portfolios consisting of baskets of cor-
related and uncorrelated European call options, European put options, and forward
contracts, which can be represented as high-dimensional PDEs, with each dimension
representing one asset, and developing a risk management framework for these port-
folios using neural networks. We use the closed form solution and perform Monte
Carlo simulations using the equations derived in this section to obtain the exact
values to compare with the neural network’s output.

15

Chapter 3

Neural Network

In this section we build on the work of Raissi [25] and Batuhan Guler, Alexis Laignelet
and Panos Parpas [30]. We define the forward-backward stochastic differential equa-
tions and their relation to the Black-Scholes Barenblatt equation in high dimensions
and formulate this problem for a neural network to solve. We also define the neural
network architecture, training algorithm and the methodologies used to improve the
initial results.

3.1 Initial Setup

In this section we aim to reproduce the results of the work of Raissi [25] and Batuhan
Guler, Alexis Laignelet and Panos Parpas [30] based on their fully connected neural
network setup.

3.1.1 Forward-Backward Stochastic Differential Equations

Let us consider the following set of forward-backward stochastic differential equa-
tions of the form

dXt = µ(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt)dWt, t ∈ [0, T],

X0 = ξ,

dYt = ϕ(t,Xt, Yt, Zt)dt+ Z ′
tσ(t,Xt, Yt)dWt, t ∈ [0, T]),

YT = g(XT),

(3.1)

where Xt, Yt and Zt are different stochastic processes, Wt is a wiener process, µ and
ϕ represent drift functions and σ is the diffusion function for the processes. From
Pardoux et al. [19] we know that a solution to this set of equations can be linked to
the solution of a partial differential equation of the form

ut = f(t, x, u,Du,D2u)

= ϕ(t, x, u,Du)− µ(t, x, u,Du)′Du− 1

2
Tr[σ(t, x, u)σ(t, x, u)′D2u]

(3.2)

where Du represents the gradient, D2u represents the hessian of u respectively with
Yt = u(t,Xt) and Zt = Du(t,Xt) and the terminal condition of u is known that is,

16

Chapter 3. Neural Network 3.1. INITIAL SETUP

u(T,XT) = g(XT). We can approximate the function u(t,Xt) using a neural network
using the PyTorch library as introduced by Paszke et al. [39]. The terms Du and
D2u are calculated using the automatic differentiation capability of this library. This
technique is superior to numerical and symbolic differentiation especially in machine
learning as explained in Baydin et al. [40].

3.1.2 Euler-Maruyama Scheme

We now discretise the equations in 3.1 using the Euler-Maruyama scheme to get the
following set of equations:

∆Wn ∼ N (0,∆tn),

Xn+1 ≈ Xn + µ(tn, Xn, Yn, Zn)∆tn + σ(tn, Xn, Yn)∆Wn,

Yn+1 ≈ Yn + ϕ(tn, Xn, Yn, Zn)∆tn + (Zn)
′σ(tn, Xn, Yn)∆Wn,

∆tn = tn+1 − tn =
T

N
,

(3.3)

for n = 0, 1, 2, ..., N − 1, where N is the number of time-steps.

3.1.3 Loss Function

The neural network predicts Yn for each input (tn, Xn). The loss function compares
this prediction of the neural network with the actual value calculated by the discreti-
sation step in equation 3.3 using a sum squared error loss for N time-steps and M
realisations of the wiener process W also known as batch size is given by:

M∑
m=1

N−1∑
n=0

∣∣Y m
n+1 − Y m

n −Φm
n ∆tn − (Zm

n)′Σm
n ∆Wm

n |2

+
M∑

m=1

|Y m
N − g(Xm

N)|2 +
M∑

m=1

|Zm
N − g′(Xm

N)|2
(3.4)

where Φm
n = ϕ(tn, X

m
n , Y m

n , Zm
n) and Σm

n = σ(tn, X
m
n , Y m

n).

From the equations in 3.3 we also have

Xm
n+1 = Xm

n + µ(tmn , X
m
n , Y m

n , Zm
n)∆tn + σ(tmn , X

m
n , Y m

n)∆Wm
n ,

Y m
n = u(tn, X

m
n),

Zm
n = Du(tn, X

m
n),

(3.5)

with Xm
0 = ξ for all m.

3.1.4 Architecture

As mentioned in the previous section, the neural network predicts Yn for each batch
of inputs (tn, Xn). At each time-step n, Xn is calculated using the equation in 3.5

17

3.1. INITIAL SETUP Chapter 3. Neural Network

for all M realisations of Xn. Yn is calculated using the neural network and Zm
n is

obtained using the automatic differentiation functionality of the PyTorch library by
taking the derivative of Yn with respect to Xn. The figure 3.1 represents the neural
network which predicts Yn at each time-step n.

Figure 3.1: Collection of Forward-Backward Stochastic Differential Equation Neural
Networks to approximate each Yn at each time step n = 1...N for m realisations of the
underlying. We use the same neural network at each time step having H hidden layers
with the parameters learned using the algorithm defined in section 3.1.5.

.

3.1.5 Training Algorithm

The neural network is initialised with its attributes that include ξ which is the initial
value of the stochastic process Xt, T which is the terminal time, M which is the
number of realisations of the Wiener process, N which is the number of time-steps, D
which represents the number of dimensions of the PDE and layers which represents
the architecture of the neural network block. The neural network learns to produce
the value Yt = u(t,Xt) with inputs t and Xt by minimising the loss function as in

18

Chapter 3. Neural Network 3.1. INITIAL SETUP

equation 3.4. Furthermore, the value of Zt is calculated by using the automatic
differentiation capabilities of the PyTorch library. The training algorithm is laid out
in algorithm 1 below:

Algorithm 1: Training Algorithm for the Neural Network
initialise the model with its attributes - ξ, T , M , N , D and layers;
for number of iterations do

Generate M realisations of the Wiener Process W and time-steps ∆t;
initialise the loss to 0;
Obtain the values for M realisations of Y0 and Z0 by passing (t0,ξ)
through the model and automatic differentiation;

for number of time steps n = 1,, N − 1 do
With ∆tn, Xn, Wn Yn and Zn obtain Xn+1 and the true value Ŷn+1

using equations 3.3;
Obtain the model’s predicted value Yn+1 and Zn+1 by passing (tn, Xn)
as input and automatic differentiation;

Add
∑M

m=1

∣∣∣Y m
n+1 − Ŷ m

n+1

∣∣∣2 to the loss;

Add
∑M

m=1 |Y m
N − g(Xm

N)|2 +∑M
m=1 |Zm

N − g′(Xm
N)|2 to the loss for the

terminal time T ;
Perform back-propagation to compute the gradients across the neural
network;

Minimise the loss by using an appropriate optimiser;
Update the weights;

3.1.6 Black-Scholes Barenblatt Equation

Consider the following set of forward backward stochastic differential equations
based on the set of equations in 3.1

dXt = σdiag(Xt) dWt, t ∈ [0, T],

X0 = ξ,

dYt = r(Yt − Z ′
tXt) dt+ σZ ′

tdiag(Xt) dWt, t ∈ [0, T],

YT = g(XT),

(3.6)

Here, we have the stochastic process defined by Xt representing the underlying asset
and Yt represents the value of the contract. We assume the underlying has no drift
i.e µ(t,Xt, Yt, Zt) = 0 , the volatility of the underlying is assumed to be constant
a constant σ with σ(t,Xt, Yt) = σ · diag(Xt) and the drift function for the contract
value ϕ(t,Xt, Yt, Zt) = r(Yt − Z ′

tXt). Furthermore, we assume that the price of the
underlying assets are uncorrelated. Using the general solution for the set of equa-
tions in 3.1 given by the equation 3.2 we get the Black-Scholes Barenblatt partial
differential equation:

ut = −
1

2
Tr[σ2 diag(X2)D2u] + r(u− (Du)′x)

19

3.1. INITIAL SETUP Chapter 3. Neural Network

A solution to this equation is given by:

u(t, x) = e(r+σ2)(T−t)g(x) (3.7)

3.1.7 Fully Connected Network Architecture

Based on the architecture described in Raissi [25], the neural network contains H =
4 hidden layers with each hidden layer having L = 256 neurons. The input layer
has D + 1 neurons where D is the number of dimensions of the Xt. The output
layer contains the prediction Yt. The neurons in each of the layers use sinusoidal
activation. See figure 3.2 for the network architecture.

...
...

...

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Input
layer

Hidden Layers

layer 1 layer 2 layer H

Output
layer

[D + 1]

[L] [L] [L]

[1]

X1
t

X2
t

XD
t

t

Yt

Figure 3.2: Fully Connected Neural Network Architecture

3.1.8 Experimental Results

Here, we conduct an experiment to train the model using the following param-
eters, the representations of these variables are explained in section 3.1.5, ξ =
[1.0, 0.5, 1.0, 0.5....], D = 100, N = 50, M = 100 and the architecture is described
in section 3.1.7. Each of the neurons in the model have sinusoidal activation. We
also assume that the risk-free rate r = 0.05 and the volatility of the underlying is

20

Chapter 3. Neural Network 3.1. INITIAL SETUP

constant σ = 0.4. The payoff of the contract is given by g(x) = ||x||2 which is also
the terminal condition of the set of forward backward stochastic differential equa-
tions in equation 3.6. We use the Adam optimiser proposed by Kingma et al. [41] to
minimise the loss function in equation 3.4. The model is trained for 100k iterations
with a learning rate at 1e−3 for the first 20k iterations, 1e−4 for the next 30k itera-
tions, 1e−5 for 30k iterations and 1e−5 for the last 20k iterations. We compare our
results in figure 3.3 with that of Raissi [32] in figure 3.4 below:

0 20000 40000 60000 80000 100000
Iterations

101

102

103

104

105

106

Va
lu

e

Evolution of the training loss

0.0 0.2 0.4 0.6 0.8 1.0
t

60

65

70

75

80

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, FC-Sine

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, FC-Sine

mean
mean + two standard deviations

Figure 3.3: Training loss, predictions for different realisations of Xt and relative error
across predictions of 100 realisations for Xt after training our model with parameters
mentioned in section 3.1.8.

0.0 0.2 0.4 0.6 0.8 1.0

t

60

65

70

75

80

85

Y
t

=
u

(t
,X

t
)

100-dimensional Black-Scholes-Barenblatt

Learned u(t,Xt)

Exact u(t,Xt)

YT = u(T,XT)

Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0

t

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

re
la

ti
ve

er
ro

r

100-dimensional Black-Scholes-Barenblatt

mean

mean + two standard deviations

Figure 3.4: Predictions and relative error from Raissi [25] with the same parameters.

We see a difference in the predicted paths of the process Yt from figures 3.3 and
3.4 which is due to the randomness of the stochastic processes. The relative error
metrics from these figures indicate that we have successfully been able to replicate

21

3.1. INITIAL SETUP Chapter 3. Neural Network

the performance as in Raissi [25]. The time taken to train our model is 13497s using
the NVIDIA GeForce RTX 4080 GPU.

3.1.9 Analysis of Results and Comparison with Related Work

We choose the model as proposed by Raissi [25] over other state of the art deep
learning methodologies to solve FBSDEs as proposed in Han et al. [26] [27], Sirig-
nano et al. [28], and Beck et al. [29] due to certain drawbacks of these models
which are overcome by this approach.

Firstly, the models in [26], [27], [28] and, [29] do not use a system of neural
networks to approximate the entire function u(t, x). Instead with the set of equa-
tions as described in equation 3.6, the algorithm uses a system of neural networks to
only approximate Zn = Du(tn, Xn) and the Euler-Maruyama scheme as in equation
3.3 is used to calculate the values of the stochastic processes Xt and Yt at different
time-steps. The loss function is given by

∑M
m=1 |Y m

n − g(Xm
n)|2 and does not contain

a term for the control variate Zn. The model only predicts the initial value Y0 given
by u(t0, X0) by taking X0 and Z0 as parameters in the model. This suggests that the
model may need to be retrained to calculate the value of Yt at subsequent times.
Secondly, the complexity and the number of parameters of the neural network grow
with an increase in the number of discretised time-steps as new networks with differ-
ent parameters are initialised at each time-step. This leads to longer training times
and memory usage for FBSDEs requiring higher accuracy through employing fine
discretisation levels.

The model as proposed by Raissi [25] and explained in the sections above overcomes
these issues. This model approximates u(t,X) across the discretised time-steps from
n = 0...N employing the same neural network at each time-step, thereby reducing
the number of learnable parameters. Furthermore, the models in [27], [26] and,
[29] use a separate network to approximate Zn = Du(tn, Xn) whereas our model
uses automatic differentiation of u(t,X) to calculate this value, further reducing the
complexity of the neural network set-up. Also, with the loss function as defined in
3.4 including a term to minimise the error for the calculations of ZN , we obtain an
accurate approximation of ZN which is a useful value in option contract valuation as
banks use it to hedge their positions in the underlying asset. In section 3.3 we show
the benefits of including ZN in the loss.

From section 3.1.8 we can identify a few drawbacks with the model. The model uses
a fully connected feed-forward architecture. With the development of deep learning
to solve problems in computer vision, researchers have identified parallels in these
approaches which can be used to solve optimal control problems in a reasonable
amount of time. This is evident in Sirignano et al. [28] which uses recurrent neural
networks in the form of LSTMs (Long Short Term Memory) to solve time dependent
PDEs and the work by Batuhan Guler, Alexis Laignelet, and Panos Parpas [30] which
suggest that using a more evolved Res-Net (Residual Neural Network) style neural

22

Chapter 3. Neural Network 3.2. NAIS-NET ARCHITECTURE

network architecture like the one proposed by Ciccone et al. [33]. Furthermore, they
also suggest that discretisation techniques could potentially reduce the time taken to
train the model to reach similar levels of loss as in the above experimental results.
The multi-level Monte Carlo discretisation scheme proposed by Giles [42] during
training could reduce the computational complexity while maintaining similar accu-
racy levels. We explore these techniques in the following sections by implementing
them in our model.

3.2 Nais-Net Architecture

The Nais-Net (Non-Autonomous Input-Output Stable Network) architecture as pro-
posed by Ciccone et al. [33] is defined as a general residual network (as proposed
by He et al. [43]) where a block is the unrolling of a time invariant system and
non-autonomy is implemented by having the external input applied to each of the
unrolled processing stages in the block through skip connections (See figure 3.5). To
further explain the Nais-Net architecture, we first define residual neural networks.

Figure 3.5: This figure represents the fully connected Nais-Net architecture from Cic-
cone et al. [33]. Each block represents a time-invariant iterative process as described
in equation 3.10. The skip connections from ui to all layers in each block makes it non-
autonomous. The blocks are chained together by passing the output from the final layer
of one block to another.

3.2.1 Residual Networks

Consider a non-linear transformation F . Let x(k) and θ(k) be the output and weights
of layer k respectively. Then a residual network is defined as follows:

x(k + 1) = x(k) + F (x(k), θ(k)) (3.8)

Here, to compute the output representation for layer k + 1 we add x(k) to a linear
transformation F on x(k) which depends on a set of parameters θ(k). A visual
representation of the layers is given in the figure 3.6. These connections in residual
neural networks help prevent the vanishing gradient problem faced by deep feed-
forward neural networks.

23

3.2. NAIS-NET ARCHITECTURE Chapter 3. Neural Network

Figure 3.6: Residual Network block as proposed by He et al. [43]

The authors in [33] identify that the transformation defined in equation 3.8 is a
forward Euler discretisation of the following ordinary differential equation:

ẋ(t) = f(x(t),Θ) if θ(k) = Θ for all 1 ≤ k ≤ K (3.9)

This leads to forward stability issues as described by Zhang et al. [44]. Nais-Net
solves this issue.

3.2.2 Fully Connected Nais-Net

A fully connected Nais-Net layer is defined as follows:

x(k + 1) = x(k) + hσ(Ax(k) +Bu+ b) (3.10)

where x ∈ Rn is the output of a layer , u ∈ Rm is the network input, h > 0, A ∈
Rn×n is the state transfer matrix, B ∈ Rn×m is the input transfer matrix, b ∈ Rn is
the bias and σ is the activation function for each layer. Furthermore, A is restricted
to be symmetric and negative definite by parameterising it as follows:

A = −RTR− ϵI

where I ∈ Rn×n is the Identity, R ∈ Rn×n is learned by the model and ϵ is a hyper-
parameter which is chosen such that 0 < ϵ << 1. Also, a bound on the Frobenius
norm, ||RTR||F is enforced through algorithm 2 below to enforce stability and ro-
bustness by forcing the the weights to stay within the feasible set.

Algorithm 2: Fully Connected Re-projection
Input: R ∈ Rn×n, ñ ≤ n, δ = 1− 2ϵ, ϵ ∈ (0, 0.5).
if ∥RTR∥F > δ then

R̃←
√
δ R√

∥RTR∥F
;

else
R̃← R;

Output: R̃

Batuhan Guler, Alexis Laignelet, and Panos Parpas [30] suggest that this architec-
ture could yield better results than the experiments in section 3.1.8. Therefore, we
implement this architecture in place of the fully connected feed-forward network.

24

Chapter 3. Neural Network 3.2. NAIS-NET ARCHITECTURE

3.2.3 Results

We use the same set-up as in section 3.1.8 but use the fully connected Nais-Net
architecture with ϵ = 0.1. We train the model using sinusoidal, tanh and ReLU acti-
vation as in [33] it has been shown to provide a stable and robust architecture using
these activation functions. Figure 3.7 and 3.8 show that the model with sinusoidal
activation as used originally by Raissi [25] is significantly better at approximating
the function u(t,Xt). From the training losses in figure 3.8 we see that the model
converges to different minima for sinusoidal, tanh and relu activation functions.

0.0 0.2 0.4 0.6 0.8 1.0
t

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, Naisnet-Sine

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.001

0.002

0.003

0.004

0.005

0.006

0.007

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, Naisnet-Sine

mean
mean + two standard deviations

0.0 0.2 0.4 0.6 0.8 1.0
t

66

68

70

72

74

76

78

80

82

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, Naisnet-ReLU

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, Naisnet-ReLU

mean
mean + two standard deviations

0.0 0.2 0.4 0.6 0.8 1.0
t

66

68

70

72

74

76

78

80

82

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, Naisnet-Tanh

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, Naisnet-Tanh

mean
mean + two standard deviations

Figure 3.7: These figures from the top represent the predictions of the Nais-Net model
for 5 realisations of the underlying process and the relative error of the predictions
across 100 realisations for different activation functions after training the model for 25k
iterations with a learning rate of 10−3 for the first 20k iterations and 10−5 for the last 5k
iterations with the same parameters as in section 3.1.8.

25

3.2. NAIS-NET ARCHITECTURE Chapter 3. Neural Network

0 5000 10000 15000 20000 25000
Iterations

102

103

104

105

Va
lu

e

Evolution of the training loss

0 5000 10000 15000 20000 25000
Iterations

103

104

105

Va
lu

e

Evolution of the training loss

0 5000 10000 15000 20000 25000
Iterations

102

103

104

105

Va
lu

e

Evolution of the training loss

Figure 3.8: The top figure, the bottom left figure and the bottom right figure represent
the training loss of the Nais-Net model using Sinusoidal activation, ReLU activation and
Tanh activation respectively.

We observe that the Nais-Net model with sinusoidal activation produces similar lev-
els of relative error across predictions after training for 25k iterations, with a training
time of 4625s, compared to 13497s for the same model parameters as our experi-
ments in section 3.1.8. This could be because of the weights being constrained in
the re-projection step as explained in section 3.2.2.

0.0 0.2 0.4 0.6 0.8 1.0
t

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, FC-Sine

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

Figure 3.9: This figure represents the predictions for 5 realisations of the underlying
process on training the Fully Connected Feed-Forward model in section 3.1.8 with the
same training scheme as in section 3.2.3.

We also trained the fully connected feed-forward model with the same training

26

Chapter 3. Neural Network 3.3. LOSS FUNCTION

scheme across 25k iterations and obtained the results in figures 3.9 and 3.10. Al-
though the fully connected model produces a lower error difference of magnitude
≈ 5e−4 for the initial time step, the error across all subsequent time steps is higher by
a larger magnitude. The improvement in training time from the initial experiments
in section 3.1.8 for the same level of accuracy, along with the improved performance
compared to the feed-forward model with the same training scheme, and the fact
that the Nais-Net model architecture has been tested to be stable and robust as
proved in Ciccone et al. [33], suggests that this architecture is a better alternative
to the feed-forward architecture used in our initial experiments.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.002

0.004

0.006

0.008

0.010

0.012

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, FC-Sine

mean
mean + two standard deviations

0 5000 10000 15000 20000 25000
Iterations

102

103

104

105

Va
lu

e

Evolution of the training loss

Figure 3.10: These figures from left to right represent the relative error across 100
realisations and the loss on training the Fully Connected Feed-Forward model in section
3.1.8 with the same training scheme as in section 3.2.3.

3.3 Loss Function

The models by Han et al. [26] [27], Sirignano et al. [28], and Beck et al. [29] do
not use the control variate term in their loss function while training their different
models. On training our model with a loss function given in 3.4 not including the
control variate term

∑M
m=1 |Zm

N − g′(Xm
N)|2, we get the results in figure 3.11.

0.0 0.2 0.4 0.6 0.8 1.0
t

66

68

70

72

74

76

78

80

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, Naisnet-Sine

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.002

0.004

0.006

0.008

0.010

0.012

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, Naisnet-Sine

mean
mean + two standard deviations

Figure 3.11: Predictions of different realisations of Xt and relative error across
100 realisations of Xt without including the control variate squared error term∑M

m=1 |Zm
N − g′(Xm

N)|2 in the loss function.

27

3.4. MULTI-LEVEL MONTE CARLO TECHNIQUE Chapter 3. Neural Network

The figure 3.11 shows that our model approximates Y0 with the same relative error
as the case we include the control variate in the loss, which can be seen in figure
3.7. We can infer that the minimisation of the control variate is not significant for
our model to approximate Y0, which is in line with the other models from the pa-
pers mentioned earlier that only approximate u(0, X0) or Y0 and do not include the
control variate error in their loss having a similar relative error as our model. From
this, we can infer that the ability of our model to be able to predict u(t,Xt) over time
t = 0...T does indeed depend on the minimisation of the error in the control variate
Z.

From equation 3.2 we know that Z is the first derivative of Yt with respect to the
underlying asset price Xt. Also, from the Black Scholes differential equation defined
in equation 2.10 we can see that the Taylor expansion of the stochastic process rep-
resenting the price of the contract can be expanded to include higher derivatives of
the price Yt with respect to the underlying Xt. For example, The second derivative
is termed as gamma and is used by banks to hedge their exposure to the convexity
of the price movements of the contract. Therefore, minimising this term in the loss
function could potentially further improve the accuracy of our model’s predictions.

3.4 Multi-Level Monte Carlo Technique

On logging the training time of 100 iterations by changing the dimensions and num-
ber of discretisation time steps for the stochastic processes in equation 3.3 in tables
3.1 and 3.2 respectively, we see that there is a significant increase in time for changes
in the number of discretisation steps as compared to dimensions. This is because the
number of neural networks used increases with an increase in the number of time
steps, which leads to the observation that the time taken to train the model for 100
iterations scales geometrically with the number of discretisation steps, whereas since
only the first layer of the model architecture (see figure 3.2) depends on the number
of dimensions of the underlying stochastic process we only see a significant increase
in training time when there is a large increase in the number of dimensions (as seen
when the dimensions increase from 250 to 1000). Due to this observation, we first
aim to identify methodologies to reduce the time due to the discretisation time steps
in this section and in section 3.5 we explore the bias variance trade-off on chang-
ing the architecture. Furthermore, as results from Batuhan Guler, Alexis Laignelet,
and Panos Parpas [30] suggest that there is scope to investigate numerical discreti-
sation techniques, we explore the Multi-Level Monte Carlo discretisation approach
as proposed by Giles [42][45].

3.4.1 Definition

The Multi-Level Monte Carlo (MLMC) was introduced by Giles [42][45] to reduce
the computational complexity of estimating an expected value arising from a stochas-
tic differential equation. In our case the expected value refers to the approximation
of u(t, x) and the discretised version of the stochastic differential equations refer to

28

Chapter 3. Neural Network 3.4. MULTI-LEVEL MONTE CARLO TECHNIQUE

Dimensions Time
1 16.29s
10 16.46s
25 16.59s
50 16.77s

100 17.70s
250 20.18s
500 27.87s
1000 58.62s

Table 3.1: Training time of 100 it-
erations of Nais-Net model for differ-
ent dimensions of the stochastic pro-
cesses involved keeping N , the num-
ber of discretisation time-steps con-
stant at 50 and other parameters the
same as section 3.1.8.

Time-Steps Time
1 0.76s

10 3.87s
25 8.98s
50 17.70s
100 35.42s
250 90.57s
500 181.00s

1000 364.43s

Table 3.2: Training time of 100 itera-
tions of Nais-Net model for different
time-step discretisation levels of the
stochastic processes involved keeping
D, the number of dimensions con-
stant at 100 and other parameters the
same as section 3.1.8.

the equations in 3.3. Consider the following stochastic differential equation:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

with µ and σ the drift and volatility terms respectively, W a Wiener process. Also,
suppose there exists a function g which determines the terminal condition i.e, g(XT)
for terminal time T . An Euler discretisation of the above SDE leads to:

Xn+1 = Xn + µ(t,Xt)h+ σ(t,Xt)∆Wt

Giles [42][45] suggests for the problem involving reducing the expected mean squared
error of the estimates of g(XT) across N simulations the computational cost of
achieving an accuracy in the order of O(ϵ) can be reduced from O(ϵ−3) to O(ϵ−2(log(ϵ))2)
by the use of a multi-level method that reduces the variance leaving unchanged the
bias due to the Euler discretisation. This is done by using a sequence of different
time-steps of the form:

h = (L)−1T for integers L ≥ 2

In our case, the idea is to train the model with a small number of discretisation
time-steps which has a lower overall accuracy but significantly lower computational
cost as evident in table 3.2 and gradually increase this number at regular intervals
to improve the accuracy during the process of training the model.

3.4.2 Geometric Multi Level Monte Carlo

The Geometric Multi Level Monte Carlo technique entails geometrically increasing
the number of discrete time-steps in a series of simulations. That is,

hl = (L)−lT,

29

3.4. MULTI-LEVEL MONTE CARLO TECHNIQUE Chapter 3. Neural Network

for any integer L ≥ 2 for l = 1, 2, 3... until hl = N , where N is the required number
of time-steps. For example, if L = 2 and N = 64, we train the model for an equal
number of iterations at discretisations levels such that the number of time intervals
are 2, 4, 8, 16, 32 and 64 (See figure 3.12 for the results from this experiment).

0 5000 10000 15000 20000 25000
Iterations

101

102

103

104

105

Va
lu

e
Evolution of the training loss

0.0 0.2 0.4 0.6 0.8 1.0
t

60

65

70

75

80

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, NAIS-Net-Sine

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.001

0.002

0.003

0.004

0.005

0.006

0.007

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, NAIS-Net-Sine

mean
mean + two standard deviations

Figure 3.12: Training loss, predictions for different realisations of Xt and relative error
across predictions of 100 realisations for Xt after training our model using a Geometric
Multi-Level Monte Carlo by doubling the number of discretisation time-steps starting at
L = 2 every 4k iterations which yields the sequence 2, 4, 8, 16, 32 and 64 using the Nais-
Net architecture with sinusoidal activation for 24k iterations using learning rate 1e−3

and 1k iterations using learning rate 1e−5 and Adam optimisation until convergence
with a total training time of 1948.67s.

3.4.3 Non-Geometric Multi Level Monte Carlo

The Non-Geometric Multi Level Monte Carlo Technique entails increasing the num-
ber of discrete time-steps in a series of simulations by an increasing sequence of
numbers. That is,

hl = (L)−1T,

for any integer L ≥ 2 for l = 1, 2, 3... until hl = N , where N is the required number of
time-steps. For example, we can start with L = 3 and N = 50, we train the model for
an equal number of iterations at discretisations levels such that the number of time
intervals are 3, 5, 11, 23, 50 (See figure 3.13 for the results from this experiment).

30

Chapter 3. Neural Network 3.4. MULTI-LEVEL MONTE CARLO TECHNIQUE

0 5000 10000 15000 20000
Iterations

102

103

104

105

Va
lu

e

Evolution of the training loss

0.0 0.2 0.4 0.6 0.8 1.0
t

60

65

70

75

80

85

90

95

100

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, NAIS-Net-Sine
Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.001

0.002

0.003

0.004

0.005

0.006

0.007

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, Naisnet-Sine

mean
mean + two standard deviations

Figure 3.13: Training loss, predictions for different realisations of Xt and relative er-
ror across predictions of 100 realisations for Xt after training our model using a Non-
Geometric Multi-Level Monte Carlo by changing the number of discretised time-steps
using the formula L =⌈50(iteration/4000+1

5
)⌉, which yields the sequence 3, 5, 11, 23 and 50

using the Nais-Net architecture with sinusoidal activation for 20k iterations using learn-
ing rate 1e−3 and 1k iterations using learning rate 1e−5 and Adam optimisation until
convergence with a total training time of 1534.82s

From our experiments we have presented the best performing combinations of dis-
cretisation steps in both the geometric and non-geometric cases. In comparison to
the results in figures 3.7 and 3.8 for the single-level case we observe that the conver-
gence of the loss function in the multi-level case is smoother and reaches a minima
in less than half the time as the single-level case while achieving better relative er-
ror levels. On comparing the two multi-level approaches we see that the geometric
multi-level approach results in a slightly better loss convergence which is likely due
to the fact that the model is trained for longer with a larger number of discreti-
sation time-steps. This difference however does not yield significant differences in
the accuracy and relative error metrics which can be seen in figures 3.13 and 3.12.
Given the faster training time in the non-geometric case, we use this method in the
subsequent experiments in our report.

3.4.4 Generalisation at Finer Discretisation Levels

On testing the ability of the trained model to predict the approximation of u(t,Xt)
for an underlying process Xt, which is discretised to 1000 time-steps, we obtain the
results as in figure 3.14. We observe that our model can approximate u(t,Xt) for

31

3.4. MULTI-LEVEL MONTE CARLO TECHNIQUE Chapter 3. Neural Network

a fine level of discretisation of 1000 time-steps with a similar level of relative error
as it did for the highest level of discretisation of 50 time-steps that it was trained
on. If we were to train our model at the 1000 time-step discretisation level, every
100 iterations would take ≈ 365s. In contrast, with our implementation, we are now
able to produce similar levels of relative error as the 50 time-step discretisation level
(see figure 3.13) at the same level of computational cost by fully training the model
in ≈ 1535s. Also, from figure 3.14, we see that the Nais-Net model with multi-level
discretisation (left) outperforms the initial feed-forward model (right) in approxi-
mating u(t,Xt) with a lower mean error and standard deviation across timesteps t.
Therefore this improvement in generalisation can be attributed to the Nais-Net ar-
chitecture and the reduction in training time while maintaining this accuracy can be
attributed to the MLMC scheme.

0.0 0.2 0.4 0.6 0.8 1.0
t

60

65

70

75

80

85

90

95

100

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, NAIS-Net-Sine
Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Y t
=

u(
t,

X t
)

100-dimensional Black-Scholes-Barenblatt, FC-Sine

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, Naisnet-Sine

mean
mean + two standard deviations

0.0 0.2 0.4 0.6 0.8 1.0
t

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

re
la

tiv
e

er
ro

r

100-dimensional Black-Scholes-Barenblatt, FC-Sine

mean
mean + two standard deviations

Figure 3.14: These figures on the left represent the predictions of the Nais-Net model
trained using Non-Geometric Multi Level Monte Carlo above for 5 realisations of an
underlying stochastic process with 1000 discretised time steps and the relative error of
the predictions across 100 realisations whereas the right represents the same for the
Fully-Connected Feed Forward model as in 3.1.8 trained for 100k iterations.

Furthermore, our model provides a more functional alternative as compared to other
state of the art models as proposed Han et al. [27] [26] and Beck et al. [29]
which do not generalise at finer discretisation levels due to which they have to be
re-trained with a higher computational cost due to the increase in the number of
unique neural networks with the discretisation steps whereas our model uses the
same neural network at each time-step. Also, these models only predict the value
of Yt at t = 0 and calculate the future values by time-marching using the Euler-
Maruyama scheme which is computationally intensive at fine discretisation levels

32

Chapter 3. Neural Network 3.5. BIAS VARIANCE TRADE-OFF

whereas predicting Yt is instantaneous with our model once it is fully trained.

3.5 Bias Variance Trade-off

Now that we have a model which generalises well with a reasonable training time,
we explore the bias-variance trade-off by changing the architecture and number of
realisations used in each training step. We first train 20 models for the same equation
and terminal condition as the previous sections using different configurations and
the non-geometric MLMC scheme as described in section 3.4.3. We then obtain the
prediction Yt,i for timesteps t = 0, ...N with N = 50, and models i = 1, ...Nm with
Nm = 20 across M = 10000 realisations of the underlying process Xt. We also
calculate the true values Ŷt across for the realisations of Xt.

Number of
Layers

Number of
Neurons per Layer

Number of
realisations Bias2 Variance

Total
Error

1 256 100 0.5598 0.3856 0.9454
2 256 100 0.0079 0.0017 0.0096
2 100 100 0.0050 0.0048 0.0098
2 64 100 0.0164 0.0012 0.0176
2 256 50 0.0043 0.0042 0.0085
2 256 200 0.0032 0.0061 0.0093
2 256 500 0.0094 0.0011 0.0105
3 256 100 0.0029 0.0058 0.0087
3 100 100 0.0043 0.0043 0.0086
3 100 200 0.0060 0.0028 0.0088
3 100 50 0.0069 0.0025 0.0094
4 256 100 6.4×10-4 0.0127 0.0133
4 256 1 0.1841 0.0911 0.2752
4 256 10 0.0441 0.0066 0.0507
4 256 50 0.0121 6.6×10-4 0.0128
4 256 75 0.0059 0.0031 0.0090
4 256 150 0.0043 0.0046 0.0089
4 256 250 0.0032 0.0059 0.0092
4 256 500 0.0026 0.0070 0.0096
4 100 100 0.0049 0.0049 0.0098

Table 3.3: Bias-Variance Tradeoff Analysis for Different Models

We define the bias and variance of the ith model’s predictions as follows:

bias2i =
1

N + 1

N∑
s=0

(Ys,i − ¯̂
Y s)

2 and variancei =
1

N + 1

N∑
s=0

(Ys,i − Ȳs,i)
2 (3.11)

where,

¯̂
Y t =

1

M

M∑
m=0

(Ŷt

m
) and Ȳs,i =

1

M

M∑
m=0

(Y m
t,i).

33

3.6. CORRELATED UNDERLYING PROCESSES Chapter 3. Neural Network

The analysis of the bias-variance trade-off (See table 3.3) across different model con-
figurations indicates that increasing the number of layers, keeping all else constant,
generally decreases bias but increases variance resulting in over-fitting, except in the
1 layer case where the model fails to generalise well. A higher number of neurons
also results in a decrease in bias with an increase in variance. Adding more noise
to the input by increasing the number of realisations consistently decreases bias and
increases variance but not as much as the other parameters. Notably, the model
with 2 layers, 256 neurons per layer, and 50 realisations achieved the lowest total
error of 0.0085, suggesting an optimal balance between bias and variance. Thus,
while the initial model (4 layers, 256 neurons, 100 realisations) performed well,
fine-tuning the number of layers and increasing the realisations can further improve
model accuracy. We therefore use this configuration for future experiments and the
algorithms in chapter 4.

3.6 Correlated Underlying Processes

In a real world setting, underlying assets in a portfolio tend to have a quantifiable
correlation with each other. We can incorporate the correlation of the underlying
process Xt by using a Cholesky decomposition of the correlation matrix of the assets.

3.6.1 Cholesky Decomposition

Consider two Wiener processes w1 and w2 with correlation ρ. The correlation matrix
can be decomposed into a lower triangular and upper triangular part such that:

Corr(w1, w2) = (LLT) =

(
1 0

ρ
√
1− ρ2

)
︸ ︷︷ ︸

L

(
1 ρ

0
√
1− ρ2

)
︸ ︷︷ ︸

LT

=

(
1 ρ
ρ 1

)

This is termed as a Cholesky decomposition. The correlation can be incorporated to
the processes w1(t) and w2(t) using the Cholesky decomposition to generate corre-
lated processes in W̃t as follows:

W̃t =

(
1 0

ρ
√

1− ρ2

)(
w1(t)
w2(t)

)
=

(
w1(t)

ρw1(t) +
√

1− ρ2w2(t)

)
(3.12)

Since the process defined by Xt is governed by a Wiener process, we can apply
this concept to the equations in 3.6 if the assets represented in Xt are correlated.
Consider D assets with the following correlation matrix such that ρij represents the
correlation between asset i and j:

Corr(x1, x2, ...xD) =

1 ρ12 ρ13 · · · ρ1,D−1 ρ1D
ρ12 1 ρ23 · · · ρ2,D−1 ρ2D
ρ13 ρ23 1 · · · ρ3,D−1 ρ3D
...

...
...

...
ρ1,D−1 ρ2,D−1 ρ3,D−1 · · · 1 ρD−1,D

ρ1D ρ2D ρ3D · · · ρD−1,D 1

34

Chapter 3. Neural Network 3.6. CORRELATED UNDERLYING PROCESSES

Let the Cholesky decomposition give Corr(x1, x2, ...xD) = (LLT). Then the equations
in 3.6 become:

dXt = σdiag(Xt)LdWt, t ∈ [0, T],

X0 = ξ,

dYt = r(Yt − Z ′
tXt) dt+ σZ ′

tdiag(Xt)LdWt, t ∈ [0, T],

YT = g(XT).

(3.13)

We discretise the above set of equations using the Euler Maruyama Scheme as in
equation 3.3 and use our model to approximate Yt as we did for the uncorrelated
case. Figures 3.15 and 3.16 show the evolution of the loss function and predictions of
our model for correlated underlying asset prices. We observe that our model is even
better at predicting Yt for high dimensional underlying data than low dimensional
data.

0 5000 10000 15000 20000
Iterations

100

101

102

103

Va
lu

e

Evolution of the training loss

0.0 0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

5

6

7

8
Y t

=
u(

t,
X t

)
2-dimensional Correlated Black-Scholes-Barenblatt, NAIS-Net-Sine

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

Figure 3.15: This figure represents the Loss (left) and the approximation of u(t, x)
across 5 realisations of Xt on training the Nais-Net model with sinusoidal activation for
21k iterations using the non-geometric MLMC scheme as detailed in section 3.4.3 for a
basket containing two correlated assets with correlation ρ = 0.5.

0 5000 10000 15000 20000
Iterations

102

103

104

105

106

Va
lu

e

Evolution of the training loss

0.0 0.2 0.4 0.6 0.8 1.0
t

30

40

50

60

70

80

90

100

Y t
=

u(
t,

X t
)

100-dimensional Correlated Black-Scholes-Barenblatt, NAIS-Net-Sine

Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

Figure 3.16: This figure represents the Loss (left) and the approximation of u(t, x)
across 5 realisations of Xt on training the Nais-Net model with sinusoidal activation for
21k iterations using the non-geometric MLMC scheme as detailed in section 3.4.3 for a
basket containing 100 correlated assets with correlation ρ = 0.5 between each asset.

35

Chapter 4

Risk Management Framework

In this chapter we introduce a methodology to create a risk management framework
by using our model to simulate the dynamics of valuation adjustments (xVA) which
include Credit Valuation Adjustments (CVA), Debt Valuation Adjustments (DVA) and
Funding Valuation Adjustments (FVA) for portfolios consisting of European style Op-
tion and Forward Contracts. These calculations have become increasingly important
for banks following the 2008 crisis which prompted them to take into account the
default of all counterparties in the fair value pricing of their products. We use a
similar framework and definition for the valuation adjustments based on the work
by Pallavacini et al. [6] and extended by Brigo et al. [46] and Biagini et al. [8]
to formulate this problem as a backward stochastic differential equation which we
solve using our model. In the following sections we define the aforementioned xVA
calculations and propose algorithms to simulate them. We then compare the perfor-
mance of our model with that of Gnoatto et al. [34], as they also define the valuation
adjustments similarly.

4.1 Market Setting

In this setup we consider two parties involved in all trading activities, i.e, the bank
(B) and the counterparty (C), with the bank being the hedger and underwriter of all
financial products and the counterparty being involved in the opposite side of these
transactions. We define the clean value as the value of the financial contract without
the valuation adjustments and the fair value as the value of the financial contract
with the valuation adjustments.

4.1.1 Time of Default

Let τB and τC be the times of default of the bank and counterparty respectively.
Default refers to the inability of any of these parties to fulfill an obligation. For ex-
ample, in the bank’s case, it may be the failure to make required payments or deliver
underlying assets as specified in a financial derivative contract. This could include
failing to pay the premium on an option contract, or not delivering the underlying
asset on a forward contract. Whereas in the counterparty’s case, default could occur

36

Chapter 4. Risk Management Framework 4.1. MARKET SETTING

if they fail to provide the necessary collateral for a margin call, or neglect to pay
for the received financial instruments, resulting in an inability to meet their finan-
cial commitments under the terms of the derivative contracts. The default times are
assumed to be exponentially distributed random variables with time dependent in-
tensity. We define the jump processes representing the defaults of the bank and the
counterparty as follows:

HB
t = 1{τB≤t}

HC
t = 1{τC≤t}

(4.1)

The cumulative intensity function ΓB and ΓC for the bank and the counterparty over
the interval [0, T], where T is the terminal time such that T <∞, is given by:

ΓB
t =

∫ t

0

λB
s ds, t ∈ [0, T],

ΓC
t =

∫ t

0

λC
s ds, t ∈ [0, T].

(4.2)

where λB
t and λC

t are non-negative adaptive stochastic processes related to the pro-
cesses in equation 4.1 by a Poisson random measure Mt as follows:

MB
t = HB

t −
∫ t∧τB

0

λB
s ds,

MC
t = HC

t −
∫ t∧τC

0

λC
s ds.

(4.3)

4.1.2 Underlying Assets

Let us define the underlying assets on which the option and forward contracts are
priced on. Consider the prices of the D underlying assets x1(t), x2(t), x3(t)....xD(t)
on time t ∈ [0, T] where T is the terminal time is defined by the random process
Xt ∈ RD given by:

Xt =

x1(t)
x2(t)

...
xD(t)

Consider a standard Wiener process W ∈ RD. We define the process Xt denoting the
evolution of the prices of the underlying assets by the following stochastic differen-
tial equation as in equation 3.1:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

X0 = ξ.
(4.4)

where µ : R+,RD → RD is a function which defines the drift of the asset prices
and σ : R+,RD → RD×D is a function representing the volatility of the underlying
asset prices. If the assets are correlated, we can use the Cholesky decomposition

37

4.1. MARKET SETTING Chapter 4. Risk Management Framework

of the correlation matrix of the asset prices as in section 3.6 to obtain the lower
triangular matrix L→ RD×D of the correlation matrix to get the following stochastic
differential equations for Xt:

dXt = µ(t,Xt)dt+ σ(t,Xt)LdWt,

X0 = ξ.
(4.5)

We assume that the underlying does not pay any dividends.

4.1.3 Cash Accounts

We assume that there exists cash accounts as per the agreements established be-
tween the counterparty and the bank to mitigate credit risk due to default. The cash
account Bt for t ∈ [0, T] and x ∈ {B,C} is assumed to have unitary value initially
and is represented using a bounded stochastic process representing a rate of return
rt as follows:

Bt = e
∫ t
0 rs ds (4.6)

4.1.4 Risky Bonds

We define two bonds with the possibility of default with maturity t < T representing
the obligations of the bank and the counterparty. The dynamics of the bond values
are given by the processes PB and PC for the bank and counterparty respectively as
follows:

dPB
t = rBt P

B
t dt− PB

t−dt dM
B
t

dPC
t = rCt P

C
t dt− PC

t−dt dM
C
t

(4.7)

where rt represents a rate of return as in equation 4.6 and Mt is a compensated
Poisson random measure as defined in equation 4.3.

4.1.5 Claims

We consider the payout of a financial contract as a contingent claim which is a stream
of payments defined by the process Ād

t for each asset given by:

Ād
t = 1{t<τ}A

d
t + 1{t≥τ}A

d
T (4.8)

where Ad
t is the claim without taking into consideration the default of either coun-

terparty and Ad
T is the last payment before default for d = 1....D.

4.1.6 Collateral

Collateral is an asset that a borrower offers to a lender to secure a loan or other
credit. The collateral serves as protection for the lender against the borrower’s de-
fault. It is posted between counterparties to mitigate credit and default risk. We
define a process Ct = f(Yt) that is a function of the value of the clean value or fair

38

Chapter 4. Risk Management Framework 4.2. XVA FRAMEWORK

value including the valuation adjustments as defined in section 4.2.1. We assume
that that the collateral is posted in the form of cash rc,l representing the rate of
interest received by the bank that posted collateral to a counterparty and rb,l repre-
senting the rate of interest received by the counterparty that posted collateral to a
bank during a transaction.

4.2 xVA Framework

4.2.1 Clean Market Portfolio Dynamics

For all our calculations, we assume a clean market. Here, we divide the value of a
financial contract into a clean value and a valuation adjustment. A clean value or
price for a financial contract is the value accepted by the counterparties involved in
the transaction, assuming perfect collateralisation and the transaction being default-
free; however, a margin risk period, which may occur when a counterparty is on the
verge of bankruptcy, results in the deviation of the value of the contract from the
clean value, therefore creating a credit exposure which is quantified by valuation
adjustments made to the clean value. This is consistent with current market prac-
tices for generating pricing for these financial contracts.

The clean values of financial contracts defined on a portfolio of underlying assets
Xd

t for d = 1....D with maturities Td can be defined by the same approximations that
our neural network produces in chapter 3. So these clean values Ŷ d

t are given by the
forward backward stochastic differential equations as follows:

dŶ d
t = rtŶ

d
t dt+

d∑
k=1

Ẑd,k
t dW k

t − dAd
t

Ŷ d
Td

= 0.

(4.9)

This can also be written as:

Ŷ d
t = E

[
Br

t

∫
(t,Td]

dAd
s

Br
s

]
(4.10)

with r being the rate of interest used in a clean market setting and t ∈ [0, Td].

As the main contracts of interest are Eurpoean call options, European put options
and forwards which have only one payoff at expiry given by the function gd, we get:

Ad
t = 1{t≥Td}gd(XTd

)

Substituting the above in equation 4.9 we have:

dŶ d
t = rtŶ

d
t dt+

d∑
k=1

Ẑd,k
t dW k

t ,

Ŷ d
Td

= gd(XTd
),

Ẑd,k
t = ξdt σ

d,k(t,Xt).

(4.11)

39

4.2. XVA FRAMEWORK Chapter 4. Risk Management Framework

with ξdt representing the position of the risky asset in the portfolio and σd,k(t,Xt)
representing the function used to obtain the covariance of the dth asset with that of
the kth asset with k = 1,, D.

4.2.2 Fair Value Stochastic Differential Equation

We define the following processes required to define a process representing the fair
value of a portfolio of financial contracts including valuation adjustments:

UB
t = −ξBt PB

t−dt,

UC
t = −ξCt PC

t−dt,

f(t, Y, C) = −[(rf,lt − rt)(Yt − Ct)
+ − (rf,bt − rt)(Yt − Ct)

−

+ (rc,lt − rt)C
+
t − (rc,bt − rt)C

−
t],

gτ (Ŷ , C) = Ŷτ +HC
τB(1−RC)(Ŷτ − Cτ−dτ)

−

−HB
τC (1−RB)(Ŷτ − Cτ−dτ)

+

(4.12)

where,

• ξBt and ξCt represent the positions in the bonds posted by the bank and coun-
terparty.

• rf,bt and rf,lt are lending and borrowing rates for non-collateral loans and, rc,bt

and rc,lt are interest rates on collateral as described in section 4.1.6.

• PB
t−dt and Pt−dt represent the dynamics of the bond values issued by the bank

and counterparty as described in section 4.1.4.

• Ct represents the collateral process as defined in section 4.1.6 with Ct = C+
t +

C−
t . Here, C+

t refers to the collateral posted by the bank to the counterparty
and C−

t is the collateral posted by the counterparty to the bank.

• Yt is the fair value including the valuation adjustments and Ŷt is the clean value
as described in section 4.2.1.

• Function g(Ŷ , C) represents the terminal condition of the fair value in terms of
the clean value and the collateral process with HB

t and HC
t the jump processes

representing defaults of the bank and counterparty as defined in section 4.1.1.

• RB and RC represent the recovery rates of the bank and counterparty respec-
tively which is defined as the percentage of the collateral that each party can
recover in the event of default.

Now, we define the stochastic differential equation to represent the fair value of a
portfolio of financial contracts over time Yt as:

dYt =
d∑

k=1

Zk
t dW

k,
t −

D∑
d=1

dĀd
t − (f(t, Y, C)− rtYt) dt

+ UB
t dMB

t + UC
t dMC

t ,

Yτ = gτ (Ŷ , C).

(4.13)

40

Chapter 4. Risk Management Framework 4.2. XVA FRAMEWORK

Biagini et al. [8] shows that there exists a unique solution to this set of equations
given by:

Yt = Br
tE

[
D∑

d=1

∫
(t,τ∧T]

dĀd
s

Br
s

ds+

∫ τ∧T

t

f(s, Y, C)

Br
s

ds+ 1{τ≤T}
gτ (Ŷ , C)

Br
τ

]
(4.14)

4.2.3 xVA Backward Stochastic Differential Equation

Using the equations in 4.11 and 4.13 we define the valuation adjustments process
XVAt as follows:

dXVAt =
d∑

k=1

Zk
t dW

k
t − a(t, Ŷt,XVAt) dt,

XVAT = 0.

(4.15)

where,
a(t, Ŷt,XVAt) =− (1−RC)(Ŷt − Ct)

−λC
t

+ (1−RB)(Ŷt − Ct)
+λB

t

+ (rf,lt − rt)(Ŷt − XVAt − Ct)
+

− (rf,bt − rt)(Ŷt − XVAt − Ct)
−

+ (rc,lt − rt)C
+
t − (rc,bt − rt)C

−
t

− (rt + λC
t + λB

t)XVAt.

(4.16)

The process XVAt can be related to equations 4.11 and 4.13 as follows:

XVAt = Ŷt − Yt. (4.17)

This equation admits the following solution as shown in Biagini et al. [8]:

XVAt = −CVAt + DVAt + FVAt + ColVAt (4.18)

where,

CVAt = Br
tE
[
(1−RC)

∫ T

t

1

Br
s

(Ŷs − Cs)
−λC

s ds

]
,

DVAt = Br
tE
[
(1−RB)

∫ T

t

1

Br
s

(Ŷs − Cs)
+λB

s ds

]
,

FVAt = Br
tE

[∫ T

t

(rf,ls − rs)(Ŷs − XVAs − Cs)
+

Br
s

ds

]

−Br
tE

[∫ T

t

(rf,bs − rs)(Ŷs − XVAs − Cs)
−

Br
s

ds

]
,

ColVAt = Br
tE
[∫ T

t

(rc,ls − rs)C
+
s − (rc,bs − rs)C

−
s

Br
s

ds

]
.

(4.19)

41

4.2. XVA FRAMEWORK Chapter 4. Risk Management Framework

We can define the valuation adjustments in equation 4.19 as follows:

• Credit Valuation Adjustment (CVA) is the adjustment to the fair value of a
derivative to account for the counterparty credit risk. It represents the value of
counterparty credit risk over the life of the derivative contract. It is calculated
as the discounted expected loss due to the counterparty’s default, taking into
account the probability of default and the potential exposure at the time of
default.

• Debt Valuation Adjustment (DVA) is the adjustment to the fair value of a
derivative to account for the credit risk of the bank. It represents the market
value of the bank’s own credit risk. It is calculated as the discounted expected
gain due to the entity’s own default, considering the probability of default and
the potential exposure at the time of default.

• Funding Valuation Adjustment (FVA) is the adjustment to the fair value of a
derivative to account for the cost of funding the collateral required to enter
into the derivative contract.It is calculated based on the cost of funding for
the entity, which may vary over time, and the amount of collateral required
throughout the life of the derivative.

• Collateral Valuation Adjustment (ColVA) is the adjustment to the fair value of a
derivative to account for the cost or benefit associated with holding collateral.
It considers the interest earned on the collateral posted and the funding cost of
the collateral received. It is calculated by considering the difference between
the interest rate on the collateral and the funding rate of the counterparty,
applied to the amount of collateral held or posted over time.

These adjustments can be calculated for portfolios using the clean values computed
using the neural network we have defined in chapter 3. From the solution for FVA
calculations, as described in equation 4.19, we observe that the presence of a re-
cursive structure which can be implemented by approximating this solution using
a neural network, which is particularly useful when extending these calculations to
portfolios with high dimensional data. In the following section, we define algorithms
to calculate these metrics.

4.2.4 xVA Algorithms

We observe that from our definitions in equation 4.19 that the CVA and DVA are
similar such that they admit a non recursive solution. So, these processes can be
approximated at each time-step using a simulation with the clean values of the fi-
nancial contracts like options and forwards at each time-step which we obtain from
our neural network as explained in chapter 3. In line with the Euler-Maruyama dis-
cretisation as defined in equation 3.3, we can discretise the integral in the CVA and

42

Chapter 4. Risk Management Framework 4.2. XVA FRAMEWORK

DVA solutions across N timesteps as follows:

CVA :

∫ T

t

1

Br
s

(Ŷs − Cs)
−λC

s ds ≈
N∑

n=0

1

Br
n

(Ŷn − Cn)
−λC

n∆tn

DVA :

∫ T

t

1

Br
s

(Ŷs − Cs)
+λB

s ds ≈
N∑

n=0

1

Br
n

(Ŷn − Cn)
+λB

n∆tn

(4.20)

We can obtain the expectation of these terms by calculating the average across M
simulations of the clean values obtained from training algorithm 1. Therefore, we
propose the algorithm 3 to predict these metrics.

Algorithm 3: CVA and DVA Algorithm

Input: Trained model to approximate the clean values Ŷt using algorithm 1
with the Nais-net architecture and Non-geometric MLMC;

Output: CVA and DVA terms at the initial time-step;
begin

for m = 1 to M do
Generate approximation of the financial contract’s clean values Ŷ m

t ;
Calculate the CVA and DVA terms as follows:

CVA =
1

M

M∑
m=1

N∑
n=0

1

Br
n

(Ŷ m
n − Cn)

−λC
n∆tmn

DVA =
1

M

M∑
m=1

N∑
n=0

1

Br
n

(Ŷ m
n − Cn)

+λB
n∆tmn

The CVA and DVA terms at each time period can be calculated by applying the above
algorithm at each time-step. The FVA term due to its recursive structure can be ap-
proximated using a neural network at each time-step similar to the set-up used in
chapter 3 with the input in this case being the clean values Ŷt calculated by using a
model trained by algorithm 1. The equation 4.18 can also be approximated using
this neural network set-up. This provides banks with a methodology to approximate
this PDE that overcomes the curse of dimensionality that traditional methods like
least squares and finite differences suffer from, especially for valuation adjustment
calculations involving large portfolios of multiple underlying assets. We define algo-
rithm 4 to obtain the approximation for equation 4.18.

For algorithm 4 we need the discretised version of the equations in 4.15 which are
defined as follows:

xVAn+1 = xVAn − a(tn, Ŷn, xVAn)∆t+ (Zn)
⊤∆Wn

g(ŶT) = XVAT = 0.
(4.21)

With the function a(t, Y, xVA) having the same definition as in equation 4.16.

43

4.2. XVA FRAMEWORK Chapter 4. Risk Management Framework

Algorithm 4: xVA algorithm
initialise and train a model to obtain the clean values using algorithm 1 with
the Nais-net architecture and Non-geometric MLMC;

initialise the xVA model with its architecture and trained model;
for number of iterations do

initialise the loss to 0;
Generate M predictions using the trained model to obtain the clean
values Ŷ , the Wiener process W associated with it, the underlying
process Xt, and the time-steps ∆t;

Obtain the values for xVA0 and Z0 by passing (t0,X0) through the xVA
model and automatic differentiation of its output;

for number of time steps n = 1,, N − 1 do
With ∆tn, Ŷn, Wn, xVAn and Zn obtain the true value x̂VAn+1 using
the following equation as defined in 4.21:

x̂VAn+1 = xVAn − a(tn, Ŷn, xVAn)∆t+ (Zn)
⊤∆Wn

Obtain the model’s predicted value xVAn+1 and Zn+1 by passing
(tn, Xn) as input to the xVA model and automatic differentiation of
its output;

Add
∑M

m=1

∣∣∣xVAm
n+1 − x̂VA

m

n+1

∣∣∣2 to the loss;

Add
∑M

m=1

∣∣∣xVAm
N − g(Ŷ m

N)
∣∣∣2 +∑M

m=1

∣∣∣Zm
N − g′(Ŷ m

N)
∣∣∣2 to the loss for the

terminal time T ;
Perform back-propagation to compute the gradients across the neural
network;

Minimise the loss by using a suitable optimiser;
Update the weights;

Gnoatto et al. [34] uses a similar risk framework to define the the xVA calculations
for forwards, call options, and basket call options and proposed an algorithm using
the PDE solver by Han et al. [27] (refer to section 3.1.9 for the advantages of
our PDE solver over that of Han et al.). Therefore, we conduct experiments in the
following chapter to compare our outputs with that of Gnoatto et al. [34] and the
exact values computed using Monte Carlo simulations.

44

Chapter 5

Numerical Results

In this chapter, we train our model defined in chapter 3 using the Nais-net architec-
ture and a non-geometric multi-level Monte Carlo technique to obtain the valuation
of European call options, forward contracts, baskets of forward contracts, and bas-
kets of European call options. We use algorithms 3 and 4 to calculate the fair value
of these contracts and portfolios by estimating the xVA equation as defined in chap-
ter 4. We compare the results of our xVA calculations with the work by Gnoatto
et al. [34], which uses a different neural network setup as proposed by Han et
al. [27] and a different training algorithm to estimate these values. We also use
Monte Carlo simulations to estimate the exact xVA values for comparison with our
results. All the experiments detailed in this report are available in the GitHub repos-
itory: https://github.com/Aadhithya-06/Final-Year-Project/tree/master. For our ex-
periments we use the NVIDIA GeForce RTX 4080 GPU.

5.1 Experimental Setup

Consider the process used to represent the price of an asset Xt defined by the fol-
lowing stochastic differential equation:

dXt = rXtdt+ σXtdWt, (5.1)

where r represents the risk free rate which is assumed to be constant, σ represents
the volatility of the asset price and Wt is a Wiener process.

We define a European style contingent claim on the asset which may be a call option
or forward contract payoff which we can define as the clean value of the contract
follows:

Ŷt = E
[
e−r(T−t)g(XT)

]
, (5.2)

where T is the terminal time and g(X) is the terminal payoff. Yt can be expressed as
the following backward stochastic differential equation:

dŶt = rŶtdt+ ẐtdWt,

ŶT = g(XT),
(5.3)

45

https://github.com/Aadhithya-06/Final-Year-Project/tree/master

5.2. FORWARD CONTRACTS Chapter 5. Numerical Results

where Ẑt is the derivative of Ŷt with respect to the underlying price Xt. This term is
the first order sensitivity of the price of the underlying. For options contracts this is
called delta (δ) and is used by the bank as a hedging strategy wherein they open a
position of −1× δ of the underlying when they sell an options contract to the client.
This quantity is also approximated by our neural network via the automatic differ-
entiation functionality in PyTorch.

We also define the terms Discounted Expected Positive Exposure (DEPE) and Dis-
counted Expected Negative Exposure (DENE) of the European style contracts as fol-
lows:

DEPE(t) = E
[
e−r(t−T)

(
Ŷs

)+]
,

DENE(t) = −E
[
e−r(t−T)

(
Ŷs

)−]
.

(5.4)

We have defined it in the same way as Gnoatto et al. [34] so that it would aid us in
our comparisons. Since this model only approximates Ŷ0 and the xVA measures at
the initial time with the subsequent values obtained by time-marching, we compare
our model’s ability to approximate these values at t = 0 with this model. We also
provide figures and relative error of our model’s predictions with the exact solution
at the initial time as the xVA PDE does not have an exact analytical solution in high
dimensions in the subsequent sections.

5.2 Forward Contracts

We have derived the pricing for a European style Forward contract in section 2.4.5.
We can define the terminal condition of this contract as follows:

g(XT) = XT −K, (5.5)

where K is the strike price of the forward contract and we set this to be the initial
price i.e, K = X0 = ξ. We have the exact clean value of this contract Ŷt as:

Ŷt = Xt −Ke−r(T−t) (5.6)

In section 2.4.5 we defined the price of a forward contract in terms of a call option
and a put option using the put-call parity. The expected positive exposure and the
expected negative exposure are represented by the payoffs of the call option and the
put option with strike K on the underlying. Therefore we have

DEPE(t) = XtN(d1)−Ke−r(T−t)N(d2),

DENE(t) = XtN(−d1)−Ke−r(T−t)N(−d2),
(5.7)

with
N(x) =

1√
2π

∫ x

−∞
e−

z2

2 dz,

d1 =
ln(Xt/K) + (r + σ2

2
)(T − t)

σ
√
T − t

,

d2 =
ln(Xt/K) + (r − σ2

2
)(T − t)

σ
√
T − t

.

(5.8)

46

Chapter 5. Numerical Results 5.2. FORWARD CONTRACTS

5.2.1 Clean Values

For our first experiment, we use the algorithm 1 to train a model with the Nais-
Net architecture and non-geometric multi-level Monte Carlo technique to obtain the
clean price valuation of a single forward contract. We use the risk-free rate r = 0,
the volatility σ = 0.25 and a strike K = 100. We also set the initial price of the
underlying asset to be X0 = ξ = 100. We set the terminal time to be T = 1. We
train the model for a maximum of 50 discretisation steps and use the ability of
our model to generalise at finer discretisation levels to predict the solution for 200
discretisation time-steps after training. See figure 5.1 for the loss and predictions
of our model and figure 5.2 for a comparison of the Expected positive and negative
exposures between our model and that of Gnoatto et al. for this case. The L2 error
across the 200 discretised time-steps is 4.4× 10−4.

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

Va
lu

e

Evolution of the training loss

0.0 0.2 0.4 0.6 0.8 1.0
t

20

0

20

40

60

80

100

120
Y t

=
u(

t,
X t

)

1-dimensional Forward Contract, Naisnet-Sine
Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

Figure 5.1: This figure represents the Loss (left) and the approximation by a neural
network with 2 hidden layers and 21 neurons in each layer of u(t, x) across 5 realisations
of Xt over 200 time-steps on training the Nais-Net model with sinusoidal activation in
50 time-steps for 20k iterations with a training time of 403.76s using the non-geometric
MLMC scheme as detailed in section 3.4.3 for a forward contract.

0.0 0.2 0.4 0.6 0.8 1.0
t

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Ex
po

su
re

s

1-dimensional Forward Contract Exposures

Exact Discounted Expected Positive Exposure
Solved Discounted Expected Positive Exposure
Exact Discounted Expected Negative Exposure
Solved Discounted Expected Negative Exposure

Figure 5.2: This figure represents the DEPE and DENE predicted by our model (left)
and that of Gnoatto et al. [34] (right).

From figure 5.2 we notice that our model approximates the exposures slightly better
than that of Gnoatto et al., especially the DEPE towards the terminal time. Our
model has a maximum absolute error of 0.072 for the DEPE and DENE with the
exact values and a standard deviation of 0.0176 whereas the model by Gnoatto et

47

5.2. FORWARD CONTRACTS Chapter 5. Numerical Results

al. has a maximum absolute error of 0.12 for the DEPE and DENE with a standard
deviation of 0.3647.

5.2.2 FVA calculations for Forward Contract Portfolios

In this section, we use algorithm 4 to compare the initial FVA values. For the pur-
poses of this experiment we use r = 0.02. We assume that there is no collateral,
C = 0 and there is no default risk λC = λB = 0. We also assume the recovery rates
RC = RB = 1. This allows us to obtain only the FVA value from equation 4.18.
Suppose we have a rate rf,l = rf,b = rf , then the exact FVA value at time t is the
difference between the exact value at time t calculated using the discounting rate r
and the exact value calculated using the discounting rate rf . The results of our algo-
rithm and comparison with the exact FVA values and the model provided by Gnoatto
et al. for 1D Forward contract with r = 0.02 and rf = 0.04, 0.08 and 0.12 is provided
in table 5.1.

rf 0.04 0.08 0.12
Gnoatto et al. 0.03950 0.11550 0.18970
Exact Value 0.03920 0.11531 0.18843

Proposed Model 0.03923 0.11542 0.18815

Table 5.1: Comparison of our Proposed model, model by Gnoatto et al. and Exact
values of FVA0 for a Forward contract with strike K = 100 and initial underlying price
X0 = 100 across different rf rates. We train our Nais-Net model with Sine activation,
2 hidden layers and 256 neurons each for 3000 iterations using algorithm 4. We pass a
trained model to compute the clean values of the forward contract with r = 0.02 at each
time step.

We also validate the performance of our algorithm for high dimensional data by
considering portfolios of forward contracts with each dimension of the input repre-
senting one forward contract. The results and comparisons are provided in table 5.2.

d
Exact
Value

Proposed
Model Error (%) Gnoatto et al. Error (%)

Training
Time (s)

1 0.03920 0.03923 0.0765 0.03950 0.7651 435
10 0.39209 0.39205 0.0102 0.39199 0.0255 590
25 0.98023 0.98047 0.0244 0.97568 0.4692 736
50 1.9605 1.9607 0.0102 1.9439 0.8467 948
100 3.9209 3.9204 0.0128 3.8976 0.5942 1362
150 5.8813 5.8801 0.0204 5.8603 0.3570 1521
200 7.8418 7.8371 0.0599 7.8159 0.3290 1783

Table 5.2: Comparison of our Proposed model, model by Gnoatto et al. and Exact values
of FVA0 for Forward Contracts with K = 100 and X0 = 100 across different portfolios.

We increase the complexity of the model architecture with an increase in the number
of dimensions to calculate the clean and the FVA values, with 2 hidden layers of size

48

Chapter 5. Numerical Results 5.3. EUROPEAN CALL OPTION

21, 30, 45, 70, 256 and 256 to calculate the clean values for dimensions 1, 10, 25,
50, 100 and 150 respectively and 4 hidden layers of size 256 for the 200 dimension
case. For the FVA calculations we use the same architecture as the 1D case for
dimensions 1, 10, 25 and 50 respectively and 4 hidden layers with 256 neurons for
the 100, 150 and 200 dimensional cases. From table 5.2 we see that our model
generalises well to obtain an error of less than 0.1% on training for between 2000
and 5000 iterations with learning rates between 1e−5 and 1e−3 for the portfolios of
forward contracts in comparison with the model proposed by Gnoatto et al. where
the error is around the 1% level.

5.2.3 FVA calculations with Collateral

For our calculations we propose a collateral arrangement such that collateral is ex-
changed between each part involved in the transaction at every point in time when
the collateral is above or below a certain threshold. We define a collateral account
that follows the following process for the fully collateralised case:

Ct =
[
(Ŷt − c)+ − (Ŷt + c)−

]
(5.9)

where, c is the threshold. We perform experiments with full collateralisation across
portfolios of forward contracts to obtain the results in table 5.3.

d
Full

Collateralisation
No

Collateralisation
1 4.5449 ×10−5 0.03923
10 -4.3958 ×10−5 0.39205
25 5.2526 ×10−5 0.98047
50 -1.6764 ×10−5 1.9607

100 -1.0244 ×10−5 3.9204
150 -1.0710 ×10−6 5.8813

Table 5.3: FVA values with collateral threshold c = 10.

From table 5.3 we see that the FVA value is negligible when the transaction is fully
collateralised at each time-step. This is in line with our expectation as the presence
of collateral leads to a decrease in credit risk since the collateral can be used to
recover losses from the transaction in the event of default of either party involved.
Furthermore, funding costs decrease as due to posting collateral, the parties can
borrow at a lower rate to hedge their exposure.

5.3 European Call Option

We have derived the pricing for European Call Options in section 2.4.3. Here, we
define the terminal condition as follows:

g(XT) = (XT −K)+ = max(XT −K, 0) (5.10)

49

5.3. EUROPEAN CALL OPTION Chapter 5. Numerical Results

where we set the strike price K to be the initial price of the underlying asset such
that K = X0 = ξ. The exact clean values of the European call option contract as
defined in section 2.4.3 is:

Ŷt = XtN(d1)−Ke−r(T−t)N(d2) (5.11)

with d1, d2 and N having the same definitions as in equation 5.8. The expected
positive and negative exposures are therefore:

DEPE(t) = E
[
e−r(t−T)

(
Ŷt

)+]
= E

[
e−r(t−T) (Xs −K)+

]
= Ŷt

DENE(t) = −E
[
e−r(t−T)

(
Ŷs

)−]
= 0

(5.12)

5.3.1 Clean Values

We use the algorithm 1 to train a model with the Nais-Net architecture and non-
geometric multi-level Monte Carlo technique with 4 hidden layers of size 256 each to
obtain the clean price valuation of a call option . We use the risk-free rate r = 0.01,
the volatility σ = 0.25 and a strike K = 100. We also set the initial price of the
underlying asset to be X0 = ξ = 100. We set the terminal time to be T = 1. We train
the model for a maximum of 50 discretisation steps and use the ability of our model
to generalise at finer discretisation levels to predict the solution for 200 discretisation
time-steps after training. See figure 5.3 for the loss and predictions of our model and
figure 5.4 for a comparison of the expected positive and negative exposures between
our model and that of Gnoatto et al. for this case.

0 5000 10000 15000 20000
Iterations

10 3

10 2

10 1

100

Va
lu

e

Evolution of the training loss

0 20 40 60 80 100
t

0

20

40

60

80

Y t
=

u(
t,

X t
)

1-dimensional Call Option, Naisnet-Sine
Learned u(t, Xt)
Exact u(t, Xt)
YT = u(T, XT)
Y0 = u(0, X0)

Figure 5.3: This figure represents the Loss (left) and the approximation by a neural net-
work with 4 hidden layers and 256 neurons in each layer of u(t, x) across 7 realisations
of Xt over 200 time-steps on training the Nais-Net model with sinusoidal activation in
50 time-steps for 24k iterations using the non-geometric MLMC scheme as detailed in
section 3.4.3 for a call option. The average L2 error across all predictions is 5.33× 10−3.

From figure 5.4 we notice that our model approximates the exposures slightly better

50

Chapter 5. Numerical Results 5.4. EUROPEAN CALL OPTION BASKET

than that of Gnoatto et al., especially the DENE towards the terminal time. Our
model has a maximum absolute error of 0.1147 for the DEPE and the DENE with the
exact values and a standard deviation of 0.0328 for the DEPE whereas the model
by Gnoatto et al. has a maximum absolute error of 0.17 for the DEPE and DENE.
Furthermore our model perfectly predicts the DENE case with an error of 0.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

8

10

Ex
po

su
re

s Solved Discounted Expected Positive Exposure
Exact Discounted Expected Positive Exposure
Solved Discounted Expected Negative Exposure
Exact Discounted Expected Negative Exposure

Figure 5.4: This figure represents the DEPE and DENE predicted by our model (left)
and that of Gnoatto et al. [34] (right).

5.4 European Call Option Basket

We define a European Call Option Basket with D underlying assets such that Xt as
defined in equation 5.1 is now of the form Xd

t where d refers to the asset correspond-
ing to the dth with d = 1...D. We define the terminal condition as follows:

g(XT) = (
D∑

d=1

Xd
T − d ·K)+ = max(

D∑
d=1

Xd
T − d ·K, 0) (5.13)

where we set the strike price K to be the initial price of the underlying asset such
that K = Xd

0 = ξd. We set this value to be 100 for our experiments. The expected
positive and negative exposures are given by:

DEPE(t) = E
[
e−r(t−T)

(
Ŷt

)+]

= E

e−r(t−T)

(
D∑

d=1

Xd
T − d ·K

)+
 = Ŷt

DENE(t) = −E
[
e−r(t−T)

(
Ŷs

)−]
= 0

(5.14)

5.4.1 Clean Values

We use the algorithm 1 to train a model with the Nais-Net architecture and non-
geometric multi-level Monte Carlo technique with 4 hidden layers of size 256 each

51

5.4. EUROPEAN CALL OPTION BASKET Chapter 5. Numerical Results

to obtain the clean price valuation of a 100 dimensional call option basket . We use
the risk-free rate r = 0.01, the volatility σ = 0.25 and a strike K = 100. We also
set the initial price of the underlying asset to be X0 = ξ = 100. We set the terminal
time to be T = 1. We train the model for a maximum of 50 discretisation steps
and use the ability of our model to generalise at finer discretisation levels to predict
the solution for 200 discretisation time-steps after training. See figure 5.5 for the
loss and predictions of our model and figure 5.6 for a comparison of the expected
positive and negative exposures between our model and that of Gnoatto et al. for
this case.

0 5000 10000 15000 20000
Iterations

102

103

Va
lu

e

Evolution of the training loss

0.0 0.2 0.4 0.6 0.8 1.0
t

0

50

100

150

200

250

300

350

400

Y t
=

u(
t,

X t
)

100-dimensional Call Option Basket

Figure 5.5: This figure represents the Loss (left) and the approximation by a neural net-
work with 4 hidden layers and 256 neurons in each layer of u(t, x) across 10 realisations
of Xt over 200 time-steps on training the Nais-Net model with sinusoidal activation in 50
time-steps for 21k iterations with a training time of 1547.35s using the non-geometric
MLMC scheme as detailed in section 3.4.3 for a 100 asset Call Option Basket.

From figure 5.6 we notice that our model approximates the exposures slightly better
than that of Gnoatto et al., especially the DEPE and DENE towards the terminal time
similar to the case of forward contracts and call options in a low dimensional setting
as in sections 5.2 and 5.4 respectively. Our model has a maximum absolute error of
1.372 for the DEPE and 0.410 for the DENE with the exact values and a standard
deviation of 0.29 and 0.14 for the DEPE and DENE cases respectively whereas the
model by Gnoatto et al. has a maximum absolute error of 3.25 and 2.98 for the
DEPE and DENE respectively. Therefore our model has an error ≈ 0.8% whereas the
model proposed by Gnoatto et al. has an error of ≈ 2%.

5.4.2 CVA and DVA Calculations

We validate our algorithms 3 and 4 for a 100 dimensional call basket portfolio to
calculate the CVA and DVA metrics by setting a unique stream of funding with a
fixed rate r = 0.01 and no collaterlisation. This ensures that the FVA and ColVA
terms are 0. We set the intensities of default of the bank λB = 0.01 and the counter-
party λC = 0.10 to be constant over time. We also define the recovery rates of the
bank RB = 0.4 and the counterparty RC = 0.3. We first compute the clean values
as defined in section 5.4.1. Using these values, we use algorithm 3 to obtain the
value of XVA0 = DVA0 − CVA0 to obtain the value 0.8995 by averaging across 8192

52

Chapter 5. Numerical Results 5.4. EUROPEAN CALL OPTION BASKET

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

120

140

160

Ex
po

su
re

s Solved Discounted Expected Positive Exposure
Exact Discounted Expected Positive Exposure
Solved Discounted Expected Negative Exposure
Exact Discounted Expected Negative Exposure

Figure 5.6: This figure represents the DEPE and DENE predicted by our model (left)
and that of Gnoatto et al. [34] (right) for a Basket of Call Options.

simulations. The exact value is obtained by a monte carlo simulation of portfolio
values over 100k simulations to obtain the value of 0.8999 for DVA0 − CVA0. So our
algorithm produces an absolute error of 0.05%. We also validate the performance
of algorithm 4 using the parameters mentioned above as we can obtain not only
the initial value but also subsequent values of the xVA across time. So we train a
Nais-Net model with 4 hidden layers of size 256 across 3000 iterations to obtain the
initial xVA value of 0.8984. The model proposed by Gnoatto et al. [34] trained with
the same parameters yields an initial value of 0.8952 indicating an error of ≈ 0.52%
whereas our model has an error of ≈ 0.20%. Therefore, our model using algorithm 4
has a similar error level as the model proposed by Gnoatto et al. whereas algorithm
3 allows a more accurate pricing for the initial value for the CVA and DVA terms.

5.4.3 FVA Calculations

We use a similar set-up as in section 5.2.2 to validate our algorithm 4 by approx-
imating the FVA value for a 100 dimensional call option basket. We set the risk
free rate r = 0.01 and assume that there is no collateral, C = 0 and there is no
default risk λC = λB = 0. We also assume the recovery rates RC = RB = 1. This
allows us to obtain only the FVA value from equation 4.18. Suppose we have a rate
rf,l = rf,b = rf = 0.04, then the exact FVA value at time t is the difference between
the exact value at time t calculated using the discounting rate r and the exact value
calculated using the discounting rate rf . So we train a Nais-Net model with 4 hid-
den layers of size 256 across 4000 iterations to obtain the initial FVA value of 4.6698
whereas the exact value calculated is 4.6693. Therefore our model has an error of
≈ 0.01%. We also trained a new instance of this model 10 times using the same
parameters and noticed that there was a standard deviation of ≈ 0.05%. Therefore,
the error is approximately at the 0.1% level similar to the FVA calculations for the
portfolios of forward contracts.

53

Chapter 6

Conclusion

6.1 Achievements

The first goal of the project was to replicate the work of Raissi [25] and Batuhan
Guler, Alexis Laignelet, and Panos Parpas [30]. We successfully replicated their work
and conducted further experiments on the Black-Scholes equation with a quadratic
payoff using the ResNet-based Nais-Net architecture. We identified that the pro-
jection step of the Nais-Net architecture, which ensured the stability of the results
by constraining the weights of the neural network, also enabled faster convergence
to a similar level of loss in 25k iterations that the feed-forward model achieved in
100k iterations of training due to this feature, thereby achieving the same error lev-
els as Raissi in a lesser number of training iterations. Our next aim was to further
reduce computational complexity while maintaining the same error levels. Subse-
quently, we analysed methods to decrease the training time. This analysis led us to
explore discretisation techniques such as geometric and non-geometric Multi-Level
Monte Carlo methods, which significantly reduced training time—by approximately
85%. As a result, we could produce a model that approximates the solution with
the same level of accuracy in 25k iterations, compared to the initial model which
required 100k iterations. We also conducted experiments to understand the model’s
ability to generalise to finer discretisation levels in section 3.4.4 and explored the
bias-variance trade-off to identify the optimal architecture and the number of real-
isations needed for training, the results of which are detailed in section 3.5. Since
the price movements of most assets in portfolios used to price financial contracts are
correlated with each other, we introduced a methodology to incorporate correlations
to the underlying assets and achieved a similar level of accuracy as in the uncorre-
lated case in section 3.6.

Then we laid out a framework to represent the xVA equations as a backward stochas-
tic differential equation and proposed a recursive algorithm using our neural net-
work architecture, which uses the values predicted by the model defined in chapter
3 to approximate a solution to this equation. We compared the results of our ap-
proach to calculate the Funding Valuation, Debt Valuation, and Credit Valuation ad-
justments for portfolios of forward contracts and call options, achieving an error of
approximately 0.1% compared to another state-of-the-art approach by Gnoatto et al.

54

Chapter 6. Conclusion 6.2. FUTURE WORK

[34], which achieves an error of approximately 1% with respect to the exact initial
values calculated using a Monte Carlo simulation. Furthermore, we also simulated
Funding Valuation adjustments in the presence of collateral to validate our expecta-
tion that the inclusion of collateral reduces credit risk, thereby making the funding
valuation adjustment negligible. Therefore, we have developed a framework to cal-
culate an accurate risk-adjusted valuation of low and high-dimensional portfolios of
forward contracts and call options in a reasonable amount of time.

6.2 Future Work

In this project, we focused on the valuation and xVA calculations of financial con-
tracts with European-style payoffs that occur only at the terminal time. Therefore, a
natural extension would be to develop a similar framework for the valuation of finan-
cial contracts with American payoffs that can be exercised at any time before expiry.
We have successfully formulated an optimisation problem for the xVA and Black-
Scholes backward stochastic differential equation by stochastic differential equation
discretisation and path sampling using the control variate of this process. This con-
trol variate (Zt as described in equation 3.1) in the Black-Scholes equation represents
the hedging ratio, which is important for the bank to hedge their exposures to the
financial contracts that they sell to clients. Currently, we only minimise the error
of the control variate generated by automatic differentiation of the solution of our
model at the terminal time in the loss function, as in equation 3.4. Another exten-
sion could be to modify our algorithm and also test the approximation of this value
at each time step and compare it to the exact values calculated by other techniques.
Additionally, we can follow the conclusions drawn from our analysis in section 3.3
and include higher derivative terms to obtain not only the hedge ratio but also other
sensitivities, which are important for banks to hedge their exposure. Furthermore,
alternative optimisation techniques could also be explored to improve the model’s
performance. Before banks can use the proposed algorithm, it also needs to be tested
in a real-world setting. Therefore, an analysis of our algorithm’s performance by
training our models on real price and risk metrics data gathered from banks would
further validate our approach.

Approximating the solution to forward-backward stochastic differential equations
in high dimensions using neural networks is also a powerful tool in industries out-
side finance. For instance, in the field of energy, neural networks are used to solve
the Hamilton-Jacobi-Bellman equations to optimise the operation and management
of energy storage systems, balancing supply and demand efficiently. In environmen-
tal science, these techniques help model complex systems like climate dynamics by
approximating solutions to the Stochastic Navier-Stokes equations. Additionally, in
the realm of neuroscience, neural networks assist in solving the Hodgkin-Huxley
model, which describes the electrical characteristics of neurons, aiding in the study
of brain activity and the development of neurological treatments. Therefore, there
is potential for our project to solve these problems impacting various industries if
future work is done to test our approach on these equations.

55

Bibliography

[1] Darrell Duffie and Ming Huang. Swap rates and credit quality. Journal of
Finance, 51(3):921–49, 1996. pages 1

[2] T. Bielecki and M. Rutkowski. Credit Risk: Modeling, Valuation and Hedging.
Springer Finance Berlin, 2003. pages 1

[3] Damiano Brigo and Agostino Capponi. Bilateral counterparty risk valuation
with stochastic dynamical models and application to credit default swaps,
2009. pages 1

[4] DAMIANO BRIGO, ANDREA PALLAVICINI, and VASILEIOS PAPATHEODOROU.
Arbitrage-free valuation of bilateral counterparty risk for interest-rate prod-
ucts: Impact of volatilities and correlations. International Journal of Theoretical
and Applied Finance, 14(06):773–802, 2011. pages 1

[5] Damiano Brigo and Andrea Pallavicini. Ccp cleared or bilateral csa trades with
initial/variation margins under credit, funding and wrong-way risks: A unified
valuation approach, 2014. pages 1

[6] Andrea Pallavicini, Daniele Perini, and Damiano Brigo. Funding valuation ad-
justment: a consistent framework including cva, dva, collateral,netting rules
and re-hypothecation, 2011. pages 1, 36

[7] Tomasz R. Bielecki and Marek Rutkowski. Valuation and hedging of contracts
with funding costs and collateralization, 2014. pages 1

[8] Francesca Biagini, Alessandro Gnoatto, and Immacolata Oliva. A unified ap-
proach to xva with csa discounting and initial margin, 2021. pages 1, 36, 41

[9] Maxim Bichuch, Agostino Capponi, and Stephan Sturm. Robust xva, 2020.
pages 1

[10] Maxim Bichuch, Agostino Capponi, and Stephan Sturm. Arbitrage-free xva.
Mathematical Finance, 28(2):582–620, April 2017. pages 1

[11] https://www.bis.org/publ/bcbs189.pdf. pages 1

[12] https://www.icmagroup.org/market-practice-and-regulatory-
policy/secondary-markets/secondary-markets-regulation/fundamental-
review-of-the-trading-book-frtb/. pages 1

BIBLIOGRAPHY BIBLIOGRAPHY

[13] MARK JOSHI and OH KANG KWON. Least squares monte carlo credit value
adjustment with small and unidirectional bias. International Journal of Theo-
retical and Applied Finance, 19(08):1650048, 2016. pages 1

[14] Shashi Jain Patrik Karlsson and Cornelis W. Oosterlee. Counterparty credit ex-
posures for interest rate derivatives using the stochastic grid bundling method.
Applied Mathematical Finance, 23(3):175–196, 2016. pages 1

[15] Claudio Albanese, Simone Caenazzo, and Stephane Crepey. Credit, funding,
margin, and capital valuation adjustments for bilateral portfolios. Probability,
Uncertainty and Quantitative Risk, 2(0):7, 2017. pages 1

[16] Jean-Michel Bismut. Conjugate convex functions in optimal stochastic control.
Journal of Mathematical Analysis and Applications, 44(2):384–404, 1973. pages
2

[17] E. Pardoux and S.G. Peng. Adapted solution of a backward stochastic differen-
tial equation. Systems and Control Letters, 14(1):55–61, 1990. pages 2

[18] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential
equations in finance. Mathematical Finance, 7(1):1–71, 1997. pages 2

[19] Étienne Pardoux and Shanjian Tang. Forward-backward stochastic differential
equations and quasilinear parabolic pdes. Probability Theory and Related Fields,
114:123–150, 1999. pages 2, 16

[20] https://medium.com/free-code-camp/the-curse-of-dimensionality-how-we-
can-save-big-data-from-itself-d9fa0f872335. pages 2

[21] Emmanuel Gobet, Jean-Philippe Lemor, and Xavier Warin. A regression-based
monte carlo method to solve backward stochastic differential equations. The
Annals of Applied Probability, 15(3), August 2005. pages 2

[22] Emmanuel Gobet and Plamen Turkedjiev. Approximation of backward stochas-
tic differential equations using malliavin weights and least-squares regression.
Bernoulli, 22(1), February 2016. pages 2

[23] Bruno Bouchard and Nizar Touzi. Discrete-time approximation and monte-
carlo simulation of backward stochastic differential equations. Stochastic Pro-
cesses and their Applications, 111(2):175–206, 2004. pages 2, 7

[24] T. Uchiyama and N. Sonehara. Solving inverse problems in nonlinear pdes by
recurrent neural networks. pages 99–102 vol.1, 1993. pages 2

[25] Maziar Raissi. Forward-backward stochastic neural networks: Deep learning
of high-dimensional partial differential equations, 2018. pages 2, 3, 8, 16, 20,
21, 22, 25, 54

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numeri-
cal methods for high-dimensional parabolic partial differential equations and
backward stochastic differential equations. Communications in Mathematics
and Statistics, 5(4):349–380, November 2017. pages 2, 22, 27, 32

[27] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial
differential equations using deep learning. Proceedings of the National Academy
of Sciences, 115(34):8505–8510, 2018. pages 2, 22, 27, 32, 44, 45

[28] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal of Computational
Physics, 375:1339–1364, December 2018. pages 2, 22, 27

[29] Christian Beck, Sebastian Becker, Philipp Grohs, Nor Jaafari, and Arnulf
Jentzen. Solving the kolmogorov pde by means of deep learning. Journal
of Scientific Computing, 88(3), July 2021. pages 2, 22, 27, 32

[30] Batuhan Güler, Alexis Laignelet, and Panos Parpas. Towards robust and stable
deep learning algorithms for forward backward stochastic differential equa-
tions, 2019. pages 2, 3, 8, 16, 22, 24, 28, 54

[31] Batuhan Güler, Alexis Laignelet, and Panos Parpas.
https://github.com/batuhanguler/deep-bsde-solver. pages 2

[32] Maziar Raissi. https://github.com/maziarraissi/fbsnns. pages 2, 21

[33] Marco Ciccone, Marco Gallieri, Jonathan Masci, Christian Osendorfer, and
Faustino Gomez. Nais-net: Stable deep networks from non-autonomous dif-
ferential equations, 2021. pages 3, 23, 24, 25, 27

[34] Alessandro Gnoatto, Athena Picarelli, and Christoph Reisinger. Deep xva solver
– a neural network based counterparty credit risk management framework,
2022. pages 3, 36, 44, 45, 46, 47, 51, 53, 55

[35] Oliver Ibe. Fundamentals of Applied Probability and Random Processes. CA:
Academic Press., 2014. pages 4

[36] Emmanuel Gobet. Monte-Carlo Methods and Stochastic Processes: From Linear
to Non-Linear. Chapman and Hall/CRC,, 2016. pages 8

[37] Fischer Black and Myron Scholes. The pricing of options and corporate liabili-
ties. Journal of Political Economy, 81(3):637–654, 1973. pages 9

[38] John C Hull. Options, Futures, and Other Derivatives. Pearson, 2018. pages 9

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learn-
ing library, 2019. pages 17

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey,
2018. pages 17

[41] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2017. pages 21

[42] Michael B. Giles. Multilevel monte carlo path simulation. Operations Research,
56(3):607–617, 2008. pages 23, 28, 29

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition, 2015. pages 23, 24

[44] Linan Zhang and Hayden Schaeffer. Forward stability of resnet and its variants,
2018. pages 24

[45] Michael B. Giles. Multilevel monte carlo methods, 2018. pages 28, 29

[46] Damiano Brigo, Marco Francischello, and Andrea Pallavicini. Nonlinear valu-
ation under credit, funding, and margins: Existence, uniqueness, invariance,
and disentanglement. European Journal of Operational Research, 274(2):788–
805, 2019. pages 36

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Summary of the Report

	2 Background
	2.1 Markov Process
	2.2 Wiener Process
	2.3 Stochastic Differential Equations
	2.3.1 Itô Process
	2.3.2 Linking Partial Differential Equations and Stochastic Differential Equations
	2.3.3 Forward Stochastic Differential Equations
	2.3.4 Backward Stochastic Differential Equations

	2.4 Black-Scholes Equation
	2.4.1 Partial Differential Equation Derivation
	2.4.2 Closed Form Solution
	2.4.3 European Call Option Pricing
	2.4.4 European Put Option Pricing
	2.4.5 Forward Contract Pricing

	3 Neural Network
	3.1 Initial Setup
	3.1.1 Forward-Backward Stochastic Differential Equations
	3.1.2 Euler-Maruyama Scheme
	3.1.3 Loss Function
	3.1.4 Architecture
	3.1.5 Training Algorithm
	3.1.6 Black-Scholes Barenblatt Equation
	3.1.7 Fully Connected Network Architecture
	3.1.8 Experimental Results
	3.1.9 Analysis of Results and Comparison with Related Work

	3.2 Nais-Net Architecture
	3.2.1 Residual Networks
	3.2.2 Fully Connected Nais-Net
	3.2.3 Results

	3.3 Loss Function
	3.4 Multi-Level Monte Carlo Technique
	3.4.1 Definition
	3.4.2 Geometric Multi Level Monte Carlo
	3.4.3 Non-Geometric Multi Level Monte Carlo
	3.4.4 Generalisation at Finer Discretisation Levels

	3.5 Bias Variance Trade-off
	3.6 Correlated Underlying Processes
	3.6.1 Cholesky Decomposition

	4 Risk Management Framework
	4.1 Market Setting
	4.1.1 Time of Default
	4.1.2 Underlying Assets
	4.1.3 Cash Accounts
	4.1.4 Risky Bonds
	4.1.5 Claims
	4.1.6 Collateral

	4.2 xVA Framework
	4.2.1 Clean Market Portfolio Dynamics
	4.2.2 Fair Value Stochastic Differential Equation
	4.2.3 xVA Backward Stochastic Differential Equation
	4.2.4 xVA Algorithms

	5 Numerical Results
	5.1 Experimental Setup
	5.2 Forward Contracts
	5.2.1 Clean Values
	5.2.2 FVA calculations for Forward Contract Portfolios
	5.2.3 FVA calculations with Collateral

	5.3 European Call Option
	5.3.1 Clean Values

	5.4 European Call Option Basket
	5.4.1 Clean Values
	5.4.2 CVA and DVA Calculations
	5.4.3 FVA Calculations

	6 Conclusion
	6.1 Achievements
	6.2 Future Work

