
MEng Individual Project

Imperial College London

Department of Computing

Verlixir: Verification of Message-Passing
Systems

Author:
Matthew Neave

Supervisor:
Dr. Naranker Dulay

Second Marker:
Charles Pert

June 17, 2024

Abstract

Distributed algorithms are difficult to prove and reason about. With the rapid rise in cloud-based
clusters, the need for developing robust distributed algorithms is seen as a critical requirement by
service providers and has sparked new interest in developing tools for reasoning about distributed
algorithms.

This project proposes and evaluates Verlixir, a verification-aware language for specifying and ver-
ifying message-passing systems. Verlixir supports three modes of operation. Simulation mode
can be used to execute and observe the system in a controlled environment. Verification mode
can verify the system against a set of properties. Finally, parameterization mode can be used to
guarantee the system behaves across different configurations.

A qualitative evaluation of Verlixir demonstrates the capability to detect violations of proper-
ties in distributed algorithms, such as Paxos and Two-Phase Commit. Verlixir enhances Elixir
programs with linear temporal logic properties, predicates and function contracts to specify the
desired behaviour of systems. Property violations produce Elixir-friendly counterexamples that
can be used to debug the system. Counterexamples show process interleaving and message-passing
interleaving that results in a property violation.

Verlixir enables developers to define message-passing systems in terms of safety and liveness.
Distributed algorithms can be prototyped and verified in a safe environment. Verlixir replaces
the need for writing complex models in bespoke specification languages, which have to be main-
tained alongside implementation in modern programming languages. This is all achieved while
maintaining the original program semantics, such that, after verification, the system can be run in
production.

Acknowledgements

I am grateful to my supervisor, Dr. Naranker Dulay, for his guidance and support throughout this
project.

My sincerest gratitude goes to my family, for their continued support through my studies.

Finally, a word of thanks to my friends, for their encouragement and motivation.

Contents

1 Introduction 4
1.1 Objectives . 4
1.2 Contributions . 5

2 Background 6
2.1 Concurrency . 6

2.1.1 The Actor Model . 7
2.1.2 Temporal Logic . 8
2.1.3 Safety and Liveness . 9
2.1.4 Fairness . 9

2.2 Model Checking . 10
2.2.1 A Comparison Of Model Checkers . 10

2.3 Related Work . 12
2.3.1 Theorem Proving . 13
2.3.2 Design by Contract . 13
2.3.3 Verification-aware Languages . 13
2.3.4 Gomela . 15

2.4 Summary . 16

3 Promela and Elixir 17
3.1 Promela . 17

3.1.1 Types and Variables . 17
3.1.2 Control Flow . 17
3.1.3 Processes . 18
3.1.4 Channels . 19
3.1.5 Promela Example . 19
3.1.6 Limitations . 20
3.1.7 Summary . 20

3.2 Elixir . 20
3.2.1 Verifiable Feature Set . 21
3.2.2 Matching . 22
3.2.3 Type Specifications . 23
3.2.4 Summary . 23

4 Verlixir 24
4.1 LTLixir . 24
4.2 Constructing a Verifiable Elixir Program . 24

4.2.1 Detecting a Deadlock . 25
4.2.2 Linear Temporal Logic . 26
4.2.3 Contracts . 28
4.2.4 Parameterized Systems . 29

4.3 Summary . 30

2

5 Verification of Message-Based Systems 31
5.1 Verlixir Toolchain . 31
5.2 Modelling Elixir Programs . 33

5.2.1 High-level Overview . 33
5.2.2 Sequential Execution . 34
5.2.3 Concurrent Memory Model . 37

5.3 Specification Language . 41
5.3.1 System Initialisation . 41
5.3.2 Type Specifications . 41
5.3.3 Concurrency Parameters . 41
5.3.4 Linear Temporal Logic Formulae . 41
5.3.5 Predicates . 42
5.3.6 Function Contracts . 42

5.4 Simulation and Verification . 43
5.4.1 Simulation . 43
5.4.2 Verification . 43
5.4.3 Parameterization . 44

5.5 Modelling Paxos . 44
5.6 Summary . 48

6 Evaluation 49
6.1 Analysing Distributed Systems . 49

6.1.1 Basic Paxos . 49
6.1.2 Consistent Hash Ring . 52
6.1.3 Two-Phase Commit . 53
6.1.4 Dining Philosophers . 55
6.1.5 Raft Leader Election . 56

6.2 Verlixir vs. Existing Work . 58
6.2.1 Difference in Approach . 58
6.2.2 Verlixir vs. Related Work . 59

6.3 Summary . 60

7 Conclusion 61
7.1 Future Work . 61
7.2 Ethical Considerations . 62
7.3 Final Remarks . 62

A Full Code Listings 67
A.1 Verlixir Example . 67
A.2 Paxos . 68

A.2.1 First paxos implementation with a bug . 68
A.2.2 First paxos bug message log . 71
A.2.3 Second paxos implementation with a bug 74
A.2.4 Second paxos bug message log . 77

A.3 Consistent Hash Table . 80
A.3.1 Working Consistent Hash Table . 80
A.3.2 Promela for Consistent Hash Table . 82
A.3.3 Buggy Consistent Hash Table . 87
A.3.4 Buggy Hash Table Logs . 89

A.4 Two-Phase Commit . 91
A.4.1 LTLixir 2PC . 91
A.4.2 Buggy 2PC Logs . 94

A.5 Dining Philosophers . 95
A.5.1 Dining Philosophers Deadlock Logs . 95
A.5.2 Dining Philosophers in Elixir . 97
A.5.3 Promela Translation of Dining Philosophers 100

A.6 Raft . 106
A.6.1 Raft Consensus in Elixir . 106

3

Chapter 1

Introduction

With the rise of cloud-based clusters, developing robust distributed algorithms is becoming an
increasingly difficult problem and the need for vigorous methodologies to verify the correctness of
these algorithms has intensified. Distributed systems are interesting, as they provide performance
and reliability benefits over centralised systems. They also provide scalability, modularity, and
availability improvements [68].

Modern programming languages have been developed to support distributed algorithms that rely
on message passing as a means of communication. Common message passing abstractions involve
the use of channels (e.g. Go [10]) or actors [30] (e.g. Erlang [13]). At a high level, message-passing
systems can be easier to reason about than a common alternative, shared memory. However,
message-passing systems are often distributed across multiple nodes, which can introduce chal-
lenges in reasoning about the correctness of a system [69].

Verification tools have been developed to support determining the correctness of systems. For
example, first-order automated theorem provers such as Z3 [20] and formal specification languages
like TLA+ [6]. These tools allow systems to be modelled, and specifications to be defined that
can then be used to prove properties over these systems. However, despite the capabilities these
tools provide, they often place a burden on developers to write and maintain models of systems
alongside their actual implementation. This often leads to a paradigm shift away from system
implementations that were designed in, for example, imperative programming languages such as
C. Modern programming languages, for example Dafny [18], solve this issue by directly integrating
Floyd-Hoare style logic verification alongside the implementation. This report aims to extend this
notion to distributed, message-passing systems.

This report discusses the modelling of message passing, actor-based programs and the verification
of their adherence to a specification, using Elixir as a target language to support the verification
of real-world systems.

1.1 Objectives
Much work has gone into verifying algorithms and programs such as various theorem provers and
model checkers. While these tools were initially designed to allow developers to write specifications
for how an algorithm should behave in bespoke specification language, more recently verification
tools have been designed that can be directly applied to programs written in programming lan-
guages such as C [43]. A more recent advancement is support for verifying concurrent programs.
However, much of this work has used global shared memory as an implementation for specifying
process communication [57]. A common inter-process communication, alternative to shared mem-
ory, is message passing. We aim to extend the research in this area, to support the simulation
and verification of message-passing systems, in particular, those which follow the actor model [30].
This project sets out to accomplish the following objectives:

• Integrate the verification of formal specifications into modern, message-based programming
languages.

4

• Check that the behaviour of a system is consistent across different configurations.

• Design a framework for simulating the behaviour of large-scale distributed systems.

• Ensure verified systems can be run directly in production.

• Apply the aforementioned techniques and tooling to real-world systems implemented in Elixir.

The current research in the area of verifying modern programming languages presents many chal-
lenges for extending this notion to a message-passing system. We define a verification-aware lan-
guage, as one which combines implementation and verification capabilities into a single language.
State-of-the-art verification-aware languages such as Dafny avoid concurrent execution due to the
challenges it can introduce to verification [51]. To verify a distributed system in this context, it
is instead left to the user to model the system in a manner that it can be sequentially executed.
Tools such as Gomela [44], support the verification of concurrent execution, where communication
is achieved across channels in Go. However, they do not support formal specifications or the exten-
sive verification of safety and liveness properties. Instead, they are limited to detecting deadlocks.
The existing research means we must sacrifice either, the ability to verify concurrent execution or
the ability to verify complex properties.

1.2 Contributions
This report introduces Verlixir, a verification-aware programming language for message passing.
We believe Verlixir to be the first language to support the verification of safety and liveness proper-
ties of message-passing, actor-based systems. Verlixir programs compile to byte-code, so they can
be run in production environments, such as on the Erlang Virtual Machine. They also guarantee
system correctness under specified system properties.

Verlixir is capable of verifying multiple properties of highly concurrent programs and reporting
back counterexamples. Chapter 4 provides an overview of what Verlixir is and how it can be used.
We then provide a detailed explanation of the design and implementation of Verlixir in chapter 5.

A subsequent contribution of this project is LTLixir. LTLixir is a specification language, which
supports the direct integration of linear temporal logic, propositional logic and contract design,
with Elixir programs. Specifications can be simulated and verified using Verlixir. This allows for
simple prototyping of complex, real-world distributed systems, in a controlled environment.

5

Chapter 2

Background

This chapter aims to provide all the required background knowledge to understand the concepts
discussed in the report. The contribution of the report involves extending a concurrent, message-
passing language to be verification-aware. We define a verification-aware language as a language
that strongly couples specifications and implementations. To understand how this can be done
with a message-passing language, we must first form strong fundamentals in concurrency and ex-
isting verification techniques.

We start by introducing core concurrency concepts in section 2.1. We will explore memory models,
safety, liveness and fairness. Section 2.2 will introduce model checking and compare some of the
existing state-of-the-art model checkers. Finally, we will discuss what a verification-aware language
is and why they are important to modern system design in 2.3

2.1 Concurrency

Concurrency introduces a notion for multiple components of a program to execute out-of-order.
We saw in the previous section how multiple processes can be composed and treated as a single
execution. For example, given two processes with disjoint alphabets, the parallel composition can
result in any interleaving. This section aims to explore further in-depth the principles of concur-
rency, moving away from a mathematical representation and looking at higher-level concepts such
as consistency models and temporal logic.

Concurrency is a core concept in classical distributed algorithms, such as the Paxos algorithm
[54], Raft [52] and Dining Philosophers [56]. The capability for concurrency has grown with bet-
ter hardware. Concurrency introduces the idea of consistency models [32] to help reason about
executions of multi-threaded systems. Lamport introduced sequential consistency [33] as a strong
safety property for concurrent systems. Sequential consistency can be informally reasoned about
by considering a single-core processor: if multiple threads are executed in parallel on a single-core
processor, only one instruction can be executed at a time. This means that the result of any exe-
cution forms a total order, consistent with the order of operations on each individual process. For
example, consider a new composition where a sequence of events has been executed by a teacher,
(teach→ teach→), and a student is scheduled to execute next. Under the sequential consistency
model, the student must observe the same order of events as the teacher.

Weaker memory models exist, which allow us to model systems that do not guarantee sequen-
tial consistency (for example, systems running on multi-core processors). Under these models,
the instructions of a thread may be reordered (i.e. execute out-of-order) which introduces weak
behaviours that we would not observe under sequential consistency. For example, total store or-
dering is a weaker memory model, that allows the reordering of write-read operations on different
memory locations within a single thread. For the examples discussed in this report, we will assume
a sequentially consistent model.

6

2.1.1 The Actor Model

The actor model [63] is a model of concurrent computation that treats actors as primitive compo-
nents of the system. A concurrently executed actor is defined in terms of three key behaviours.

• An actor can send a number of messages to other actors

• An actor can create a number of new actors

• An actor can act in response to a message it receives

Tony Hoare introduced Communicating Sequential Processes (CSP), a mathematical notation for
defining processes and interactive systems [27]. CSP provides a framework for reasoning about the
behaviour of concurrent systems which has influenced distributed algorithms [28], model checking
[29] and many other related research fields.

The CSP model uses channels to communicate between actors. A channel is a communication
medium that allows processes to send and receive messages. Under this model, an actor can
output a value v on a channel c, using the ! operator.

c!v

Similarly, an actor can input a value x on a channel c using the ? operator.

c?x

The concept of channels has been used in modern programming languages, such as Go [10], as well
as verification modelling languages like Promela [50]. Akin to channels, we introduce mailboxes.
Under a mailbox model, an actor has a designated mailbox, where messages are stored. An actor
can read messages from its mailbox and act upon them. For example, Elixir [11], handles all
communication through process-owned mailboxes. Channels and mailboxes give us an alternative
model to that of shared memory.

In a shared memory model, a shared memory region is established in which multiple processes
can read and write. Figure 2.1 shows a basic example of two processes that write to a shared
in-memory array. Due to how often we see shared memory used in large-scale distributed systems,
much work has been done in the verification of these systems using shared memory models. For
example, Jon Mediero Iturrioz used Dafny [18] to prove the correctness of concurrent programs
that implement shared memory [17].

Figure 2.1: An example of two processes writing to a shared in-memory array

By contrast, figure 2.2 shows an example of how actors behave using mailboxes. The mailbox
is not necessarily first in, first out (FIFO) but often implementations tend to be.

7

Figure 2.2: An example of actors sending and receiving messages under the actor model

2.1.2 Temporal Logic
First-order logic, or predicate logic uses quantifiers to reason about the truth of statements. For
example, the statement (∀x ∈ N . x > 0) is true for all natural numbers N, and uses the universal
quantifier ∀, to quantify over all x. We can also use the existential quantifier ∃, to reason about
the existence of an element in a set. First-order logic is a powerful tool for reasoning about the
truth of statements, but it cannot reason about time and change. We introduce modal logic for
this purpose.

⟨A⟩ |= p | ⊤ | ¬⟨A⟩ | ⟨A⟩ ∧ ⟨A⟩ | □⟨A⟩

Where A is a modal formula, p is an atomic proposition, ⊤ represents ‘truth’ and □A reads box
A. Using rules from first-order logic we can introduce disjunct, implication and if-and-only-if. We
can also introduce the second modal operator, ♢A which reads diamond A.

♢⟨A⟩ |= ¬□¬⟨A⟩

Depending on the circumstances that box and diamond are applied, they have different readings.
For example, in temporal logic, □A can read as ‘always A’ and ♢A can read as ‘sometimes A’,
informally, it can be useful to think of □ similarly to ∀ and ♢ to ∃.

Saul Kripke introduced Kripke semantics [34] for reasoning about temporal logic. For example,
consider modelling a system based on our student and teacher processes. We let M be the model
of the system and s represent a singular state the system can be in. Typically, s is the initial state
of the system. If we are given a temporal formula A, we can now define the syntax for the truth
of A in state s of the model M .

(M, s) |= A

To reason formally about what it means for A to hold in state s, Kripke provided formal definitions
for the base and inductive definitions of A.

We finally extend this understanding of temporal logic to linear temporal logic (LTL) sometimes
written as linear-time temporal logic. LTL allows us to reason about the time and change of a
model. Before we provide some examples, we introduce a final temporal operator, U , which reads
until. The formula ϕUψ defines the truth of ϕ until ψ holds. We call this ‘strong until’ as there
must exist a state where ψ becomes true. ‘Weak until’ W , can also be defined, which loosens the
restrictions such that ϕ could hold for the entire execution.

We can now explore a few basic examples of LTL formulas as well as provide some intuition
behind them. We define a set of atomic propositions, AP = {study, sleep, tired, exam}.

□ sleep
tiredU sleep
□(study⇒ tired)
□ study⇒ ♢ exam

Always sleeping
Tired until sleeping

Studying implies always tired
Always studying implies eventually an exam

8

Alongside LTL, other forms of temporal logic exist, such as Computation Tree Logic (CTL)
[35] and Alternating-time Temporal Logic (ATL) [38]. CTL introduces path quantifiers to reason
about specific traces through a model, and ATL introduces the idea of agents, where agents can
work in coalitions to achieve a goal in the system. Temporal logic is an important concept in the
model checking of systems [36], see chapter 2.2.

2.1.3 Safety and Liveness
Safety and liveness are properties that can be specified about systems. A safety property can be
intuitively thought of as a property such that nothing bad happens, and a liveness property is
where something good will happen. For example, something bad could be a deadlock in a system,
and something good could be that the system will eventually reach a consensus. We define safety
informally as, given a finite execution E and a state s such that s is the final state in the execution,
we can say that a safety property P holds if P is true in s and all previous states in E. If s violates
P , then E violates P . Unlike with safety, we cannot determine the truth of a liveness property
at s, we must instead inspect an infinite execution E′. We express these properties as temporal
formulas. For example, we can specify a simple liveness property to ensure our student will always
study again.

□♢study

To help understand why this is a liveness property, consider two states, s1 and s2. Take the assign-
ment of study to be {s1} i.e., study is true only in s1. Regardless of if we want to reason about the
truth of the formula at s1 or s2, we cannot, as the box operator requires the formula to hold in all
states. Hence, we would have to inspect the current state, as well as an infinite future execution
from the state, to determine the truth of the formula. Because no single state exists where we can
evaluate the truth of the formula, we can convince ourselves it is a liveness property.

We use the same assignment of study to reason about a new property.

□ study

We can understand intuitively why this property is a safety property by considering s2. As s2 is
not in the assignment of study (i.e. study is false in s2), any execution that passes through s2 will
violate the property. As we can determine the truth of the property with a finite execution, we
can deem the property a safety property.

By using both safety and liveness properties, we can define a ‘correct’ system, through the evalu-
ation of these temporal formulae.

2.1.4 Fairness
Fairness introduces more properties that can be defined using temporal formulae. Fairness prop-
erties do not target the specification of the system in the same way that other properties we have
looked at do. Instead, fairness properties are constraints on the scheduling of the system. They
aim to fairly select which process to execute next. Without fairness, a system could favour the
scheduling of process A while never progressing with process B. We will discuss two flavours of
fairness, weak fairness and strong fairness. Properties that hold under weak fairness also hold
under strong fairness, hence strong implies weak. To define the fairness properties, we must first
define what it means for an event to be enabled. An event (or action) A of a process algebra
is enabled if it can be executed in the current state. We will use the notation AE to denote an
enabled event, for example, studyE denotes the study event is executable in the current state. We
now define weak fairness (WF) and strong fairness (SF).

WF A ≡ ♢□AE ⇒ □♢A

SF A ≡ □♢AE ⇒ □♢A

We can informally define weak fairness as: if an event is continuously enabled, it is executed
infinitely often. Similarly, strong fairness reads: if an event is repeatedly enabled, it is executed
infinitely often.

9

2.2 Model Checking

Model checking is the process of determining if a finite-state machine (FSM) is correct under a
provided specification. It typically involves enumerating all possible states of an FSM and ensuring
the correctness of each state. For example, given a model M and a property φ, if no state of M
violates φ, then we can say M satisfies φ. In software development, model checkers are beneficial
in providing guarantees for safety-critical systems as well as concurrent systems. Concurrent
systems can often cause issues with uncommon instruction execution interleaving that are not
easily identifiable until long into a runtime. For example, deadlocks can occur when instructions
being run by two processes are dependent on one another making progress. A simple example of
a deadlock that can occur, is the following interleaving of instructions executed by two processes,
τ1 and τ2.

τ1 : acquire lock A
τ1 : acquire lock B
τ1 : release locks

τ2 : acquire lock B
τ2 : acquire lock A
τ2 : release locks

An interleaving such as (τ1, τ2, τ1, τ2, . . .) results in τ1 blocking until it can acquire lock
B, and τ2 blocking until it can acquire lock A, hence the program is in a deadlock. Due to the
nature of concurrent systems, we could run our program and never experience this interleaving
of instructions from occurring, hence we could deem our program deadlock-free. Instead, by ab-
stracting our program as a model, and verifying the correctness using a model checker, we could
exhaustively check all possible states (interleaving of concurrent processes) and catch this deadlock.

Alongside determining progress can be made within a system, model checkers are also used to
guarantee the correctness of a specification. To demonstrate, we model a very simple 24-hour
clock, where at each time step, we progress time by an hour.

τ1 : time← time + 1

Unlike the previous example, this process can always make progress so will not result in a deadlock,
however, it is not a correct implementation of a 24-hour clock. We would like our 24-hour clock to
only represent times in the range 1 to 24. By introducing a specification alongside our model, we
can use a model checker to determine if all the states of our program adhere to the specification.
In this instance, we would need to specify a bound over our time variable.

{time | time ∈ N, 1 ≤ time ≤ 24}

This is a simple example of a specification, that we can write in a specification language and use
in tandem with our model to check the correctness of using a model checker. For a given model
M and a property ϕ, we formally define model checking as the process of computing if M |= ϕ
(satisfiability).

2.2.1 A Comparison Of Model Checkers

Many model checkers have been invented for this reason, each with different focuses and specifi-
cation languages. This section will comment on some of the more common model checkers and
discuss their functionalities. We first provide an overview of the capabilities and limitations of
many model checkers, before providing a more in-depth look into model checkers best aligned with
the goals of this report. Table 2.1 provides a comparison of some available model checkers.

The table compares support for Linear Temporal Logic (LTL) and Computation Tree Logic (CTL).
It also shows which model checkers support probabilistic systems. For example, some systems ex-
hibit random behaviour, such as wireless sensor networks, which rely on random wait times [67].
Finally, it shows which systems support modelling concurrent behaviour.

10

Model Checker LTL
Support

CTL
Support

Probabilistic Concurrency
Support

PAT Yes No Yes Yes
BLAST No No No Limited
SPIN Yes No No Yes
TLC Yes No No Yes
PRISM Yes Yes Yes Yes
NuSMV Yes Yes No Yes
UPPAAL No No Yes Yes

Table 2.1: Comparison of Model Checkers

PAT

Process Analysis Toolkit (PAT) is a self-contained framework to support composing, simulating
and reasoning of concurrent, real-time systems [2]. PAT is based on Tony Hoare’s CSP and ex-
tends the language using its library called CSP#. CSP# is a superset language of the original CSP,
hence all classical CSP models can be verified with PAT. PAT has shown to be capable of verifying
classical concurrent algorithms such as the dining philosophers problem. Alongside its verification
capabilities, the PAT toolkit can be used to simulate real-world scenarios over specifications.

PAT’s ability to determine the correctness of classical process algebra means it is a strong, widely
applicable model checker.

BLAST

BLAST is an automatic verification tool for checking the temporal safety properties of C programs.
Given a C program and a temporal safety property, BLAST either statically proves the program
satisfies the property or provides an execution path that exhibits a violation of the property [3].

Where BLAST differs from PAT, is that it no longer relies on process algebra. The model checker is
capable of running directly on a subset of C programs where no intermediate modelling is required.
As an end-user tool, this is more generally applicable than PAT; there is no burden on developers
to think about how to model their systems with process algebra and instead can directly get safety
guarantees from their programs. BLAST handles the translation of C programs to an abstract
reachability tree (ART), a labelled tree that represents a portion of the reachable state space of
the program. Using a context-free reachability algorithm on this representation of a C program
means temporal properties can be checked, without the end programmer being required to think
about what the control-flow automata for the program will look like.

BLAST falls short when model-checking large C programs. More importantly, it is unable to
provide any guarantees on concurrent programs. We are primarily concerned with concurrent
systems in this report, as Elixir is a language that is designed for building concurrent systems.

PRISM

PRISM is a probabilistic model checker, a tool for formal modelling and analysis of systems that
exhibit random behaviour or probabilistic behaviour [4]. It has been used to analyse systems im-
plementing randomised distributed algorithms. PRISM relies on Markov decision processes and
probabilistic automata to model systems which are both probabilistic and concurrent.

PRISM also supports specifications with temporal logic. This means that PRISM can be used
to specify liveness properties under probabilities. For example, we could specify a property, that
the probability of a crash is at most 0.01, using the formula: P≤0.01[F "crash"].

PRISM has support for many features that are ideal for verifying systems. The main limita-
tion of PRISM is that the modelling language is not true to modern programming languages. It
models a high-level system design, and would not support some of the intricacies of a modern
language such as Elixir, naturally.

11

TLC

In 1980, Leslie Lamport formulated the Temporal Logic of Action (TLA) [5]. TLA is a logic system
for specifying and reasoning about concurrent systems. Both the systems and their properties are
represented in the same logic, so that the assertion that a system meets its specification, can be
expressed by a logical implication.

TLA is capable of specifying complex systems but in a typically verbose manner. Leslie Lamport
introduced TLA+ [6], combining mathematical ideas with concepts from programming languages
to create a specification language that would allow mathematicians to write specifications in 20
lines as opposed to 20 pages.

Furthering on from Leslie Lamport’s discovery of these specification languages, Lamport created
TLC [7], a model checker for the verification of TLA+ specifications. Similarly to BLAST, TLC
builds a finite-state machine from the specification so the model checker can verify and debug
invariance properties over it. TLC has been used to verify many large-scale, real-world systems
specified in TLA+. Not only does it verify temporal properties of TLA+ specifications, but it can
also model check PlusCal [8] algorithms. PlusCal is an algorithm language aimed to resemble that
of pseudocode, but PlusCal algorithms can be automatically translated to TLA+ specifications
to be reasoned about formally with TLC. We have already come across the concept of model-
checking algorithms as opposed to specifications with BLAST, but instead of being strictly bound
to the C programming language, PlusCal provides a more general framework agnostic of a choice
of programming language allowing developers to separate reasoning about algorithms from their
respective programs.

SPIN

Spin is an efficient verification system for models of distributed software systems. It has been used
to detect design errors in applications ranging from high-level descriptions of distributed algo-
rithms to detailed code [9]. Spin has a specification language, Process Meta Language (Promela),
which the model checker uses to prove the correctness of asynchronous process interactions. Spin
supports asynchronous process communication through channels, where processes can send and re-
ceive messages. Spin constructs labelled transition systems for respective processes from Promela
specifications, which it goes on to use for scheduling and to reason about properties of the model.
Because many programming languages, such as Go [10] rely on the creation of channels for asyn-
chronous communication between processes, Promela becomes a natural solution to modelling these
systems.

Summary

We have discussed a selection of model-checkers and what their primary focus is. Many existing
model-checkers have been originally designed to prove specifications over sequential models. Some
have taken this further and applied model checking directly over programming languages, such as
BLAST. Other model-checkers have introduced some primitives for reasoning about concurrency.
TLC allows for the specification of processes and using structures can begin to specify shared
memory. Similarly, Spin allows processes to be specified and supports the creation of channels for
communication. Despite this, none of the model checkers discussed, include message-passing as a
first-class construct. To reason about message-passing models, such as the actor model, work has
to be done to formalise actor-based constructs. This makes specifying actor-based systems, such
as systems written in Elixir, a non-trivial task.

2.3 Related Work
Much work has gone into model checking, theorem-proving and verifying the implementations of
systems. For Elixir, there are tools such as dialyzer [23], which statically analyse Elixir programs
for type errors or dead code. Whilst these tools provide Elixir developers better guarantees, it does
not verify the correctness of a system as a whole. Elixir also has libraries for property-based testing,
such as PropEr [46], which can be used to generate random test cases for a system. Property-based
testing randomly generates inputs to test a system, which can be useful for finding edge cases that

12

unit tests may not cover. However, property-based testing does not provide guarantees about the
correctness of a system, instead, it is used to find bugs in code. Work has also gone into verifying
message-passing in Elixir, using binary session types [45]. This approach ensures two processes,
communicating over compatible protocols, avoid certain communication errors (i.e. hanging mes-
sages), but has not been extended to multiparty session types, so is not appropriate for verifying
all actor-based systems.

There is also existing work in the greater verification of real-world software. Much of this is done
on sequentially executed programs as concurrency introduces a new level of complexity. For exam-
ple, both C programs and Go programs have previously been targetted as good options for model
checking [44, 43]. While these tools provide system guarantees, they primarily focus on detecting
deadlocks or dataraces within a system and do not support other safety or liveness properties.

2.3.1 Theorem Proving
This report discusses model checking as a solution to software verification. An important alterna-
tive to model checking is theorem proving, in particular with proof assistants.

Theorem proving takes a formal approach to program verification. In theorem proving, axioms are
applied to a set of statements to determine if a particular statement holds. For example, Z3 [20] is
a satisfiability modulo theories (SMT) solver developed by Microsoft that can verify propositional
logic assertions.

In both model-based and proof-based verification approaches, we begin with a formula ϕ. For
a set of formulas Γ, a proof-based approach consists of finding a proof that Γ ⊢ ϕ. Provability
holds if and only if semantic entailment (Γ |= ϕ) holds. That means, to show provability, we must
show that ϕ holds for all models. In a model-based approach, we instead want to show that ϕ holds
for a single model. Hence, model-based approaches can be simpler than proof-based approaches
[66].

That being said, some existing verification-aware languages take proof-based approaches, for ex-
ample, Dafny, which will be discussed later in the chapter.

2.3.2 Design by Contract
Design by Contract (DbC) is an approach to software design, where software components are
defined using formal specifications [64]. A contract is composed of three elements.

• Pre-condition: A condition that must be true before a function is executed.

• Post-condition: A condition that must be true after a function is executed.

• Invariant: A condition that must be true before and after a function is executed.

These properties are known as assertions. Some programming languages directly support asser-
tions, such as Eiffel [65]. When formalising a contract, an agreement is established between two
parties, the client and the contractor. The client is entitled to receive a result that satisfies the
post-condition. Similarly, the contractor is protected by the pre-condition, such that, no unin-
tended behaviour occurs.

Design by contract is a contribution to software reliability. In modern languages, the client and
contractor are often functions or methods, which call one another. Verification-aware languages
such as Dafny [24] support the specification of contracts, on methods, which can be verified.

2.3.3 Verification-aware Languages
Verification-aware languages are a new trend in programming languages, where the language is
designed to support proving the correctness of a program. Examples of these include Lean, Dafny
and Boogie. We will explore some of these languages in detail to understand how verification-aware
languages can be a powerful tool to reason about the correctness of a system. The conventional

13

alternatives involve either disregarding formal methods entirely or hand translating a program
into a specification language, such as TLA+. A good verification-aware language should naturally
integrate the system specification with the implementation. The aim is to reduce the burden on
programmers to maintain separate specifications alongside evolving codebases.

Lean

The Lean theorem prover is a proof assistant developed by Leonardo de Moura [22]. Lean is first
and foremost, a functional programming language, designed to write correct and maintainable code.
Lean can be used as an interactive theorem prover, where developers can write proofs alongside
code. It supports many features of modern-day functional languages, such as first-class functions,
pattern matching and even multithreading. A proof assistant is a language that allows develop-
ers to define objects and specifications over them. They can be used to verify the correctness of
programs (similar to a model checker) as they check proofs are correct using logical foundations.
The theorem proofs typically involve solving constraint problems, by determining if a first-order
formula can be satisfied concerning constraints generated during analysis of functions.

While Lean is itself both a functional programming language and theorem prover, this approach
differs in implementation from other theorem provers, such as Dafny, which instead prove theorems
using existing backend theorem provers.

Dafny

Dafny is a verification-aware programming language that has native support for inlining speci-
fications that can be verified by a theorem prover [24]. Dafny aims to modernise the approach
developers take to designing systems, by encouraging developers to write correct specifications.
With the rise of modern theorem provers, this untraditional approach is now realistic. Dafny is an
imperative language with methods, variables, loops and many other features of typical imperative
programming languages. Dafny programs are equipped with supporting tools to translate to other
imperative languages, such as Java and Python.

Dafny verifies the correctness of programs using the theorem prover, Z3 [20]. Developers can
write specifications alongside code, such as methods, which can then be directly verified. The
format of specifications typically follows those of a Hoare Triple, {P}C{Q}, such that given a
precondition, {P} holds, if C terminates, a post-condition, {Q}, will hold. In Dafny, the language
reserves the keywords requires and ensures for pre and post-conditions. Listing 2.1 shows a basic
example of a Dafny method, which introduces an Add method. The implementation unintentionally
introduces a bug such that, any execution paths with an input {a ∈ Z | a < 0} do not necessarily
return the sum of the two inputs. Because Dafny places the burden on writing good specifications
as opposed to correct code, the underlying theorem prover can use our post-condition to flag that
this program is not correct for all execution paths.

1 method Add(a: int, b: int) returns (c: int)
2 ensures c == a + b;
3 {
4 if a < 0 {
5 c := -1;
6 } else {
7 c := a + b;
8 }
9 }

Listing 2.1: Example of a method in Dafny.

Listing 2.1 only gives a small insight into the power the Dafny specification language defines.
Alongside the evaluation of basic expressions, Dafny allows the use of quantifiers such as the
universal quantifier. The introduction of quantifiers, allows us to write pre- and post-conditions
over collections of objects, such as sets and arrays. Listing 2.2 shows a basic example of how the

14

universal quantifier can be used with the underlying theorem prover, to assert all the elements of
an array, a[], are strictly positive.

forall k: int :: 0 <= k < a.Length ==> 0 < a[k]

Listing 2.2: forall quantifier in Dafny [25].

Dafny also uses other concepts that support the verification of programs. Assertions can be used to
provide guarantees in the middle of a method. Loop invariants can annotate while loops to check
a condition holds, upon entering a loop and after every execution of the loop body. Similarly, loop
variants can be used to determine termination of while loops, by checking that every execution of
a loop body makes progress towards the bound of the loop.

Boogie

Boogie is a modelling language intended as an intermediate verification language (IVL), developed
at Microsoft [26]. The language is described as an intermediate language because it is designed
to bridge the gap between a program and a program verifier. Many tools that rely on Boogie’s
intermediate representation, are doing so to translate source code in a native language into a format
that can be proved. Dafny is a prime example of a programming language which does so. The
Dafny compiler generates Boogie programs that can then be verified by Z3. This provides multiple
benefits for Dafny. Firstly, Dafny does not have to concern itself with being dependent on a specific
SMT solver, such as Z3. Instead, it can be designed agnostic to the choice of theorem prover, as
Boogie will take responsibility for handling interaction with theorem provers. Boogie also bears a
closer resemblance to an imperative programming language (like Dafny), so translation between the
two is easier than translating to Z3. Listing 2.3 shows an example Boogie program, defining a single
procedure, add, that represents the translated code from the Dafny example in listing 2.1. Note
the similarities between both programming languages, both use ensures to capture preconditions
and have very similar syntax and control flow. However, now that our program is written in the
Boogie IVL, we can directly determine an execution path that violates the precondition using a
theorem prover such as Z3.

1 procedure add(a: int, b: int) returns (c: int)
2 ensures c == a + b;
3 {
4 if (a < 0)
5 {
6 c := -1;
7 } else {
8 c := a + b;
9 }

10 }

Listing 2.3: An example Boogie IVL program.

2.3.4 Gomela
Alongside research into verification-aware languages, there has been work on detecting deadlocks
in concurrent systems. These approaches typically involve the use of model checkers to determine
if a system can reach a deadlock state. For example, Java Pathfinder [53] is a model checker for
Java programs. It can be used to detect deadlocks and data races. The initial version of Java
Pathfinder was a translator from Java to Promela. At present, Java Pathfinder now uses a Java
Virtual Machine (JVM) implementation directly to model check Java programs.

There has also been work on detecting deadlocks in Go programs. Gomela [44] was proven to
catch more deadlocks than GCatch [61] and Godel2 [62]. Gomela focuses on channelled commu-
nication between goroutines. Similarly, deadlock detection has been researched for C programs [43].

15

We have identified Gomela as the most closely related work to that of our objectives. Gomela
is not truly verification-aware, as it does not support the inlining of specifications, in the manner
that Dafny or Boogie do. However, Gomela translates programs to Promela models, which can be
verified by Spin. This report takes a similar approach, but instead targets Elixir programs, and
also extends Elixir to be truly verification-aware.

To understand some of the challenges of modelling Elixir programs, which Gomela avoided, we
can draw a few comparisons between the two:

• Go communication channels can be bounded, whereas Elixir mailboxes are unbounded. Nat-
urally, unbounded queues can lead to more complex verification problems (state-space explo-
sion).

• Go is statically typed, whereas Elixir is dynamically typed.

• Go has support for shared memory, Elixir’s actor model strictly enforces all information
sharing to be handled by message-passing.

• Elixir process state is immutable, whereas Go has mutable state.

These comparisons lead to challenges that need to be addressed in this report. However, the above
points are also reasons why Elixir is an interesting target language, both for designing real-world
systems and for verifying.

None of the existing approaches capture the semantics involved in a pure message-based, actor
model. They also do not provide guarantees about the liveness properties of a system. This is a
limitation in existing research of verification tools concerning modern programming languages.

2.4 Summary
This chapter has provided an overview of core concepts related to concurrent programs and veri-
fication of them. We looked at tools such as model checkers and verification-aware programming
languages. In particular, we saw the model checker Spin. This chapter also discussed some of the
limitations in existing research, such as a need for new techniques to verify the liveness properties
of real-world systems. The next chapter will introduce the Elixir programming language and the
Promela modelling language.

16

Chapter 3

Promela and Elixir

In chapter 4, we will introduce the Verlixir tool. Verlixir involves the parsing of Elixir programs,
which are translated into a formal model. This model is written in Process Meta Language
(Promela). This chapter will introduce both Promela and Elixir. We will go through the core
concepts and syntactic elements that Verlixir relies upon to provide a verification-aware Elixir.

3.1 Promela
Promela is the verification modelling language used by the Spin model checker, to specify concurrent
processes modelling distributed systems [9]. This section will discuss some of the core features that
allow systems to be modelled and verified with Spin. This section aims to give an overview of the
syntax and control of Promela, so any specifications in later sections or the code artifact can be
read.

3.1.1 Types and Variables
Promela is statically typed. Variables can be declared once within the current scope and then
re-assigned throughout. Variables can be declared locally within the context of a process, or in
the global scope, where memory is shared. The types available in Promela, and assignment to
variables of these types are similar to many imperative programming languages. Promela supports
the types bit, bool, byte, pid, short, int and unsigned. Variable declaration and assignment then
naturally follows.

int a = 2;

Promela supports arrays. Arrays are typed and declared with a fixed size. Array bounds are
constant, so the size cannot change. Only single-dimensional arrays are supported. The syntax for
declaring an array is as follows.

int array[10];

We can also extend the basic types using typedef. This allows us to define records of multiple
nested types. We use these records to build a Promela library, to support model checking Elixir
programs, using embedded C code and Promela inlines. Embedded C code cannot be model
checked, but Promela inlines can be. These features allow us to extend Promela, and avoid some
of the limitations discussed in section 3.1.6

3.1.2 Control Flow
Promela supports some basic control flow concepts. Firstly, the skip expression can be used with
no effect when executed, other than possibly changing the control of an executing process. The
selection construct if can be used to evaluate expressions and execute sequences based on the
evaluation of these expressions. The syntax of an if statement is unique in comparison to a typical
programming language.

1 if
2 :: 1 + 1 < 3 ->

17

3 printf("Condition 1...");
4 :: else ->
5 printf("No conditions matched");
6 fi

In Promela, else is a reserved keyword that can be used in any condition. An else condition will
negate all the previous conditions. Repetition can be achieved either through the do construct,
through the use of labels or with for loops. We will primarily focus on do, as it is the most suitable
for our modelling needs.

1 do
2 :: a < 10 ->
3 a = a + 1;
4 :: a < 10 ->
5 a = a + 2;
6 :: else ->
7 break;
8 od

Unlike if, which selects sequentially, do will non-deterministically select a true branch to execute.
This means for the above example, for a given execution, we cannot say how many iterations are
performed. The break keyword is reserved for explicitly breaking out of the loop.

An important concept in contract specification is the assert keyword. An assertion is a logi-
cal statement that is expected to be true at a given point in the program. If an assertion is false,
a violation is reported.

3.1.3 Processes
An imperative component of understanding the power of the Spin model checker is understanding
how processes can run concurrently. Every Promela model requires an initial process that is
spawned in the initial system state and determines the control of the program from the initial
state. The init keyword is reserved for this purpose. Other processes can be defined using the
proctype keyword and then spawned with run. Each process is assigned a process id (pid) which
can be accessed within the context of a process using globally defined read-only variable _pid.
We can now define two processes, a process active in the initial state and a second process that is
spawned.

1 proctype SomeProcess(int a) {
2 printf("Do something with %d\n", a);
3 }
4

5 init {
6 int p1;
7 p1 = run SomeProcess(10);
8

9 printf("Init process spawned at %d\n", _pid);
10 printf("Process 1 spawned at %d\n", p1);
11 }

Listing 3.1: Defining and spawning processes in Promela.

Processes run independently of one another, so a parent process terminating will not necessarily
result in the termination of a child. Spin sets a limit of 255 concurrently executing processes.
Multiple processes can be spawned in a single transition by using the atomic construct, which
will ensure that no spawning process is scheduled, until all atomic processes have been scheduled.
Similarly to atomicity, d_step can be used to enforce multiple statements are treated as a single
indivisible step. Unlike atomic, d_step cannot block or jump.

Instead of init, we could have used an active proctype. Every active proctype is spawned in

18

the initial state, allowing for more than one process to initially run.

3.1.4 Channels
The final concept to briefly discuss, is the asynchronous communication primitive, channels.
Promela allows channels to be specified using the predefined data type chan. To correctly spec-
ify communication, we often need to allow messages of multiple types to be written to channels.
For this reason, Promela introduces mtype that allows for the introduction of symbolic names for
constant values.

mtype = { BROADCAST };

Now, we can define a channel that expects a message to contain multiple fields and is bound to
contain a maximum of 10 messages at any time.

chan global_broadcast = [10] of { mtype, int };

We now input messages to the channel using the (!) operator.

global_broadcast ! BROADCAST, 1;

Similarly, we read messages from the channel in a first-in, first-out (FIFO) order.

int x;
global_broadcast ? BROADCAST, x;

Where the variable x stores the resulting int, assuming the first message in the channel is of type
BROADCAST. Sending and receiving from channels also supports an alternative flavour. The (!!)
and (??) operators are used for sorted insertion and random selection. Sorted insertion (!!),
will insert a message into the channel in a sorted order, based on the first field of the message.
Random receive (??), is not random. As opposed to FIFO, it will select the first message in the
channel that matches a given pattern. We call this first-in, first-fireable-out (FIFFO).

3.1.5 Promela Example
We will now provide a simple example of a Promela specification. The specification models Di-
jkstra’s Semaphore. It consists of two labelled processes, and an initial process to coordinate the
system. A shared channel is used, with a buffer size of 0, which means the channel is blocking
(rendezvous). Listing 3.2 shows the Promela specification.

1 #define p 0
2 #define v 1
3

4 chan sema = [0] of { bit };
5

6 proctype dijkstra() {
7 byte count = 1;
8

9 do
10 :: (count == 1) ->
11 sema!p; count = 0
12 :: (count == 0) ->
13 sema?v; count = 1
14 od
15 }
16

17 proctype user() {
18 do
19 :: sema?p;
20 /* critical section */
21 sema!v;
22 /* non-critical section */
23 od

19

24 }
25

26 init {
27 run dijkstra();
28 run user();
29 run user();
30 run user()
31 }

Listing 3.2: Dijkstra’s Semaphore in Promela

The semaphore guarantees that only one of the user processes can enter its critical section at a
time.

3.1.6 Limitations
Promela is a powerful language for modelling concurrent systems, but it has limitations for cap-
turing the full complexity of a real-world system. In general, hand-translations of a system into
Promela can avoid some of these limitations with careful design. However, we are approaching
these limits from an Elixir perspective, where features of Elixir may not be easily translated into
Promela.

• Compute: Promela is not designed to model complex computations. It does not support
floating-point arithmetic, so we are limited to working with integers.

• Memory: Promela does not support dynamic memory allocation. This means we cannot
model systems that require dynamic memory allocation, for example, linked lists.

• Functions: Promela does not support functions. It has no notion of a function call or return.
By extension, Promela does not support recursion.

• Randomness: a Spin execution may not be deterministic, but it cannot model true ran-
domness.

• Probability: there is no mechanism for modelling probabilistic behaviour, all correctness
claims are checked unconditionally.

• Time: there is no notion of a system block, or related time properties in Promela. This
means we cannot model sleeping threads.

In chapter 5, we will discuss how we can overcome some of these limitations. In particular, how
we overcome the lack of functions and dynamic memory, by introducing a Promela library, which
handles these features.

3.1.7 Summary
This basic introduction to the syntax of the Promela modelling language, aims to make the reader
familiar with the syntax involved in writing Promela specifications. It is not an exhaustive guide
but should form a basis for understanding specifications present in a later section or the code
artifact.

3.2 Elixir
Elixir [11] is a functional programming language built on top of Erlang [13] that runs on the
BEAM virtual machine [12]. It is commonly used for building distributed, fault-tolerant applica-
tions because it supports concurrency, communication and distribution. Elixir actors are uniquely
identified with a process identifier (pid) and associated with an unbounded mailbox. Each mailbox
supports communication between actors; one actor can send a message to another actor’s mailbox,
which is then enqueued and can be received in a First-In-First-Firable-Out (FIFFO) ordering.
FIFFO is similar to First-In-First-Out (FIFO) where elements are dequeued in the order they are
enqueued. However, Elixir supports receiving messages with pattern-matching such that messages

20

are received in a FIFO order concerning a certain pattern.

BEAM is a virtual machine that executes user programs in the Erlang Runtime System (ERTS).
BEAM is a register machine where all instructions operate on named registers containing Erlang
terms such as integers or tuples.

We have recently seen companies adopting Elixir in industry, in particular in domains such as
telecoms and instant messaging. The Phoenix Framework [14] is a framework for building inter-
active web applications natively in Elixir, that can take advantage of Elixir’s multi-processing and
fault tolerance to build scalable web applications. The audio and video communication application
Discord [15] uses Elixir to manage its 11 million concurrent users and the Financial Times [16]
have begun migrating from Java to Elixir to enjoy the much smaller memory usage by comparison.

Elixir supports multi-processing in two key ways: nodes and processes. Each Elixir node is
an instance of BEAM (a single operating system process). When an Elixir program is executed,
a new instance of BEAM is instantiated for it to run on. In contrast, an Elixir process is
lightweight in terms of memory and CPU usage (even in comparison to threads that many other
programming languages favour). Elixir processes can run concurrently with one another and are
completely isolated from one another. Elixir processes communicate via message passing.

1 # Spawn a new process
2 spawn(fn -> 1 + 2 end)
3

4 # Create a new BEAM instance
5 Node.spawn(:"node1@localhost", MyModule, :start, [])

Listing 3.3: An example of spawn/1 and spawn/4 in Elixir, for spawning a new lightweight process
and a new Elixir node

In Elixir, a receive statement is used to read messages in the mailbox. The receive block looks
through the mailbox for a message that matches a given pattern. If no messages match the pattern,
the process will block until one does.

1 # Example send in Elixir
2 send self(), {:hello, "world"}
3

4 # Example receive block in Elixir
5 receive do
6 {:hello, msg} -> IO.puts msg
7 end

Listing 3.4: Example of sending and receiving an Elixir message

3.2.1 Verifiable Feature Set
In chapter 4, we will introduce Verlixir. Verlixir is designed to support a reduced set of core Elixir
constructs. We will introduce these constructs here to give an overview of what the tool is capable
of supporting.

Everything in Elixir is an expression. This means that every piece of code returns a value. For
example, an if statement will return a value dependent on the branch taken. This means that any
expression can be matched on, using Elixir’s match (=) operator. We can use pattern matching to
match the shape of an expression’s evaluation. The set of expressions supported by Verlixir are:

• Values: any value of a basic, primitive type such as integers and booleans. Elixir also has a
concept of atoms. An atom is identified by a preceding colon (:), and is followed by letters,
digits, ‘_’, ‘@’ or a string.

21

• Variables: Elixir is dynamically, strongly typed. Variables are bound to using the match
operator. Variable names start with lowercase letters. The ‘_’ character can be used to
match an expression of any shape.

• Data structures: structures such as lists and tuples are treated as values. Lists are dynamic,
whereas tuples are fixed in size. Lists are written as [1, 2, 3] and tuples are written as {1, 2,
3}. We can match the shape of these data structures using pattern matching.

• Pattern matching: pattern matching can be used to match the shape of an expression. In
the context of a conditional guard, values can be used to evaluate the shape of an expression,
whereas variables can be used to bind to the value of an expression. For example, the pattern
{: ok, value}, can be used to assign to the variable value if the expression is a tuple shape,
with an atom ok as the first element.

• Functions: functions are defined using the def keyword. Functions can group multiple
sequentially executable expressions. Any function can be called or spawned as a new process
or node.

• Modules: functions are grouped into modules.

• Message passing: Elixir’s actor model supports message passing. Messages are sent and
received between actors and their mailboxes.

• Control flow structures: Elixir supports many control flow expressions. For example, if ,
case, unless and for. All of these introduce a new scope. They are expressions and can be
matched.

The feature set supported has been shown expressive enough to support real-world systems in
chapter 6. We omit some features of Elixir. For example, data structures like sets and maps are
not supported. We determined lists sufficient for our purposes. The supported feature set can be
easily extended to support other data structures.

3.2.2 Matching
Elixir is dynamically typed. This means that the type of a variable is determined at runtime.
Elixir relies on patterns to assign identifiers to values. In Elixir, everything is an expression. By
extension, everything can be matched, with the match operator (=).

Combining patterns with the match operator, allows different data structures to be packed and
unpacked in expressive ways. For example, we can match the shape of a list, to extract the first
element and the rest of the list.

1 [head | tail] = [1, 2, 3]
2 IO.puts head # 1
3 IO.puts tail # [2, 3]

This notion extends to branching constructs, such as if and receive statements. Consider the
following example.

1 x = receive do
2 {:ok, value} ->
3 if value > 10 do
4 value
5 else
6 {:bad_value, value}
7 end
8 {:error} ->
9 [1,2,3]

10 end

22

Notice firstly, that the entire receive expression is assigned to x. Also notice, that each branch
yields differently typed expressions. The expressiveness of Elixir’s matching makes Elixir a power-
ful language for manipulating data flow. However, it presents challenges for modelling.

We cannot determine the type of an expression at compile time. We also have to consider how the
value of x depends on the executed branch.

3.2.3 Type Specifications
Type specifications are imperative for the correctness of Verlixir specifications. Verlixir supports
some basic types such as integer(), boolean(), atom() and pid(). Type specifications are not
enforced by the Elixir compiler, but tools such as Dialyzer and Verlixir rely on them.

In type specifications, message types are typed as atom(). The atom :ok is reserved to iden-
tify a non-returning function. In Elixir, all functions return a value, so in this context, a
‘non-returning function’, is a function that’s value is never matched. We briefly demonstrate the
type specifications for two functions, the first, is a non-returning function with no arguments and
the second function, takes two arguments and returns an integer.

1 @spec bind_server() :: :ok

2 def bind_server do
3 ...
4 end
5

6 @spec add(integer(), integer()) :: integer()

7 def add a, b do
8 ...
9 end

Listing 3.5: Valid type specification examples.

Notice (::) marks the return type of the function. If these values are matched in the function body,
they should not be matched to a different type.

Within a correct Verlixir specification, any message should also be typed. To ensure this, any
instance of a message should begin with an atom which we will refer to as the message type.
For example, {:bind} and {:calculate, 10, 20} are valid specification messages. The message,
{false, 15}, would be ignored by Verlixir, as it does not begin with an atom.

3.2.4 Summary
In this chapter, we learned about Elixir, the programming language built on top of Erlang and
we explored some basic approaches to designing concurrent systems with it. We also saw Promela
and how concurrently executing processes can be modelled in it. The next section will explore
how these core tools can be used in tandem, to provide developers guarantees over large-scale,
distributed Elixir-based systems.

23

Chapter 4

Verlixir

Verlixir is the main project contribution. Verlixir is designed such that, Elixir programmers get
deadlock safety guarantees for free. To strengthen the system guarantees, programmers can write
inline specifications and function contracts.

Verlixir supports three modes of operation: simulation, verification and parameterized verifica-
tion. Simulation mode is used to run a single execution of the system. Verification mode is used
to verify the system adheres to the provided specification. Parameterized verification is used to
verify the system over multiple configurations.

This chapter aims to inform the reader of the constructs defined in Verlixir. Section 4.1 intro-
duces the Verlixir language. Section 4.2 provides an example of specifying a verifiable system and
how Verlixir can be used to detect violations of a specification. The subsequent subsections provide
further details of more features of Verlixir, such as specifying temporal properties.

4.1 LTLixir
LTLixir is the multi-purpose specification language that compiles to BEAM byte-code and is sup-
ported for verification by Verlixir. Primarily, LTLixir is a subset of Elixir, supporting both se-
quential and concurrent execution. This subset is expressive enough to implement well-known
distributed algorithms such as basic Paxos [54] and the alternating-bit protocol [55]. LTLixir ex-
tends Elixir with constructs for specifying temporal properties, specifically LTL properties (where
LTLixir derives its name) as well as function contracts for specifying pre- and post-conditions.
Specifications can be parameterized to identify violations of properties on specific configurations.

4.2 Constructing a Verifiable Elixir Program
This section will walk through the basic construction of a Verlixir program, and show how we can
verify the properties of the program using Verlixir. To begin, we define a server and client process.
The server is responsible for creating clients and communicating with them.

1 defmodule Server do
2 def start_server do
3 client = spawn(Client, :start_client, [])
4 end
5 end
6

7 defmodule Client do
8 def start_client do

24

9 IO.puts "Client booted"
10 end
11 end

Listing 4.1: Elixir definition for a server and client module.

Given the implementation, we must now declare an entry point to the system, that Verlixir will
use to begin verification. For this example, we can define Server.server_start as the entry point
using init.

1 @init
2 def start_server do
3 client = spawn(Client, :start_client, [])
4 end

Listing 4.2: Declaring an entry point to the system.

With an entry point specified, we can begin using the available tools. By default, Verlixir reports
the presence of deadlocks and livelocks in the system. When specifying systems in Verlixir, we do
not lose the capability to compile our program to BEAM byte-code, hence the system can still run
as a regular Elixir program.

More interestingly, we can now use Verlixir before the Erlang Run-Time System (ERTS) to verify
the system adheres to our specification. With no additional properties defined, by running Verlixir,
we are ensuring that every possible execution results in a program termination. The presence of a
deadlock or livelock will be reported. We first run a simulation of the system.

1 $./verlixir -s basic_example.ex
2 Client booted

Alternatively, we can run the verifier on the specification.

1 $./verlixir -v basic_example.ex
2 Model checking ran successfully. 0 error(s) found.
3 The verifier terminated with no errors.

4.2.1 Detecting a Deadlock
Now we have a basic understanding of what is required to write a specification, we will use Verlixir
to detect a deadlock in the system. Deadlocks in Elixir programs can be introduced by circular
waits, where two simultaneously executing processes, are both waiting for a message from the
other.

1 defmodule Server do
2 @init
3 def start_server do
4 client = spawn(Client, :start_client, [])
5 receive do
6 {:im_alive} -> IO.puts "Client is alive"
7 end
8 end
9 end

10

11 defmodule Client do
12 def start_client do
13 receive do
14 {:binding} -> IO.puts "Client bound"

25

15 end
16 end
17 end

Listing 4.3: A simple Elixir system with a deadlock.

In this example, any execution of the system will result in a deadlock; the system can be considered
deterministic in this regard. In many real-world systems with multiple processes, the presence of
a deadlock can be difficult to detect due to multiple interleavings.

A simulation of the system using Verlixir will report a timeout (something which the ERTS would
not report). Already, running our specification using Verlixir, provides more information than
running the Elixir program. Let’s now run the verifier.

1 $./verlixir -v basic_example.ex
2 Model checking ran successfully. 1 error(s) found.
3 The program likely reached a deadlock. Generating trace.
4 [8] (proc_0) start_server:4 [receive do]
5 [9] (proc_0) start_server:4 [receive do]
6 [10] (proc_0) start_server:5 [{:im_alive} -> IO.puts "Client is alive"]
7 [13] (proc_1) start_client:13 [{:binding} -> IO.puts "Client bound"]
8 <<< END OF TRAIL, FINAL STATES: >>>
9 [14] (proc_1) start_client:13 [{:binding} -> IO.puts "Client bound"]

10 [15] (proc_0) start_server:5 [{:im_alive} -> IO.puts "Client is alive"]

If an error is found, Verlixir will profile the type of error; in this case, it has determined the pro-
gram likely deadlocked. Once determining the error type, an error trace is produced to debug the
source of the error. The underlying model derived from the Verlixir specification does not have a
one-to-one mapping to the original Elixir code, hence, heuristics are applied, to determine where
in the Elixir program the trail is produced from.

Alongside the process name, we can see the line number in the Elixir file. The remaining in-
formation on a trail line is less relevant to most users. The first number on a line is the step
number (some of these may be omitted for simplicity). The proc_n refers either to a process
number or function call stack depth.

Alongside the error trace, Verlixir also reports a trace of all messages being sent and received
through the system. If we take a look at the messages produced in this case, we see that no
messages were ever sent. This could give a further indication as to why the deadlock has arisen.

We can read the trail in sequential order to learn the interleaving that resulted in the error.
In this instance, we can see the server reaches line 5 where it waits for an :im_alive message from
the client and similarly, the client is waiting for a :binding message.

4.2.2 Linear Temporal Logic
We now introduce Linear Temporal Logic (LTL) to our systems to allow us to write more inter-
esting Verlixir specifications.

Let’s re-design the server and client processes, so we can introduce temporal properties to rea-
son about. The server will now spawn n clients, bind the clients to itself and then await a response
from all three clients.

1 def start_server do
2 client_n = 3
3 alive_clients = 0
4 for _ <- 1..client_n do
5 client = spawn(Client, :start_client, [])
6 send(client, {:bind, self()})

26

7 end
8 alive_clients = check_clients(client_n, alive_clients)
9 end

The implementation of the client process and the check_clients/2 function have been omitted.
Without understanding their implementation, we can still use our specification to verify the system
acts as intended. We introduce our first LTL formula, which verifies that eventually, the number
of alive clients is equal to n. To introduce an LTL formula, we can use @ltl. An LTL formula is
assigned, as a string, to a function. The LTL grammar is defined as the following.

⟨ltl⟩ |= ⟨operand⟩ | (⟨ltl⟩) | ⟨ltl⟩⟨binop⟩⟨ltl⟩ | ⟨unop⟩⟨ltl⟩
⟨operand⟩ |= true | false | var | int | elixir_expr
⟨unop⟩ |= □ | ♢ | !
⟨binop⟩ |= U | W | V | && | || | → | ↔

We want to verify that eventually, the number of alive clients equals the number the server created.
We can write this using the formula ♢(alive_clients ≡ client_n). Using the LTL attribute, we
can update our server process.

1 @init true
2 @spec start_server() :: :ok
3 @ltl "<>(alive_clients == client_n)"
4 def start_server do
5 ...
6 end

Listing 4.4: Example LTL property

Let us run Verlixir on the system.

1 $./verlixir -v basic_example.ex
2 Model checking ran successfully. 0 error(s) found.
3 The verifier terminated with no errors.

We can update the LTL formula, by replacing clients_n with the number 1 (♢(alive_clients ≡
1)). We run the verifier again.

1 $./verlixir -v basic_example.ex
2 Model checking ran successfully. 1 error(s) found.
3 The program is livelocked, or an LTL property was violated. Generating trace.
4 ... trace omitted ...

To help with readability, we can define inline predicates to use in LTL formulae. The predicates
that can be defined are formed from a subset of the LTL grammar, without the temporal modalities.
Inline predicates can refer to variables in the scope of the function. For example, we can define a
predicate all_alive as alive_clients ≡ client_n. Using this predicate, we can strengthen our LTL
formula to (!all_alive) U (□all_alive). Informally, this formula states that there is a moment in
time where alive_clients ≡ client_n, and from that moment onwards, this property holds until
termination. We can update our start_server function to reflect this.

1 @ltl "(!all_alive)U([]all_alive)"
2 def start_server do
3 client_n = 3
4 alive_clients = 0
5 predicate all_alive, alive_clients == client_n

6 ...

27

7 end

4.2.3 Contracts

Verlixir also supports Design by Contracts, using pre- and post-conditions in function definitions.
These are particularly useful for ensuring proper bounds on the system, that help define correct
execution. Consider a process that should send and receive a single message each round. We can
define a pre-condition on a bounded parameter to ensure the process does not run indefinitely. Let
us refactor the client process, to complete a number of rounds (determined by the server) before
terminating.

1 defmodule Client do
2 @spec start_client() :: :ok
3 def start_client do
4 receive do
5 {:bind, sender, round_limit} ->

next_round(server, round_limit)
6 end
7 end
8

9 @spec next_round(pid(), integer()) :: :ok
10 def next_round(server, rounds) do
11 send(server, {:im_alive})
12 remaining_rounds = rounds - 1
13 next_round(server, remaining_rounds)
14 end
15 end

We now introduce the defv macro from the LTLixir specification language. The defv macro is
used to create contracts, using pre- and post-conditions. Pre-conditions check conditions regard-
ing the values of function arguments on entry to the function and similarly, post-conditions can
assert conditions on values within the scope of the function on exit.

With this definition, we gain assurances that the implementation of the function behaves as we ex-
pect and that no other function interacts with it in a manner that violates our expected behaviour.
We can create a contract for our client. We assert that, on each function entry, the number of
rounds is positive, and on exit, the remaining number of rounds has decreased.

1 defv next_round(server, rounds), pre: rounds >= 0,
post: remaining_rounds < rounds do

2 ...
3 end

We can run Verlixir on the system to verify the pre-condition holds for every possible execution.

1 $./verlixir -v basic_example.ex
2 Model checking ran successfully. 1 error(s) found.
3 An LTL, pre- or post-condition was violated. Generating trace.
4 Violated: assertion violated (rounds>=0) (at depth 45).
5 ... trace omitted ...

Verlixir reports an error, in particular, it notes the violation of an assertion. An assertion violation
can be a violation of an LTL formula, and pre-condition or a post-condition. In this case, it outputs
the assertion that was violated rounds >= 0, which we are aware is our pre-condition.

28

4.2.4 Parameterized Systems
Up to this point, we have declared various system properties such as client_n, alive_client and
rounds. In reality, the value assigned to these properties could be determined by many factors and
it may not be known to the developer at the time of writing the specification. To support this,
Verlixir allows us to declare these properties as parameters, in particular, we want to declare con-
currency parameters. We define concurrency parameters as variables that impact the behaviour of
a distributed system (we will simply refer to them as parameters going forward). For example, in a
consensus algorithm such as Paxos, we may have variables to determine the number of acceptors,
proposers and size of a quorum. We can declare these variables as parameters in the specification
in order to verify the system for multiple possible configurations. Typically, the values used in
these auto-generated configurations will be small values, as large values may lead to a state space
that becomes difficult to explore.

We use @model to mark variables as parameters. It takes a tuple of atoms referencing variables in
the function scope. We can apply this definition to our existing server process.

1 @model {:client_n, :number_of_rounds}
2 def start_server do
3 client_n = 3
4 number_of_rounds = 2
5 predicate all_alive, alive_clients == client_n *

number_of_rounds
6 ...
7 end

Listing 4.5: Example of declaring concurrency parameters in specification.

We can declare as many parameters as required. The values matched in the declaration of the
variables will be ignored if we run Verlixir in parameterized mode. To run the verifier, we can use
the −p flag. To run the parameterized verification, we use the same command but with the −p
flag.

1 $./verlixir -p 3 basic_example.ex
2 Generating models.
3 Generated 9 models.

We can introduce a bug into our program that will cause a violation of the specification, to show the
output of the verifier under these circumstances. To introduce a bug, we are going to conditionally
call check_clients/2 if client_n > 1 holds.

1 @model {:number_of_rounds}
2 def start_server do
3 ...
4 alive_clients = if number_of_rounds > 1 do
5 check_clients(client_n * number_of_rounds, alive_clients)
6 else
7 0
8 end
9 end

This will now result in cases where the temporal property is violated, as alive_clients ≡
client_n∗number_of_rounds will not hold for all configurations. Note, that we have reduced the
parameters down to just {number_of_rounds}. The system is theoretically capable of handling
any number of parameters in its search. However, the computational cost of exploring the state
space grows exponentially with the number of parameters.

1 $./verlixir -p 3 basic_example.ex

29

2 Generating models.
3 Generated 3 models.
4 Violations found in models:
5 Model with params: {"number_of_rounds": ’1’}
6 Assign these parameters to the system and re-run the verifier in verification

mode to gather a trace.

The system found a violation for the assignment of 1 to number_of_rounds. To investigate, we
could run the verifier on this configuration. It’s also useful to note that Verlixir was executed with
−p3, this sets the range of values, from 0 to (p-1), for each parameter.

4.3 Summary
We have now given a high-level overview of Verlixir, the verification toolchain capable of verifying
Elixir programs written using the LTLixir specification language. We saw how to use Verlixir to
simulate executions of the system; verify our system’s adherence to a specification and parameterize
concurrency parameters for exploration. This chapter also explained how to use LTLixir constructs,
to reason about temporal properties, as well as how pre- and post-conditions can drive functional
correctness. The next chapter will begin to explore the implementation of Verlixir.

30

Chapter 5

Verification of Message-Based
Systems

This chapter provides an in-depth discussion into the design decisions that were made during the
development of Verlixir. The chapter will begin by providing a high-level overview of where the
relevant components fit into the toolchain, as well as providing an architectural overview of the
tool. Section 5.2 will describe the main techniques Verlixir applies in the analysis and modelling of
a specification and section 5.3 will discuss the design of the LTLixir specifiation language. Finally,
section 5.4 will describe how the outputs generated by Verlixir are derived.

5.1 Verlixir Toolchain

We will first introduce where the new tools fit into the greater toolchain. Figure 5.1 shows a
high-level overview of the toolchain. Given an LTLixir specification, either, the Elixir program can
be compiled and run on the ERTS, or the program can be modelled by Verlixir and verified with
Spin.

Figure 5.1: High-level overview of the verifiable Elixir toolchain.

Figure 5.2 provides an in-depth insight into the architecture underlying Verlixir.

31

Figure 5.2: Verlixir design.

Before we discuss the design of Verlixir, we will summarise the components of the tool.

• LTLixir Specification: Specification of an Elixir program to be parsed by Verlixir.

• Elixir Extractor: Converts the Elixir program into a quoted expression.

• AST Parser: Parses the quoted expression into an intermediate representation.

• IR Parser: Parses the intermediate representation, collecting relevant information for the
model generator.

• Promela Generator: Writes a Promela model from the intermediate representation.

• Model Instrumentors: Instruments the model for appropriate verification (depending on
system and user requirements).

• Violation Handler: Handles the output of the model checker by mapping violations back
to the original Elixir program.

• Trace Generator: Generates an error trace from the mapped Elixir violations.

We briefly mention the technologies used in the design of the Verlixir artifact. Alongside the core
Verlixir system, we introduce an Elixir library and a Promela library.

The Elixir library is imported into programs that wish to access the LTLixir specification con-
structs we have introduced. In particular, contracts and predicates. The library is written in
Elixir, using metaprogramming. With the library, comes the Elixir program extractor. The ex-
tractor, is an Elixir module, that converts Elixir syntax into a parsable quoted expression.

The Promela library is a hybrid between Promela and C. It is required to extend Promela be-
yond its basic capabilities; aligning it with the Elixir program semantics. The model generator

32

uses the Promela library to model some Elixir constructs, for example, functions, data structures,
message passing and more. Promela compiles models to C, so a C library incurs no overhead.
However, C code can not be model-checked.

The core Verlixir offering (intermediate representation and Promela generator) is written in Rust.
Rust is highly performant and provides software reliability guarantees that are relevant in assert-
ing the correctness of the tool. Rust is highly optimised for parallelism, which we rely upon for
optimising the model-checking process.

5.2 Modelling Elixir Programs
The primary work done by Verlixir is determining how to internally represent an Elixir program.
Given an Elixir program, with an inlined specification following the LTLixir semantics, Verlixir
must both model the system and the properties of the specification. This section will outline the
techniques used to achieve this.

5.2.1 High-level Overview
The internals of how the system is used to produce models of Elixir programs can be categorised
into three umbrellas:

• Parsing: takes an Elixir program and generates a quoted expression. Then, lexical analysis
is performed on the quoted expression.

• Intermediate Representation: takes the parsed expression and generates an intermediate
representation by extracting features relevant to model the program and specification.

• Writing: takes the intermediate representation and generates a model in a target language.

The writer currently only supports the generation of Promela models, which can be verified using
the model checker Spin, see section 5.4. Although this component of Verlixir can be split into these
three stages, as they all work to achieve the same goal we will treat them as one and consider this
component the model generator.

To help understand the model generator, we begin by providing a high-level mapping of the sup-
ported set of Elixir constructs to Promela in table 5.1.

Elixir Expression Promela Expression Definition
Functions Processes Every function call (recursive or else)

spawns a new process. Function calls
always block the parent process. If a
function returns a value, the caller will
await a rendezvous with the callee.

Process spawning Processes Process spawning translates naturally
to Promela, using the run keyword.

Boolean / arithmetic
expressions

Expressions The translation, for the supported set
of operators, is direct to Promela for
basic data types. Data structures, like
lists, have custom inline code
fragments for supported operators.

Matching (=) Declaration, assignment The first match in scope is translated
as a declaration. Subsequent matches
are re-assignments. In the case where
the left-hand expression of a match is
non-basic (i.e. tuple), a stack may be
used to determine declaration
ordering.

33

Types (integer, boolean,
atom)

int, bool, mtype Basic types include integers and
booleans. Atoms are treated as
message types (mtypes) and are
globally unique.

Lists Dynamically-sized arrays Promela arrays have been extended to
support dynamically sized lists.

For comprehensions For loops A for comprehension over a range of
values, translate to a Promela for loop.
More complex comprehensions
typically involve inlines.

If statements If statements If statements translate directly, with
additional instrumentation as Promela
blocks until a condition is matched.

Send Channel append (!!) A message will be packed into a new
message structure, and then appended
to the relevant mailbox channel.

Receive Channel receive (??) Receive involves matching the correct
mailbox and message type. We can
then remove the message from the
channel and unpack the values.

LTL LTL Promela supports LTL. However, any
variables or Elixir expressions present
have to be specially translated before
we translate the LTL formula.

Contracts Assertions Assertions are placed in process entry
and exit points to ensure correctness.

Predicates Global inlines Predicates are recursively searched and
moved to the global scope as inlines.

Table 5.1: Overview of the translation of Elixir Expressions to
Promela.

The remainder of this section will discuss the techniques applied in the model generator, and
specifically how the generator targets Promela as an output language.

5.2.2 Sequential Execution
First, we explore how to model sequential execution. Elixir relies on a few parent identifiers that
generally describe the structure of a program. We discuss a few flavours of these:

• Blocks: blocks are a simple but core concept. An Elixir block contains multiple Elixir
expressions separated by newlines or semi-colons.

• Do: Elixir control structures such as if and receive all use the do keyword for a new
expression. The child expression could be a single expression or a nested block.

• Functions: functions are essentially named or anonymous blocks, that can be spawned as
processes.

• Modules: multiple functions can be grouped in a module. All Elixir code runs inside
processes, so typically grouping functions in a module is a way to group functions that are
related to the task a process performs.

These three constructs are examples of the primary building blocks of an Elixir program. With
each, a new level of scope is introduced. Declared variables from parent scopes are accessible in
child scopes, but any match to re-assign a variable from the parent scope will not persist. Instead,
the structure of an Elixir program expects you to match the variable to the child scope, and return
the intended assignment to the parent scope. Assuming there is no assignment to these constructs,
then constructing a model is straightforward. We can derive the parent-child hierarchy directly.

34

We hold multiple types of symbol tables, to represent the different constructs such as modules,
functions and blocks. Within these symbol table types, we further can assign child symbol tables
to account for the nesting of these scoped constructs.

Figure 5.3: An example symbol table scope hierarchy.

Traversal, Scoping and Variable Declarations

So far, we assumed no expressions were matched to variables. To support assignment, we are
required to track the execution of a scope in more detail. In the intermediate representation, a
match is represented as either a declaration or an assignment. Given a declaration, we can infer
the variable type and assign this in the symbol table. Now the variable is declared, any subsequent
match in the same scope level is considered an assignment.

If we now match an expression that introduces a new child scope (such as a receive or if), we
must explore every possible branch, determine the returning expression of the branch and use
the relevant identifiers to assign the return value to the parent scope. To achieve this, the ex-
pression is traversed using a depth-first search with a stack of lists. The stack manages the scope
nesting and the lists manage the variable identifiers. Let’s explore an example.

1 {player, action} = receive do
2 {:move, player, direction} ->
3 {player, "moved #{direction}"}
4 {:attack, player, target} ->
5 send health, {target, -2}
6 {player, "attacked #{target}"}
7 end

Listing 5.1: Representing variable declarations using the match operator.

In the example, we are matching with a tuple. We push player and action to the identifier
list and then descend into the first guard (conditioned by the :move atom). This is a singular
expression, so it must be the return value of this guard. We can peek the scope stack to access
the list of variables, and iterate through them assigning the relevant values. Assuming this is a
declaration, we also add the identifiers to the current scopes symbol table. We can mark
direction as a string as this is easily inferred, but we leave player as unknown until we can gather
more information about the type.

We now traverse the second branch. This follows the block construct, so we require pushing

35

an empty list to the stack. We recursively apply this process until we reach the last expression
in the block. Reaching the last expression, we can pop the stack (removing the child scope level)
and then peek the stack to access the list of variables from the parent scope. We assign these
using the same method, this time asserting the types align with the symbol table or inferring more
information about unknown types if possible. Figure 5.4 shows the stack and lists for the second
receive guard.

Figure 5.4: Example variable stack and identifier lists. The stack relates to the scope level, we
push and pop as we traverse the receive guard. Only values waiting for assignments are added to
the identifier list.

Functions, Returning and Recursion

Like the other constructs, functions introduce a new scope level. Promela does not support func-
tions. We model functions using Promela processes and rendezvous communication channels. To
implement functions, we apply various techniques that implement the behaviour of Elixir functions.

Let’s consider a function call. The caller must declare a new communication channel, used to
output the return value on. We also declare a new variable to read the return value of the function
call, typed using the type specification of the callee. We can now spawn a new process and pass
the function arguments, alongside some additional information.

We first pass the return channel, which is also used for determining whether the callee has ter-
minated. By creating the return channel with a buffer size of 0, the caller will block until the
callee returns. We also pass a process identifier. All processes are identified by this process
ID; by passing this to the callee, the callee can take actions as if it were communicating as the
parent process. We then pass the remaining arguments as if we were making an Elixir function call.

The caller will now block until the callee sends a message over the return channel. The callee
can proceed as normal, and by using the discussed traversal techniques, all exit points will send
the final expression over the return channel. This approach easily extends to recursion, as the
callee can spawn a new instance of itself and block until a signal is received. In figure 5.5, we show
an example of a recursive function call.

36

Figure 5.5: An example of a recursive function call. In total, 9 processes are spawned to calculate
the factorial of 4. Callers block until they rendezvous with callees. If we consider the call stack as
a graph, it is traversed in a depth-first manner.

5.2.3 Concurrent Memory Model
Now we have explored the basics of modelling Elixir programs, we extend the ideas to programs
with multiple processes running concurrently. To correctly design a model of a concurrent Elixir
system, there are a few core principles we must capture.

• Spawning processes.

• Sending messages.

• Receiving messages.

We will first explain how we model the spawning of a new process, before taking a deeper look into
more complex concurrency primitives as well as a memory model to extend the existing capabilities
of Promela.

Each Elixir function is already translated to a proctype. We need to tell apart function calls
from process spawns. During a spawn, we pass a process identifier to the new child process. In this
case, the process identifier is a reserved identifier, which prompts the child to ask the scheduler for
a new id. This ensures all parents are uniquely identifiable, which is crucial for communication.
The process identifier can be captured in the caller’s symbol table and used to communicate with
the process.

Actors, Mailboxes and Message Passing

Once we have another process’s identifier in our symbol table, we can begin communication be-
tween processes. To model Elixir actors, we must model the three core components of an actor
system: sending, receiving and spawning. We now look at sending and receiving.

Constructing Messages

A message is internally comprised of two components: the message type and the message body.
When a message type is used in the context of a send or receive it is added to a global set of mes-
sage types. Tracking this set globally is important to model the entirety of the system.

37

The message body consists of multiple message arguments. We can store any primitive type
within a message argument by inferring the type from the send or receive expression. If a type
cannot be inferred in the context, we reserve a byte array to store the message argument, but to
avoid this causing memory issues, we limit the size of the byte array to a small fixed size.

1 typedef __message_component {
2 byte data1[2];
3 int data2;
4 byte data3[2];
5 bool data4;
6 bit data5;
7 };
8 typedef __message_body {
9 __message_component m1;

10 __message_component m2;
11 __message_component m3;
12 ...
13 };

Listing 5.2: Example of a message body, from the Verlixir Promela library.

Sending Messages

Now that we can construct a message, we can begin to model how messages can be sent and
received. Using the global message type set, we construct a mailbox for each message type. The
mailboxes are indexed by using a process identifier. We use a sorted insert (!!), so that messages
are grouped by their intended target. When a process sends a message, we triage which mailbox
the message should be sent to, using the message type and use the process identifier from the
symbol table. We also attach the message body to the mailbox. In figure 5.6, we show an example
of how a mailbox is used.

Figure 5.6: An example of modelling the Elixir mailbox.

Receiving Messages

Receiving a message is a little more complex. We must now consider pattern matching. To begin
pattern matching, we can again use the message type to determine which mailbox to check. If

38

more than just the message type is required in the pattern matching of a guard, we must pre-empt
elements of the message body to determine which elements are important for pattern matching
and which elements are identifiers that need assignments.

In order to generate a model for the patterns, we introduce a blocking statement consisting of
multiple conditions. When one of the conditions is satisfied (i.e. a message has been pattern-
matched), we stop blocking, execute the block relevant for the matched guard and then break out
of the control structure.

Before we can execute the block, we must assign all the remaining identifiers from the receive
pattern, to the relevant values in the received message body. To do this, we first introduce a new
dummy variable which is assigned the value of the message body. We can then access the dummy
variable to assign the remaining identifiers from the guard. During the assignment, we have no
indication of the type of the identifier. Hence, we can temporarily assign a message argument to
the identifier, and extract the correct attribute from the message argument when we have more
information about the type.

Unlike Elixir actors, Verlixir bounds multiple communication primitives. This is to ensure state
explosion in the model checker is less likely to occur. As mentioned, we are strict in the bounding
of byte arrays that can be passed as message arguments. We also only supply a small number of
mailboxes per message type, furthermore, we bound the number of messages that can buffer in a
per-process mailbox.

Listing 5.3 shows an example of a receive. We are receiving a vote message. We always match on
__pid, to ensure the message is intended for the current process. We read the body into __rec_v_0
and then extract the individual components. We

1 __message_body __rec_v_0;
2 do
3 :: __VOTE ?? eval(__pid), __rec_v_0 ->
4 __message_component x = __rec_v_0.m1.data2;
5 ... body ...
6 break;
7 od

Listing 5.3: Example of a receive pattern. Translation of {:vote, x}.

Dynamic Memory Allocation

Promela does not support dynamic memory allocation. Elixir uses dynamic memory for its struc-
tures like lists, maps and sets. The Verlixir Promela library introduces two structures to handle all
list operations across the system. Promela supports statically sized arrays. These arrays cannot
be passed to other processes. Hence, an array’s lifetime is limited to its scope. To get around this
limitation, the two structures we introduce are called memory and linked_list.

First, we describe the design of linked_list. It is in fact not a traditional linked list, but it
behaves similarly, as we can perform many operations on this structure that we could not perform
on a statically sized array. For example, we support prepending and appending, which causes
dynamic resizes. In actuality, none of these operations resize the list. A list has an upper bound
in its size, which is statically set for all model generation. Let’s name this limit L.

1 typedef __linked_list {
2 __node vals[L];
3 }

Listing 5.4: The structure of a list.

For example for a limit, 10, means the maximum number of elements that can be appended to the
list is 10. The list starts as empty and is handled by the node nested structure.

39

1 typedef __node {
2 int val;
3 bool allocated;
4 }

Listing 5.5: Example of a list node typed ‘int’.

A node stores a single value in a list, as well as a flag to indicate if the value has been allocated.
Now, given a sequence of nodes, the order of the nodes represents the order of the Elixir list for all
allocated nodes. For example, for a list, ls, ls[0] and ls[9] can be contiguous list elements, if they
are both allocated and there are no allocations in between.

Given this representation, we now see why all operations are in linear time. For example, for
insertion (prepend or append), we must assign a pointer to a node and iterate through all nodes to
find an unallocated node to insert into. We also support many other list operations in the Elixir
standard library, all of which use similar logic.

We now extend this implementation to introduce dynamic memory. The implementation is similar
to how lists are implemented. We introduce a new field to the linked_list structure, called
allocated. This represents the allocation of a list in memory. We can then similarly introduce
memory.

1 typedef __memory {
2 __linked_list lists[M];
3 }

Listing 5.6: Memory intermediate representation. Limit of M lists.

We introduce a single, globally defined instance of this structure, named __memory. All processes
share this memory for their list allocations. All list operations are treated as a single, indivisible
step using atomic. If an Elixir process declares a new list, the IR will allocate a list from memory.
The model will iterate through all the lists in memory, to find an unallocated list and return this,
as a pointer, to the process. This pointer is generated as an int, which indexes into memory.

Finally, with all these definitions in place we can support the passing of Elixir lists as function
arguments. When we detect a function call, or send expression, passing a list, we first allocate
a pointer to a new location in memory. We then copy all the values from the list into the new
allocation and then pass the pointer as an argument. With this memory in place, we can now
support Elixir lists and operations on them.

Iteration and Higher Order Functions

Promela supports for loops, but for our Promela library, these are not sufficient. A for com-
prehension can be represented as a linear scan through all linked_list elements. We find the
allocated elements and apply the comprehension body to these. We can introduce temporary
dummy variables to represent Elixir’s <- operator.

If we want to match on a for comprehension, we must also introduce a pointer into a second
linked_list which tracks new allocations into the matched block independently of the scan
through an existing list. A for comprehension over an Elixir range construct, n..m, can be
represented with a for loop.

A map operation (such as from the Enum Elixir library) is represented similarly to a for com-
prehension in the IR. Instead of inlining the body, in order to hold a more fair representation of
the Elixir program, dummy anonymous processes are stored to represent higher-order functions.

As a closing note on memory, we describe the representation of randomness. Again, Promela

40

does not inherently support randomness which has influenced the IR design. To represent a func-
tion, such as random, from the Enum library, we represent this using multiple truth conditions,
which can be selected non-deterministically. One of these conditions will return an allocated list
element and one will increment the current list pointer. To ensure termination, if we point to the
end of the list before returning a value, we simply return the last allocated value we saw. This
is not true randomness, and is not fair to all elements in the list, hence, random operations are
strongly discouraged in LTLixir, but are theoretically supported.

Note that as Promela does not support functions, when we generate a model, the Verlixir Promela
library is inlined into the model.

5.3 Specification Language
LTLixir is a specification language that can be used to reason about the time and change of an
Elixir system. This section will primarily discuss the design decisions behind the additional con-
structs we introduce to Elixir. LTLixir is an Elixir library, built with Elixir’s metaprogramming
capabilities.

We call any construct prefixed with @ a system annotation. All system annotations are treated as
ghost variables, meaning they do not affect the runtime of the Elixir program.

5.3.1 System Initialisation
@init marks the entry point for the three operational modes. @init is captured in the interme-
diate representation; every function marked with @init is instrumented as active in the model.
Active processes are spawned in the initial system state.

5.3.2 Type Specifications
For each argument parsed when creating a new function in the IR, we insert a new symbol ta-
ble entry using the type provided in the type specification. The return type is a special case, as
the function could be labelled non-returning. We instrument non-returning functions separately
from returning ones.

In returning functions, we must ensure every path the process can take returns a value. Simi-
larly, to ensure function calls calls are handled correctly, a non-returning function must return a
dummy value at each exit point. The dummy value is used to rendezvous with the caller, signalling
the callee has finished execution.

5.3.3 Concurrency Parameters
A concurrency parameter is a parameter which may cause a change in the behaviour of the system.
Every parameter passed to @model is marked as a concurrency parameter in the IR. Instead of
parsing the Elixir declaration for the parameter, we assign a reserved __PARAM value to the iden-
tifier. The model instrumentor will replace these reserved values with various configurations of
the parameter. We discuss how these configurations are generated when we discuss the modes of
operation, in section 5.4.

5.3.4 Linear Temporal Logic Formulae
The specification language supports the introduction of temporal properties through system anno-
tations. The Verlixir library parses these as a string. The model generator will parse the string,

41

and translate it into a Promela LTL formula.

We store a separate symbol table for temporal variables. Temporal variables refer to Elixir
variables that are used in LTL formulae. When we parse the program and find the declaration of
a temporal variable, we instrument it as a global variable in the model. We now consider this a
system property, instead of a property bound to a single process. The Elixir program does not, of
course, allow any other processes to modify these variables, so the semantics remain unchanged.

We create a single model for each temporal formula, which allows them to be checked in par-
allel. This is an important optimisation, as model checking can be computationally expensive.
Any non-Elixir constructs used in temporal properties, translate directly into Promela LTL.

The extraction of these properties is in fact a little more complex than explained. We have to
consider the nesting of identifiers within Elixir constructs. There is also the possibility that some
temporal variables are used as concurrency parameters. There are multiple reasons why local iden-
tifiers could conflict when moved to a global context, so conflicts also have to be carefully resolved.
To preserve the semantics of the LTL formula, any assignment to a temporal variable must be
captured in a single, atomic step. Due to the nature of Elixir’s match, capturing this in the model
is not trivial.

5.3.5 Predicates
Predicates rely on Elixir’s metaprogramming capabilities. A predicate has an identifier and a con-
dition. The condition can be evaluated either at runtime or by the model checker. We implement a
predicate as an Elixir macro. Macros are compile-time constructs that are invoked with Elixir’s
AST as input, and produce a superset of the AST as output. The predicate macro matches the
identifier to the condition and inserts it back into the AST. The identifier can be used in any Elixir
construct where a condition is expected.

A defined predicate can be used in an LTL formula. We globally define the predicate in the
model, such that we can use the predicate identifier in the LTL formula. Given the predicate
condition, we must recursively search the condition for any nested identifiers. We move these iden-
tifiers to the global scope, and replace the nested identifier with the global identifier. All predicates
and nested identifiers are now temporal variables. This step introduces the same complexities as
the temporal variables previously discussed.

5.3.6 Function Contracts
A function contract is defined with defv. As with predicates, defv is an Elixir macro, which
directly modifies the Elixir AST. Semantically, a contract acts similarly to def. The macro inserts
an expression into the AST which contains the function body and pre- and post-conditions.
Syntactically, these can be defined using the terms pre: and post: in the function declaration,
before the body of the function.

1 defv add_positives(x, y), pre: x > 0 && y > 0, post: ret == x + y do
2 ...
3 end

Listing 5.7: An example contract.

The defv macro is intended for verification. It also instruments the execution of Elixir programs,
such that at runtime, any violation of a condition will be flagged. This is achieved by capturing
the pre- and post-conditions. In the absence of a condition, we insert the :ok atom into the AST.
Otherwise, a quoted expression is constructed by first unquoting the condition, evaluating its truth
and then possibly flagging a violation. When a call is made to the function, we build a final quoted
expression to instrument the call. This final expression consists of the following steps:

42

• We capture a function call and delay the evaluation of the function body.

• We evaluate the precondition check.

• We evaluate the function body, buffering the result.

• We evaluate the postcondition check.

• We return the buffered result.

Relying on evaluating these conditions at runtime does not prove the correctness of a specification.
However, by using contracts with Verlixir, we can ensure function calls and returns are consistent
with their specification.

Verlixir models pre- and post-conditions as assertions. Assertions are placed at the entry and
exit points of a process. Naturally, the model checker reports assertion violations. We map these
assertion violations back to the original Elixir program. The algorithm to determine exit points
is the same as we used when returning values. A slight complexity arises if the return value is
a non-trivial expression, for example, a receive or if statement. In this case, we must ensure the
evaluation of the expression occurs before the post-condition check. This can be complex, as ex-
pressions can be nested.

5.4 Simulation and Verification
We have now explored the intermediate representation constructed by Verlixir, alongside some
implementation details specific to using Promela as a target language. This section will describe
the remainder of the Verlixir design, which touches on simulation, verification, generating multiple
models and using Spin as a target model checker. The default execution of the Verlixir executable,
will produce a single Promela model, for a given input LTLixir specification. For Verlixir to produce
outputs, it should be executed in an operational mode: {−s,−v,−p} for simulation, verification
or parameter exploration.

If −s is passed, Spin is run in simulation mode. If −v is passed, Verlixir will first determine
the existence of LTL properties within the model. For each LTL property, we run an instance of
Spin specifying the LTL property we want to evaluate. We do this using Spin’s −search parameter,
which will generate and run the verifier from the model. In the event we do not detect an LTL
property, we use −search to check for the existence of deadlocks or non-progress cycles (livelocks).
If −p is passed, multiple models are generated instead of one, and all of these are checked as if −v
was passed for each.

5.4.1 Simulation
Simulation mode will use the Spin scheduler to execute a single execution through the generated
state space. A simulation can timeout in the case of a deadlock. If a timeout is produced, we
inform the user of the timeout but do not provide further information as that is left for verification
mode. Elixir calls to the IO library can be reproduced in simulation mode, as we display them to
the user if they are executed. Simulation mode can be more beneficial than examining the output
of running an Elixir program. The scheduler takes enabled transitions, based on the current state,
whereas, the Elixir scheduler, runs in real-time, which could result in a process interleaving never
being observed.

5.4.2 Verification
Verification mode will run the Spin verifier. If an error is detected, the output is captured by the
Verlixir error profiler, which triages the issue to generate relevant outputs for the user to digest.
For example, if a non-acceptance cycle is produced by Spin, Verlixir captures this and reports to
the user that either an LTL property was violated (liveness property) or the system is potentially
livelocked. Verlixir will report the entire trace that led to this cycle, showing which process was

43

responsible for a transition between states as well as reading from the Elixir module the line of
Elixir code that led to that transition.

Reporting Violations

The mapping between Elixir expressions and how they are modelled is not a one-to-one mapping
of line-numbers. Instead a single Elixir expression can result in multiple Promela expressions and
multiple states in the state-space Spin traverses. Still, all the relevant Elixir expressions are cap-
tured and reported in the trace produced. For this error, Verlixir will also report the cycle that led
to non-terminating processes. It will report where the cycle begins, then give a trace of executed
Elixir lines and which function executed them. The error profiler also captures and reports the
processes which have terminated, or a blocking expression (such as a receive with no accepting
guards). For a given model M , the profiler can determine the following truth conditions for the
specification ϕ. If the specification holds for an initial state, Si, we have (M,Si) |= ϕ. If the speci-
fication holds for all initial states, the specification is valid: M |= ϕ. The error profiler may report
a violation, in which case for a violating specification ϕv we have (M,Si) |= ϕv. For example, dead-
locks, non-accept cycles, out-of-memory, assertion violations are possible violating specifications
all represented by ϕv ∈ {ϕdl, ϕcycle, ϕmemory, ϕassert}. In the event that M |= ϕmemory, we could
re-run the verification process using directives to reduce memory usage. If this is required, Spin
will no longer perform an exhaustive search. If the specification is true under these conditions, we
can only say the model partially models the specification, (M,Si) |= ϕp. A non-exhaustive search
should only be applied as a last resort, if it is infeasible to perform verification by reducing the
system complexity and can be performed using the −r flag.

Fairness

Similarly, in the event M |= ϕcycle, it may be useful to introduce weak fairness to the system. Weak
fairness can be applied by passing the −f flag when in verification mode. Other flavours of fairness
should be introduced using LTL formulas. If the weak fairness flag is active, scheduling decisions
will consider how process-level non-determinism is resolved. For example, if a non-progress cycle
is detected by a single process infinitely executing, even when other active processes are not being
scheduled, by re-running the verifier with weak fairness applied, infinitely enabled transitions will
eventually be scheduled to be taken. This may instead report a new error, consisting of a fair
non-progress cycle, or even avoid the non-progress cycle entirely.

5.4.3 Parameterization
The Verlixir IR passes all detected parameters to the Verlixir model runner. The model runner
is responsible for generating multiple models depending on the number of parameters provided,
N and the range of search values, M , which can be parsed as a command line argument using
−p M . The model runner generates a total of MN Promela models. All of these models are run
in −search mode and violations are reported. Verlixir reports an acceptance score, α, determining
how many of the models were accepted by the verifier: α := 1− |V |

MN , where V are violating models.
After outputting α, we note all the elements of V so the user can generate a trace for the violation
using verification mode.

5.5 Modelling Paxos
We will now demonstrate the model generation process for a larger example, the basic Paxos algo-
rithm. A thorough explanation of the problem will be discussed in section 6.1.1. For now, we will
just concern ourselves with the syntax of the Elixir program and how it is parsed and translated
into Promela.

The entire program is large, so we will just look at a single Elixir defmodule. In particular,

44

we will look at the learner module. When the system is distributed, the learner could be an
Elixir node, or an Elixir process. For our model, it does not matter. We will now take a look at
the Elixir implementation of one of the functions of the learner, wait_learned, focusing primarily
on the syntactic elements.

1 @spec wait_learned(list(), integer(), integer()) :: :ok
2 @ltl """
3 []((p->!<>q) && (q->!<>p))
4 <>(r)
5 [](s)
6 """
7 def wait_learned(acceptors, p_n, learned_n) do
8 predicate p, final_value == 31
9 predicate q, final_value == 42

10 predicate r, final_value != 0
11 predicate s, final_value == 0 || final_value == 31 || final_value == 42
12

13 if p_n == learned_n do
14 for acceptor <- acceptors do
15 send acceptor, {:terminate}
16 end
17 else
18 receive do
19 {:learned, final_value} ->
20 IO.puts("Learned final_value:")
21 IO.puts(final_value)
22 end
23 wait_learned(acceptors, p_n, learned_n + 1)
24 end
25 end

Listing 5.8: A function from the learner module.

Listing 5.8 shows an Elixir function, wait_learned. The function specifies some LTL properties,
using the multi-line LTL syntax. The LTL properties rely on the predicates defined in the function
body. The function also receives some arguments. In the body, we see a conditional branch, where
one branch involves a for comprehension, through a list performing some message sending. The
other branch receives a value. At the end of the else condition, we recurse. Let’s now break down
the Promela model.

1 #define p ((final_value == 31))
2 #define q ((final_value == 42))
3 #define r ((final_value != 0))
4 #define s ((((final_value == 0) || (final_value == 31)) || (final_value == 42)))
5

6 proctype wait_learned (int acceptors;int p_n;int learned_n;chan ret;int
__pid;int __ret_f) {

7 chan ret1 = [1] of { int };
8 atomic{
9 if

10 :: __pid == - 1 -> __pid = _pid;
11 :: else -> skip;
12 fi;
13 }

Listing 5.9: Promela function definition.

45

Listing 5.9 shows the first translation result of Promela from the Elixir function. Firstly, we see
the predicates are pulled from the body and placed into the global context.

The function is translated to a process type, named wait_learned. The process receives the
same arguments as the Elixir function, using the type specification to type the arguments. Ad-
ditionally, we receive some meta-arguments __pid and __ret_f . The first line of the function
body creates a channel, named ret1. Channels of this nature will be used in function calls.

Finally, we see an atomic block, which performs a check on the received __pid. If the process ID
passed is −1, we assign a new process ID from the process scheduler. Otherwise, we continue to
act as the caller, by retaining the passed process ID. Next, we look at the first branch of the Elixir
if statement. In particular, we will look at the for comprehension.

1 if
2 :: (p_n == learned_n) ->
3 atomic {
4 __list_ptr_old = __list_ptr;
5 __list_ptr = 0;
6 __list_ptr_new = 0;
7 do
8 :: __list_ptr >= LIST_LIMIT || __list_ptr_new >= LIST_LIMIT ->
9 __list_ptr = __list_ptr_old;

10 break;
11 :: else ->
12 if
13 :: LIST_ALLOCATED(acceptors,__list_ptr) ->
14 int acceptor;
15 acceptor = LIST_VAL(acceptors,__list_ptr);
16 atomic {
17 MessageList msg_0;
18 __TERMINATE!!acceptor,TERMINATE,msg_0;
19 }
20 ;
21 __list_ptr_new++;
22 __list_ptr++;
23 :: else -> __list_ptr++;
24 fi
25 od
26 }

Listing 5.10: Promela if statement and for comprehension.

Listing 5.10 shows the translation for the if statement. Each condition in the if is determined with
a (::) operator. In this listing, we just have the first condition, the else will be seen in a later listing.

Next, we have the translation of the for comprehension. This is wrapped in an atomic block,
as it relies on accessing shared memory. It looks daunting, but all that is taking place is a linear
scan through the list. We check each element, determine if it has been assigned and if it has, then
the comprehension body (lines 14 through 19) is executed with the list element.

In this case, the comprehension body is a send. To send, we pack the message elements into
structure, and then send this data to the channel matching our terminate atom, and the mailbox
matching acceptor.

Now let’s look at the else condition.

1 :: else ->
2 MessageList rec_v_5;
3 do
4 :: __LEARNED??eval(__pid),LEARNED,rec_v_5 ->
5 final_value = rec_v_5.m1.data2;

46

6 printf("Learned final_value:\n");
7 break;
8 od;
9 int __temp_cp_arr_2;

10 __copy_memory_to_next(__temp_cp_arr_2,acceptors);
11 int __ret_placeholder_1;
12 run wait_learned(acceptors,p_n,learned_n + 1,ret1,__pid,1);
13 ret1?__ret_placeholder_1;
14 fi;

Listing 5.11: Promela receive and recursion.

Listing 5.11 shows the translation of the else condition. Again, this is guarded by a (::) operator.
We do two things here: first we receive a message and then we recurse.

The receive only has one guard. We translate this guard by reading from the learned chan-
nel, looking into our mailbox (marked by __pid). The data we read from the channel is read into
rec_v_5, which we unpack into the relevant variables.

Secondly, we make a recursive function call. As one of the arguments passed is a list, we must
ensure we pass the list by value. To do this, we get a new pointer from memory, and copy the
values from our local list into the new memory location.

We next create a value to store the returned value from the recursive call. Actually, in this
case the function’s type definition marked the function as ‘non-returning’. We recursively call the
function by spawning a new instance of the process type. We pass the parameters, as well as the
relevant meta-arguments. In this case, the meta-arguments are:

• The channel to send the return value to, ret1. This was defined at the beginning of the
function body.

• We pass our process id, so the spawned function can continue to take actions on our behalf.

• We pass 1. 1 marks a non-returning function.

We then wait to read on ret1 to rendezvous with the callee.

Let’s finally look at the remaining translated code.

1 atomic {
2 if
3 :: __ret_f -> ret!0;
4 :: else -> skip;
5 fi;
6 }
7 }
8

9

10 ltl ltl_1 { []((p -> ! <> q) && (q -> ! <> p)) };
11 ltl ltl_2 { <> (r) };
12 ltl ltl_3 { [](s) };

Listing 5.12: Translation of LTL properties.

Listing 5.12 shows the remainder of the translated code. To end the function, we have a final
atomic block. Within this block, we check the value of the passed __ret_f value. If this is 1,
the function is non-returning. To handle the resolution of the call stack, we propagate a ghost 0
through the return channels. If it was a returning function, the return would already have been
handled, and hence we can skip.

Finally, after the function and back in the global context, we define our LTL properties. We
split the multi-line property into multiple properties so they can be checked in parallel. They rely

47

on the predicates defined, which were defined in the global context as they are properties of the
system, not a single process.

5.6 Summary
This chapter has discussed some core design concepts behind Verlixir. We first looked at a high-level
overview of where the tools fit into a wider toolchain and gave a basic introduction to their archi-
tecture. We saw how Elixir was extended using metaprogramming to support inline specifications.
We then introduced the core techniques essential to constructing an intermediate representation
of a specification, as well as how Promela can be used as a target modelling language for Elixir
systems. Finally, we looked at how Verlixir interacts with the model checker Spin to simulate and
verify programs while capturing traces of Elixir programs. We will now evaluate the effectiveness
of this tooling.

48

Chapter 6

Evaluation

In this chapter, we aim to evaluate the expressiveness of Verlixir’s design. First, we perform a
qualitative analysis of modelling classical distributed algorithms such as basic Paxos in section
6.1. Then section 6.2 will delve into a comparison against current state-of-the-art model-checking
techniques for modern-day programming languages and verification-aware languages.

6.1 Analysing Distributed Systems
Verifying the correctness of real-world distributed systems is a major motivation for this project.
Critical real-time systems (such as in air-traffic control or healthcare [39, 40]) should not fail and
should rely on rigorous verification techniques to guarantee production code is correct. All code
examples in this section are available in the appendix.

6.1.1 Basic Paxos
Paxos is an example of a distributed algorithm [41]. It is a consensus algorithm, where many
processes are tasked to agree on a value. Processes may propose what this value should be, but
only one value should be agreed upon. The safety requirements (SR) for consensus are:

• SR1: Only a value that has been proposed may be chosen.

• SR2: Only a single value is chosen.

• SR3: A process never learns that a value has been chosen unless it actually has.

The system’s liveness requirement is that a proposed value is eventually chosen and if a value is
chosen then a process can learn the chosen value.

Informal Specification

There are many flavours to the Paxos algorithm. We will informally present a basic, one-shot
Paxos. We introduce three roles in the system: proposer, acceptor and learner. The Paxos algo-
rithm performs two steps: prepare and accept. A proposer will broadcast a prepare message to all
the acceptors, who will respond with a promise. When the proposer has received a promise from a
quorum q of acceptors, it will broadcast an accept message. If more than q acceptors accept, then
the value is chosen, and the learners are informed.

To evaluate the expressiveness of Verlixir, we first must write the Paxos specification in LTLixir.
The specifications of proposer, acceptor and learner are similar to those presented in pseudocode
by Marzullo, Mei and Meling [42]. We now present the key differences in our Elixir specification
to a traditional Paxos design.

All processes contain two functions, a start function to introduce relevant initial configuration and
a main loop to process messages. Every acceptor initializes an accepted proposal, value and mini-
mum proposal to −1 and then processes prepare and accept messages until receiving a terminate
message, signifying consensus has been reached. A termination clause is important to ensure the

49

completion of a round of Paxos. A proposer receives its configuration in the form of a bind mes-
sage, before executing its protocol. If during phase two, when asking acceptors to accept a value,
a quorum of acceptors rejects the proposal, the proposer will inform the system it has reached
consensus on value 0. Traditionally, the proposer would retry with a higher proposal number, but
we aim to avoid infinite paths so instead introduce this terminating condition. The learner awaits
a learn message from all proposers. We only ever consider a single learner and the learner is also
responsible for spawning the proposers and acceptors, choosing their values and assigning proposal
numbers for the single round of Paxos. We finally set up the learner such that it spawns three
acceptors and two proposers. The learner decides the values the proposers will propose, which for
this example will be 31 and 42. Of course, in a different context, these values may come from other
sources within a larger system, however, notional values are sufficient for our purposes.

With our implementation complete, we introduce the three safety requirements established. To
achieve this, we introduce a value final_value which the learner receives from proposers. This
value is initialized to 0 and set to the agreed value of consensus. Let’s specify the temporal formula
required to express our safety requirements. We first introduce four predicates into our specifica-
tion (note the use of 0 both represents a state where consensus is unreached, or a value received
from a rejected proposer).

predicate chooseA: final_value == 31
predicate chooseB: final_value == 42
predicate chosen: final_value ̸= 0
predicate learned: final_value == 0 ∨ final_value == 31 ∨ final_value == 42

We can now use the predicates to simplify the formulation of the safety requirements.

SR1 : ♢ chosen
SR2 : □ (chooseA→ ¬♢chooseB)

∧ (chooseB→ ¬♢chooseA)
SR3 : □ learned

Only a proposed value is chosen
Only a single value is chosen

Only proposed values are learned

We now have a complete specification of the basic Paxos algorithm in LTLixir. Note that SR1
could be considered a liveness requirement, as a result of slight modifications on the original SRs
to align with our specific implementation decisions. We can run Verlixir on the model to verify the
safety requirements. When we run the verification mode, we see that no SRs are violated. This
justifies that both the informal Paxos specification we defined is correct regarding our SRs and
that the implementation of the specification is also correct.

1 Model ran successfully. 0 error(s) found.
2 The verifier terminated with no errors.

This gives a good indication that the expressiveness of Verlixir is sufficient to model and verify
distributed systems. However, we also should investigate how Verlixir can express errors for a more
complex system such as Paxos.

Counterexample 1

We introduce a bug into the proposer’s protocol. The proposer will now wait for a majority of
acceptors to accept the proposal and only be rejected if a majority of acceptors reject the proposal.
This is a violation of the protocol, as we only need a single rejection (within the accepting quorum)
for a proposer to retry with a higher proposal number. We can now run the verifier on the model
again to see if the bug is detected. Verlixir reports a violation of SR2, which is expected. In
particular, we are told there is a violation SR2 due to (final_value == 31). We can infer that the
learner was informed the chosen value is 42, but a later proposer informed the learner the chosen
value is 31. Verlixir detects this bug, informing us that SR2 was violated and then produces its
counterexample. Digesting this counterexample can take some time, as the interleaving of process
communication that triggers this bug involves approximately 50 messages and 800 steps. The full

50

message log is available in the appendix. We will provide a simpler interpretation to help reason
that Verlixir has correctly identified the bug (derived from the message log) in figure 6.1.

Figure 6.1: Violation of Paxos specification due to proposer bug. Note that the figure only shows
the ordering of receive events. We see that p1 forms a quorum of accepted messages from {a1, a2}.
Although one of these acceptors rejects the proposal (by sending a higher proposal number than
p1 expected), the bug would require a majority of acceptors to have rejected the proposal, so p1
asks the learner to learn its value regardless.

Counterexample 2

We now explore a second counterexample, again, the Paxos specification and message log can be
found in the appendix. This time, we introduce a bug into the proposer, such that if the proposer
receives a {prepared, proposalNumber, value} message from an acceptor with a higher proposal
number, it propagates this proposal number forward. A correct Paxos implementation should keep
the same proposal number, but propagate the value forward. We again get a violation of SR2,
where the mutual exclusion of values is violated. The violation is the same as counterexample one
but caused by a different interleaving.

51

6.1.2 Consistent Hash Ring
Consistent hashing is a distributed hashing technique designed to support dynamic loads of nodes
in a system [48]. It has been used in large real-world systems to help scalability and load balancing
[47]. Consistent hashing requires choosing a hash space and distributing both system nodes and
system requests over the hash space. The hash-space is logically considered a ring due to the
wrap-around semantics of the distribution applied over the hashing function.

We will look at a simple version of a consistent hash ring involving a handler and a ring man-
ager. The handler receives requests from the outside world and sends these to the ring manager to
be distributed. The ring manager is responsible for taking these requests and determining which
node should be responsible for handling them. The ring can dynamically grow and shrink in size
depending on the load from handlers.

To model the system, we are primarily concerned with one liveness property. Every incoming
request should eventually be forwarded to the correct node in the ring. A more detailed implemen-
tation may involve the nodes communicating to determine the correct node for requests, identify
faults and handoff information when nodes join or leave the ring. We will abstract this behaviour
within our ring manager for now, and introduce some temporal properties to specify the system’s
correctness. Firstly, we will introduce some predicates to help simplify the LTL formulae.

∀i ∈ {1..4} predicate posi: assigned_node == nodei

∀j ∈ {1..3} predicate reqj: next_request == V[j]
where V = {1→ 42, 2→ 31, 3→ 25}

These predicates pi specify assignments of a value to a node in the ring and rj specify the next
request to be processed by the ring manager. We can now introduce our liveness property, which
we do so by breaking into components to capture specific details of the system.

ϕ1 : □(req1→ ♢pos1)
ϕ2 : □(req2→ ♢pos3)
ϕ3 : □(req3 ∧ n_nodes == 3→ ♢pos1)
ϕ4 : □(req3 ∧ n_nodes == 4→ ♢pos4)

Hashing assigns correctly
Hashing assigns correctly
Hashing wrap-around semantics
Hashing for ring resizing

We use these properties to ensure the correctness of the system, by using an understanding of
how the system hashes requests to enable verification of evolving behaviour. For example, we use
the variable n_nodes to distinguish between different behaviour patterns depending on the loads
of the system. In particular, ϕ1 and ϕ2 ensure that the ring manager assigns requests to the next
sequential node in the ring. ϕ3 is responsible for ensuring the wrap-around semantics. When the
hash value of a request is larger than the last node’s range, it should be assigned to the first node.
ϕ4 is responsible for ensuring that as the ring grows, the ring manager adjusts its assignment of
requests so that the new node now receives its relevant load.

We can attach these LTL properties to the handler model, S, to determine that our incoming
requests are being handled as expected. We can run them with Verlixir, which determines there
are no violations of the properties, and our hashing is performing as intended.

Evolving the System Requirements

Up to now, we have been strict in our liveness properties. In other flavours of the system, we may
not concern ourselves with the exact node a request is assigned to, but rather that the request is
assigned to a node. Our current implementation enforces a synchronisation between the handler
and the ring manager. Let’s introduce a bug into the system that breaks this synchronization.
Currently, our handler will wait for ring resizing to complete before sending more requests. We
will modify the ring manager to dynamically resize asynchronously to the handler requests. This
introduces a violation of our liveness properties, as we can no longer guarantee that every request
is assigned to a specific node.

52

When we run Verlixir on the updated model, S′, we see that S′ ̸|= ϕ4. The erroneous mes-
sage log, alongside both specifications, can be found in the appendix. We will provide a simplified
interpretation of the message log to help reason that Verlixir has correctly identified the bug in
figure 6.2.

Figure 6.2: Violating and accepting consistent hash ring implementations. The violating model
shows the handler sending lookup requests without awaiting confirmation of ring resize. This
violates the liveness property ϕ4, which specifically requires the manager to assign 31 to node 4.
The accepting implementation waits for confirmation of a resize before continuing with requests.
Note that n_nodes is the number of nodes the handler believes to be in the ring, not the actual
number.

In this instance, instead of considering this an error, we may instead want to refine the system
requirements. To do this, we can introduce a new liveness property to specify a weaker system,
where we only care about requests being distributed to nodes.

ϕ5 : □(sent_request→ ♢assigned_node)

Verlixir reports that S |= ϕ5 and S′ |= ϕ5.

6.1.3 Two-Phase Commit
The two-phase commit protocol is a distributed algorithm used to update resources on multiple
nodes in a single operation. It can be used to ensure replication of data is consistent across multiple
nodes. For example, Spanner [49] uses a two-phase commit between leaders of replica groups to
preserve the atomicity of transactions.

The protocol involves a coordinator and multiple participants. The coordinator is responsible
for communicating with the participants to complete the two phases of the protocol. The first
phase is the prepare phase, where the coordinator asks participants to prepare for a transaction.
The second phase is the commit phase, where the coordinator asks participants to commit the
transaction. In our design, the coordinator will also be responsible for terminating the partic-
ipants after the transaction has been completed. When a participant is asked to prepare for a
transaction, it will check the conditions it requires to commit a transaction and then reply with a
prepared or abort message. The condition is typically application-specific, for example, it could be
ensuring the participant has access to a lock required for a write operation. If a single participant
aborts the transaction, the coordinator will ask all participants to abort. If all participants are

53

prepared, the coordinator will ask the participants to commit.

We informally specify the system with a safety and liveness property. The safety property is
that all participants must agree on the same outcome of the transaction. The liveness property is
that eventually, an outcome is agreed on. We can now formalise these by constructing predicates
and LTL formulae.

predicate commit: commit_count == participant_count
predicate abort: abort_count == participant_count

The commit_count is the number of participants that have committed the transaction and sim-
ilarly, the abort_count is the number of participants that have aborted the transaction. The
participant_count is a property specified by the system. We will reason about the protocol using
a system with three participants. We can now introduce the LTL formulae to specify the system.

SR1 : □ (commit→ ¬♢abort)
SR2 : □ (abort→ ¬♢commit)
LR1 : ♢□ commit ∨ ♢□ abort

Mutual exclusion
Mutual exclusion
Eventual agreement on commit or abort

Verlixir verifies the model is correct under these properties. We can now introduce a bug into
the system. As we have mainly looked at safety properties so far, we will introduce a bug that may
trigger a violation of LR1. To do this, we randomly make a participator ‘faulty’. Faulty partici-
pators will always abort the transaction, regardless of the coordinator’s request and even if they
agree to commit. We can now run the Verlixir on the updated model to see if the system violates
the specification. Verlixir reports that the system violates LR1, and provides a counterexample of
an execution that violates the specification. We can again use a diagram to represent the violating
execution, as shown in figure 6.3.

Figure 6.3: Implementation of two-phase commit that violates specification (LR1).

We can see from figure 6.3, that in the counterexample reported by Verlixir, the erroneous partic-
ipant may reply to the coordinator with a prepared message, before acquiring the relevant locks.
This means the coordinator has the relevant information to ask participants to commit. The er-
roneous participant will attempt to commit, determine it does not have the required locks to do
so and then abort. Verlixir reports this violates the liveness property LR1, as the system never
reaches a state where all participants either commit or abort.

For this counterexample, the message log produced by Verlixir makes the violation relatively ob-
vious.

54

1 send [1, PREPARE, ...]
2 send [3, PREPARE, ...]
3 send [5, PREPARE, ...]
4 ...
5 send [7, PREPARED, ...]
6 ...
7 send [7, PREPARED, ...]
8 ...
9 send [7, PREPARED, ...]

10 ...
11 send [1, COMMIT, ...]
12 send [3, COMMIT, ...]
13 send [5, COMMIT, ...]
14 ...
15 send [7, TRANSACTION_COMMIT, ...]
16 ...
17 send [7, TRANSACTION_COMMIT, ...]
18 ...
19 send [7, TRANSACTION_ABORT, ...]
20 ...

Listing 6.1: Message log produced by counterexample violating LR1.

Listing 6.1 shows a reduced version of the message log produced. We can see the first broadcast of
prepare messages is sent to all participants1 and subsequently the participants reply with prepared
messages. The coordinator then broadcasts a commit message, which is received by all partici-
pants. However, in the response to commit we notice that one participant sends an unexpected
transaction_abort message. This explains the violation of LR1, as well as gives an indication as
to where in the execution it was violated.

6.1.4 Dining Philosophers
The dining philosophers problem is a classic concurrency problem used to illustrate the challenges
of concurrent programming. The problem involves a group of philosophers sitting at a table in a
circle. Between each philosopher is a fork. A philosopher can either be thinking or eating. To eat,
a philosopher must first pick up both the fork on their left and right side.

There are many flavours of this algorithm with increasing complexity to handle the concurrency
primitives. To evaluate the expressiveness of Verlixir, we will specify the system with a naive
approach:

• A philosopher will ask to be sat at the table.

• A philosopher will attempt to pick up the fork to their left.

• A philosopher will attempt to pick up the fork to their right.

• A philosopher will eat for some time.

• A philosopher will put down the left fork, right fork and then leave the table.

In particular, the process algebra for a philosopher, Phil is as follows:

Phil = (sit→ pickupLeft→ pickupRight→ eat→ putdownLeft→ putdownRight→ leave→ SKIP)

The issue with this approach is that if all the philosophers pick up the fork to their left, then they
will all be waiting for the fork to their right. This is a known deadlock, and we would expect
Verlixir to be expressive enough to detect this. When we run Verlixir on the dining philosopher
specification, it reports a violation of the safety property that a deadlock should not occur. We
can read the trail produced by Verlixir, to determine our understanding of how a deadlock may

1The numbers 1, 3 and 5 are the process identifiers assigned to the participants by Verlixir. Although this reveals
some of the internals Verlixir uses to model programs, being aware of what these are can help in understanding
errors. They do not have any significance in the actual program.

55

arise in this naive implementation, is correct.

To summarise the trail produced by Verlixir, we will demonstrate a process composition for two
philosophers, Phil0 and Phil1 that results in a deadlock. We denote the fork on the philosopher’s
left as Forki and on the right as Fork(i+1)%n for philosopher Phili, where n is the number of
philosophers; similarly, for a fork, the philosophers are located at i and (i− 1)%n. We will use L
and R interchangeably to express left and right.

Phili = (siti → pickupiL → pickupiR → eati → putdowniL → putdowniR → leavei → SKIP)
Forki = (pickupLi → putdownLi → Forki) | (pickupRi → putdownRi → Forki)
DiningPhilosophers(2) = Phil0 || Phil1 || Fork0 || Fork1

Which when run using Verlixir, produces the violating trace:

sit0 → sit1 → pickup00 → pickup11 → STOP

We can observe that even without explicitly specifying system properties, Verlixir is capable of
detecting a deadlock in systems. We can now look at a shortened version of the message log
produced by Verlixir to reason the counterexample produced, aligns with our intuition.

1 The program likely reached a deadlock. Generating trace.
2 <<<Message Events>>>
3 send [2,PICKUP,4]
4 send [4, OK]
5 send [3,PICKUP,5]
6 send [5, OK]
7 send [2,PICKUP,5]
8 send [3,PICKUP,4]
9 <<<Deadlock>>>

Listing 6.2: Message log produced by counterexample of a Dining Philosophers deadlock.

The trace in listing 6.2 shows four pickup messages being sent. The values in these messages do
not necessarily directly correspond to anything in the Elixir program, however, we can use some
intuition to work out what is going on. For any message log, the first element will be the intended
receiver. Hence, the first message shows a philosopher with process identifier 4 sending a pickup
message to a fork with process identifier 2. Continuing this logic, we can see the interleaving results
in the philosophers with identifiers 4 and 5, both attempting to pick up the fork to their left. We
see the forks confirming they have been acquired, before the philosophers attempt to pick up the
fork to their right. This is where the trace ends, as Verlixir reports a non-terminating state has
been reached and the system has deadlocked.

We can see that if we map the process identifiers for philosophers and forks to the numbering
system we used in the process algebra, the trace aligns with our operational semantics for the
system. This gives us confidence that Verlixir is correctly identifying deadlocks in the system.

6.1.5 Raft Leader Election
The final algorithm we will use in the evaluation of Verlixir’s expressiveness is Raft [52]. The
Raft consensus algorithm was introduced to be a simpler consensus algorithm than Paxos. It is a
consensus algorithm for managing a replicated log. The result produced is similar to multi-Paxos
and is as efficient as Paxos. Unlike Paxos, Raft explicitly coordinates through a leader.

We split the design of Raft into two components: leader election and log replication. We will
primarily be focusing on leader election in this evaluation. The Raft design involves four process
types: clients, followers, candidates and leaders. Clients communicate directly with leaders to
propose log entries for replication. Leaders will commit these log messages and forward them onto
followers. There can be multiple leaders at any moment, however, the Raft algorithm is divided
into ‘terms’. If multiple leaders forward log entries to a follower, it will only respect the leader
elected for the highest term. If a follower does not receive a message from a leader within a certain

56

time frame, it will mark itself as a candidate and initiate a new leader election.

Leader election involves selecting a new term number and asking all followers to vote for the
candidate. If a candidate receives a majority of votes, it marks itself as the leader for the term.
The consensus algorithm is designed such that only one leader can be elected per term, in the case
of a split vote then no leader is elected.

Instrumenting Raft

We first use Verlixir to determine we can reach consensus on a round of leader election. To do this,
we configure our implementation by introducing a coordinator to initiate the first round of leader
election. The coordinator does the following:

• Set n_nodes = 3

• Set n_rounds = 1

• Spawn 3 followers

• Bind a unique new term number to each follower

• Broadcast a start_election message to all followers

• Await an elected message from a leader

We instrument the program in such a way that we enforce an election to take place, and with
our intuition of the Raft algorithm, as all the followers have unique term numbers, we expect one
of them to be elected as the leader (the follower with the highest unique term number). With
the system instrumented in such a way, the only liveness requirement we are interested in is the
eventual termination of the program (considering the program will only terminate when the co-
ordinator receives an elected message). When we run Verlixir on the instrumented program, we
observe every execution is a terminating one. This gives us confidence the Raft specification is
able to reach consensus on a leader.

Introducing Timeouts

Next, we slowly expand our system requirements and incrementally test correctness as we go. In-
stead of instrumenting the system with a coordinator to begin an election, a true Raft system will
automatically begin rounds of leader election. Raft does this using timeouts. Every participant in
the system is able to initiate an election if they fail to receive a message from the leader within
a specified time frame. We can now introduce this behaviour into our system. The coordinator
no longer broadcasts a start_election message; instead, the followers will rely on the timeout to
initiate elections. We again run Verlixir on the updated model, and observe that the system is still
able to reach consensus on a leader (as determined by termination).

Safety Requirements

To complete our consensus specification, we are interested in the following safety requirement:

• SR: Only a single leader is elected per term.

Although up to this point, we have shown the liveness property, that the system eventually termi-
nates with a leader holds, this is not actually a guaranteed requirement of the system. Due to split
votes, we cannot always guarantee election. What we can guarantee is that if a leader is elected,
it is the only leader for that term.

57

We introduce the SR into our system by increasing n_rounds so that we can observe multiple
participants being elected as leaders. We can then introduce the SR formally with LTL:

SR = □(elected_term ̸= previously_elected_term)

LTLixir does not explicitly support the (̸=) operator, so we can rewrite the SR in LTLixir as:

1 @ltl """
2 !<>[](elected_term == previously_elected_term)
3 """

This is a more implementation-specific approach. We can run the system with n_rounds as 2,
then the variables will be set to the values of the two rounds. The LTL will hence ensure that we
never always have an execution where the elected terms are equivalent.

We can finally verify the system with this property and determine whether the system is cor-
rect with respect to our specification.

6.2 Verlixir vs. Existing Work
We will now compare Verlixir to existing state-of-the-art work in verification-aware languages and
modern programming language verification tools. We believe Verlixir is the first tool to support a
pure message-passing model of computation, and hence much of the design has introduced novel
techniques to support this. We will first discuss some of these techniques that differentiate Verlixir
from existing work. We will then provide a direct comparison between Verlixir and existing tools,
before discussing the future of Verlixir.

6.2.1 Difference in Approach
To our knowledge, Verlixir is the first verification-aware language to support a pure message-based
model. This is a significantly different approach to existing tools, which have either ignored con-
currency, used shared-memory models or communication over channels.

To support a shared-nothing model, we ensure all heap memory is kept local to processes and
all data sharing is achieved explicitly through communication. We applied heuristics to bound
the communication possible between processes, by modelling infinite mailboxes as finite Promela
channels. A challenge with a shared-nothing model is supporting passing data structures. To
support this, we introduced a technique to pass data structures between processes by storing data
structures in global memory and providing processes with pointers to access and send structures
through messages.

Any Elixir function can be used to spawn a new process. Elixir functions are also often highly
recursive. To handle both the spawning and recursion of a function, we introduced a method to
determine the nature of a function’s usage at runtime and instrument the behaviour depending on
the function’s usage. For example, a function being spawned as a new process needs to determine
a unique process identifier, whereas a function being called naturally needs access to the parent
process identifier and also needs to communicate with the parent through a rendezvous channel to
ensure the parent waits for the child to complete.

Elixir also uses a receive-anything pattern, where due to the language’s dynamic typing and match-
ing, determining how a message should be processed can involve peeking into the message to ex-
amine its contents. To enable verification of this, we introduced a method to process messages in
a non-blocking manner, where messages can be received and parsed in a first-in-first-fireable-out
(FIFFO) order.

To give a higher-level overview of where Verlixir differentiates itself from existing tools, we provide
a table of comparison in table 6.1.

58

Verlixir Java PathFinder Gomela Dafny Lean
Concurrency Actor-based Shared-memory Channel-based ✗ ✗

Propositional logic ✓ Limited ✗ ✓ ✓

Predicate logic ✗ ✗ ✗ ✓ ✓

Temporal logic ✓ ✗ ✗ ✗ ✗

Model checking Spin Built in Spin ✗ ✗

Theorem proving ✗ ✗ ✗ Z3 Built in
LTL ✓ ✗ ✗ ✗ ✗

Safety ✓ Deadlock Deadlock ✗ ✗

Liveness ✓ ✗ ✗ ✗ ✗

Weak Fairness ✓ ✗ ✗ ✗ ✗

Table 6.1: Comparison of Verlixir to existing tools.

6.2.2 Verlixir vs. Related Work
A large component of Verlixir is the translation of Elixir to Promela. As Verlixir is the first of
its kind, we have no benchmark to evaluate the translation progress. However, we can provide
insights into the translation process, results, and future work.

Model Performance

We have avoided an in-depth analysis of the performance of the models produced by the trans-
lator as this was not an initial focus of the research. However, to provide some insight into the
performance of the models produced, under the Spin model checker, we can examine the results
produced by the Dining Philosophers deadlock example.

• Depth: the depth of the state space explored is 198. Spin explores using a depth-first search.

• Process Count: the number of processes spawned by the model is 18. This is due to
the implementation of function calls relying on process spawning. Spin only handles 255
concurrent processes, but no models we have produced so far have come close to this limit.

• Execution Time: the execution time of the model for Dining Philosophers sits at 0.21
seconds. The state space is being explored at a rate of 652 states per second.

• State Vector: the state vector is 18168 bytes. This exceeds the default state vector Spin
uses (1024 bytes). Because of the available state vector compression techniques, increasing
the limit by a large factor is no concern.

System simulation has been pushed to the limits. The limiting factor for simulation is the con-
current process limit of 255. For example, we can run the algorithms we evaluated, with over 100
nodes, but any higher number could begin to reach the concurrent limit.

It would not be feasible to verify systems of this size. We do not propose a process limit for
verification, as it depends on each system and for the hardware Verlixir is run on. We did not
perform analysis on alternative backends, so no direct comparison could be made. However, the
results produced by Spin are sufficient for our purposes.

Optimisations

Verlixir was primarily designed to suit any backend. In particular, concurrent model checkers
such as Spin, PAT or PRISM. Given Spin is the targetted model checker, we introduced some
Spin-specific optimisations to the design in order to reduce the state space and time complexity
of model checking. For example, consider how we optimised the modelling over the Elixir mailbox
over multiple iterations:

59

• Singular Mailbox: the original mailbox was designed such that every process has its mail-
box (like Elixir). Receiving messages involves the same approach Elixir uses. Messages were
stored in a FIFO queue. To receive a message, we scan the queue pushing to a stack, until
we find a message that matches the pattern. We can then take the message from the queue,
and re-apply the stack.

• Multiple Mailboxes: we optimised this approach to reduce scanning by splitting the mail-
box up such that each possible message type in the system has its own, per-process mailbox.
This reduces the time required to search the state space as channel orderings are more de-
terministic.

• Random read, sorted insert: we further improve by moving from sequential select ?
Promela’s random select ?? operator to match messages in the mailbox. We do this to
reduce the number of process interleavings that need to be explored in the state space.
Finally, now we are using random selection, we can also use sorted insert !!. Because we are
reading randomly, the order of messages in the mailbox is not important, so by sorting the
mailboxes we reduce the state space.

Future Optimisations

There is lots of scope to further optimise the translation process. The existing framework has been
designed such that this is easy to achieve. For example, we currently translate all Elixir functions
to Promela functions. This incurs an overhead that may not be strictly necessary. By statically
analysing the behaviour of a recursive function, we could apply heuristics to unroll the recursion
and inline the function using an imperative style loop.

As alluded to earlier, there is room to replace the Spin backend with another model checker.
Although we identified Spin as sufficient for our purposes, as explored in section 2.2, other model
checkers support features that Spin does not. For example, probabilistic model checkers can more
accurately model systems that involve randomness, such as gossip protocols. We aim for the design
of the IR to be flexible enough to support swapping out backends.

6.3 Summary
This chapter has highlighted the expressiveness of Verlixir by modelling and verifying distributed
algorithms that are frequently used in both industry and academia. We have shown the toolchain is
capable of supporting these specifications, verifying properties over them and providing clear feed-
back when properties are violated. We have also compared Verlixir to existing tools, highlighting
the differences in capabilities provided for various verification-aware languages. Finally, we have
evaluated the translation process from Elixir to Promela, providing insights into the optimisations
that have been made and the potential for future work.

60

Chapter 7

Conclusion

In this paper, we aimed to provide modelling and verification techniques for message-passing sys-
tems. To evaluate these techniques, we target Elixir, the actor-based, concurrent programming
language. As part of our research, we introduced Verlixir, a verification-aware language for message-
passing systems.

This project aimed to achieve some key objectives required for specifying and implementing dis-
tributed algorithms in a ‘correct’ manner. The specification language supported by Verlixir, along-
side Verlixir’s operational modes, moves towards achieving these objectives.

Verlixir provides a simulator capable of simulating large-scale distributed systems. These systems
can be implemented in a modern programming language, and simulated in a controlled environ-
ment. This allows developers to prototype complex systems and observe their behaviour before
deploying them in a production environment. Because Verlixir directly integrates with Elixir, the
system can be easily transferred from simulation to production.

We also have empowered developers to verify the behaviour of systems, ensuring formal safety
and liveness properties are adhered to. These properties can be specified alongside the implemen-
tation of the system, and verified without the need for a separate model. Counterexamples are
produced in an Elixir-friendly format, allowing developers to debug the system and understand
why a property was violated; particularly focusing on the message-passing interleaving that caused
the violation.

To extend confidence, Verlixir supports modelling systems across different configurations. This
ensures systems behave consistently across different environments. This is particularly useful for
distributed systems that are subject to network partitions, or systems that are required to scale
up or down.

7.1 Future Work
Throughout the course of research, we have identified several areas for future work. We have in-
dicated some of these areas previously, but we will discuss them in more detail here. An obvious
extension would involve supporting a larger Elixir feature set, but we will go into depth on more
unique extensions.

A large inspiration for this project was the verification-aware language, Dafny. The Dafny language
sets out to achieve similar claims to Verlixir, but takes a different approach. Dafny fundamentally
relies on theorem proving for verification, whereas Verlixir uses model checking. In particular,
Dafny transpiles to Boogie, a verification-aware intermediate language. Boogie currently then uses
Z3 for theorem proving. Theorem proving provides formal proofs of correctness, which give stronger
claims than the pre- and post-condition checks we assert in model checking. We believe an ideal
solution to verify message-passing systems could involve a combination of both theorem proving
and model checking. We could extend Verlixir to support theorem proving within Elixir processes,
and then continue to use model checking for verifying inter-process communication. This would

61

provide a stronger guarantee of correctness for the system as a whole.

We explored the differences between Verlixir and other verification-aware languages. A key in-
sight we drew from this is the lack of capability for injecting faults into models. Many distributed
algorithms have been designed with an approach such that given there are no more than n faults,
the system will still follow the specification. In order to truly scrutinise these algorithms, we need
the capability to inject faults into the system. A simple extension to Verlixir could involve injecting
random terminating faults into processes, and then observing the system’s fault tolerance under
these conditions.

A second insight gathered from comparing tools is the lack of support for verifying computa-
tion tree logic (CTL) in modern programming languages. CTL is a temporal logic that allows us
to reason about paths in a system. A simple example of where CTL could be useful is in verify-
ing the Paxos algorithm. To ensure fairness between all proposers, we could specify and verify a
CTL property that states: there exists a path where each proposal is accepted. We believe that
extending Verlixir to support CTL would provide a more comprehensive verification framework for
message-passing systems.

7.2 Ethical Considerations
Throughout the report, refer to critical distributed systems used in the contexts of air traffic control
and healthcare. While the tools and research discussed are designed to improve the reliability of
these systems, relying on them in isolation is not sufficient. Testing distributed systems is hard,
and it is important that rigorous testing is performed by multiple parties using multiple techniques.
That said, we believe Verlixir provides an advancement in the verification of distributed systems.

7.3 Final Remarks
The goal of this project was to design a tool that could verify real-world distributed algorithms
which are used in research and industry. Throughout researching Verlixir, many notional ex-
amples were used to demonstrate the capabilities of the tool. Through the evaluation, we have
shown these capabilities extend to real, well-known algorithms such as Paxos and Raft. In achiev-
ing this, we believe Verlixir has the potential to be a valuable tool for verifying distributed systems.

Historically, model checking has required hand-translation of code into a model. Verlixir lowers the
barrier to entry for verifying systems. If a programmer can write their implementation using the
provided LTLixir set, the system verification comes for free. We believe moving towards a world
where verification-aware languages become the standard, will greatly improve the reliability of
code. Instead of programmers thinking about how to implement a system, they can focus on what
the system should do. A shift in mindset away from implementation specifics, towards reasoning
about the safety and liveness of a system means that we can describe our systems more holistically.

With the recent rise in artificially intelligent copilots [58, 59, 60], the future of programming
could move towards a more declarative style. We programmers could simply be burdened to write
the system specification, in terms of safety and liveness, and a large-language model could generate
the implementation.

62

Bibliography

[1] Communicating Sequential Processes Available from: http://www.usingcsp.com/cspbook.
pdf.

[2] Process Analysis Toolkit (PAT) 3.5 User Manual Available from: https://pat.comp.nus.edu.
sg/wp-source/resources/OnlineHelp/pdf/Help.pdf.

[3] The software model checker BLAST Available from: https://www.sosy-lab.org/research/
pub/2007-STTT.The_Software_Model_Checker_BLAST.pdf.

[4] PRISM Model Checker Available from: https://www.prismmodelchecker.org/.

[5] Lamport L. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems (TOPLAS). 1994 May 1;16(3):872-923. Available from: https://lamport.
azurewebsites.net/pubs/lamport-actions.pdf.

[6] Lamport L. Specifying concurrent systems with TLA+. Calculational System Design. 1999 Apr
23:183-247.Available from: https://lamport.azurewebsites.net/tla/xmxx01-06-27.pdf.

[7] Yu Y, Manolios P, Lamport L. Model checking TLA+ specifications. InAdvanced Research
Working Conference on Correct Hardware Design and Verification Methods 1999 Sep 27 (pp.
54-66). Berlin, Heidelberg: Springer Berlin Heidelberg.Available from: https://lamport.
azurewebsites.net/pubs/yuanyu-model-checking.pdf.

[8] Lamport L. The PlusCal algorithm language. InInternational Colloquium on Theoretical As-
pects of Computing 2009 Aug 16 (pp. 36-60). Berlin, Heidelberg: Springer Berlin Heidel-
berg.Available from: https://lamport.azurewebsites.net/pubs/pluscal.pdf.

[9] The Model Checker SPIN Available from: https://spinroot.com/spin/Doc/ieee97.pdf.

[10] Build simple, secure, scalable systems with Go Available from: https://go.dev/.

[11] Elixir is a dynamic, functional language for building scalable and maintainable applications.
Available from: https://elixir-lang.org/.

[12] A brief introduction to BEAM Available from: https://www.erlang.org/blog/
a-brief-beam-primer/.

[13] Practical functional programming for a parallel world Available from: https://www.erlang.
org/.

[14] Phoenix Peace of mind from prototype to production Available from: https://
phoenixframework.org/.

[15] Discord Available from: https://discord.com/.

[16] Financial Times Available from: https://www.ft.com/.

[17] Mediero Iturrioz J. Verification of Concurrent Programs in Dafny. Available from: https:
//addi.ehu.es/bitstream/handle/10810/23803/Report.pdf?isAllowed=y&sequence=2.

[18] The Dafny Programming and Verification Language Available from: dafny.org

[19] Elixir, Macros, Our First Macro Available from: https://hexdocs.pm/elixir/macros.
html#our-first-macro.

63

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
https://pat.comp.nus.edu.sg/wp-source/resources/OnlineHelp/pdf/Help.pdf
https://pat.comp.nus.edu.sg/wp-source/resources/OnlineHelp/pdf/Help.pdf
https://www.sosy-lab.org/research/pub/2007-STTT.The_Software_Model_Checker_BLAST.pdf
https://www.sosy-lab.org/research/pub/2007-STTT.The_Software_Model_Checker_BLAST.pdf
https://www.prismmodelchecker.org/
https://lamport.azurewebsites.net/pubs/lamport-actions.pdf
https://lamport.azurewebsites.net/pubs/lamport-actions.pdf
https://lamport.azurewebsites.net/tla/xmxx01-06-27.pdf
https://lamport.azurewebsites.net/pubs/yuanyu-model-checking.pdf
https://lamport.azurewebsites.net/pubs/yuanyu-model-checking.pdf
https://lamport.azurewebsites.net/pubs/pluscal.pdf
https://spinroot.com/spin/Doc/ieee97.pdf
https://go.dev/
https://elixir-lang.org/
https://www.erlang.org/blog/a-brief-beam-primer/
https://www.erlang.org/blog/a-brief-beam-primer/
https://www.erlang.org/
https://www.erlang.org/
https://phoenixframework.org/
https://phoenixframework.org/
https://discord.com/
https://www.ft.com/
https://addi.ehu.es/bitstream/handle/10810/23803/Report.pdf?isAllowed=y&sequence=2
https://addi.ehu.es/bitstream/handle/10810/23803/Report.pdf?isAllowed=y&sequence=2
dafny.org
https://hexdocs.pm/elixir/macros.html#our-first-macro
https://hexdocs.pm/elixir/macros.html#our-first-macro

[20] De Moura L, Bjørner N. Z3: An efficient SMT solver. InInternational conference on Tools
and Algorithms for the Construction and Analysis of Systems 2008 Mar 29 (pp. 337-340).
Berlin, Heidelberg: Springer Berlin Heidelberg. Available from: https://link.springer.com/
content/pdf/10.1007/978-3-540-78800-3_24.pdf.

[21] Hoare CA. An axiomatic basis for computer programming. Communications of the ACM. 1969
Oct 1;12(10):576-80. Available from: https://dl.acm.org/doi/10.1145/363235.363259

[22] Lean and its Mathematical library Available from: https://leanprover-community.
github.io/.

[23] dialyzer Available from: https://www.erlang.org/doc/man/dialyzer.html.

[24] Leino KR. Dafny: An automatic program verifier for functional correctness. InInterna-
tional conference on logic for programming artificial intelligence and reasoning 2010 Apr
25 (pp. 348-370). Berlin, Heidelberg: Springer Berlin Heidelberg. Available from: https:
//link.springer.com/chapter/10.1007/978-3-642-17511-4_20.

[25] Nipkow T. Getting started with Dafny: A guide. Software Safety and Security: Tools
for Analysis and Verification. 2012;33:152. Available from: https://dafny.org/dafny/
OnlineTutorial/guide.

[26] Barnett M, Chang BY, DeLine R, Jacobs B, Leino KR. Boogie: A modular reusable verifier for
object-oriented programs. InFormal Methods for Components and Objects: 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures
4 2006 (pp. 364-387). Springer Berlin Heidelberg. Available from: https://link.springer.
com/chapter/10.1007/11804192_17.

[27] Hoare CA. Communicating sequential processes. Englewood Cliffs: Prentice-hall; 1985 Jan.

[28] Lynch NA. Distributed algorithms. Elsevier; 1996 Apr 16. Available from: https://lib.
fbtuit.uz/assets/files/5.-NancyA.Lynch.DistributedAlgorithms.pdf.

[29] Clarke EM. Model checking. InFoundations of Software Technology and Theoretical Computer
Science: 17th Conference Kharagpur, India, December 18-20, 1997 Proceedings 17 1997 (pp.
54-56). Springer Berlin Heidelberg.

[30] Agha G. Actors: a model of concurrent computation in distributed systems. MIT press; 1986
Dec 17.

[31] Available from: https://hexdocs.pm/elixir/processes.html#links

[32] Herlihy, M. & Shavit, N. (2008), The art of multiprocessor programming. , Morgan Kaufmann.
Available from: https://cs.ipm.ac.ir/asoc2016/Resources/Theartofmulticore.pdf

[33] Lamport, 1979. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE transactions on computers, 100(9), pp.690-691.

[34] Kripke, S.A., 1980. Naming and necessity. Harvard University Press.

[35] Emerson, E.A., 1990. Temporal and modal logic. In Formal Models and Semantics (pp. 995-
1072). Elsevier.

[36] Baier, C. and Katoen, J.P., 2008. Principles of model checking. MIT press.

[37] Huth, M. and Ryan, M., 2004. Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press.

[38] Alur, R., Henzinger, T.A. and Kupferman, O., 2002. Alternating-time temporal logic. Journal
of the ACM (JACM), 49(5), pp.672-713.

[39] Smith, P.J., Spencer, A.L. and Billings, C.E., 2007. Strategies for designing distributed sys-
tems: case studies in the design of an air traffic management system. Cognition, Technology &
Work, 9, pp.39-49.

64

https://link.springer.com/content/pdf/10.1007/978-3-540-78800-3_24.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-78800-3_24.pdf
https://dl.acm.org/doi/10.1145/363235.363259
https://leanprover-community.github.io/
https://leanprover-community.github.io/
https://www.erlang.org/doc/man/dialyzer.html
https://link.springer.com/chapter/10.1007/978-3-642-17511-4_20
https://link.springer.com/chapter/10.1007/978-3-642-17511-4_20
https://dafny.org/dafny/OnlineTutorial/guide
https://dafny.org/dafny/OnlineTutorial/guide
https://link.springer.com/chapter/10.1007/11804192_17
https://link.springer.com/chapter/10.1007/11804192_17
https://lib.fbtuit.uz/assets/files/5.-NancyA.Lynch.DistributedAlgorithms.pdf
https://lib.fbtuit.uz/assets/files/5.-NancyA.Lynch.DistributedAlgorithms.pdf
https://hexdocs.pm/elixir/processes.html#links
https://cs.ipm.ac.ir/asoc2016/Resources/Theartofmulticore.pdf

[40] Sarkar, B.K. and Sana, S.S., 2020. A conceptual distributed framework for improved and
secured healthcare system. International Journal of Healthcare Management, 13(sup1), pp.74-
87.

[41] Lamport, L., 2001. Paxos made simple. ACM SIGACT News (Distributed Computing Col-
umn) 32, 4 (Whole Number 121, December 2001), pp.51-58.

[42] Marzullo, K., Mei, A. and Meling, H., 2013. A simpler proof for paxos and fast paxos. Course
notes.

[43] Jiang, K., 2009. Model checking c programs by translating c to promela.

[44] Dilley, N. and Lange, J., 2020. Bounded verification of message-passing concurrency in Go
using Promela and Spin. arXiv preprint arXiv:2004.01323.

[45] Tabone, G. and Francalanza, A., 2022. Session Fidelity for ElixirST: A Session-Based Type
System for Elixir Modules. arXiv preprint arXiv:2208.04631.

[46] Hebert, F., 2019. Property-Based Testing with PropEr, Erlang, and Elixir: Find Bugs Before
Your Users Do.

[47] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-
subramanian, S., Vosshall, P. and Vogels, W., 2007. Dynamo: Amazon’s highly available key-
value store. ACM SIGOPS operating systems review, 41(6), pp.205-220.

[48] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M. and Lewin, D., 1997, May.
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on
the world wide web. In Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing (pp. 654-663).

[49] Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat, S.,
Gubarev, A., Heiser, C., Hochschild, P. and Hsieh, W., 2013. Spanner: Google’s globally
distributed database. ACM Transactions on Computer Systems (TOCS), 31(3), pp.1-22.

[50] The Concise Promela Reference. Available from: https://spinroot.com/spin/Man/Quick.
html.

[51] Leino, K.R.M., 2018. Modeling concurrency in Dafny. In Engineering Trustworthy Software
Systems: Third International School, SETSS 2017, Chongqing, China, April 17–22, 2017, Tu-
torial Lectures 3 (pp. 115-142). Springer International Publishing.

[52] Ongaro, D. and Ousterhout, J., 2014. In search of an understandable consensus algorithm. In
2014 USENIX annual technical conference (USENIX ATC 14) (pp. 305-319).

[53] Havelund, K. and Pressburger, T., 2000. Model checking java programs using java pathfinder.
International Journal on Software Tools for Technology Transfer, 2, pp.366-381.

[54] Chandra, T.D., Griesemer, R. and Redstone, J., 2007, August. Paxos made live: an engineer-
ing perspective. In Proceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing (pp. 398-407).

[55] Schwartz, R.L. and Melliar-Smith, P.M., 1981, April. Temporal logic specification of dis-
tributed systems. In ICDCS (pp. 446-454).

[56] Lehmann, D. and Rabin, M.O., 1981, January. On the advantages of free choice: A symmetric
and fully distributed solution to the dining philosophers problem. In Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages (pp. 133-138).

[57] Havelund, K. and Pressburger, T., 2000. Model checking java programs using java pathfinder.
International Journal on Software Tools for Technology Transfer, 2, pp.366-381.

[58] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and
Polosukhin, I., 2017. Attention is all you need. Advances in neural information processing
systems, 30.

65

https://spinroot.com/spin/Man/Quick.html
https://spinroot.com/spin/Man/Quick.html

[59] Dakhel, A.M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M.C. and Jiang, Z.M.J.,
2023. Github copilot ai pair programmer: Asset or liability?. Journal of Systems and Software,
203, p.111734.

[60] Orenes-Vera, M., Martonosi, M. and Wentzlaff, D., 2023. From RTL to SVA: LLM-assisted
generation of Formal Verification Testbenches. arXiv preprint arXiv:2309.09437.

[61] Liu, Z., Zhu, S., Qin, B., Chen, H. and Song, L., 2021, April. Automatically detecting and
fixing concurrency bugs in go software systems. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems (pp.
616-629).

[62] Gabet, J. and Yoshida, N., 2020. Static race detection and mutex safety and liveness for go
programs. In 34th European Conference on Object-Oriented Programming (ECOOP 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[63] Hewitt, C., Bishop, P. and Steiger, R., 1973. Session 8 formalisms for artificial intelligence a
universal modular actor formalism for artificial intelligence. In Advance papers of the conference
(Vol. 3, p. 235). Menlo Park, CA: Stanford Research Institute.

[64] Jazequel, J.M. and Meyer, B., 1997. Design by contract: The lessons of Ariane. Computer,
30(1), pp.129-130.

[65] Eiffel. Available from: https://www.eiffel.org/doc/eiffel/Learning_Eiffel.

[66] Huth, M. and Ryan, M., 2004. Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press.

[67] Duflot, M., Kwiatkowska, M., Norman, G. and Parker, D., 2006. A formal analysis of Blue-
tooth device discovery. International journal on software tools for technology transfer, 8, pp.621-
632.

[68] Cachin, C., Guerraoui, R. and Rodrigues, L., 2011. Introduction to reliable and secure dis-
tributed programming. Springer Science & Business Media.

[69] Lamport, L., A Science of Concurrent Programs.

66

https://www.eiffel.org/doc/eiffel/Learning_Eiffel

Appendix A

Full Code Listings

A.1 Verlixir Example

1 import VaeLib
2

3 defmodule Server do
4 @init true
5 @ltl "(q)U([]p)"
6 @spec start_server() :: :ok
7 @model {:number_of_rounds}
8 def start_server do
9 predicate p, alive_clients == client_n * number_of_rounds

10 predicate q, !p
11 client_n = 1
12 number_of_rounds = 2
13 alive_clients = 0
14 for _ <- 1..client_n do
15 client = spawn(Client, :start_client, [])
16 send(client, {:bind, self(), number_of_rounds})
17 end
18 alive_clients = if number_of_rounds > 1 do
19 check_clients(client_n * number_of_rounds, alive_clients)
20 else
21 0
22 end
23 end
24

25 @spec check_clients(integer(), integer()) :: integer()
26 def check_clients(expected_clients, current_clients) do
27 if expected_clients == current_clients do
28 current_clients
29 else
30 receive do
31 {:im_alive} -> check_clients(expected_clients, current_clients

+ 1)
32 end
33 end
34 end
35 end
36

37 defmodule Client do
38 @spec start_client() :: :ok
39 def start_client do

67

40 {server, rounds} = receive do
41 {:bind, sender, round_limit} -> {sender, round_limit}
42 end
43 next_round(server, rounds)
44 end
45

46 @spec next_round(pid(), integer()) :: :ok
47 defv next_round(server, rounds), pre: rounds >= 0 do
48 if rounds == 0 do
49 :ok
50 else
51 send(server, {:im_alive})
52 next_round(server, rounds - 1)
53 end
54 end
55 end

A.2 Paxos
A.2.1 First paxos implementation with a bug

1 import VaeLib
2

3 defmodule Acceptor do
4

5 @spec start_acceptor() :: :ok
6 def start_acceptor do
7 acceptedProposal = -1
8 acceptedValue = -1
9 minProposal = -1

10 accept_handler(acceptedProposal, acceptedValue, minProposal)
11 end
12

13 @spec accept_handler(integer(), integer(), integer()) :: :ok
14 def accept_handler(acceptedProposal, acceptedValue, minProposal) do
15 receive do
16 {:prepare, n, proposer} ->
17 if n > minProposal do
18 send proposer, {:promise, acceptedProposal, acceptedValue}
19 accept_handler(acceptedProposal, acceptedValue, n)
20 else
21 send proposer, {:promise, acceptedProposal, acceptedValue}
22 accept_handler(acceptedProposal, acceptedValue, minProposal)
23 end
24 {:accept, n, value, proposer} ->
25 if n >= minProposal do
26 send proposer, {:accepted, n}
27 accept_handler(n, value, n)
28 else
29 send proposer, {:accepted, minProposal}
30 accept_handler(acceptedProposal, acceptedValue, minProposal)
31 end
32 {:terminate} ->
33 IO.puts("Terminating acceptor")
34 end
35 end

68

36 end
37

38 defmodule Proposer do
39 @spec start_proposer() :: :ok
40 def start_proposer do
41 receive do
42 {:bind, acceptors, proposal_n, value, maj, learner} ->

proposer_handler(acceptors, proposal_n, value, maj, learner)
43 end
44 end
45

46 @spec proposer_handler(list(), integer(), integer(), integer(),
integer()) :: :ok

47 def proposer_handler(acceptors, proposal_n, value, maj, learner) do
48 for acceptor <- acceptors do
49 send acceptor, {:prepare, proposal_n, self()}
50 end
51

52 receive_prepared(proposal_n, value, maj, 0, 0)
53 {prepared_n, prepared_value} = receive do
54 {:majority_prepared, n, v} -> {n, v}
55 end
56

57 for acceptor <- acceptors do
58 send acceptor, {:accept, prepared_n, prepared_value, self()}
59 end
60

61 accepted_n = receive_accepted(maj, prepared_n, 0, 0)
62

63 if accepted_n != -1 do
64 # Value chosen
65 send learner, {:learned, prepared_value}
66 else
67 # Value was rejected
68 send learner, {:learned, 0}
69 end
70 end
71

72 @spec receive_prepared(integer(), integer(), integer(), integer(),
integer()) :: :ok

73 def receive_prepared(proposal_n, value, maj, highest_seen_proposal,
count) do

74 if count >= maj do
75 send self(), {:majority_prepared, proposal_n, value}
76 else
77 receive do
78 {:promise, acceptedProposal, acceptedValue} ->
79 if acceptedValue != -1 && acceptedProposal >

highest_seen_proposal do
80 receive_prepared(proposal_n, acceptedValue, maj,

acceptedProposal, count + 1)
81 else
82 receive_prepared(proposal_n, value, maj,

highest_seen_proposal, count + 1)
83 end
84 end
85 end
86 end

69

87

88 @spec receive_accepted(integer(), integer(), integer(), integer()) ::
integer()

89 def receive_accepted(maj, prepared_n, rejections, count) do
90 if count >= maj do
91 if rejections >= maj do # BUG IS HERE
92 -1
93 else
94 prepared_n
95 end
96 else
97 receive do
98 {:accepted, n} ->
99 if n > prepared_n do

100 receive_accepted(maj, prepared_n, rejections + 1, count + 1)
101 else
102 receive_accepted(maj, prepared_n, rejections, count + 1)
103 end
104 end
105 end
106 end
107 end
108

109 defmodule Learner do
110

111 @spec start() :: :ok
112 @init true
113 def start do
114 n_acceptors = 3
115 quorum = 2
116 n_proposers = 2
117 vals = [42, 31]
118 acceptors = for _ <- 1..n_acceptors do
119 spawn(Acceptor, :start_acceptor, [])
120 end
121

122 for i <- 1..n_proposers do
123 proposer = spawn(Proposer, :start_proposer, [])
124 val_i = i - 1
125 val = Enum.at(vals, val_i)
126 send proposer, {:bind, acceptors, i, val, quorum, self()}
127 end
128 wait_learned(acceptors, n_proposers, 0)
129 end
130

131 @spec wait_learned(list(), integer(), integer()) :: :ok
132 @ltl """
133 []((p->!<>q) && (q->!<>p))
134 <>(r)
135 [](s)
136 """
137 def wait_learned(acceptors, p_n, learned_n) do
138 predicate p, final_value == 31
139 predicate q, final_value == 42
140 predicate r, final_value != 0
141 predicate s, final_value == 0 || final_value == 31 || final_value ==

42
142

70

143 if p_n == learned_n do
144 for acceptor <- acceptors do
145 send acceptor, {:terminate}
146 end
147 else
148 receive do
149 {:learned, final_value} ->
150 IO.puts("Learned final_value:")
151 IO.puts(final_value)
152 end
153 wait_learned(acceptors, p_n, learned_n + 1)
154 end
155 end
156 end

A.2.2 First paxos bug message log

1 Never claim moves to line 6 [(1)]
2 138: proc 7 (start_proposer:1) test_out.pml:314 Recv

7,BIND,0,0,2,0,0,0,0,0,1,0,0,0,0,0,42,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 <-
queue 20 (__BIND)

3 154: proc 8 (proposer_handler:1) test_out.pml:350 Send
1,PREPARE,0,0,1,0,0,0,0,0,7,0
-> queue 23 (__PREPARE)

4 158: proc 8 (proposer_handler:1) test_out.pml:350 Send
3,PREPARE,0,0,1,0,0,0,0,0,7,0
-> queue 23 (__PREPARE)

5 162: proc 8 (proposer_handler:1) test_out.pml:350 Send
5,PREPARE,0,0,1,0,0,0,0,0,7,0
-> queue 23 (__PREPARE)

6 197: proc 6 (accept_handler:1) test_out.pml:262 Recv
5,PREPARE,0,0,1,0,0,0,0,0,7,0
<- queue 23 (__PREPARE)

7 203: proc 6 (accept_handler:1) test_out.pml:272 Send
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

8 205: proc 9 (receive_prepared:1) test_out.pml:425 Recv
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
<- queue 26 (__PROMISE)

9 219: proc 2 (accept_handler:1) test_out.pml:262 Recv
1,PREPARE,0,0,1,0,0,0,0,0,7,0
<- queue 23 (__PREPARE)

10 262: proc 4 (accept_handler:1) test_out.pml:262 Recv
3,PREPARE,0,0,1,0,0,0,0,0,7,0
<- queue 23 (__PREPARE)

11 278: proc 0 (:init::1) test_out.pml:521 Send
10,BIND,0,0,3,0,0,0,0,0,2,0,0,0,0,0,31,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ->
queue 20 (__BIND)

12 292: proc 4 (accept_handler:1) test_out.pml:272 Send
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

13 300: proc 11 (receive_prepared:1) test_out.pml:425 Recv
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
<- queue 26 (__PROMISE)

14 344: proc 2 (accept_handler:1) test_out.pml:272 Send
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

15 346: proc 10 (start_proposer:1) test_out.pml:314 Recv
10,BIND,0,0,3,0,0,0,0,0,2,0,0,0,0,0,31,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 <-
queue 20 (__BIND)

71

16 370: proc 14 (receive_prepared:1) test_out.pml:421 Send
7,MAJORITY_PREPARED,0,0,1,0,0,0,0,0,42,0
-> queue 46 (__MAJORITY_PREPARED)

17 372: proc 8 (proposer_handler:1) test_out.pml:363 Recv
7,MAJORITY_PREPARED,0,0,1,0,0,0,0,0,42,0
<- queue 46 (__MAJORITY_PREPARED)

18 382: proc 8 (proposer_handler:1) test_out.pml:386 Send
1,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
-> queue 47 (__ACCEPT)

19 386: proc 8 (proposer_handler:1) test_out.pml:386 Send
3,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
-> queue 47 (__ACCEPT)

20 390: proc 8 (proposer_handler:1) test_out.pml:386 Send
5,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
-> queue 47 (__ACCEPT)

21 421: proc 15 (proposer_handler:1) test_out.pml:350 Send
1,PREPARE,0,0,2,0,0,0,0,0,10,0
-> queue 23 (__PREPARE)

22 425: proc 15 (proposer_handler:1) test_out.pml:350 Send
3,PREPARE,0,0,2,0,0,0,0,0,10,0
-> queue 23 (__PREPARE)

23 429: proc 15 (proposer_handler:1) test_out.pml:350 Send
5,PREPARE,0,0,2,0,0,0,0,0,10,0
-> queue 23 (__PREPARE)

24 452: proc 16 (accept_handler:1) test_out.pml:262 Recv
1,PREPARE,0,0,2,0,0,0,0,0,10,0
<- queue 23 (__PREPARE)

25 458: proc 16 (accept_handler:1) test_out.pml:272 Send
10,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

26 460: proc 12 (accept_handler:1) test_out.pml:282 Recv
5,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
<- queue 47 (__ACCEPT)

27 466: proc 12 (accept_handler:1) test_out.pml:291 Send
7,ACCEPTED,0,0,1,0
-> queue 48 (__ACCEPTED)

28 474: proc 17 (accept_handler:1) test_out.pml:282 Recv
1,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
<- queue 47 (__ACCEPT)

29 492: proc 17 (accept_handler:1) test_out.pml:296 Send
7,ACCEPTED,0,0,2,0
-> queue 48 (__ACCEPTED)

30 494: proc 13 (accept_handler:1) test_out.pml:262 Recv
3,PREPARE,0,0,2,0,0,0,0,0,10,0
<- queue 23 (__PREPARE)

31 500: proc 13 (accept_handler:1) test_out.pml:272 Send
10,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

32 512: proc 18 (receive_accepted:1) test_out.pml:459 Recv
7,ACCEPTED,0,0,1,0
<- queue 48 (__ACCEPTED)

33 542: proc 21 (accept_handler:1) test_out.pml:262 Recv
5,PREPARE,0,0,2,0,0,0,0,0,10,0
<- queue 23 (__PREPARE)

34 554: proc 20 (receive_prepared:1) test_out.pml:425 Recv
10,PROMISE,0,0,-1,0,0,0,0,0,-1,0
<- queue 26 (__PROMISE)

35 560: proc 23 (accept_handler:1) test_out.pml:282 Recv
3,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
<- queue 47 (__ACCEPT)

36 578: proc 23 (accept_handler:1) test_out.pml:296 Send
7,ACCEPTED,0,0,2,0
-> queue 48 (__ACCEPTED)

72

37 580: proc 21 (accept_handler:1) test_out.pml:272 Send
10,PROMISE,0,0,1,0,0,0,0,0,42,0
-> queue 26 (__PROMISE)

38 582: proc 24 (receive_prepared:1) test_out.pml:425 Recv
10,PROMISE,0,0,-1,0,0,0,0,0,-1,0
<- queue 26 (__PROMISE)

39 602: proc 25 (receive_prepared:1) test_out.pml:421 Send
10,MAJORITY_PREPARED,0,0,2,0,0,0,0,0,31,0
-> queue 46 (__MAJORITY_PREPARED)

40 616: proc 15 (proposer_handler:1) test_out.pml:363 Recv
10,MAJORITY_PREPARED,0,0,2,0,0,0,0,0,31,0
<- queue 46 (__MAJORITY_PREPARED)

41 626: proc 15 (proposer_handler:1) test_out.pml:386 Send
1,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,10,0
-> queue 47 (__ACCEPT)

42 630: proc 15 (proposer_handler:1) test_out.pml:386 Send
3,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,10,0
-> queue 47 (__ACCEPT)

43 634: proc 15 (proposer_handler:1) test_out.pml:386 Send
5,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,10,0
-> queue 47 (__ACCEPT)

44 659: proc 27 (receive_accepted:1) test_out.pml:459 Recv
7,ACCEPTED,0,0,2,0
<- queue 48 (__ACCEPTED)

45 681: proc 29 (accept_handler:1) test_out.pml:282 Recv
5,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,10,0
<- queue 47 (__ACCEPT)

46 699: proc 29 (accept_handler:1) test_out.pml:291 Send
10,ACCEPTED,0,0,2,0
-> queue 48 (__ACCEPTED)

47 701: proc 28 (receive_accepted:1) test_out.pml:459 Recv
10,ACCEPTED,0,0,2,0
<- queue 48 (__ACCEPTED)

48 707: proc 30 (receive_accepted:1) test_out.pml:454 Send 1 -> queue 78 (ret)
49 711: proc 22 (accept_handler:1) test_out.pml:282 Recv

1,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,10,0
<- queue 47 (__ACCEPT)

50 717: proc 27 (receive_accepted:1) test_out.pml:466 Recv 1 <- queue 78 (ret1)
51 719: proc 27 (receive_accepted:1) test_out.pml:467 Send 1 -> queue 54 (ret)
52 721: proc 18 (receive_accepted:1) test_out.pml:471 Recv 1 <- queue 54 (ret2)
53 723: proc 18 (receive_accepted:1) test_out.pml:472 Sent 1 -> queue 22 (ret)
54 724: proc 8 (proposer_handler:1) test_out.pml:396 Recv 1 <- queue 22 (ret2)
55 740: proc 22 (accept_handler:1) test_out.pml:291 Send

10,ACCEPTED,0,0,2,0
-> queue 48 (__ACCEPTED)

56 742: proc 30 (receive_accepted:1) test_out.pml:459 Recv
10,ACCEPTED,0,0,2,0
<- queue 48 (__ACCEPTED)

57 748: proc 8 (proposer_handler:1) test_out.pml:401 Send
0,LEARNED,0,0,42,0
-> queue 90 (__LEARNED)

58 762: proc 31 (receive_accepted:1) test_out.pml:454 Send 2 -> queue 89 (ret)
59 766: proc 30 (receive_accepted:1) test_out.pml:471 Recv 2 <- queue 89 (ret2)
60 768: proc 30 (receive_accepted:1) test_out.pml:472 Send 2 -> queue 81 (ret)
61 772: proc 28 (receive_accepted:1) test_out.pml:471 Recv 2 <- queue 81 (ret2)
62 774: proc 28 (receive_accepted:1) test_out.pml:472 Sent 2 -> queue 41 (ret)
63 775: proc 15 (proposer_handler:1) test_out.pml:396 Recv 2 <- queue 41 (ret2)
64 791: proc 19 (wait_learned:1) test_out.pml:558 Recv

0,LEARNED,0,0,42,0
<- queue 90 (__LEARNED)

65 Never claim moves to line 5 [(!(!((final_value==42))))]
66 Never claim moves to line 16 [(1)]
67 807: proc 26 (accept_handler:1) test_out.pml:282 Recv

73

3,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,10,0
<- queue 47 (__ACCEPT)

68 813: proc 26 (accept_handler:1) test_out.pml:291 Send
10,ACCEPTED,0,0,2,0
-> queue 48 (__ACCEPTED)

69 815: proc 15 (proposer_handler:1) test_out.pml:401 Send
0,LEARNED,0,0,31,0
-> queue 90 (__LEARNED)

70 823: proc 32 (wait_learned:1) test_out.pml:558 Recv
0,LEARNED,0,0,31,0
<- queue 90 (__LEARNED)

71 spin: _spin_nvr.tmp:15, Error: assertion violated
72 spin: text of failed assertion: assert(!((final_value==31)))
73 Never claim moves to line 15 [assert(!((final_value==31)))]
74 spin: trail ends after 826 steps

Listing A.1: Message passing caused by the proposer’s protocol bug.

A.2.3 Second paxos implementation with a bug

1 import VaeLib
2

3 defmodule Acceptor do
4

5 @spec start_acceptor() :: :ok
6 def start_acceptor do
7 acceptedProposal = -1
8 acceptedValue = -1
9 minProposal = -1

10 accept_handler(acceptedProposal, acceptedValue, minProposal)
11 end
12

13 @spec accept_handler(integer(), integer(), integer()) :: :ok
14 def accept_handler(acceptedProposal, acceptedValue, minProposal) do
15 receive do
16 {:prepare, n, proposer} ->
17 if n > minProposal do
18 send proposer, {:promise, acceptedProposal, acceptedValue}
19 accept_handler(acceptedProposal, acceptedValue, n)
20 else
21 send proposer, {:promise, acceptedProposal, acceptedValue}
22 accept_handler(acceptedProposal, acceptedValue, minProposal)
23 end
24 {:accept, n, value, proposer} ->
25 if n >= minProposal do
26 send proposer, {:accepted, n}
27 accept_handler(n, value, n)
28 else
29 send proposer, {:accepted, minProposal}
30 accept_handler(acceptedProposal, acceptedValue, minProposal)
31 end
32 {:terminate} ->
33 IO.puts("Terminating acceptor")
34 end
35 end
36 end
37

38 defmodule Proposer do

74

39 @spec start_proposer() :: :ok
40 def start_proposer do
41 receive do
42 {:bind, acceptors, proposal_n, value, maj, learner} ->

proposer_handler(acceptors, proposal_n, value, maj, learner)
43 end
44 end
45

46 @spec proposer_handler(list(), integer(), integer(), integer(),
integer()) :: :ok

47 def proposer_handler(acceptors, proposal_n, value, maj, learner) do
48 for acceptor <- acceptors do
49 send acceptor, {:prepare, proposal_n, self()}
50 end
51

52 receive_prepared(proposal_n, value, maj, 0, 0)
53 {prepared_n, prepared_value} = receive do
54 {:majority_prepared, n, v} -> {n, v}
55 end
56

57 for acceptor <- acceptors do
58 send acceptor, {:accept, prepared_n, prepared_value, self()}
59 end
60

61 accepted_n = receive_accepted(maj, prepared_n, 0, 0)
62

63 if accepted_n != -1 do
64 # Value chosen
65 send learner, {:learned, prepared_value}
66 else
67 # Value was rejected
68 send learner, {:learned, 0}
69 end
70 end
71

72 @spec receive_prepared(integer(), integer(), integer(), integer(),
integer()) :: :ok

73 def receive_prepared(proposal_n, value, maj,
highest_seen_proposal, count) do

74 if count >= maj do
75 send self(), {:majority_prepared, proposal_n, value}
76 else
77 receive do
78 {:promise, acceptedProposal, acceptedValue} ->
79 if acceptedProposal > highest_seen_proposal do
80 receive_prepared(acceptedProposal, acceptedValue, maj,

acceptedProposal, count + 1) # BUG IS HERE
81 else
82 receive_prepared(proposal_n, value, maj,

highest_seen_proposal, count + 1)
83 end
84 end
85 end
86 end
87

88 @spec receive_accepted(integer(), integer(), integer(), integer())
:: integer()

89 def receive_accepted(maj, prepared_n, rejections, count) do

75

90 if count >= maj do
91 if rejections >= 1 do
92 -1
93 else
94 prepared_n
95 end
96 else
97 receive do
98 {:accepted, n} ->
99 if n > prepared_n do

100 receive_accepted(maj, prepared_n, rejections + 1, count +
1)

101 else
102 receive_accepted(maj, prepared_n, rejections, count + 1)
103 end
104 end
105 end
106 end
107 end
108

109 defmodule Learner do
110

111 @spec start() :: :ok
112 @init true
113 def start do
114 n_acceptors = 3
115 quorum = 2
116 n_proposers = 2
117 vals = [42, 31]
118 acceptors = for _ <- 1..n_acceptors do
119 spawn(Acceptor, :start_acceptor, [])
120 end
121

122 for i <- 1..n_proposers do
123 proposer = spawn(Proposer, :start_proposer, [])
124 val_i = i - 1
125 val = Enum.at(vals, val_i)
126 send proposer, {:bind, acceptors, i, val, quorum, self()}
127 end
128 wait_learned(acceptors, n_proposers, 0)
129 end
130

131 @spec wait_learned(list(), integer(), integer()) :: :ok
132 @ltl "[]((p->!<>q) && (q->!<>p))"
133 @ltl "<>(r)"
134 @ltl "[](s)"
135 def wait_learned(acceptors, p_n, learned_n) do
136 if p_n == learned_n do
137 for acceptor <- acceptors do
138 send acceptor, {:terminate}
139 end
140 else
141 receive do
142 {:learned, final_value} ->
143 predicate p, final_value == 31
144 predicate q, final_value == 42
145 predicate r, final_value != 0
146 predicate s, final_value == 0 || final_value == 31 ||

76

final_value == 42
147 IO.puts("Learned final_value:")
148 IO.puts(final_value)
149 end
150 wait_learned(acceptors, p_n, learned_n + 1)
151 end
152 end
153 end

A.2.4 Second paxos bug message log

1 ltl ltl_1: [] (((! ((final_value==31))) || (! (<> ((final_value==42))))) && ((!
((final_value==42))) || (! (<> ((final_value==31))))))

2 ltl ltl_2: <> ((final_value!=0))
3 ltl ltl_3: [] ((((final_value==0)) || ((final_value==31))) || ((final_value==42)))
4 starting claim 8
5 Never claim moves to line 6 [(1)]
6 132: proc 0 (:init::1) test_out.pml:521 Send

7,BIND,0,0,2,0,0,0,0,0,1,0,0,0,0,0,42,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
-> queue 20 (__BIND)

7 138: proc 7 (start_proposer:1) test_out.pml:314 Recv
7,BIND,0,0,2,0,0,0,0,0,1,0,0,0,0,0,42,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
<- queue 20 (__BIND)

8 154: proc 8 (proposer_handler:1) test_out.pml:350 Send
1,PREPARE,0,0,1,0,0,0,0,0,7,0
-> queue 23 (__PREPARE)

9 158: proc 8 (proposer_handler:1) test_out.pml:350 Send
3,PREPARE,0,0,1,0,0,0,0,0,7,0
-> queue 23 (__PREPARE)

10 162: proc 8 (proposer_handler:1) test_out.pml:350 Send
5,PREPARE,0,0,1,0,0,0,0,0,7,0
-> queue 23 (__PREPARE)

11 197: proc 6 (accept_handler:1) test_out.pml:262 Recv
5,PREPARE,0,0,1,0,0,0,0,0,7,0
<- queue 23 (__PREPARE)

12 203: proc 6 (accept_handler:1) test_out.pml:272 Send
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

13 205: proc 9 (receive_prepared:1) test_out.pml:425 Recv
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
<- queue 26 (__PROMISE)

14 227: proc 4 (accept_handler:1) test_out.pml:262 Recv
3,PREPARE,0,0,1,0,0,0,0,0,7,0
<- queue 23 (__PREPARE)

15 233: proc 4 (accept_handler:1) test_out.pml:272 Send
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

16 235: proc 10 (receive_prepared:1) test_out.pml:425 Recv
7,PROMISE,0,0,-1,0,0,0,0,0,-1,0
<- queue 26 (__PROMISE)

17 300: proc 0 (:init::1) test_out.pml:521 Send
13,BIND,0,0,3,0,0,0,0,0,2,0,0,0,0,0,31,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
-> queue 20 (__BIND)

18 308: proc 13 (start_proposer:1) test_out.pml:314 Recv
13,BIND,0,0,3,0,0,0,0,0,2,0,0,0,0,0,31,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
<- queue 20 (__BIND)

19 324: proc 15 (proposer_handler:1) test_out.pml:350 Send
1,PREPARE,0,0,2,0,0,0,0,0,13,0
-> queue 23 (__PREPARE)

20 328: proc 15 (proposer_handler:1) test_out.pml:350 Send

77

3,PREPARE,0,0,2,0,0,0,0,0,13,0
-> queue 23 (__PREPARE)

21 332: proc 15 (proposer_handler:1) test_out.pml:350 Send
5,PREPARE,0,0,2,0,0,0,0,0,13,0
-> queue 23 (__PREPARE)

22 355: proc 14 (accept_handler:1) test_out.pml:262 Recv
3,PREPARE,0,0,2,0,0,0,0,0,13,0
<- queue 23 (__PREPARE)

23 361: proc 14 (accept_handler:1) test_out.pml:272 Send
13,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

24 363: proc 12 (receive_prepared:1) test_out.pml:421 Send
7,MAJORITY_PREPARED,0,0,1,0,0,0,0,0,42,0
-> queue 42 (__MAJORITY_PREPARED)

25 365: proc 8 (proposer_handler:1) test_out.pml:363 Recv
7,MAJORITY_PREPARED,0,0,1,0,0,0,0,0,42,0
<- queue 42 (__MAJORITY_PREPARED)

26 413: proc 8 (proposer_handler:1) test_out.pml:386 Send
1,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
-> queue 43 (__ACCEPT)

27 417: proc 8 (proposer_handler:1) test_out.pml:386 Send
3,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
-> queue 43 (__ACCEPT)

28 421: proc 8 (proposer_handler:1) test_out.pml:386 Send
5,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
-> queue 43 (__ACCEPT)

29 458: proc 16 (receive_prepared:1) test_out.pml:425 Recv
13,PROMISE,0,0,-1,0,0,0,0,0,-1,0
<- queue 26 (__PROMISE)

30 474: proc 2 (accept_handler:1) test_out.pml:282 Recv
1,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
<- queue 43 (__ACCEPT)

31 486: proc 11 (accept_handler:1) test_out.pml:262 Recv
5,PREPARE,0,0,2,0,0,0,0,0,13,0
<- queue 23 (__PREPARE)

32 492: proc 11 (accept_handler:1) test_out.pml:272 Send
13,PROMISE,0,0,-1,0,0,0,0,0,-1,0
-> queue 26 (__PROMISE)

33 510: proc 18 (accept_handler:1) test_out.pml:282 Recv
3,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
<- queue 43 (__ACCEPT)

34 518: proc 18 (accept_handler:1) test_out.pml:296 Send
7,ACCEPTED,0,0,2,0
-> queue 58 (__ACCEPTED)

35 520: proc 17 (receive_prepared:1) test_out.pml:425 Recv
13,PROMISE,0,0,-1,0,0,0,0,0,-1,0
<- queue 26 (__PROMISE)

36 542: proc 19 (receive_accepted:1) test_out.pml:459 Recv
7,ACCEPTED,0,0,2,0
<- queue 58 (__ACCEPTED)

37 548: proc 20 (accept_handler:1) test_out.pml:282 Recv
5,ACCEPT,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0
<- queue 43 (__ACCEPT)

38 556: proc 20 (accept_handler:1) test_out.pml:296 Send
7,ACCEPTED,0,0,2,0
-> queue 58 (__ACCEPTED)

39 570: proc 2 (accept_handler:1) test_out.pml:291 Send
7,ACCEPTED,0,0,1,0
-> queue 58 (__ACCEPTED)

40 586: proc 24 (receive_prepared:1) test_out.pml:421 Send
13,MAJORITY_PREPARED,0,0,2,0,0,0,0,0,31,0
-> queue 42 (__MAJORITY_PREPARED)

41 588: proc 23 (receive_accepted:1) test_out.pml:459 Recv

78

7,ACCEPTED,0,0,1,0
<- queue 58 (__ACCEPTED)

42 600: proc 15 (proposer_handler:1) test_out.pml:363 Recv
13,MAJORITY_PREPARED,0,0,2,0,0,0,0,0,31,0
<- queue 42 (__MAJORITY_PREPARED)

43 610: proc 15 (proposer_handler:1) test_out.pml:386 Send
1,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,13,0
-> queue 43 (__ACCEPT)

44 614: proc 15 (proposer_handler:1) test_out.pml:386 Send
3,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,13,0
-> queue 43 (__ACCEPT)

45 618: proc 15 (proposer_handler:1) test_out.pml:386 Send
5,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,13,0
-> queue 43 (__ACCEPT)

46 655: proc 26 (accept_handler:1) test_out.pml:282 Recv
5,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,13,0
<- queue 43 (__ACCEPT)

47 661: proc 27 (receive_accepted:1) test_out.pml:454 Send 1 -> queue 65 (ret)
48 665: proc 23 (receive_accepted:1) test_out.pml:471 Recv 1 <- queue 65 (ret2)
49 667: proc 21 (accept_handler:1) test_out.pml:282 Recv

3,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,13,0
<- queue 43 (__ACCEPT)

50 673: proc 26 (accept_handler:1) test_out.pml:291 Send
13,ACCEPTED,0,0,2,0
-> queue 58 (__ACCEPTED)

51 675: proc 23 (receive_accepted:1) test_out.pml:472 Send 1 -> queue 52 (ret)
52 677: proc 21 (accept_handler:1) test_out.pml:291 Send

13,ACCEPTED,0,0,2,0
-> queue 58 (__ACCEPTED)

53 679: proc 25 (accept_handler:1) test_out.pml:262 Recv
1,PREPARE,0,0,1,0,0,0,0,0,7,0
<- queue 23 (__PREPARE)

54 687: proc 25 (accept_handler:1) test_out.pml:278 Send
7,PROMISE,0,0,1,0,0,0,0,0,42,0
-> queue 26 (__PROMISE)

55 699: proc 27 (receive_accepted:1) test_out.pml:459 Recv
13,ACCEPTED,0,0,2,0
<- queue 58 (__ACCEPTED)

56 723: proc 19 (receive_accepted:1) test_out.pml:466 Recv 1 <- queue 52 (ret1)
57 737: proc 31 (receive_accepted:1) test_out.pml:459 Recv

13,ACCEPTED,0,0,2,0
<- queue 58 (__ACCEPTED)

58 755: proc 30 (accept_handler:1) test_out.pml:262 Recv
1,PREPARE,0,0,2,0,0,0,0,0,13,0
<- queue 23 (__PREPARE)

59 761: proc 32 (receive_accepted:1) test_out.pml:454 Send 2 -> queue 93 (ret)
60 765: proc 30 (accept_handler:1) test_out.pml:272 Send

13,PROMISE,0,0,1,0,0,0,0,0,42,0
-> queue 26 (__PROMISE)

61 767: proc 19 (receive_accepted:1) test_out.pml:467 Sent 1 -> queue 22 (ret)
62 768: proc 8 (proposer_handler:1) test_out.pml:396 Recv 1 <- queue 22 (ret2)
63 772: proc 31 (receive_accepted:1) test_out.pml:471 Recv 2 <- queue 93 (ret2)
64 780: proc 8 (proposer_handler:1) test_out.pml:401 Send

0,LEARNED,0,0,42,0
-> queue 100 (__LEARNED)

65 782: proc 22 (wait_learned:1) test_out.pml:558 Recv
0,LEARNED,0,0,42,0
<- queue 100 (__LEARNED)

66 788: proc 32 (accept_handler:1) test_out.pml:282 Recv
1,ACCEPT,0,0,2,0,0,0,0,0,31,0,0,0,0,0,13,0
<- queue 43 (__ACCEPT)

67 794: proc 32 (accept_handler:1) test_out.pml:291 Send
13,ACCEPTED,0,0,2,0

79

-> queue 58 (__ACCEPTED)
68 796: proc 31 (receive_accepted:1) test_out.pml:472 Send 2 -> queue 79 (ret)
69 798: proc 27 (receive_accepted:1) test_out.pml:471 Recv 2 <- queue 79 (ret2)
70 800: proc 27 (receive_accepted:1) test_out.pml:472 Sent 2 -> queue 41 (ret)
71 801: proc 15 (proposer_handler:1) test_out.pml:396 Recv 2 <- queue 41 (ret2)
72 Never claim moves to line 5 [(!(!((final_value==42))))]
73 Never claim moves to line 16 [(1)]
74 805: proc 15 (proposer_handler:1) test_out.pml:401 Send

0,LEARNED,0,0,31,0
-> queue 100 (__LEARNED)

75 817: proc 33 (wait_learned:1) test_out.pml:558 Recv
0,LEARNED,0,0,31,0
<- queue 100 (__LEARNED)

76 spin: _spin_nvr.tmp:15, Error: assertion violated
77 spin: text of failed assertion: assert(!((final_value==31)))
78 Never claim moves to line 15 [assert(!((final_value==31)))]
79 spin: trail ends after 820 steps

Listing A.2: Message passing caused by the proposer’s protocol bug.

A.3 Consistent Hash Table
A.3.1 Working Consistent Hash Table

1 import VaeLib
2

3 defmodule ConsistentHashRing do
4

5 @spec start_ring(list(), integer()) :: :ok
6 def start_ring(nodes, n) do
7 node_positions = Enum.map(nodes, fn n -> hash(n) end)
8 ring_handler(nodes, node_positions, n)
9 end

10

11 @spec ring_handler(list(), list(), integer()) :: :ok
12 defp ring_handler(nodes, node_positions, n) do
13 receive do
14 {:lookup, key, sender} ->
15 position = hash(key)
16 node = find_closest_node(nodes, node_positions, position, 0, n)
17 send sender, {:ring_pos, node}
18 ring_handler(nodes, node_positions, n)
19

20 {:add_node, node, sender} ->
21 new_nodes = nodes ++ [node]
22 new_node_position = hash(node)
23 new_node_positions = node_positions ++ [new_node_position]
24 send sender, {:node_accepted}
25 ring_handler(new_nodes, new_node_positions, n + 1)
26

27 {:terminate} ->
28 IO.puts("Terminating ring handler")
29 end
30 end
31

32 @spec find_closest_node(list(), list(), integer(), integer(),
integer()) :: integer()

33 defp find_closest_node(nodes, node_positions, position, i, n) do

80

34 if i >= n do
35 Enum.at(nodes, 0)
36 else
37 check_node = Enum.at(nodes, i)
38 check_pos = Enum.at(node_positions, i)
39

40 if check_pos >= position do
41 check_node
42 else
43 find_closest_node(nodes, node_positions, position, i + 1, n)
44 end
45 end
46 end
47

48 @spec hash(integer()) :: integer()
49 defp hash(key) do
50 # Example hardcoded hash values for keys and nodes
51 case key do
52 # Keys
53 42 -> 1
54 25 -> 8
55 31 -> 10
56

57 # Nodes
58 1 -> 2
59 2 -> 5
60 3 -> 9
61 4 -> 15
62 end
63 end
64 end
65

66 defmodule Client do
67

68 @init true
69 @spec start() :: :ok
70 @ltl "[](r1 -> <>(p1))"
71 @ltl "[](r2 -> <>(p3))"
72 @ltl "[](r3 && n_nodes==3 -> <>(p1))"
73 @ltl "[](r3 && n_nodes==4 -> <>(p4))"
74 def start do
75 n_nodes = 3
76 nodes = for i <- 1..n_nodes do
77 i
78 end
79 ring = spawn(ConsistentHashRing, :start_ring, [nodes, n_nodes])
80

81 next_key = 42
82 send ring, {:lookup, next_key, self()}
83 ring_position = receive do
84 {:ring_pos, node} ->
85 IO.puts("Key 42 is assigned to")
86 IO.puts node
87 node
88 end
89

90 next_key = 25
91 send ring, {:lookup, next_key, self()}

81

92 ring_position = receive do
93 {:ring_pos, node} ->
94 IO.puts("Key 25 is assigned to")
95 IO.puts node
96 node
97 end
98

99 next_key = 31
100 send ring, {:lookup, next_key, self()}
101 ring_position = receive do
102 {:ring_pos, node} ->
103 IO.puts("Key 31 is assigned to")
104 IO.puts node
105 node
106 end
107

108 # Dynamically grow the ring
109 send ring, {:add_node, 4, self()}
110 n_nodes = n_nodes + 1
111

112 receive do
113 {:node_accepted} ->
114 IO.puts("Node 4 added to the ring")
115 end
116

117 next_key = 31
118 send ring, {:lookup, next_key, self()}
119 ring_position = receive do
120 {:ring_pos, node} ->
121 IO.puts("Key 31 is assigned to")
122 IO.puts node
123 node
124 end
125

126 predicate p1, ring_position == 1
127 predicate p2, ring_position == 2
128 predicate p3, ring_position == 3
129 predicate p4, ring_position == 4
130 predicate r1, next_key == 42
131 predicate r2, next_key == 25
132 predicate r3, next_key == 31
133

134 send ring, {:terminate}
135 end
136 end

A.3.2 Promela for Consistent Hash Table

1 int n_nodes;
2 int ring_position;
3 #define p1 ((ring_position == 1))
4 #define p2 ((ring_position == 2))
5 #define p3 ((ring_position == 3))
6 #define p4 ((ring_position == 4))
7 int next_key = 42;
8 #define r1 ((next_key == 42))
9 #define r2 ((next_key == 25))

82

10 #define r3 ((next_key == 31))
11

12 proctype __anonymous_0 (int n; chan ret; int __pid) {
13 chan ret1 = [1] of { int }; /*7*/
14 if
15 ::__pid==-1 -> __pid = _pid;
16 ::else->skip;
17 fi;
18 run hash(n, ret1, __pid); /*7*/
19 int __ret_placeholder_1; /*7*/
20 ret1 ? __ret_placeholder_1; /*7*/
21 ret ! __ret_placeholder_1; /*7*/
22 }
23

24 proctype start_ring (int nodes;int n; chan ret; int __pid) {
25 chan __anonymous_ret_0 = [0] of { int };
26 chan ret2 = [1] of { int }; /*8*/
27 if
28 ::__pid==-1 -> __pid = _pid;
29 ::else->skip;
30 fi;
31 int node_positions;
32 __get_next_memory_allocation(node_positions);
33 atomic {
34 int __iter;
35 __iter = 0;
36 do
37 :: __iter >= LIST_LIMIT -> break;
38 :: else ->
39 if
40 :: LIST_ALLOCATED(nodes, __iter) ->
41 run __anonymous_0(LIST_VAL(nodes, __iter),__anonymous_ret_0,__pid);
42 LIST_ALLOCATED(node_positions, __iter) = true;
43 __anonymous_ret_0 ? LIST_VAL(node_positions, __iter);
44 __iter++;
45 :: else -> __iter++;
46 fi
47 od
48 }
49 int __temp_cp_arr_0;
50 __copy_memory_to_next(__temp_cp_arr_0, nodes);
51 int __temp_cp_arr_1;
52 __copy_memory_to_next(__temp_cp_arr_1, node_positions);
53 run ring_handler(__temp_cp_arr_0,__temp_cp_arr_1,n, ret2, __pid); /*8*/
54 }
55

56 proctype ring_handler (int nodes;int node_positions;int n; chan ret; int __pid) {
57 chan ret1 = [0] of { int }; /*15*/
58 chan ret2 = [0] of { int }; /*16*/
59 chan ret3 = [1] of { int }; /*18*/
60 chan ret4 = [0] of { int }; /*22*/
61 chan ret5 = [1] of { int }; /*25*/
62 if
63 ::__pid==-1 -> __pid = _pid;
64 ::else->skip;
65 fi;
66 MessageList rec_v_0; /*13*/
67 do /*13*/
68 :: __LOOKUP ?? eval(__pid),LOOKUP, rec_v_0 -> /*14*/
69 int key; /*14*/
70 key = rec_v_0.m1.data2; /*14*/
71 int sender; /*14*/
72 sender = rec_v_0.m2.data2; /*14*/

83

73 int position;
74 position = run hash(key, ret1, __pid); /*15*/
75 ret1 ? position; /*15*/
76 int node;
77 int __temp_cp_arr_2;
78 __copy_memory_to_next(__temp_cp_arr_2, nodes);
79 int __temp_cp_arr_3;
80 __copy_memory_to_next(__temp_cp_arr_3, node_positions);
81 node = run find_closest_node(__temp_cp_arr_2,__temp_cp_arr_3,position,0,n, ret2,

__pid); /*16*/
82 ret2 ? node; /*16*/
83 MessageList msg_0; /*17*/
84 msg_0.m1.data2 = node; /*17*/
85 __RING_POS !! sender,RING_POS, msg_0; /*17*/
86 int __temp_cp_arr_4;
87 __copy_memory_to_next(__temp_cp_arr_4, nodes);
88 int __temp_cp_arr_5;
89 __copy_memory_to_next(__temp_cp_arr_5, node_positions);
90 run ring_handler(__temp_cp_arr_4,__temp_cp_arr_5,n, ret3, __pid); /*18*/
91 break;
92 :: __ADD_NODE ?? eval(__pid),ADD_NODE, rec_v_0 -> /*20*/
93 node = rec_v_0.m1.data2; /*20*/
94 sender = rec_v_0.m2.data2; /*20*/
95 int new_nodes;
96 __get_next_memory_allocation(new_nodes);
97 __list_append_list(new_nodes, nodes);
98 __list_append(new_nodes, node);
99 int new_node_position;

100 new_node_position = run hash(node, ret4, __pid); /*22*/
101 ret4 ? new_node_position; /*22*/
102 int new_node_positions;
103 __get_next_memory_allocation(new_node_positions);
104 __list_append_list(new_node_positions, node_positions);
105 __list_append(new_node_positions, new_node_position);
106 MessageList msg_1; /*24*/
107 __NODE_ACCEPTED !! sender,NODE_ACCEPTED, msg_1; /*24*/
108 int __temp_cp_arr_6;
109 __copy_memory_to_next(__temp_cp_arr_6, new_nodes);
110 int __temp_cp_arr_7;
111 __copy_memory_to_next(__temp_cp_arr_7, new_node_positions);
112 run ring_handler(__temp_cp_arr_6,__temp_cp_arr_7,n + 1, ret5, __pid); /*25*/
113 break;
114 :: __TERMINATE ?? eval(__pid),TERMINATE, rec_v_0 -> /*27*/
115 printf("Terminating ring handler\n");
116 break;
117 od;
118 }
119

120 proctype find_closest_node (int nodes;int node_positions;int position;int i;int n; chan
ret; int __pid) {

121 chan ret1 = [1] of { int }; /*43*/
122 if
123 ::__pid==-1 -> __pid = _pid;
124 ::else->skip;
125 fi;
126 if
127 :: (i >= n) -> /*0*/
128 ret ! __list_at(nodes, 0)
129 :: else ->
130 int check_node;
131 check_node = __list_at(nodes, i)
132 int check_pos;
133 check_pos = __list_at(node_positions, i)

84

134 if
135 :: (check_pos >= position) -> /*0*/
136 ret ! check_node; /*41*/
137 :: else ->
138 int __temp_cp_arr_8;
139 __copy_memory_to_next(__temp_cp_arr_8, nodes);
140 int __temp_cp_arr_9;
141 __copy_memory_to_next(__temp_cp_arr_9, node_positions);
142 run find_closest_node(__temp_cp_arr_8,__temp_cp_arr_9,position,i + 1,n, ret1, __pid);

/*43*/
143 int __ret_placeholder_1; /*43*/
144 ret1 ? __ret_placeholder_1; /*43*/
145 ret ! __ret_placeholder_1; /*43*/
146 fi;
147 fi;
148 }
149

150 proctype hash (int key; chan ret; int __pid) {
151 if
152 ::__pid==-1 -> __pid = _pid;
153 ::else->skip;
154 fi;
155 do
156 :: key == 42 ->
157 ret ! 1; /*0*/
158 break;
159 :: key == 25 ->
160 ret ! 8; /*0*/
161 break;
162 :: key == 31 ->
163 ret ! 10; /*0*/
164 break;
165 :: key == 1 ->
166 ret ! 2; /*0*/
167 break;
168 :: key == 2 ->
169 ret ! 5; /*0*/
170 break;
171 :: key == 3 ->
172 ret ! 9; /*0*/
173 break;
174 :: key == 4 ->
175 ret ! 15; /*0*/
176 break;
177 od
178 }
179

180 active proctype start () {
181 chan ret1 = [1] of { int };
182 int __pid = 0;
183 if
184 ::__pid==-1 -> __pid = _pid;
185 ::else->skip;
186 fi;
187 n_nodes = 3;
188 int nodes;
189 __get_next_memory_allocation(nodes);
190 int i;
191 for(i : 1 .. n_nodes) { /*76*/
192 int __tmp;
193 __tmp = i; /*77*/
194 __list_append(nodes, __tmp);
195 }

85

196 int ring;
197 atomic {
198 ring = run start_ring(nodes,n_nodes,ret1,-1); /*79*/
199 }
200 MessageList msg_0; /*82*/
201 msg_0.m1.data2 = next_key; /*82*/
202 msg_0.m2.data2 = __pid; /*82*/
203 __LOOKUP !! ring,LOOKUP, msg_0; /*82*/
204 MessageList rec_v_1; /*83*/
205 do /*83*/
206 :: __RING_POS ?? eval(__pid),RING_POS, rec_v_1 -> /*0*/
207 int node; /*0*/
208 node = rec_v_1.m1.data2; /*0*/
209 printf("Key 42 is assigned to\n");
210 printf("node\n");
211 ring_position = node; /*87*/
212 break;
213 od;
214 next_key = 25;
215 MessageList msg_1; /*91*/
216 msg_1.m1.data2 = next_key; /*91*/
217 msg_1.m2.data2 = __pid; /*91*/
218 __LOOKUP !! ring,LOOKUP, msg_1; /*91*/
219 MessageList rec_v_2; /*92*/
220 do /*92*/
221 :: __RING_POS ?? eval(__pid),RING_POS, rec_v_2 -> /*0*/
222 node = rec_v_2.m1.data2; /*0*/
223 printf("Key 25 is assigned to\n");
224 printf("node\n");
225 ring_position = node; /*96*/
226 break;
227 od;
228 next_key = 31;
229 MessageList msg_2; /*100*/
230 msg_2.m1.data2 = next_key; /*100*/
231 msg_2.m2.data2 = __pid; /*100*/
232 __LOOKUP !! ring,LOOKUP, msg_2; /*100*/
233 MessageList rec_v_3; /*101*/
234 do /*101*/
235 :: __RING_POS ?? eval(__pid),RING_POS, rec_v_3 -> /*0*/
236 node = rec_v_3.m1.data2; /*0*/
237 printf("Key 31 is assigned to\n");
238 printf("node\n");
239 ring_position = node; /*105*/
240 break;
241 od;
242 MessageList msg_3; /*109*/
243 msg_3.m1.data2 = 4; /*109*/
244 msg_3.m2.data2 = __pid; /*109*/
245 __ADD_NODE !! ring,ADD_NODE, msg_3; /*109*/
246 n_nodes = n_nodes + 1;
247 MessageList rec_v_4; /*112*/
248 do /*112*/
249 :: __NODE_ACCEPTED ?? eval(__pid),NODE_ACCEPTED, rec_v_4 -> /*113*/
250 printf("Node 4 added to the ring\n");
251 break;
252 od;
253 next_key = 31;
254 MessageList msg_4; /*118*/
255 msg_4.m1.data2 = next_key; /*118*/
256 msg_4.m2.data2 = __pid; /*118*/
257 __LOOKUP !! ring,LOOKUP, msg_4; /*118*/
258 MessageList rec_v_5; /*119*/

86

259 do /*119*/
260 :: __RING_POS ?? eval(__pid),RING_POS, rec_v_5 -> /*0*/
261 node = rec_v_5.m1.data2; /*0*/
262 printf("Key 31 is assigned to\n");
263 printf("node\n");
264 ring_position = node; /*123*/
265 break;
266 od;
267 MessageList msg_5; /*134*/
268 __TERMINATE !! ring,TERMINATE, msg_5; /*134*/
269 }
270

271

272 ltl ltl_1 { [](r1 -> <>(p1)) };
273 ltl ltl_2 { [](r2 -> <>(p3)) };
274 ltl ltl_3 { [](r3 && n_nodes==3 -> <>(p1)) };
275 ltl ltl_4 { [](r3 && n_nodes==4 -> <>(p4)) };

Listing A.3: Promela of consistent hash table

A.3.3 Buggy Consistent Hash Table

1 import VaeLib
2

3 defmodule ConsistentHashRingB do
4

5 @spec start_ring(list(), integer()) :: :ok
6 def start_ring(nodes, n) do
7 node_positions = Enum.map(nodes, fn n -> hash(n) end)
8 ring_handler(nodes, node_positions, n)
9 end

10

11 @spec ring_handler(list(), list(), integer()) :: :ok
12 defp ring_handler(nodes, node_positions, n) do
13 receive do
14 {:lookup, key, sender} ->
15 position = hash(key)
16 node = find_closest_node(nodes, node_positions, position, 0, n)
17 send sender, {:ring_pos, node}
18 ring_handler(nodes, node_positions, n)
19

20 {:add_node, node} ->
21 new_nodes = nodes ++ [node]
22 new_node_position = hash(node)
23 new_node_positions = node_positions ++ [new_node_position]
24 ring_handler(new_nodes, new_node_positions, n + 1)
25

26 {:terminate} ->
27 IO.puts("Terminating ring handler")
28 end
29 end
30

31 @spec find_closest_node(list(), list(), integer(), integer(),
integer()) :: integer()

32 defp find_closest_node(nodes, node_positions, position, i, n) do
33 if i >= n do
34 Enum.at(nodes, 0)
35 else

87

36 check_node = Enum.at(nodes, i)
37 check_pos = Enum.at(node_positions, i)
38

39 if check_pos >= position do
40 check_node
41 else
42 find_closest_node(nodes, node_positions, position, i + 1, n)
43 end
44 end
45 end
46

47 @spec hash(integer()) :: integer()
48 defp hash(key) do
49 # Example hardcoded hash values for keys and nodes
50 case key do
51 # Keys
52 42 -> 1
53 25 -> 8
54 31 -> 10
55

56 # Nodes
57 1 -> 2
58 2 -> 5
59 3 -> 9
60 4 -> 15
61 end
62 end
63 end
64

65 defmodule ClientB do
66

67 @init true
68 @spec start() :: :ok
69 @ltl "[](r1 -> <>(p1))"
70 @ltl "[](r2 -> <>(p3))"
71 @ltl "[](r3 && n_nodes==3 -> <>(p1))"
72 @ltl "[](r3 && n_nodes==4 -> <>(p4))"
73 def start do
74 n_nodes = 3
75 nodes = for i <- 1..n_nodes do
76 i
77 end
78 ring = spawn(ConsistentHashRingB, :start_ring, [nodes, n_nodes])
79

80 next_key = 42
81 send ring, {:lookup, next_key, self()}
82 ring_position = receive do
83 {:ring_pos, node} ->
84 IO.puts("Key 42 is assigned to")
85 IO.puts node
86 node
87 end
88

89 next_key = 25
90 send ring, {:lookup, next_key, self()}
91 ring_position = receive do
92 {:ring_pos, node} ->
93 IO.puts("Key 25 is assigned to")

88

94 IO.puts node
95 node
96 end
97

98 next_key = 31
99 send ring, {:lookup, next_key, self()}

100 ring_position = receive do
101 {:ring_pos, node} ->
102 IO.puts("Key 31 is assigned to")
103 IO.puts node
104 node
105 end
106

107 # Dynamically grow the ring
108 send ring, {:add_node, 4}
109 n_nodes = n_nodes + 1
110

111 next_key = 31
112 send ring, {:lookup, next_key, self()}
113 ring_position = receive do
114 {:ring_pos, node} ->
115 IO.puts("Key 31 is assigned to")
116 IO.puts node
117 node
118 end
119

120 predicate p1, ring_position == 1
121 predicate p2, ring_position == 2
122 predicate p3, ring_position == 3
123 predicate p4, ring_position == 4
124 predicate r1, next_key == 42
125 predicate r2, next_key == 25
126 predicate r3, next_key == 31
127

128 send ring, {:terminate}
129 end
130 end

A.3.4 Buggy Hash Table Logs

1 The program is livelocked, or an ltl property was violated. Generating trace.
2 <<<Message Events>>>
3 [1] (hash:1) send [2]
4 [2] (__anonymous_0:1) recv [2]
5 [3] (start_ring:1) recv [2]
6 [4] (hash:1) send [5]
7 [5] (__anonymous_0:1) recv [5]
8 [6] (start_ring:1) recv [5]
9 [7] (hash:1) send [9]

10 [8] (__anonymous_0:1) recv [9]
11 [9] (start_ring:1) recv [9]
12 [10] (start:1) send

[1,LOOKUP,0,0,42,0]
13 [11] (ring_handler:1) recv

[1,LOOKUP,0,0,42,0]
14 [12] (ring_handler:1) recv [1]
15 [13] (ring_handler:1) recv [1]
16 [14] (ring_handler:1) send

89

[0,RING_POS,0,0,1,0]
17 [15] (start:1) recv

[0,RING_POS,0,0,1,0]
18 [16] (start:1) send

[1,LOOKUP,0,0,25,0]
19 [17] (ring_handler:1) recv

[1,LOOKUP,0,0,25,0]
20 [18] (ring_handler:1) recv [8]
21 [19] (find_closest_node:1) send [3]
22 [20] (find_closest_node:1) recv [3]
23 [21] (find_closest_node:1) send [3]
24 [22] (find_closest_node:1) recv [3]
25 [23] (ring_handler:1) recv [3]
26 [24] (ring_handler:1) send

[0,RING_POS,0,0,3,0]
27 [25] (start:1) recv

[0,RING_POS,0,0,3,0]
28 [26] (start:1) send

[1,LOOKUP,0,0,31,0]
29 [27] (ring_handler:1) recv

[1,LOOKUP,0,0,31,0]
30 [28] (ring_handler:1) recv [10]
31 [29] (find_closest_node:1) send [1]
32 [30] (find_closest_node:1) recv [1]
33 [31] (find_closest_node:1) send [1]
34 [32] (find_closest_node:1) recv [1]
35 [33] (find_closest_node:1) send [1]
36 [34] (find_closest_node:1) recv [1]
37 [35] (ring_handler:1) recv [1]
38 [36] (ring_handler:1) send

[0,RING_POS,0,0,1,0]
39 [37] (start:1) recv

[0,RING_POS,0,0,1,0]
40 [38] (start:1) send

[1,ADD_NODE,0,0,4,0]
41 [39] (start:1) send

[1,LOOKUP,0,0,31,0]
42 [40] (ring_handler:1) recv

[1,LOOKUP,0,0,31,0]
43 [41] (ring_handler:1) recv [10]
44 [42] (find_closest_node:1) send [1]
45 [43] (find_closest_node:1) recv [1]
46 [44] (find_closest_node:1) send [1]
47 [45] (find_closest_node:1) recv [1]
48 [46] (find_closest_node:1) send [1]
49 [47] (find_closest_node:1) recv [1]
50 [48] (ring_handler:1) recv [1]
51 [49] (ring_handler:1) send

[0,RING_POS,0,0,1,0]
52 [50] (ring_handler:1) recv

[1,ADD_NODE,0,0,4,0]
53 [51] (ring_handler:1) recv [15]
54 [52] (start:1) recv

[0,RING_POS,0,0,1,0]
55 [53] (start:1) send

[1,TERMINATE,0]
56 [54] (ring_handler:1) recv

[1,TERMINATE,0]

Listing A.4: Message passing caused by the proposer’s protocol bug.

90

A.4 Two-Phase Commit
A.4.1 LTLixir 2PC

1 import VaeLib
2

3 defmodule Coordinator do
4 @spec start_coordinator(list(), integer(), integer(), integer()) ::

:ok
5 def start_coordinator(participants, transaction_id, value,

n_participants) do
6 coordinator_handler(participants, transaction_id, value, 0,

n_participants)
7 end
8

9 @spec coordinator_handler(list(), integer(), integer(), integer(),
integer()) :: :ok

10 defp coordinator_handler(participants, transaction_id, value, phase,
n_participants) do

11 case phase do
12 0 -> # Phase 1: Prepare
13 for participant <- participants do
14 send participant, {:prepare, transaction_id, value, self()}
15 end
16 receive_prepare_responses(participants, transaction_id, value,

0, 0, n_participants)
17 1 -> # Phase 2: Commit
18 for participant <- participants do
19 send participant, {:commit, transaction_id, self()}
20 end
21 wait_for_acks(participants, 0, n_participants, 1)
22 end
23 end
24

25 @spec receive_prepare_responses(list(), integer(), integer(),
integer(), integer(), integer()) :: :ok

26 defp receive_prepare_responses(participants, transaction_id, value,
count, acks, n_participants) do

27 if count >= n_participants do
28 if acks == n_participants do
29 coordinator_handler(participants, transaction_id, value, 1,

n_participants)
30 else
31 IO.puts("Transaction aborted")
32 for participant <- participants do
33 send participant, {:abort, transaction_id, self()}
34 end
35 wait_for_acks(participants, 0, n_participants, 0)
36 end
37 else
38 receive do
39 {:prepared, response_transaction_id, participant} ->
40 if response_transaction_id == transaction_id do
41 receive_prepare_responses(participants, transaction_id,

value, count + 1, acks + 1, n_participants)
42 else
43 receive_prepare_responses(participants, transaction_id,

value, count, acks, n_participants)

91

44 end
45 {:abort, response_transaction_id, participant} ->
46 if response_transaction_id == transaction_id do
47 receive_prepare_responses(participants, transaction_id,

value, count + 1, acks, n_participants)
48 else
49 receive_prepare_responses(participants, transaction_id,

value, count, acks, n_participants)
50 end
51 end
52 end
53 end
54

55 @spec wait_for_acks(list(), integer(), integer(), integer()) :: :ok
56 defp wait_for_acks(participants, count, n_participants, committed) do
57 if count >= n_participants do
58 if committed == 1 do
59 IO.puts("Transaction committed")
60 end
61 for participant <- participants do
62 send participant, {:terminate}
63 end
64 else
65 receive do
66 {:ack, _participant} ->
67 wait_for_acks(participants, count + 1, n_participants,

committed)
68 end
69 end
70 end
71 end
72

73 defmodule Participant do
74 @spec start_participant(integer()) :: :ok
75 def start_participant(client) do
76 participant_handler(client)
77 end
78

79 @spec participant_handler(integer()) :: :ok
80 defp participant_handler(client) do
81 receive do
82 {:prepare, transaction_id, value, coordinator} ->
83 prepare = decide_to_prepare(value)
84 if prepare do
85 send coordinator, {:prepared, transaction_id, self()}
86 else
87 send coordinator, {:abort, transaction_id, self()}
88 end
89 participant_handler(client)
90 {:commit, transaction_id, coordinator} ->
91 commit(transaction_id, client)
92 send coordinator, {:ack, self()}
93 participant_handler(client)
94 {:abort, transaction_id, coordinator} ->
95 abort(transaction_id, client)
96 send coordinator, {:ack, self()}
97 participant_handler(client)
98 {:terminate} ->

92

99 IO.puts("Terminating participant")
100 end
101 end
102

103 @spec decide_to_prepare(integer()) :: boolean()
104 defp decide_to_prepare(value) do
105 # Example decision logic i.e. ensure all locks are required to

make the commit
106 # We use some arbitrary random logic
107 cmps = [10, 90]
108 cmp = Enum.random(cmps)
109 if value < cmp do
110 true
111 else
112 false
113 end
114 end
115

116 @spec commit(integer(), integer()) :: :ok
117 defp commit(transaction_id, client) do
118 IO.puts("Committing transaction")
119 send client, {:transaction_commit}
120 end
121

122 @spec abort(integer(), integer()) :: :ok
123 defp abort(transaction_id, client) do
124 IO.puts("Aborting transaction")
125 send client, {:transaction_abort}
126

127 end
128 end
129

130 defmodule Client do
131 @init true
132 @spec start() :: :ok
133 def start do
134 n_participants = 3
135 participants = for _ <- 1..n_participants do
136 spawn(Participant, :start_participant, [self()])
137 end
138

139 transaction_id = 1
140 value = 42
141 coordinator = spawn(Coordinator, :start_coordinator,

[participants, transaction_id, value, n_participants])
142

143 await_transaction_result(0, 0, n_participants)
144 end
145

146 @spec await_transaction_result(integer(), integer(), integer()) ::
:ok

147 @ltl "<>[]p || <>[]q"
148 @ltl "[](p -> !<>[]q)"
149 @ltl "[](q -> !<>[]p)"
150 def await_transaction_result(n_c, n_a, n_p) do
151 commit_count = n_c
152 abort_count = n_a
153 participant_count = n_p

93

154 predicate p, commit_count == participant_count
155 predicate q, abort_count == participant_count
156 if n_c + n_a >= n_p do
157 IO.puts("All participants have responded")
158 else
159 receive do
160 {:transaction_commit} ->
161 await_transaction_result(n_c + 1, n_a, n_p)
162 {:transaction_abort} ->
163 await_transaction_result(n_c, n_a + 1, n_p)
164 end
165 end
166 end
167 end

A.4.2 Buggy 2PC Logs

1 The program is livelocked, or an ltl property was violated. Generating trace.
2 <<<Message Events>>>
3 [1] (coordinator_handler:1) send

[1,PREPARE,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0]
4 [2] (coordinator_handler:1) send

[3,PREPARE,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0]
5 [3] (coordinator_handler:1) send

[5,PREPARE,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0]
6 [4] (participant_handler:1) recv

[5,PREPARE,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0]
7 [5] (participant_handler:1) recv [1]
8 [6] (participant_handler:1) send

[7,PREPARED,0,0,1,0,0,0,0,0,5,0]
9 [7] (receive_prepare_responses:1) recv

[7,PREPARED,0,0,1,0,0,0,0,0,5,0]
10 [8] (participant_handler:1) recv

[3,PREPARE,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0]
11 [9] (participant_handler:1) recv [1]
12 [10] (participant_handler:1) send

[7,PREPARED,0,0,1,0,0,0,0,0,3,0]
13 [11] (receive_prepare_responses:1) recv

[7,PREPARED,0,0,1,0,0,0,0,0,3,0]
14 [12] (participant_handler:1) recv

[1,PREPARE,0,0,1,0,0,0,0,0,42,0,0,0,0,0,7,0]
15 [13] (participant_handler:1) recv [1]
16 [14] (participant_handler:1) send

[7,PREPARED,0,0,1,0,0,0,0,0,1,0]
17 [15] (receive_prepare_responses:1) recv

[7,PREPARED,0,0,1,0,0,0,0,0,1,0]
18 [16] (coordinator_handler:1) send

[1,COMMIT,0,0,1,0,0,0,0,0,7,0]
19 [17] (coordinator_handler:1) send

[3,COMMIT,0,0,1,0,0,0,0,0,7,0]
20 [18] (coordinator_handler:1) send

[5,COMMIT,0,0,1,0,0,0,0,0,7,0]
21 [19] (participant_handler:1) recv

[3,COMMIT,0,0,1,0,0,0,0,0,7,0]
22 [20] (commit:1) send

[0,TRANSACTION_COMMIT,0]
23 [21] (participant_handler:1) send

[7,ACK,0,0,3,0]
24 [22] (wait_for_acks:1) recv

[7,ACK,0,0,3,0]

94

25 [23] (participant_handler:1) recv
[5,COMMIT,0,0,1,0,0,0,0,0,7,0]

26 [24] (commit:1) send
[0,TRANSACTION_COMMIT,0]

27 [25] (participant_handler:1) send
[7,ACK,0,0,5,0]

28 [26] (wait_for_acks:1) recv
[7,ACK,0,0,5,0]

29 [27] (participant_handler:1) recv
[1,COMMIT,0,0,1,0,0,0,0,0,7,0]

30 [28] (commit:1) send
[0,TRANSACTION_ABORT,0]

31 [29] (participant_handler:1) send
[7,ACK,0,0,1,0]

32 [30] (wait_for_acks:1) recv
[7,ACK,0,0,1,0]

33 [31] (wait_for_acks:1) send
[1,TERMINATE,0]

34 [32] (wait_for_acks:1) send
[3,TERMINATE,0]

35 [33] (wait_for_acks:1) send
[5,TERMINATE,0]

36 [34] (participant_handler:1) recv
[1,TERMINATE,0]

37 [35] (participant_handler:1) recv
[5,TERMINATE,0]

38 [36] (participant_handler:1) recv
[3,TERMINATE,0]

39 [37] (await_transaction_result:1) recv
[0,TRANSACTION_COMMIT,0]

40 [38] (await_transaction_result:1) recv
[0,TRANSACTION_COMMIT,0]

41 [39] (await_transaction_result:1) recv
[0,TRANSACTION_ABORT,0]

Listing A.5: Message passing caused by the proposer’s protocol bug.

A.5 Dining Philosophers
A.5.1 Dining Philosophers Deadlock Logs

1 The program likely reached a deadlock. Generating trace.
2 <<<Message Events>>>
3 [1] (start:1) send

[4,BIND,0,0,1,0,0,0,0,0,2,0,0,0,0,0,3,0]
4 [2] (start_phil:1) recv

[4,BIND,0,0,1,0,0,0,0,0,2,0,0,0,0,0,3,0]
5 [3] (phil_loop:1) send

[1,SIT,0,0,4,0]
6 [4] (table_loop:1) recv

[1,SIT,0,0,4,0]
7 [5] (table_loop:1) send

[4,OK,0]
8 [6] (wait:1) recv

[4,OK,0]
9 [7] (wait:1) send [0]

10 [8] (phil_loop:1) recv [0]
11 [9] (phil_loop:1) send

[2,PICKUP,0,0,4,0]
12 [10] (start:1) send

[2,LPHIL,0,0,4,0]

95

13 [11] (start_fork:1) recv
[2,LPHIL,0,0,4,0]

14 [12] (start:1) send
[3,RPHIL,0,0,4,0]

15 [13] (start:1) send
[5,BIND,0,0,1,0,0,0,0,0,3,0,0,0,0,0,2,0]

16 [14] (start_phil:1) recv
[5,BIND,0,0,1,0,0,0,0,0,3,0,0,0,0,0,2,0]

17 [15] (phil_loop:1) send
[1,SIT,0,0,5,0]

18 [16] (table_loop:1) recv
[1,SIT,0,0,5,0]

19 [17] (table_loop:1) send
[5,OK,0]

20 [18] (wait:1) recv
[5,OK,0]

21 [19] (wait:1) send [0]
22 [20] (phil_loop:1) recv [0]
23 [21] (phil_loop:1) send

[3,PICKUP,0,0,5,0]
24 [22] (start:1) send

[3,LPHIL,0,0,5,0]
25 [23] (start_fork:1) recv

[3,LPHIL,0,0,5,0]
26 [24] (start_fork:1) recv

[3,RPHIL,0,0,4,0]
27 [25] (fork_loop:1) recv

[3,PICKUP,0,0,5,0]
28 [26] (fork_loop:1) send

[5,OK,0]
29 [27] (wait:1) recv

[5,OK,0]
30 [28] (wait:1) send [0]
31 [29] (phil_loop:1) recv [0]
32 [30] (phil_loop:1) send

[2,PICKUP,0,0,5,0]
33 [31] (start:1) send

[2,RPHIL,0,0,5,0]
34 [32] (start_fork:1) recv

[2,RPHIL,0,0,5,0]
35 [33] (fork_loop:1) recv

[2,PICKUP,0,0,4,0]
36 [34] (fork_loop:1) send

[4,OK,0]
37 [35] (wait:1) recv

[4,OK,0]
38 [36] (wait:1) send [0]
39 [37] (phil_loop:1) recv [0]
40 [38] (phil_loop:1) send

[3,PICKUP,0,0,4,0]
41

42 <<<Error Trace>>>
43 [1] (proc_0) start:120 [send lfork, {:lphil, phil}]
44 [2] (proc_4) start_phil:20 [end]
45 [3] (proc_6) phil_loop:27 [wait()]
46 [4] (proc_1) table_loop:0 []
47 [5] (proc_1) table_loop:6 [table_loop()]
48 [6] (proc_7) wait:53 [end]
49 [8] (proc_6) phil_loop:28 []
50 [9] (proc_6) phil_loop:31 [wait()]
51 [10] (proc_0) start:121 [send rfork, {:rphil, phil}]
52 [11] (proc_2) start_fork:0 []
53 [12] (proc_0) start:122 [end]

96

54 [13] (proc_0) start:120 [send lfork, {:lphil, phil}]
55 [14] (proc_5) start_phil:20 [end]
56 [15] (proc_9) phil_loop:27 [wait()]
57 [16] (proc_8) table_loop:0 []
58 [17] (proc_8) table_loop:6 [table_loop()]
59 [18] (proc_10) wait:53 [end]
60 [20] (proc_9) phil_loop:28 []
61 [21] (proc_9) phil_loop:31 [wait()]
62 [22] (proc_0) start:121 [send rfork, {:rphil, phil}]
63 [23] (proc_3) start_fork:0 []
64 [24] (proc_3) start_fork:0 []
65 [25] (proc_12) fork_loop:0 []
66 [26] (proc_12) fork_loop:76 [fork_loop(1, lphil, rphil)]
67 [27] (proc_10) wait:53 [end]
68 [29] (proc_9) phil_loop:32 [IO.puts "lfork"]
69 [30] (proc_9) phil_loop:35 [wait()]
70 [31] (proc_0) start:122 [end]
71 [32] (proc_2) start_fork:0 []
72 [33] (proc_15) fork_loop:0 []
73 [34] (proc_15) fork_loop:76 [fork_loop(1, lphil, rphil)]
74 [35] (proc_7) wait:53 [end]
75 [37] (proc_6) phil_loop:32 [IO.puts "lfork"]
76 [38] (proc_6) phil_loop:35 [wait()]
77 [39] (proc_17) wait:52 [{:ok} -> :ok]
78 [40] (proc_16) fork_loop:86 [{:putdown, phil} ->]
79 [41] (proc_15) fork_loop:77 [else]
80 [42] (proc_14) wait:52 [{:ok} -> :ok]
81 [43] (proc_13) fork_loop:86 [{:putdown, phil} ->]
82 [44] (proc_12) fork_loop:77 [else]
83 [45] (proc_11) table_loop:4 [{:sit, phil} ->]
84 [47] (proc_9) phil_loop:36 [IO.puts "rfork"]
85 [48] (proc_8) table_loop:7 [{:leave, phil} ->]
86 [50] (proc_6) phil_loop:36 [IO.puts "rfork"]
87 [51] (proc_5) start_phil:20 [end]
88 [52] (proc_4) start_phil:20 [end]
89 [53] (proc_3) start_fork:64 [end]
90 [54] (proc_2) start_fork:64 [end]
91 [55] (proc_1) table_loop:7 [{:leave, phil} ->]
92 [56] (proc_0) start:126 [{:done} -> :ok]

Listing A.6: Dining Philosophers Verlixir Report.

A.5.2 Dining Philosophers in Elixir

1 defmodule Table do
2 @spec table_loop() :: :ok
3 def table_loop do
4 receive do
5 {:sit, phil} ->
6 send phil, {:ok}
7 table_loop()
8 {:leave, phil} ->
9 send phil, {:ok}

10 table_loop()
11 {:terminate} -> :ok
12 end
13 end
14 end
15

16 defmodule Philosopher do

97

17 @spec start_phil(integer()) :: :ok
18 def start_phil(coordinator) do
19 receive do
20 {:bind, table, lfork, rfork} -> phil_loop(coordinator, table,

lfork, rfork)
21 end
22 end
23

24 @spec phil_loop(integer(), integer(), integer(), integer()) :: :ok
25 def phil_loop(coordinator, table, lfork, rfork) do
26 # ... think ... #
27 send table, {:sit, self()}
28 wait()
29

30 # ... sitting ... #
31 send lfork, {:pickup, self()}
32 wait()
33 IO.puts "lfork"
34

35 send rfork, {:pickup, self()}
36 wait()
37 IO.puts "rfork"
38

39 # ... eating ... #
40 send table, {:leave, self()}
41 wait()
42 send lfork, {:putdown, self()}
43 wait()
44 send rfork, {:putdown, self()}
45 wait()
46

47 send coordinator, {:done}
48 end
49

50 @spec wait() :: :ok
51 def wait() do
52 receive do
53 {:ok} -> :ok
54 end
55 end
56 end
57

58 defmodule Fork do
59 @spec start_fork() :: :ok
60 def start_fork do
61 receive do
62 {:lphil, lphil} ->
63 receive do
64 {:rphil, rphil} -> fork_loop(0, lphil, rphil)
65 end
66 end
67 end
68

69 @spec fork_loop(integer(), integer(), integer()) :: :ok
70 def fork_loop(allocated, lphil, rphil) do
71 # allocated: 0 => none, 1 => left, 2 => right
72 if allocated == 0 do
73 receive do

98

74 {:pickup, phil} ->
75 if phil == lphil do
76 send phil, {:ok}
77 fork_loop(1, lphil, rphil)
78 else
79 send phil, {:ok}
80 fork_loop(2, lphil, rphil)
81 end
82 {:terminate} ->
83 :ok
84 end
85 else
86 receive do
87 {:putdown, phil} ->
88 send phil, {:ok}
89 fork_loop(0, lphil, rphil)
90 {:terminate} ->
91 :ok
92 end
93 end
94 end
95 end
96

97

98 defmodule Coordinator do
99 @init true

100 @spec start() :: :ok
101 def start do
102 n = 4
103

104 table = spawn(Table, :table_loop, [])
105

106 forks = for _ <- 1..n do
107 spawn(Fork, :start_fork, [])
108 end
109

110 phils = for i <- 1..n do
111 spawn(Philosopher, :start_phil, [self()])
112 end
113

114 j = n-1
115 for i <- 0..j do
116 phil = Enum.at(phils,i)
117 lfork = Enum.at(forks,i)
118 r_i = rem(i+1, n)
119 rfork = Enum.at(forks, r_i)
120 send phil, {:bind, table, lfork, rfork}
121 send lfork, {:lphil, phil}
122 send rfork, {:rphil, phil}
123 end
124

125 for i <- 1..n do
126 receive do
127 {:done} -> :ok
128 end
129 end
130 IO.puts "All philosophers have finished eating!"
131

99

132 for fork <- forks do
133 send fork, {:terminate}
134 end
135 send table, {:terminate}
136 end
137 end

A.5.3 Promela Translation of Dining Philosophers

1 proctype table_loop (chan ret;int __pid;int __ret_f) {
2 chan ret1 = [1] of { int };/* 7*/ /* table_loop()*/
3 chan ret2 = [1] of { int };/* 10*/ /* table_loop()*/
4 atomic{
5 if
6 :: __pid == - 1 -> __pid = _pid;
7 :: else -> skip;
8 fi;
9 }

10 MessageList rec_v_0;/* 4*/ /* receive do*/
11 do/* 4*/ /* receive do*/
12 :: __SIT??eval(__pid),SIT,rec_v_0 -> /* 0*/
13 int phil;/* 0*/
14 phil = rec_v_0.m1.data2;/* 0*/
15 atomic {
16 MessageList msg_0;/* 6*/ /* send phil,{:ok}*/
17 __OK!!phil,OK,msg_0;/* 6*/ /* send phil,{:ok}*/
18 }
19 int __ret_placeholder_1;/* 7*/ /* table_loop()*/
20 run table_loop(ret1,__pid,1);/* 7*/ /* table_loop()*/
21 ret1?__ret_placeholder_1;/* 7*/ /* table_loop()*/
22 break;
23 :: __LEAVE??eval(__pid),LEAVE,rec_v_0 -> /* 0*/
24 phil = rec_v_0.m1.data2;/* 0*/
25 atomic {
26 MessageList msg_1;/* 9*/ /* send phil,{:ok}*/
27 __OK!!phil,OK,msg_1;/* 9*/ /* send phil,{:ok}*/
28 }
29 int __ret_placeholder_2;/* 10*/ /* table_loop()*/
30 run table_loop(ret2,__pid,1);/* 10*/ /* table_loop()*/
31 ret2?__ret_placeholder_2;/* 10*/ /* table_loop()*/
32 break;
33 :: __TERMINATE??eval(__pid),TERMINATE,rec_v_0 -> /* 11*/ /* {:terminate} -> :ok*/
34 break;
35 od;
36 atomic{
37 if
38 :: __ret_f -> ret!0;
39 :: else -> skip;
40 fi;
41 }
42 }
43

44 proctype start_phil (int coordinator;chan ret;int __pid;int __ret_f) {
45 chan ret1 = [1] of { int };/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
46 atomic{
47 if
48 :: __pid == - 1 -> __pid = _pid;
49 :: else -> skip;
50 fi;

100

51 }
52 MessageList rec_v_1;/* 19*/ /* receive do*/
53 do/* 19*/ /* receive do*/
54 :: __BIND??eval(__pid),BIND,rec_v_1 -> /* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
55 int table;/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
56 table = rec_v_1.m1.data2;/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
57 int lfork;/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
58 lfork = rec_v_1.m2.data2;/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
59 int rfork;/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
60 rfork = rec_v_1.m3.data2;/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
61 int __ret_placeholder_1;/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
62 run phil_loop(coordinator,table,lfork,rfork,ret1,__pid,1);/* 20*/ /*

{:bind,table,lfork,rfork} -> phil_loop(coordinator,table,lfork,rfork)*/
63 ret1?__ret_placeholder_1;/* 20*/ /* {:bind,table,lfork,rfork} ->

phil_loop(coordinator,table,lfork,rfork)*/
64 break;
65 od;
66 atomic{
67 if
68 :: __ret_f -> ret!0;
69 :: else -> skip;
70 fi;
71 }
72 }
73

74 proctype phil_loop (int coordinator;int table;int lfork;int rfork;chan ret;int
__pid;int __ret_f) {

75 chan ret1 = [1] of { int };/* 28*/ /* wait()*/
76 chan ret2 = [1] of { int };/* 32*/ /* wait()*/
77 chan ret3 = [1] of { int };/* 36*/ /* wait()*/
78 chan ret4 = [1] of { int };/* 41*/ /* wait()*/
79 chan ret5 = [1] of { int };/* 43*/ /* wait()*/
80 chan ret6 = [1] of { int };/* 45*/ /* wait()*/
81 atomic{
82 if
83 :: __pid == - 1 -> __pid = _pid;
84 :: else -> skip;
85 fi;
86 }
87 atomic {
88 MessageList msg_0;/* 27*/ /* send table,{:sit,self()}*/
89 msg_0.m1.data2 = __pid;/* 27*/ /* send table,{:sit,self()}*/
90 __SIT!!table,SIT,msg_0;/* 27*/ /* send table,{:sit,self()}*/
91 }
92 int __ret_placeholder_1;/* 28*/ /* wait()*/
93 run wait(ret1,__pid,1);/* 28*/ /* wait()*/
94 ret1?__ret_placeholder_1;/* 28*/ /* wait()*/
95 atomic {
96 MessageList msg_1;/* 31*/ /* send lfork,{:pickup,self()}*/
97 msg_1.m1.data2 = __pid;/* 31*/ /* send lfork,{:pickup,self()}*/
98 __PICKUP!!lfork,PICKUP,msg_1;/* 31*/ /* send lfork,{:pickup,self()}*/
99 }

100 int __ret_placeholder_2;/* 32*/ /* wait()*/
101 run wait(ret2,__pid,1);/* 32*/ /* wait()*/
102 ret2?__ret_placeholder_2;/* 32*/ /* wait()*/

101

103 printf("lfork\n");
104 atomic {
105 MessageList msg_2;/* 35*/ /* send rfork,{:pickup,self()}*/
106 msg_2.m1.data2 = __pid;/* 35*/ /* send rfork,{:pickup,self()}*/
107 __PICKUP!!rfork,PICKUP,msg_2;/* 35*/ /* send rfork,{:pickup,self()}*/
108 }
109 int __ret_placeholder_3;/* 36*/ /* wait()*/
110 run wait(ret3,__pid,1);/* 36*/ /* wait()*/
111 ret3?__ret_placeholder_3;/* 36*/ /* wait()*/
112 printf("rfork\n");
113 atomic {
114 MessageList msg_3;/* 40*/ /* send table,{:leave,self()}*/
115 msg_3.m1.data2 = __pid;/* 40*/ /* send table,{:leave,self()}*/
116 __LEAVE!!table,LEAVE,msg_3;/* 40*/ /* send table,{:leave,self()}*/
117 }
118 int __ret_placeholder_4;/* 41*/ /* wait()*/
119 run wait(ret4,__pid,1);/* 41*/ /* wait()*/
120 ret4?__ret_placeholder_4;/* 41*/ /* wait()*/
121 atomic {
122 MessageList msg_4;/* 42*/ /* send lfork,{:putdown,self()}*/
123 msg_4.m1.data2 = __pid;/* 42*/ /* send lfork,{:putdown,self()}*/
124 __PUTDOWN!!lfork,PUTDOWN,msg_4;/* 42*/ /* send lfork,{:putdown,self()}*/
125 }
126 int __ret_placeholder_5;/* 43*/ /* wait()*/
127 run wait(ret5,__pid,1);/* 43*/ /* wait()*/
128 ret5?__ret_placeholder_5;/* 43*/ /* wait()*/
129 atomic {
130 MessageList msg_5;/* 44*/ /* send rfork,{:putdown,self()}*/
131 msg_5.m1.data2 = __pid;/* 44*/ /* send rfork,{:putdown,self()}*/
132 __PUTDOWN!!rfork,PUTDOWN,msg_5;/* 44*/ /* send rfork,{:putdown,self()}*/
133 }
134 int __ret_placeholder_6;/* 45*/ /* wait()*/
135 run wait(ret6,__pid,1);/* 45*/ /* wait()*/
136 ret6?__ret_placeholder_6;/* 45*/ /* wait()*/
137 atomic {
138 MessageList msg_6;/* 47*/ /* send coordinator,{:done}*/
139 __DONE!!coordinator,DONE,msg_6;/* 47*/ /* send coordinator,{:done}*/
140 }
141 atomic{
142 if
143 :: __ret_f -> ret!0;
144 :: else -> skip;
145 fi;
146 }
147 }
148

149 proctype wait (chan ret;int __pid;int __ret_f) {
150 atomic{
151 if
152 :: __pid == - 1 -> __pid = _pid;
153 :: else -> skip;
154 fi;
155 }
156 MessageList rec_v_2;/* 52*/ /* receive do*/
157 do/* 52*/ /* receive do*/
158 :: __OK??eval(__pid),OK,rec_v_2 -> /* 53*/ /* {:ok} -> :ok*/
159 break;
160 od;
161 atomic{
162 if
163 :: __ret_f -> ret!0;
164 :: else -> skip;
165 fi;

102

166 }
167 }
168

169 proctype start_fork (chan ret;int __pid;int __ret_f) {
170 chan ret1 = [1] of { int };/* 64*/ /* {:rphil,rphil} -> fork_loop(0,lphil,rphil)*/
171 atomic{
172 if
173 :: __pid == - 1 -> __pid = _pid;
174 :: else -> skip;
175 fi;
176 }
177 MessageList rec_v_3;/* 61*/ /* receive do*/
178 do/* 61*/ /* receive do*/
179 :: __LPHIL??eval(__pid),LPHIL,rec_v_3 -> /* 0*/
180 int lphil;/* 0*/
181 lphil = rec_v_3.m1.data2;/* 0*/
182 MessageList rec_v_4;/* 63*/ /* receive do*/
183 do/* 63*/ /* receive do*/
184 :: __RPHIL??eval(__pid),RPHIL,rec_v_4 -> /* 0*/
185 int rphil;/* 0*/
186 rphil = rec_v_4.m1.data2;/* 0*/
187 int __ret_placeholder_1;/* 64*/ /* {:rphil,rphil} ->

fork_loop(0,lphil,rphil)*/
188 run fork_loop(0,lphil,rphil,ret1,__pid,1);/* 64*/ /* {:rphil,rphil} ->

fork_loop(0,lphil,rphil)*/
189 ret1?__ret_placeholder_1;/* 64*/ /* {:rphil,rphil} ->

fork_loop(0,lphil,rphil)*/
190 break;
191 od;
192 break;
193 od;
194 atomic{
195 if
196 :: __ret_f -> ret!0;
197 :: else -> skip;
198 fi;
199 }
200 }
201

202 proctype fork_loop (int allocated;int lphil;int rphil;chan ret;int __pid;int __ret_f)
{

203 chan ret1 = [1] of { int };/* 77*/ /* fork_loop(1,lphil,rphil)*/
204 chan ret2 = [1] of { int };/* 80*/ /* fork_loop(2,lphil,rphil)*/
205 chan ret3 = [1] of { int };/* 89*/ /* fork_loop(0,lphil,rphil)*/
206 atomic{
207 if
208 :: __pid == - 1 -> __pid = _pid;
209 :: else -> skip;
210 fi;
211 }
212 if
213 :: (allocated == 0) -> /* 0*/
214 MessageList rec_v_5;/* 73*/ /* receive do*/
215 do/* 73*/ /* receive do*/
216 :: __PICKUP??eval(__pid),PICKUP,rec_v_5 -> /* 0*/
217 int phil;/* 0*/
218 phil = rec_v_5.m1.data2;/* 0*/
219 if
220 :: (phil == lphil) -> /* 0*/
221 atomic {
222 MessageList msg_0;/* 76*/ /* send phil,{:ok}*/
223 __OK!!phil,OK,msg_0;/* 76*/ /* send phil,{:ok}*/
224 }

103

225 int __ret_placeholder_1;/* 77*/ /* fork_loop(1,lphil,rphil)*/
226 run fork_loop(1,lphil,rphil,ret1,__pid,1);/* 77*/ /*

fork_loop(1,lphil,rphil)*/
227 ret1?__ret_placeholder_1;/* 77*/ /* fork_loop(1,lphil,rphil)*/
228 :: else ->
229 atomic {
230 MessageList msg_1;/* 79*/ /* send phil,{:ok}*/
231 __OK!!phil,OK,msg_1;/* 79*/ /* send phil,{:ok}*/
232 }
233 int __ret_placeholder_2;/* 80*/ /* fork_loop(2,lphil,rphil)*/
234 run fork_loop(2,lphil,rphil,ret2,__pid,1);/* 80*/ /*

fork_loop(2,lphil,rphil)*/
235 ret2?__ret_placeholder_2;/* 80*/ /* fork_loop(2,lphil,rphil)*/
236 fi;
237 break;
238 :: __TERMINATE??eval(__pid),TERMINATE,rec_v_5 -> /* 82*/ /* {:terminate} ->

*/
239 break;
240 od;
241 :: else ->
242 MessageList rec_v_6;/* 86*/ /* receive do*/
243 do/* 86*/ /* receive do*/
244 :: __PUTDOWN??eval(__pid),PUTDOWN,rec_v_6 -> /* 0*/
245 phil = rec_v_6.m1.data2;/* 0*/
246 atomic {
247 MessageList msg_2;/* 88*/ /* send phil,{:ok}*/
248 __OK!!phil,OK,msg_2;/* 88*/ /* send phil,{:ok}*/
249 }
250 int __ret_placeholder_3;/* 89*/ /* fork_loop(0,lphil,rphil)*/
251 run fork_loop(0,lphil,rphil,ret3,__pid,1);/* 89*/ /*

fork_loop(0,lphil,rphil)*/
252 ret3?__ret_placeholder_3;/* 89*/ /* fork_loop(0,lphil,rphil)*/
253 break;
254 :: __TERMINATE??eval(__pid),TERMINATE,rec_v_6 -> /* 90*/ /* {:terminate} -> */
255 break;
256 od;
257 fi;
258 atomic{
259 if
260 :: __ret_f -> ret!0;
261 :: else -> skip;
262 fi;
263 }
264 }
265

266 active proctype start () {
267 chan ret1 = [1] of { int };
268 chan ret2 = [1] of { int };
269 chan ret3 = [1] of { int };
270 int __pid = 0;
271 atomic{
272 if
273 :: __pid == - 1 -> __pid = _pid;
274 :: else -> skip;
275 fi;
276 }
277 int n = 4;
278 int table;
279 atomic {
280 table = run table_loop(ret1,- 1,0);/* 104*/ /* table =

spawn(Table,:table_loop,[])*/
281 }
282 int forks;

104

283 __get_next_memory_allocation(forks);
284 for(__dummy_iterator : 1 .. n) {/* 106*/ /* forks = for _ < - 1..n do*/
285 int __tmp;
286 atomic {
287 __tmp = run start_fork(ret2,- 1,0);/* 107*/ /* spawn(Fork,:start_fork,[])*/
288 }
289 __list_append(forks,__tmp);
290 }
291 int phils;
292 __get_next_memory_allocation(phils);
293 int i;
294 for(i : 1 .. n) {/* 110*/ /* phils = for i < - 1..n do*/
295 int __tmp;
296 atomic {
297 __tmp = run start_phil(__pid,ret3,- 1,0);/* 111*/ /*

spawn(Philosopher,:start_phil,[self()])*/
298 }
299 __list_append(phils,__tmp);
300 }
301 int j;
302 j = n - 1;
303 for(i : 0 .. j) {/* 115*/ /* for i < - 0..j do*/
304 int phil;
305 phil = __list_at(phils,i)
306 int lfork;
307 lfork = __list_at(forks,i)
308 int r_i;
309 r_i = (i + 1) % (n);/* 118*/ /* r_i = rem(i + 1,n)*/
310 int rfork;
311 rfork = __list_at(forks,r_i)
312 atomic {
313 MessageList msg_0;/* 120*/ /* send phil,{:bind,table,lfork,rfork}*/
314 msg_0.m1.data2 = table;/* 120*/ /* send phil,{:bind,table,lfork,rfork}*/
315 msg_0.m2.data2 = lfork;/* 120*/ /* send phil,{:bind,table,lfork,rfork}*/
316 msg_0.m3.data2 = rfork;/* 120*/ /* send phil,{:bind,table,lfork,rfork}*/
317 __BIND!!phil,BIND,msg_0;/* 120*/ /* send phil,{:bind,table,lfork,rfork}*/
318 }
319 atomic {
320 MessageList msg_1;/* 121*/ /* send lfork,{:lphil,phil}*/
321 msg_1.m1.data2 = phil;/* 121*/ /* send lfork,{:lphil,phil}*/
322 __LPHIL!!lfork,LPHIL,msg_1;/* 121*/ /* send lfork,{:lphil,phil}*/
323 }
324 atomic {
325 MessageList msg_2;/* 122*/ /* send rfork,{:rphil,phil}*/
326 msg_2.m1.data2 = phil;/* 122*/ /* send rfork,{:rphil,phil}*/
327 __RPHIL!!rfork,RPHIL,msg_2;/* 122*/ /* send rfork,{:rphil,phil}*/
328 }
329 }
330 for(i : 1 .. n) {/* 125*/ /* for i < - 1..n do*/
331 MessageList rec_v_7;/* 126*/ /* receive do*/
332 do/* 126*/ /* receive do*/
333 :: __DONE??eval(__pid),DONE,rec_v_7 -> /* 127*/ /* {:done} -> :ok*/
334 break;
335 od;
336 }
337 printf("All philosophers have finished eating!\n");
338 atomic {
339 __list_ptr_old = __list_ptr;
340 __list_ptr = 0;
341 __list_ptr_new = 0;
342 do
343 :: __list_ptr >= LIST_LIMIT || __list_ptr_new >= LIST_LIMIT ->
344 __list_ptr = __list_ptr_old;

105

345 break;
346 :: else ->
347 if
348 :: LIST_ALLOCATED(forks,__list_ptr) ->
349 int fork;
350 fork = LIST_VAL(forks,__list_ptr);
351 atomic {
352 MessageList msg_3;/* 133*/ /* send fork,{:terminate}*/
353 __TERMINATE!!fork,TERMINATE,msg_3;/* 133*/ /* send fork,{:terminate}*/
354 }
355 ;
356 __list_ptr_new++;
357 __list_ptr++;
358 :: else -> __list_ptr++;
359 fi
360 od
361 }
362 atomic {
363 MessageList msg_4;/* 135*/ /* send table,{:terminate}*/
364 __TERMINATE!!table,TERMINATE,msg_4;/* 135*/ /* send table,{:terminate}*/
365 }
366 }

Listing A.7: Dining Philosophers Promela translation.

A.6 Raft

A.6.1 Raft Consensus in Elixir

1 defmodule RaftNode do
2 @spec start_node(integer(), integer(), integer()) :: :ok
3 def start_node(id, n_peers, client) do
4 peers = receive do
5 {:bind, peers} -> peers
6 end
7 term = 10 * id
8 node_handler(id, peers, n_peers, 0, term, 0, client)
9 end

10

11 @spec node_handler(integer(), list(), integer(), atom(), integer(),
integer(), integer()) :: :ok

12 defp node_handler(id, peers, n_peers, state, term, vote_count, client)
do

13 receive do
14 {:request_vote, candidate_term, candidate_id, reply_to} ->
15 if candidate_term > term do
16 send(reply_to, {:vote_granted, id})
17 node_handler(id, peers, n_peers, 0, candidate_term, vote_count,

client)
18 else
19 node_handler(id, peers, n_peers, state, term, vote_count,

client)
20 end
21

22 {:vote_granted, _voter_id} ->
23 new_vote_count = vote_count + 1
24 if state == 1 and new_vote_count >= n_peers / 2 + 1 do
25 send(client, {:elected, term})

106

26 for peer <- peers do
27 send(peer, {:append_entries, term, id}) # Send log here
28 end
29 node_handler(id, peers, n_peers, 2, term, new_vote_count,

client)
30 else
31 node_handler(id, peers, n_peers, state, term, new_vote_count,

client)
32 end
33

34 {:start_election} ->
35 for peer <- peers do
36 send(peer, {:request_vote, term + 1, id, self()})
37 end
38 node_handler(id, peers, n_peers, 1, term + 1, 0, client)
39

40 {:terminate} ->
41 IO.puts("Terminating node")
42

43 after 1000 ->
44 send self(), {:start_election}
45 node_handler(id, peers, n_peers, state, term, 0, client)
46 end
47 end
48 end
49

50 defmodule Client3 do
51 @init true
52 @spec start() :: :ok
53 @ltl """
54 !<>[](elected_term == previously_elected_term)
55 """
56 def start do
57 # follower -> 0, candidate -> 1, leader -> 2
58 n_nodes = 3
59 n_peers = n_nodes - 1
60 rounds = 2
61 previously_elected_term = -1
62 elected_term = 0
63 nodes = for id <- 1..n_nodes do
64 spawn(RaftNode, :start_node, [id, n_peers, self()])
65 end
66

67 for p_id <- nodes do
68 send(p_id, {:bind, nodes})
69 end
70

71 for _ <- 1..rounds do
72 {elected_term, previously_elected_term} = receive do
73 {:elected, term} ->
74 IO.puts("Node elected")
75 {term, elected_term}
76 end
77 end
78

79 for p_id <- nodes do
80 send(p_id, {:terminate})
81 end

107

82 end
83 end

108

	Introduction
	Objectives
	Contributions

	Background
	Concurrency
	The Actor Model
	Temporal Logic
	Safety and Liveness
	Fairness

	Model Checking
	A Comparison Of Model Checkers

	Related Work
	Theorem Proving
	Design by Contract
	Verification-aware Languages
	Gomela

	Summary

	Promela and Elixir
	Promela
	Types and Variables
	Control Flow
	Processes
	Channels
	Promela Example
	Limitations
	Summary

	Elixir
	Verifiable Feature Set
	Matching
	Type Specifications
	Summary

	Verlixir
	LTLixir
	Constructing a Verifiable Elixir Program
	Detecting a Deadlock
	Linear Temporal Logic
	Contracts
	Parameterized Systems

	Summary

	Verification of Message-Based Systems
	Verlixir Toolchain
	Modelling Elixir Programs
	High-level Overview
	Sequential Execution
	Concurrent Memory Model

	Specification Language
	System Initialisation
	Type Specifications
	Concurrency Parameters
	Linear Temporal Logic Formulae
	Predicates
	Function Contracts

	Simulation and Verification
	Simulation
	Verification
	Parameterization

	Modelling Paxos
	Summary

	Evaluation
	Analysing Distributed Systems
	Basic Paxos
	Consistent Hash Ring
	Two-Phase Commit
	Dining Philosophers
	Raft Leader Election

	Verlixir vs. Existing Work
	Difference in Approach
	Verlixir vs. Related Work

	Summary

	Conclusion
	Future Work
	Ethical Considerations
	Final Remarks

	Full Code Listings
	Verlixir Example
	Paxos
	First paxos implementation with a bug
	First paxos bug message log
	Second paxos implementation with a bug
	Second paxos bug message log

	Consistent Hash Table
	Working Consistent Hash Table
	Promela for Consistent Hash Table
	Buggy Consistent Hash Table
	Buggy Hash Table Logs

	Two-Phase Commit
	LTLixir 2PC
	Buggy 2PC Logs

	Dining Philosophers
	Dining Philosophers Deadlock Logs
	Dining Philosophers in Elixir
	Promela Translation of Dining Philosophers

	Raft
	Raft Consensus in Elixir

