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Abstract

LiDAR (Light Detection And Ranging) is a 3D sensor that has become a crucial part in the re-
cent developments of Autonomous Vehicles (AVs) as it provides an accurate real-time picture of
the environment. Significant research has been conducted into the effect of adverse conditions on
LiDARs as well as on the security vulnerabilities inherent to these sensors. Recent works have
shown that it is possible to spoof LiDAR return signals in order to create fake objects. Further
work has also shown that it is possible to "hide" objects through a number of different strategies.

This project combines adversarial LiDAR attacks with rainy weather conditions to evaluate and
potentially improve their effectiveness. Furthermore, the methodology of these attacks could be
improved to be more effective in all weather conditions.
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Chapter 1

Introduction

1.1 Motivation

LiDARs have experienced rapid innovation in the last decade leading to the development of precise
and reliable sensors. They work by emitting laser pulses and measuring the reflections thus cre-
ating a detailed map of the surrounding 3D environment. LiDAR systems have seen use in many
different applications but have become especially important for Autonomous Vehicles (AVs). In
this context, aspects such as security concerns and reliability in different weather condition warrant
a lot of research as they may have grave real-world implications.

Previous studies have shown that LiDAR sensors can be spoofed by intercepting emitted laser
pulses and returning false reflections, thereby inducing fictitious points. While the appearance of
a near-front object as described in Cao et al.[8] could cause an AV to stop and disrupt traffic, an
Object Removal Attack (ORA) as described in Hau et al.[18] could lead to a major accident and
even fatalities.

Prior work has studied the effects of adverse weather conditions on the performance of LiDARs,
identifying it as a major concern. In an article titled "Self-Driving Cars Can Handle Neither Rain
nor Sleet nor Snow" the author claims that "As things stand today, the driverless car of the future
can’t handle more than a dusting of snow"[33].

One of the main hypothesis of this work is that rain accentuates the effects of LiDAR attacks.
As overall performance diminishes, an attack that only represented a mild security risk can have
a catastrophic impact. Nonetheless, even if the difference is not significant, any increase in the ef-
fectiveness of the attacks can still be very detrimental seeing as the existing methodologies already
show promising results.

Having said that, there exists a significant gap in the literature when it comes to analysing the
effects of adverse weather on potential attack strategies. The majority of research on LiDAR object
detection utilises the KITTI[13] dataset, which does not include any rainy scenarios. Most object
detection algorithms as well as attack strategies are trained and evaluated on exclusively clear
weather scenarios. We consider that this oversight has significant security implications and there-
fore more comprehensive research is required for this aspect of LiDAR object detection and attacks.

Seeing as our work aims to evaluate and exploit the weaknesses of LiDAR sensors, we can not
ignore the ethical concerns related to our findings. These are discussed in Appendix A.
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1.2 Contributions

The main aim of this project is to combine adversarial LiDAR attacks with rainy weather conditions
in order to evaluate and potentially improve them. To this end, two preliminary objectives must
be fulfilled:

• Creation of a comprehensive dataset of LiDAR measurements from comparable
clear and adverse weather scenarios This goal can be achieved by leveraging simulators
such as CARLA[10] or MAVS[15].

• Development of a detection framework In order to evaluate and improve existing
methodology, we require a pipeline for applying object detection which is robust enough
to be usable for different strategies.

Having satisfied these objectives, we can then bring the following two major contributions:

• Evaluation of existing attacks in adverse weather Using the newly created dataset,
the goal is to evaluate existing attacks in rainy conditions as well as on different sensors and
using different object detectors.

• Development of two novel attack strategies This work aims to leverage previous findings
in order to develop new attack methodologies that outperform existing strategies and are
framework independent.
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Chapter 2

Background and related work

In this section we present the research already done on the two main components of this project:
LiDAR attacks and the effects of adverse weather on LiDAR sensors. Although the literature on
the subject is already very comprehensive it is nonetheless disjoint. Therefore, we separately look
at the two mentioned aspects with the following goals in mind:

• First of all, we need to establish some context for LiDAR object detection with an emphasis
on detection algorithms and the effect of rain on these type of sensors. Therefore, we look
into related work that describes the effects of adverse weather on LiDARs to ascertain if there
is a real impact on their robustness. Moreover, we also want to investigate existing ways of
simulating such conditions as this might become crucial in supplying data for this work.

• Secondly, we compare different types of proposed attacks and evaluate them based on factors
such as feasibility and impact. This is crucial for the project as it allows us to select a
particular methodology of attacks that forms the backbone of our further contributions.

Lastly, we also provide some background on optimisation strategies as they play a significant role
in the development of our novel attacks.

2.1 Background on LiDAR sensors

This work primarily focuses on scanning LiDARs, which operate by emitting multiple lasers across
specific horizontal and vertical fields of view (FoV). After the laser is reflected and received, they
measure the time-of-flight (ToF) to determine the distance to the object, which is then perceived
as a point cloud. These can then be passed through a Deep Neural Network (such as [21]) to obtain
3D object detection.

There are two formulas that dictate the way LiDAR sensors work and become especially useful
when discussing the effects of rain on LiDARs.

• Firstly, in a ToF LiDAR, the distance to the object is calculated as:

R = c ∗ (∆t

2
)

Where R is resulting distance to the object, c is the speed of light and ∆t is the time of
flight[1].

• Secondly, intensity is another important aspect of a LiDAR measurement. It represents the
the strength of the return power of the LiDAR echo and can be calculated as such[38]:

Pr = PtΩρηsysηatm

Ω =
πD2

rec

4R2
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Where Pr is the returned laser energy (intensity), Pt is transmitted power, ρ is the reflectance
of the target, Ω is the scattering steradian solid angle, ηsys is the efficiency value of the optics
system, ηatm is the atmospheric attenuation, Drec is the diameter of the LiDAR receiver and
R is the distance to the target.

Another important aspect in the discussion about LiDAR attacks is the type of hardware being
used. As described in [39], LiDARs can be roughly divided into first-generation LiDARs such as
the Velodyne Puck (formerly known as the Velodyne-16)[2] and the Ultra Puck (formerly Velodyne-
32)[3] and next-generation LiDARs. This distinction becomes crucial as the next-generation sensors
are not only constructed on a single board but also provide some additional security features.

2.1.1 Effects of adverse weather on LiDAR

As mentioned before, rain can have a major effect on the robustness of LiDAR sensors because
the presence of rain droplets at different densities can cause two main problems: attenuation and
scattering.

• Signal attenuation Rain droplets cause signal attenuation by absorbing and scattering
the laser pulses emitted by the LiDAR. Hasirlioug et al.[17] showed that for extreme rain
rates there is a significant decrease in reflection intensity. This reduction diminishes the
effective range of the LiDAR and also makes it more difficult to detect objects as intensity
helps differentiate vehicles that usually have high reflectivity from roads. "To date, LIDAR
intensity data have proven beneficial in data registration, feature extraction, classification,
surface analysis, segmentation, and object detection and recognition, to name just a few
examples."[20]

• Scattering The presence of rain droplets causes multiple scattering effects which can lead
to false return signals and induce false positives. Although this can complicate data inter-
pretation, the effect has been found to be negligible[11]

Goodin et al.[15] tackles the problem of evaluating the effects of rain on LiDAR by first providing
a simplified mathematical model and then implementing the results into a simulator. To this end,
they derive two easy to use mathematical formulas:

• Firstly, in order to calculate the relative intensity returned by LiDAR:

Pn(z) =
ρ

z2
e−0.02R0.6z

Where z is the target distance ρ is the back scattering coefficient of the target and R is
rainfall rate in mm/h. By using the zmax which is usually included in LiDAR data sheets
and for a 90% diffusely reflecting surface we can calculate the minimum detectable relative
power estimate:

Pmin
n =

0.9

πz2max

Thus, with a few constants and only the rain rate, we can calculate the range reduction.

• Secondly, the normal distribution is used to model the noise introduced to range measure-
ment.

z′ = z +N (0, 0.02z(1− e−R)2)

Where z′is the modified range. This equation has the property that the noise is zero when
R is zero and the variance increases by a maximum of 2%.

Goodin et al.[15] then integrates this rain model into a simulator known as Mississippi State
University Autonomous Vehicle Simulator (MAVS) that accurately captures the physics of LiDAR
2.1.
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(a) Visualisation of LiDAR range decrease at 0mm/h, 9mm/h, 17mm/h from [15]

(b) Decrease in max range of LiDAR as a function of rain rate from [15]

Figure 2.1: Effects of rain on LiDAR range from [15]

Yang et al.[38] in a more recent work also tackles this problem, creating a rain model for the
CARLA simulator using which they then created a publicly available database. The research is
mainly focused on two aspects critical to LiDAR perception in rainy conditions:

• Firstly, the effects of spray and splashes caused by the wheels of vehicles on a wet surface
are thoroughly researched. This is receiving increasing attention in the context of AVs as
especially in highway scenarios the spray created by a vehicle produces significant noise for
LiDAR sensors. To this end, Yang et al.[38] introduces a dynamic spray model that takes into
account multiple factors such as the speed of the vehicle, gravity, crosswinds and turbulent
airflow at the rear of the vehicle. Furthermore, droplets annihilate when they collide with
objects, get too far away from the sensor or have been suspended in air for more than 1.5s
(in which case they are considered to have broken up in the air).

• Secondly, in the context of the CARLA simulator, calculating echo intensity is not feasible
as it is impossible to obtain object reflectance and atmospheric attenuation. Therefore, Yang
et al.[38] proposes a intensity prediction neural network that utilises a U-net[27] to estimate
the object reflectance based on camera RGB data and LiDAR semantic label information.
Combining this with LiDAR depth information, cloud point intensity can be generated.

The synthetic point clouds created this way are then used to augment the Waymo Dataset, showing
that the simulation data closely approximates the real characteristics of the dataset.
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2.1.2 LiDAR object detectors
3D Object detectors are a rapidly evolving area of research, having seen significant developments
over the last few years. In the context of LiDARs, the process involves utilising a 3D point cloud
to localise objects and determine their bounding boxes. Detection algorithms are an integral part
of any work relating to LiDAR security necessitating significant context. Although they share the
same goal, object detectors vary substantially in the way they approach this problem. In this
section, we review three different state-of-the-art LiDAR object detectors.

SECOND

SECOND (Sparsely Embedded Convolutional Detection), introduced by Yan et al.[37], presents
an efficient voxel-based method for 3D object detection. This approach utilizes sparse 3D con-
volutions to process the voxelized point cloud data, maintaining computational efficiency while
achieving high accuracy.

Voxelisation involves splitting 3D space into a grid which is then used to group the raw points.
This is necessary as it converts the unordered 3D point cloud into a data-structure that can then
be further processed.

Figure 2.2: SECOND detection pipeline from [37]

One of the significant advantages of the SECOND architecture is that it utilises a sparse
convolutional network to process the voxel grid, reducing computational costs. A three layer
Region Proposal Network (RPN) is then used to generate the detections.

PointPillars

PointPillars, proposed by Lang et al.[21], introduces a novel method that organises raw point
clouds into vertical columns (pillars) that can then be processed by a 2D convolutional network.
This methodology allows PointPillars to leverage the computational efficiency of a 2D network,
without sacrificing performance.

Figure 2.3: PointPillars detection pipeline from [21]

The PointPillars pipeline consists of 3 stages: "(1) A feature encoder network that converts a
point cloud to a sparse pseudoimage; (2) a 2D convolutional backbone to process the pseudo-image
into high-level representation; and (3) a detection head that detects and regresses 3D boxes."[21].
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A significant advantage of this architecture is that PointPillars utilises end-to-end learning which
allows the algorithm to utilise all the information in the point cloud and. Moreover, using pillars
removes the necessity for manual adjustment of the bins in the vertical direction.

PartA2

Part A2, introduced in Shi et al.[30], builds upon the PointRCNN framework and introduces a
two-stage detection network that incorporates part-aware and part-aggregation mechanisms. The
main advantage of PartA2 is that it exploits all 3D information available in the point cloud by
utilising a network that can predict intra-object part locations even when they are occluded.

Figure 2.4: Visualisation of intra-object part detection from [30]

The overall structure of the detector’s architecture can therefore be split into two stages:

• Part Aware Stage: This stage predicts high-quality 3D proposals and intra-object part
locations using part supervisions derived from 3D ground-truth annotations

• Part-Aggregation Stage: This stage utilises a novel Region of Interest (RoI) aware pooling
module to aggregate the results from the previous stage and then refines the bounding boxes
based on the part features.

The two-stage approach improves the quality of 3D proposals and overall detection accuracy,
achieving state-of-the-art results on the KITTI benchmark[13].

Figure 2.5: PartA2 architecture from [30]
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OpenPCDet

OpenPCDet [35] is an open source object detection library that includes nearly all state-of-the-art
detectors. The most significant advantage of this code base is that it provides a unified environment
where multiple object detectors can be tested on data of the same format. Thus, by integrating
models with very different architectures into the same framework, OpenPCDet facilitates efficient
evaluation across multiple detectors.

Figure 2.6: Dataset-model separation from [30]

Another crucial feature is that OpenPCDet supports multiple datasets, including KITTI[13],
NuScenes[6], and Waymo Open Dataset[9], and can also be easily configured to work with custom
data. This broad compatibility ensures that users can leverage a wide range of data sources for
their projects. Furthermore, a "Model Zoo" is provided that includes a number of models trained
on existing datasets.

2.2 LiDAR spoofing

Spoofing attacks for Time of Flight (ToF) LiDARs work by firing lasers back at the sensor, thereby
disrupting the reflection measurements. Therefore, by doing this, an attacker can add a number
of spoofed points to the sensor’s point cloud, which can be used in two major ways:

• The induced points can be used in order to mislead the detection algorithm about the exis-
tence of a fake object. This is known as object injection.

• The induced points can also be used to remove legitimate objects. This is known as object
removal.

2.2.1 White-box attacks

White-box (or synchronized) attacks require knowledge about the LiDAR sensor as well as about
the machine learning 3D object classifier used by the victim (only for certain attack methodologies
[8]). This attack mechanism is detailed in Sato et al.[28], pointing out that both injection and
removal attacks use the same methodology, the only difference being whether points are moved to
a target location or to an undetectable area. As shown in Figure 2.7, the process involves three
steps that ensure that the attacker knows where the LiDAR is scanning and can predict it’s pattern.
First, the Photodiode (PD) receives the legitimate lasers and has knowledge of where the LiDAR
is firing. Secondly, the Function Generator (FG) uses this information to plan where to fire the
lasers based on the pattern of the LiDAR. Lastly, malicious signals are sent out. As is discussed
in Section 2.2.1 this is problematic when considering the capabilities of next-gen LiDARs.
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Figure 2.7: Illustration of synchronised attacks on Velodyne-16 from [28]

Injection attacks

There have been numerous works describing synchronised injection attacks, all building on pre-
vious research and bringing sizeable improvements. However, as was outlined before, all of them
follow roughly the same methodology and have the same strengths and weaknesses. As such, we
only focus on a limited number of strategies as that is enough to perform a sufficient analysis.

The findings in Shin et al.[31] represent a major breakthrough and are the foundation of all further
white-box injection attacks, as among other contributions the work proved it possible to spoof up
to 10 fake points at different distances, even closer to the spoofer location[8]. Shin et al.[31] also
identifies a few of the problems with this type of attack:

• Aiming problems: As we are focusing on LiDARs in AV scenarios, tracking the sensor itself
can prove to be quite difficult. To mitigate this, the author suggests the attacker mounts
the tool on another vehicle and follows the victim, therefore reducing the relative speed to
zero. This solution has become the standard modus operandi for subsequent works on LiDAR
attacks.

• Limited number of induced points: As previously described, this work demonstrates
the capability to inject only ten fake points in a 2◦wide range. Although insignificant at first
glance, at 55m distance, this corresponds to an object 1.9m wide. In spite of the fact that
this can be considered dangerous at highway speeds, it is relatively harmless when it comes
to low speed city scenarios. Therefore, the author suggested increasing the number of fake
points as a crucial improvement to this attack.

Cao et al.[8] built upon the findings in Shin et al.[31] and brought some major improvements.
First of all, by modifying the experimental setup they managed to increase the number of spoofed
points to a theoretical maximum of 100, although it is stated that 60 is a more realistic estimate.
This was achieved with a similar design to the previous work but using improved electronics and
calibration (Figure 2.8).

Secondly, Cao et al.[8] finds that blindly firing the allocated amount of fake points is not impactful
after the machine-learning object detection step, hence requiring a more sophisticated approach.
This underlines one of the major limitations of white-box attacks, requiring knowledge about the
perception model used by the victim. In this case, the perception pipeline used by Baidu Apollo
was utilised, which consists of 3 steps 2.9:

• Step 1: Pre processing In this step, the raw LiDAR data in the form of a four dimensional
vector is transformed into an absolute coordinate system. Afterwards, the Region of Interest
(RoI) is selected, disregarding irrelevant parts of the 3D map. Lastly, a feature is generated
that represents the input to the machine learning model

12



Figure 2.8: Illustration of spoofing attack setup from[8]

• Step2: Machine learning model For this part, a Deep Neural Network is used that
takes in a feature matrix and as output produces a set of cells each being labeled with the
probability of being part of an object.

• Step2: Post processing Lastly, cells are clustered and using results from the previous step
bounding boxes are formed representing objects. The tracking component associates boxes
in sequential frames, thus being able to track the movement of an object over time.

This entire process can prove to be very hard to circumvent for a simple approach and therefore
Cao et al.[8] proposes an adversarial machine learning method called Adv-LiDAR. This combines
input perturbation together with a novel sampling approach to achieve significantly better results
than previous works. However, it still has significant drawbacks that were discussed before, mainly
real world concerns such as accurately aiming at the sensor in a road environment and also the
dependency on the understanding of the perception pipeline. Although the methodology could be
translated to different object detection algorithms, that would not only require significant further
research but also would not be of much help in a real situation unless the attacker has white-box
access.

Figure 2.9: Data processing pipeline for Baidu Apollo from [8]

Removal attacks

In general, removal attacks have a major advantage over injection attacks when it comes to their
real world implication. While an injection attack might slow down traffic or might cause an AV to
suddenly brake and even injure passengers, removal attacks can lead to very serious accidents and
even fatalities. In a scenario such as highway traffic, "removing" a vehicle in front of an AV could
cause a series of subsequent collisions and a pile-up involving many victims.

As discussed before, when it comes to synchronised attacks, removal and injection methods are
quite similar. Cao et al.[7] in a more recent work that explores this type of LiDAR attack, brings
significant improvements compared to the existing literature. Firstly, the number of spoofed points
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was increased from 100 to up to 4000. This greatly improved the overall effect of the attack, al-
lowing it to target a much larger area and also makes it possible for a roadside attacker to remove
cloud points from in front of an AV (Figure 2.10).

Figure 2.10: Overview of roadside object removal attack from [7]

The main idea behind the attacks in [7] is to exploit a vulnerability in the LiDAR sensor’s
operational range. Normal commercial 3D LiDARs have a minimum horizontal range under which
detection of echoes near the sensor is not guaranteed. In short, LiDARs can still receive echoes
under this range but the results might be inaccurate. Therefore, manufacturers implement a filter
that discards these points. Cao et al. [7] takes advantage of this by injecting fake points below the
LiDAR’s Minimum Operational Threshold (MOT) in front of the objects that should be concealed
2.11.

Figure 2.11: Illustration of synchronised removal attack from [7]

Overall, this type of attack presents a lot of advantages compared to the presented injection
attacks:

• Firstly, it is more potent owing to the increased amount of ficticious points that can be
induced. Although this change could be translated to the injection attack as well, it still
presents other further advantages.

• Secondly, because the attack happens at the LiDAR firmware level and not in the percep-
tion pipeline it is considerably more versatile. In a real scenario it is significantly easier to
differentiate types of LiDAR than to know what perception model is in use.
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• Lastly, the attack is overall simpler and thus easier to recreate and improve on.

Problems with white-box attacks

Sato et al.[28] conducted an excellent analysis of existing attacks, underlining unproven assump-
tions and general problems faced by white-box attacks as well as proposes an alternative black-box
attack which we discuss in Section 2.2.2. The first major problem is that the assumed Chosen Pat-
tern Injection (CPI) capability is only feasible on the VLP-16. Furthermore, new security features
such as timing randomisation of pulses mean that synchronised attacks can no longer be
applied to next-gen LiDAR. The study also shows that pulse fingerprinting which is another
new feature may not be as effective against adversarial attacks as it was mainly designed to prevent
interference between multiple sensors.

Taking all of this into consideration, although this is a significant setback to the future prospects
of synchronised attacks, we must consider that first-gen LiDARs are already in widespread use and
are very expensive to replace. Thus, we can still assume that such attacks will be a valid threat
for years to come.

2.2.2 Black-box attacks
Black-box attacks differ from white-box attacks in that they do not require any knowledge about
the victim LiDAR sensor or 3D-classifier. This approach typically represents a compromise between
robustness, effectiveness, and ease of use.

Figure 2.12: Setup used in Petit et al.[25]

Relay attacks

Relay attacks as presented in Petit et al.[25] consist of relaying the original signal from another
position to create fake echoes. The setup for the attack is a bit more complicated, requiring two
transreceivers (B and C in Figure 2.12)

In Figure 2.12, both transreceivers are positioned one meter away from each other, this how-
ever not being a requirement. Because LiDAR signals reflect, a direct line of sight is not necessary
to perform a relay attack. Considering the setup, the author suggests that "a relay attack is most
likely to happen from the roadside, where the attacker would receive LiDAR signals from vehicles
and relay them to another vehicle located at a different location."

Petit et al. [25] leverages this methodology in order to achieve an object injection attack with
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Figure 2.13: Overview of HFR attacks from [28]

reasonable success. The point injection is successful in injecting up to 200 points [28] but is lim-
ited by a few drawbacks. The main limitation is that this setup only allows for point injection at
medium to large distances, for example it being possible to inject a copy of a wall at approximately
40 meters. This is important in the context of an injection attack as at low speeds creating a fake
object at 40 meters distance may have a limited effect. Furthermore, the attack has a limited range
of up to 100 meters which is significant considering the roadside component of the setup. To this
end, the author suggests that multiple photodetectors might be necessary therefore increasing the
cost.

High-Frequency-Removal (HFR) attacks

High-Frequency-Removal attacks are presented in Sato et al.[28] as an alternative to white-box
attacks that do not function on next-gen LiDARs. This type of attack works by firing a high
frequency pulse laser at the victim. Crucially, the frequency used by the attacker has to be bigger
that the one used by the victim LiDAR. Another important aspect to consider is that because
this is not a synchronised attack, the legitimate points are to random positions. Nonetheless, this
attack was proven to be extremely effective, being able to remove more than 5000 points in a 10
m2 area.

HFR attacks present a multitude of advantages such as effectiveness, robustness and ease of use.
However, this type of attack also has a few drawbacks:

• Firstly, although the area that of attack can be controlled, it is not possible to control where
the real point clouds are moved by this strategy of attack

• Secondly, this is in essence a "brute-force" approach meaning that just as white-box attacks
have been nullified by next-gen LiDARs, so could this approach by just raising the frequency
at which the LiDAR operates. This leads to an "arms race" scenario between attackers and
LiDAR manufacturers.

• Lastly, because of it’s design this methodology of attack could be detected by the victim that
could then take counter measures. Shin et al.[31] suggested that in such cases the AV could
perhaps abandon sensor output in the attacked area and try to safely move to the roadside.
Even though this would stop the AV, this outcome would still be preferable to an accident.

2.2.3 Object Removal attacks (ORA)
ORAs[18] are a very promising new methodology of LiDAR attack that aims to exploit the fact
that LiDARs deployed on AVs operate in the Strongest Return Mode, meaning that for each ray
direction only the strongest intensity echo is recorded. In practice, this means that if an attacker
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can inject fake points directly behind a legitimate object, they can effectively make that object
disappear, leaving only a scattering of random distant points. This can be achieved using the
following relatively simple algorithm:

Figure 2.14: Pseudocode for ORA algorithm from Hau et al.[18]

The algorithm also assumes that as the attacker is in close proximity to the victim, they can
sense the environment and, using a transformation matrix that can be computed relatively easily
from the distance to the victim, can estimate what the victim perceives. In theory, it begins by
picking points from the target’s point cloud at random within the point injection budget (in [18]
this is assumed to be 200). Afterwards the selected points are shifted in the direction of the ray
further away from the sensor and added back to the legitimate points. Thus, using this simple
algorithm, we can model the effects of this type of attack to evaluate it’s effectiveness. In the pro-
posed setup, the author claims to reduce the target’s recall for pedestrians and cyclists to under
25%.

For the purposes of this work ORA brings a multitude of advantages:

• Firstly, ORAs do not need any access to the victim’s 3D classifier and thus they are way
more flexible for real world applications.

• Secondly, the ORA model is not dependent on the injection methodology. Although ORAs
presented in Hau et al.[18] are based off of the 200 fictitious point budget from [8] and utilise
a synchronised approach (see Section 2.2.1), they could also be implemented under some
assumptions on the position of the spoofer as a relay black-box attack (Section 2.2.2).

• Lastly, as the author themselves states, the algorithm is in a preliminary stage and therefore
is easy to recreate, the methodology allowing for a lot of potential improvement.

2.3 Optimisation strategies

Lastly, we need to establish some context for the different optimisation strategies we can leverage
in creating our novel attack strategies. The scope of this section is relatively limited; its goal is to
present the main ideas and mathematical background of these approaches and discuss the common
challenges and choices associated with them.

2.3.1 Genetic Algorithms (GAs)

Genetic algorithms (GAs) are a powerful optimisation technique inspired by the principles of nat-
ural selection and genetics. GAs are a class of algorithms tailored for complex optimisation and
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search problems, which makes them an ideal candidate in the context of optimising the point se-
lection in an ORA scenario. The GA consists of a population of individuals that are to be evolved,
a fitness function to determine how efficient the solutions are and genetic operations consisting of
selection, crossover, and mutation.

Holland et al.[19], first published in 1975, laid the mathematical groundwork for GAs and in-
troduced the "building block hypothesis". It posits that small sub-solutions (schemata) can be
sampled and combined to form effective higher-order solutions. As presented in the book, at the
foundational level a genetic algorithm consists of the following five stages:

• Initialisation A population of potential solutions to the proposed problem (individuals) is
created. The initial population is usually generated randomly but can also be predetermined
in certain situations.

• Selection Individuals are chosen to reproduce based on their fitness, determined by a fitness
function. Better individuals are more likely to be selected.

• Crossover Selected individuals are paired and their genotypes are combined to produce
offspring. Goldberg (1989)[14] introduced different crossover strategies such as single-point,
multi-point and uniform crossover.

• Mutation Random changes are introduced to some individuals in order to maintain popu-
lation diversity.

• Replacement The new individuals replace the old individuals and the process is repeated
until a certain termination condition is met. A multitude of strategies can be used to this
end, the process being ended when a certain number of generations was reached, a certain
amount of time has passed, the rate of improvement has reached a plateau, or a combination
of all.

This structure creates a very flexible framework that can be applied to many different problems
with minimal changes. As Darrell Whitley put it in his 1994 tutorial: "Usually there are only two
main components of most genetic algorithms that are problem dependent: the problem encoding
and the evaluation function."[36] Seeing as determining the fitness function is normally trivial as
it is the objective of the algorithm, most difficulty arises from choosing between selection and
crossover strategies as well as creating an encoding for the genotype. In most cases, it is repre-
sented by a bitstring, but can also be a real-valued vector.

In his tutorial[36], Whitley synthesizes the argument introduced in Holland et al.[19] that ex-
plains how a genetic algorithm "can result in complex and robust search by implicitly sampling
hyperplane partitions of a search space." In this context, hyperplanes represent subsets of the
search space defined by schemata. Take the given example of a problem encoded with 3 bits that
can either be "0", "1", or "*" which represents a wildcard. The possible search space can be
illustrated as a cube with each combination at one of it’s corners (Figure 2.15). We can observe
that the "back" plane of the cube contains all solutions that start with "1" and can thus be en-
coded as "1**". Schemata are therefore defined as any string containing a "*" and correspond to a
hyperplane. Figure 2.15 also illustrates how this concept can be extended to a further dimension:
all strings in the inner cube start with "1", while all strings in the outer cube start with "0". What
makes GAs work in practice is that the algorithm samples multiple hyperplanes in parallel due to
the diverse representation in the population. Selection increases the proportion of fit individuals
hence promoting the spread of their corresponding hyperplanes that through crossover are then
combined. Therefore, schemata can increase or decrease their representation in the population
based on their "estimated" fitness.

GAs are an extremely versatile and flexible type of machine learning algorithm, being applied
in various different fields. Although they present numerous advantages, GAs also come with some
drawbacks:

• In the case where the fitness function is complex or computationally expensive, the repeated
evaluation for each individual makes it necessary to limit the number of generations in order
to achieve results in reasonable time. This might however limit the efficiency of the resulting
solution.
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Figure 2.15: 3D and 4D representation of hyperplanes from[36]

• Just as many other machine learning algorithms, GAs are prone to converge on local optima
as well as overfit to the training data.

• The performance of GAs can be highly sensitive to parameter settings, such as population
size, mutation rate, and crossover rate.

2.3.2 Bayesian optimisation
Bayesian optimisation is a powerful strategy for optimising expensive to compute functions which
is especially useful in situations where traditional methods are impractical due to their high cost[5].
As stated in Shahriari et al.[29], "Bayesian optimisation is a sequential model-based approach to
solving problem 2.1"

x⋆ = argmax
x∈X

f(x), (2.1)

Bayesian optimisation combines concepts from statistics with machine learning in order to deter-
mine an optima for a black-box function. The core idea is to create a probabilistic model of the
function and use our prior beliefs to refine the model by observing more of its results.

Figure 2.16: Pseudocode bayesian optimisation algorithm from[29]

In practice, the process consists of the following steps:
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• Surrogate model creation A surrogate model, typically a Gaussian Process (GS) is created
to approximate the objective function. "The GP is defined by the property that any finite set
of N points {xn ∈ X}Nn=1 induces a multivariate Gaussian distribution on RN ."[32] A GP is
specified by a mean function m(x) and a covariance function (or kernel) k(x,x′). The choice
of the kernel function is crucial as it encodes assumptions about the function’s smoothness
and structure[26]

• Acquisition function An acquisition function α is used to determine where the objective
function is to be evaluated next. In Snoek et al.[32] a few different acquisition functions
are described: Probability of Improvement (PI) which focuses on maximising the im-
provement over the current best solution, Expected Improvement (EI) which maximises
expected improvement and Upper Confidence Bound (UCB) which follows the "idea
of exploiting lower confidence bounds (upper, when considering maximization) to construct
acquisition functions that minimize regret over the course of their optimisation."[32]

• Function evaluation The objective function is evaluated at the point that maximises the
acquisition .

• Model update The surrogate is updated with the new information that was gained.

Figure 2.17: Representation of three iterations of Bayesian optimisation from[29]. We can observe
that the acquisition function is high where there is a lot of uncertainty(exploration) or where it
predicts a high objective result (exploitation)
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Chapter 3

GORA & BORA: Novel 3D Object
Removal Attacks

3.1 Choice of methodology

As was presented in Chapter 2, numerous LiDAR attack methodologies have been proven effective
in real-life scenarios. Broadly, they can be divided by their level of access to the victim’s sensor
into white-box and black-box attacks and by their goal into injection and removal attacks.

Section 2.2.1 discusses the problems associated with a white-box approach, making them less
feasible on next-gen sensors. However, considering first-gen LiDARs are in wide use and expensive
to replace, this type of attack will still represent a valid threat in the future.

Although injection attacks (Section 2.2.1) pose a significant threat by inducing a near-front vehicle
and causing an AV to abruptly stop, they are less dangerous than removal attacks, which can
potentially cause collisions.

Considering all these factors, the ORA methodology provides the most flexibility and threat,
being a removal attack that is not dependent on the injection method. As discussed in Section
2.2.3, even though the approach is based on "white-box" access, the methodology does not require
any knowledge about the victim’s 3D classifier and also could be implemented as a relay attack.
Furthermore, the preliminary aspect of the findings also allows room for improvements. Thus, this
work mostly focuses on recreating ORA and bringing improvements at a theoretical level, ignoring
aspects related to injection method.

3.2 Threat model

Based on the premise of our improvements, we adopt a similar threat model to the one used in Hau
et al.[18]. We assume an adversary A can spoof the target’s LiDAR return signals by deploying
a device within the line of sight of the sensor. By modifying the return signal, adversary A can
modify the sensor’s 3D measurements, having the capacity to inject up to 200 points. Although
Cao et al.[7] showed that it is possible to inject up to 4000 fictitious points, we mostly keep the
original budget for the sake of comparison. Additionally, A can visually identify the model of the
sensor the target employs and A can spoof the resulting measurements to make objects appear
closer or further away from the target vehicle than they actually are. Being in close proximity,
A can sense the environment and detect nearby objects as well as use simple transformations to
change the 3D coordinates of the scene to reflect the target’s point of view.

However, in addition to the threat model presented in Hau et al.[18], for our Genetic Object
Removal Attack (GORA) as presented in Section 3.6.1 and our Bayesian Object Removal At-
tack (BORA) as presented in Section 3.6.2, we assume A has knowledge of what object detection
algorithm the target is utilising.
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3.3 Overview

The final goal outlined in Section 1.2 involves improving on the existing ORA functionality. The
most effective and straightforward way of achieving this is by refining the point selection algorithm
to perform better than it does randomly.

A crucial aspect of the strategies presented in this chapter is that they are not dependent on the
detection framework used, thus being easily integrated into our framework presented in Chapter 4
as well as any other.

Figure 3.1: Pipeline for novel strategies

Because we are only concerned with the selection module, our improvements are self contained
and can be adapted to different datasets and frameworks with ease.

In this context, it is useful to abstract the problem in order to make it easier to reason about. At
its core, the problem involves selecting budget points out of a total of n points in order to minimise
a black-box function. In the examples presented in Section 5.7, two objectives are used:

• Minimising the Intersection over Union (IoU) This is the metric used in [18] and
most related works. As the name suggests, given two bounding boxes it is calculated by
determining the volume of the intersection and dividing it by the volume of the union. The
goal is to ensure that the predicted bounding box’s position is as far away as possible from
the ground truth.

• Minimising confidence This alternative approach aims to completely obscure the targeted
vehicle. Each bounding box identified by an object detector has a score that represents the
confidence the algorithm has in the prediction. As presented in Lee et al.[22], most object
detectors use a single hyperparameter as a threshold for confidence values, usually set to 0.5.
Lee et al.[22] proposes an adaptive thresholding system that improves the overall performance
of object detectors.

3.4 Distance heuristic

A straightforward idea for improving the point selection algorithm would be to select the closest
points to the victim vehicle (under the budget). The intuition behind this approach is that the
closest points should be the most accurate thus altering them causing the most disruption, which
ought to be even more impactful under adverse weather conditions.

An interesting facet to this method is the direction in which the selected points are shifted. Shifting
the points to be further away from the ego vehicle should compact the predicted bounding box
and reduce detection IoU. On the other hand, shifting the points in the opposite direction has the
possibility of reducing the detection IoU even further but goes against the idea of a removal attack,
having a real effect similar to an injection attack as the vehicle appears closer than it actually is.
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3.5 Intensity heuristic

Another area for improvement is utilising the intensities of the candidate points when performing
the selection. As discussed in Section 2.1.1, intensity reduction is one of the main factors that
limits the performance of LiDARs in adverse weather conditions as it plays an essential role in
detection. Therefore, shifting the points with the highest intensity should significantly affect the
performance of 3D object detectors.

Although this approach is promising in theory, in practice having access to the intensity read-
ings from the victim’s LiDAR is unrealistic. As presented in Hau et al.[18], the coordinates of
points from the attacked LiDAR’s point of view can be inferred using a simple translation matrix.
However, the intensity values from the attacker and target perspective differ and cannot be simply
deduced. Thus, although the attacker’s point intensities can be used as an approximation, it is
not feasible to have access to precise values. For these reasons, this heuristic is mostly used as a
reference for our evaluation.

3.6 Machine learning approaches

Using machine learning to improve the selection of points in ORA is promising seeing as the prob-
lem involves large and complex amounts of data that are difficult to understand and exploit by
conventional means. This kind of approach does however have some drawbacks, mainly the re-
liance on the quality and amount of data as well as the amount of computational resources required.

As the field of machine learning is extremely varied and constantly evolving it is crucial to narrow
down possible approaches for our specific problem. Firstly, it is important to realise that because
our problem is open-ended and it is not possible to provide labels for our data, an unsupervised
learning approach is necessary. Another factor to consider is that our objective function is not
differentiable and has to be treated like a black-box due to its nature.

Yet another concern is that each different scenario can have a variable number of candidate points
out of which we have to make the selection. This entails some additional implementation com-
plexity but more importantly it has the potential to make it more difficult to extract meaningful
features out of the data.

One approach considered is leveraging recent advances in Reinforcement Learning (RL), specif-
ically integrating transformers into the policy network of the RL setup. Although this solution
would fit our requirements for an unsupervised approach utilising a non-differentiable objective
function, it would nonetheless not exploit the main strengths of RL, its main use case being mod-
elling the actions of an agent that interacts with an environment usually in a real time scenario.

3.6.1 Genetic Object Removal Attacks (GORA)

Genetic algorithms (GAs) as presented in Section 2.3.1 are a type of machine learning algorithm
inspired by natural selection that perfectly fit the requirements of our problem. Owing to their ro-
bustness and flexibility, GAs can easily adapt to changes in the search space or objective function.
A GA approach also presents some drawbacks, the most significant of which being the fact that
it is extremely computationally expensive, especially in our scenario where we are dealing with
a large amount of cases each of which consisting of hundreds of thousands of point coordinates.
Combining this with the parameter sensitivity inherent to GAs and the limited time and compu-
tational resources available, it is particularly hard to extract the full potential of this approach.

As was outlined in Section 2.3.1, the main challenges when designing a GA are problem encoding
and the evaluation function:

• Problem encoding Returning to our initial problem abstraction of selecting budget points
out of a total of n, the natural way of representing our genotype would be as a list of length
budget containing the indexes of the selected points. However, this does not address the
fact that the number of candidate points n can vary from scenario to scenario, potentially
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leading to selected indexes being out of bounds. Limiting the values of the indexes selected
or using padding would cause significant bias towards lower values and severely affect the
performance on large entries as the algorithm learns that lower indexes are a safer overall
option with guaranteed impact.

In order to avoid this, the solution is to initialise the genotype with the maximum size
of one of the entries in the dataset and then scale the indexes down as appropriate. The
idea is that by scaling down instead of padding, bias should be greatly reduced, and features
inherent to the data should translate better between scenarios.

Algorithm 1 scale_indices
1: Input: individual, data_length, max_length
2: Output: Scaled indices as a list
3: function scale_indices(individual, data_length, max_length)
4: scale_factor ← data_length

max_length

5: scaled_indices← ∅
6: for each idx in individual do
7: proposed_index← int(idx× scale_factor)
8: while proposed_index in scaled_indices and len(scaled_indices) < data_length do
9: proposed_index← (proposed_index+ 1) mod data_length

10: end while
11: scaled_indices.add(proposed_index)
12: end for
13: return list(scaled_indices)
14: end function

It is also crucial to ensure all indexes are unique as not utilising the entire budget can have
a drastic effect on performance.

• Evaluation function In our case, the evaluation function is dependent on the evaluation
metric used (IoU or confidence) as well as the detection framework used for detection. Since
this is one of the only parts of the algorithm that interacts with functionality outside the
point selection module, it requires minimal adjustment based on external factors. Therefore,
for the sake of simplicity, the evaluation function for an individual is the mean of the chosen
metric across all scenarios.

This also applies in the case where we train our genetic algorithm on multiple object de-
tection algorithms at the same time, the result being the mean of the combined scores for
all scenarios. The weights of the results can be easily changed in specific situations where
performance on a particular object detection algorithm is preferred over another, perhaps
due to their prevalence.

One of the most significant pitfalls of GAs is premature convergence, which happens when the di-
versity of a population diminishes, thus causing the results to remain on a local optima. Therefore,
most of our specific design choices are made with the goal of preserving diversity in the population
seeing as our search space is very large.

Distributed Evolutionary Algorithms in Python (DEAP)[12] is an evolutionary computational
framework that is highly flexible and customizable, allowing for great ease of use and rapid pro-
totyping. The most important advantage of using DEAP is that it has a very modular design,
allowing users to modify and extend various aspects of the evolutionary process. This capability
can be leveraged in the context of this work by customising the essential steps (Section 2.3.1) of a
GA for our needs:

• Initialisation Based on the defined population size and maximum size of one of the cases,
each individual is initialised randomly.

• Selection There exist a multitude of selection strategies, most representing a compromise
between convergence speed and diversity preservation. Considering our problem has a very
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large search space that likely contains a lot of local optima, maintaining diversity in our
population is of the upmost concern. Thus, the approach used is tournament selection with
a small tournament size. Three individuals are picked at random and the best one is selected
to reproduce, this being repeated until the desired number of individuals has been reached.

• Mutation and Crossover The mutation function takes the mutation rate as an argument
and for each index inside an individual attempts to change it to a random new index while
maintaining their uniqueness so as not to use less points than the budget allows. Uniform
crossover is used for the main reason that the ordering of the selected indexes has no impact
on the fitness of the individual. This crossover strategy also serves to enhance the diversity
within the population along with the usage of the varAnd variation strategy from DEAP
which allows both mutation and crossover to potentially be applied on each individual.

• Replacement Instead of just replacing the old population with their offspring, our approach
also utilises fitness sharing and elitism in order to promote diversity among the population.
Fitness sharing involves penalising solutions that are too similar to each-other based on a
specific metric. In our case, the Hamming distance is used, individuals are penalised based
on the number of others they share at least 75% of their selected indices with.

f ′(i) = f(i)×

 ∑
j∈Population

δ(distance(i, j) ≤ threshold)

α

Where δ is the indicator function that is 1 if the condition inside is true and 0 otherwise and
α is set to 0.05 from empirical results. Elitism is a strategy used in GAs where a certain
number of the best individuals from the current generation are guaranteed to be carried
over to the next generation without undergoing crossover or mutation. Utilising elitism has
the objective of stabilising the population to counteract the randomness induced by fitness
sharing.

Another important aspect of the GA is the utilisation of K-fold cross-validation in the training
process. This works by dividing the dataset into k equal sized folds, k - 1 of which are used
for training at each iteration and the last being used for evaluation. Therefore, each fold will be
evaluated on once and trained on several times, giving a more comprehensive idea of the algorithm’s
performance. The most crucial advantage of this approach is that it efficiently uses even limited
amounts of data while still providing an unbiased evaluation result. Thus, although this has a
significant computational costs, it ensures that our GA can perform efficiently on datasets of all
sizes.

Figure 3.2: Training fitness over generations for the HDL-64E sensor across 5 folds of 30 generations
each
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In Figure 3.2 we can observe the training finesses decreasing inside each fold of 30 generations,
while having sharp changes between folds. This is caused by the fact that data inside each fold is
likely to have quite different characteristics, being more or less difficult to optimise.

3.6.2 Bayesian Object removal Attacks (BORA)
Bayesian optimisation (BO) as previously described in Section 2.3.2 is a strategy for global op-
timization of black-box functions that are expensive to evaluate, making it a perfect candidate
approach for our problem.

The main challenges of designing a BO algorithm are the similar to the ones in designing a GA,
namely problem encoding and evaluation function. Two different approaches for implementing
Bayesian ORA were attempted:

• The first strategy involves trying to optimise the chosen metric (IoU or confidence) for each
scenario separately. This approach exploits specific weaknesses in each dataset case, allowing
for improved performance on a case-by-case basis. Another significant advantage is that
this strategy allows for a high degree of parallelisation given the necessary computational
resources. As we will further explore in Section 5.6, the execution duration of this algorithm
does not allow it to be used in a real-time scenario using our threat model presented in Section
3.2. We do still consider that exploring this approach is beneficial as it could be employed
in offline scenarios or perhaps just used as a performance reference for other strategies.

• The second approach is similar to the GA as it utilises cross-validation while trying to min-
imise the average metric across all training cases. For this approach, our search space for the
BO algorithm is similarly defined to the individuals from GORA by using the maximum size
of one of the cases, indices then being scaled down. The results would also be used in a similar
manner to the GA ones, where a predefined list of best indexes chosen through training is
applied to unseen data. Compared to the previous approach, this strategy conforms to our
threat-model and is a possible option for a real scenario.

In order to streamline the implementation of the BO algorithm, the scikit-optimise library was
utilised because it offers significant built-in functionality while still being flexible enough to be cus-
tomised for our specific problem. Therefore, we can develop a modular implementation that only
requires minimal changes between the two approaches outlined above or for changing the target
metric of the optimisation. This also allows our implementation to be more easily adapted for dif-
ferent detection frameworks, most of the effort required for the implementation being invested into
loading and processing the possible candidate points as well as designing the evaluation function.
One of the advantages of using BO over a GA is that a BO algorithm has less hyperparameters and
thus requires less manual adjustment. For our implementation, there are two main parameters:

• Number of iterations This parameter dictates the optimisation’s budget, the algorithm
being allowed to evaluate the black-box function a given number of times. In this regard,
this approach suffers from a similar problem to our GA strategy, namely that due to the
limited available computational resources it is not possible to extract the all the available
performance.

• Acquisition function This choice has great effect on both the performance and efficiency of
the BO algorithm. In our approach, the Expected Improvement (EI) acquisition function is
utilised as it balances exploration and exploitation as well as the fact that it is computation-
ally efficient compared to more complex function, allowing the usage of as many iterations
as possible.

Overall, the the main advantage of this strategy is that it is relatively less complex than GAs,
requiring less parameter adjustments. Although they have similar implementations, the two BO
approaches serve very different use-cases, allowing for a comprehensive performance analysis. Fur-
thermore, this optimisation strategy presents significant potential for further improvements espe-
cially given significant computational resources.
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Chapter 4

Design and implementation of
detection framework

4.1 Core concept

The main idea behind this project is to evaluate and subsequently exploit the limitations of Li-
DARs under rainy conditions, as presented in Section 2.1.1. The hypothesis posits that as overall
performance diminishes, the real-world impact and consequences of an attack increases. In a sce-
nario where a sensor already struggles to function correctly, even an unoptimised attack can have
grave consequences.

In order to verify this hypothesis, as was outlined in Section 1.2, we would need to first select
or create a comprehensive dataset for adverse weather conditions and replicate existing attack
methodologies

4.2 LiDAR dataset generation

Generating a LiDAR dataset for adverse weather conditions is a critical step in this project. The
dataset must accurately reflect the challenges faced by LiDAR sensors in rainy environments.
Therefore, there are three main considerations when it comes to the dataset:

• Size: This is the most obvious factor, as it helps mitigate the effects of outlier scenarios on
the results. Additionally, for a machine learning algorithm, having a sufficiently large dataset
is essential to achieve desirable outcomes.

• Weather conditions: Representing a range of weather conditions in the dataset is crucial.
To ensure the dataset is comprehensive, it must include a wide range of adverse weather
scenarios such as rain with varying intensities, from light(< 2.5mm/h), moderate(2.6 - 7.5
mm/h) and heavy (>7.5 mm/h)[4]

• Accuracy: This is particularly important for simulated data. The dataset must accurately
depict real-world driving scenarios to ensure reliability.

4.2.1 Comparison of real and simulated data

Various labeled LiDAR datasets already exist online and are extensively used in research. Perhaps
the best known is the KITTI dataset[13] which was used for evaluation and validation in Hau et
al.[18]. The dataset was collected in the Karlsruhe region of Germany using a setup incorporating
a variety of sensors, including an HDL-64E sensor.

One significant advantage of the KITTI dataset is its precise labeling, as a team of annotators
was hired to manually label the readings. Moreover, its widespread use in literature allows for easy
comparison of results
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Figure 4.1: KITTI autonomous driving platform from[13]

However, the fundamental problem with the KITTI dataset is that it only includes clear weather
scenarios, making it unsuitable for our work.

Another popular alternative is the Waymo dataset[9]which was created by Google. When com-
pared to the KITTI dataset, its main advantage is the diversity in both geography and conditions.
Data was collected from 6 major cities in the US, encompassing different environments and weather
conditions.

Although the Waymo dataset is large and also includes adverse weather, it has a significant draw-
back: it is challenging to directly compare clear and rainy scenarios because they might be collected
in different locations, at different times of day, with varying vehicle types around. Thus, even
though we could infer some general characteristics about the effects of adverse weather on LiDAR
by combining the results we get over the whole dataset, it would be extremely hard to isolate rain
as the sole factor. Additionally, there are other considerations, such as the potential for skewed
statistics due to the disproportionate number of clear weather data points compared to rainy ones.
All of these factors would diminish the impact of our findings, as any conclusions drawn could be
unknowingly biased.

In contrast, using simulated data provides several advantages, the most important of which is
flexibility in creating scenarios. By leveraging the capabilities of a simulator, we can recreate the
exact same positions, vehicles and environments in both clear and rainy conditions. Thus, a direct
comparison can be drawn by isolating rain as the only differentiating factor. Moreover, multiple
models of LiDAR sensors can be employed in the same scenario, allowing for an even more com-
prehensive analysis of their performance

Nevertheless, using simulated data also has disadvantages, the most notable of which being a
decrease in accuracy. Although, as presented in Section 2.1.1, Goodin et al.[15] and Yang et al.[38]
show promising results for their rain models, there is still a domain gap between real and simulated
data. Because of computational concerns, certain aspects have to be approximated and other less
impactful ones completely disregarded. This discrepancy is be further investigated in Section 5.2

Another consideration when it comes to using simulated data is the amount of time and effort
necessary for its creation. Simulators tend to be difficult to set-up and learn to use due to their
complex structure and extensive functionality. On top of that, time is also required to create the
scenarios necessary in gathering data. Although this process can be somewhat automated, in or-
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der to guarantee the quality of the dataset, a significant amount of manual intervention is required.

Taking everything into account, although real data provides better accuracy and ease of use, for
the specific context of investigating the robustness of LiDAR in adverse weather, using artificial
data allows for more flexibility in isolating the relevant factors to our study.

4.2.2 Choice of simulator and rain model
The CARLA simulator[10] is an open-source simulator developed from the ground up to support
training and validation of autonomous driving systems. CARLA provides a flexible and highly
detailed simulation environment that enables researchers and developers to create and test au-
tonomous driving algorithms under a wide range of conditions.

One of the main strengths of CARLA is that it has a very large number of assets that allow
for extensive customisation. The simulator provides a variety of maps, vehicles, pedestrian types
and allows for in-depth control of their behaviour. Another significant advantage is that owing to
it’s popularity, the simulator is well-maintained and there are ample resources online for learning
its functionality.

The primary drawback of using CARLA is that although it provides some support for simulating
adverse weather conditions, the changes are mostly visual and do not affect LiDAR sensors. As
discussed in section 2.1.1, Yang et al.[38] presents a rain model for the CARLA simulator that
utilises an intensity prediction U-net, showing promising results overall. However, the code-base
for the model has not been maintained since the publication of the paper and is poorly documented,
thus making it almost impossible to set-up and use.

In contrast, the MAVS simulator provides an integrated rain model that Goodin et al.[15] shows
accurately represents real scenarios, making it a very attractive choice for this project. However,
the simulator is not open-source (although it is free for academic use) and thus there are fewer
learning resources online, making it harder to set-up and use. Furthermore, the most significant
downside of MAVS is that it only includes a very limited number of assets such as maps and vehicles.

Considering all these factors, MAVS is the best viable solution for simulating adverse weather
scenarios for LiDARs. Nevertheless, this choice means that the findings presented in this work
focus on vehicle detection because the limitations of MAVS make it very difficult, if not impos-
sible, to add pedestrians and cyclists. We consider this to be a worthwhile trade-off, seeing as
vehicle detection is the most common case in AV scenarios and the methodology presented should
seamlessly translate to both pedestrian and cyclist detection.

4.3 Detection pipeline

In order to complete the second objective outlined in Section1.2, we first need to develop a method
for applying different object detectors to our simulated data. The MAVS simulator outputs labelled
data in the Point Cloud Data (PCD) format[24].

Figure 4.2: Beginning of a PCD file. Each point entry has the format (x, y, z, intensity, label)
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This format presents a significant number of advantages, being fast, very flexible as it can
encode different data types and includes information about the structure and size of the data in
the header. It is important to also notice that the viewpoint from which the reading was recorded
is specified as a translation (tx, ty, tz) and a quarterion (qx, qy, qz).

However, this format differs from the one used by OpenPCDet[35] which is used as the back-
bone of our detection pipeline due to it’s flexibility and robustness, integrating multiple object
detectors. OpenPCDet uses NumPy or binary files of the format (NPoints, 4), each entry being
of the type (x, y, z, intensity). To this end, the pypcd library[23] was used to convert the files to
the right format.

The converted data can then be used with the demo.py provided by OpenPCDet to perform
detection with a model trained on the KITTI dataset.

Figure 4.3: Detection example using PointPillars from an HDL-64E sensor

For each input file, the detector outputs a number of predictions, each consisting of the following:

• A bounding box of the format (x, y, z, dx, dy, dz, heading) where x, y, z are the coordinates
for the center of the box, dx, dy, dz are extents along each of the axis and the heading ranges
from 0 to 2 ∗ π.

• A score that represents the confidence the detector has in the prediction. In Figure 4.3
multiple erroneous bounding boxes can be observed which is explained by the fact that all
of them have very low confidence scores and would not affect a real scenario.

• A label, classifying the prediction as either a vehicle, as traffic sign, a cyclist or a pedestrian.

In the context of 3D object detection, the metric usually used to quantify the quality of a pre-
diction is the Intersection over Union (IoU). As the name suggests, given two bounding boxes it
is calculated by determining the volume of the intersection of the boxes and dividing it by the
volume of the union. In our case, in order to calculate the IoU for the prediction we first need to
identify the ground-truth bounding box of the vehicle in our scenario.

As mentioned before, the KITTI dataset ground-truth bounding boxes are annotated manually.
Although we could do the same for our synthetic dataset, this would not only take significant effort
but also make it notably harder to extend the dataset in the future. Thus, even if the quality of
the bounding boxes is lower, an automated approach to generating the ground truth is preferable.
To this end, the Open3D library[41] provides functionality for creating oriented bounding boxes
from a point cloud.
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The resulting bounding boxes are in a different format than the one mentioned previously, be-
ing defined by the coordinates of the corners. In order to convert the bounding boxes to the
format used by OpenPCDet, the center coordinates and extent can be calculated from the corners
and the heading can be determined using the rotation matrix of the box. The main disadvantage of
the obtained bounding boxes is that they are limited by the quality of the original data, specifically
in the case of a sparse point cloud with a limited number of vehicle points, the result might not
accurately reflect the truth.

(a) Ego vehicle perspective

(b) Top-down view of LiDAR results and ground-truth box without
adjustments

Figure 4.4: Driving scenario in 25 mm/h rain. Because of the adverse conditions and angle, only
part of the vehicle is represented in the LiDAR data, leading to a ground truth bounding box that
is too small

To increase the accuracy of our ground-truth bounding boxes, the dimensions of the vehicles
are augmented to a fixed size, based on averages. Although the same exact positions of the vehicle
could be set manually based of the models used in the simulator, this would once again make it
harder to extend our dataset in the future.

The augmented ground-truth bounding boxes can be used together with the predictions to deter-
mine the IoU. To this end, the IoU function used for the PillarNet detector[16] is used (Appendix
B.1). Calculating the volume of the intersection is done by first reducing the problem to two di-
mension along the x and y axis. After the dimensions of the intersection rectangle is computed, its
area is multiplied by the extent of the intersection along the z axis. The volume of the union can
then be determined by subtracting the volume of the intersection from the sum of the volumes of
the starting bounding boxes. Because of its design, the function allows for all of these calculations
to happen in parallel for multiple bounding boxes thus covering all predictions in a scenario. These
values are used for our analysis is Section 5.
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Figure 4.5: Detection pipeline

4.4 Replication of ORA

In order to replicate ORA, we can build upon our already existing detection pipeline. Considering
the ORA pseudocode in Section 2.14, we need to determine the list of possible candidate coordinate
points and then shift them up to 2 meters. Although we could directly select candidate points from
the ground-truth bounding boxes, this would not be applicable in a real scenario. Thus, similar
to the original paper, candidate points are chosen from the predicted bounding box, necessitating
a two stage approach. In the first detection, the bounding box that is the most accurate (best
IoU) is chosen and the points inside of it are selected as candidates. This is done using the
points_in_boxes_cpu function from the roiaware_pool3d_utils module of OpenPCDet because it
provides excellent efficiency seeing as it is compiled in C++ instead of Python and uses bitwise
operations.

Algorithm 2 ray_shifting
1: Input: point_to_be_shifted, shifting_distance
2: Output: Shifted point as a tensor
3: function ray_shifting(point_to_be_shifted, shifting_distance)
4: delt_x← point_to_be_shifted[0]− origin[0]
5: delt_y ← point_to_be_shifted[1]− origin[1]
6: delt_z ← point_to_be_shifted[2]− origin[2]
7: (az, el, r)← cart2sph(delt_x, delt_y, delt_z)
8: shifted_r ← r + shifting_distance
9: (shifted_delt_x, shifted_delt_y, shifted_delt_z)← sph2cart(az, el, shifted_r)

10: shifted_x← shifted_delt_x+ origin[0]
11: shifted_y ← shifted_delt_y + origin[1]
12: shifted_z ← shifted_delt_z + origin[2]
13: shifted_intensity ← point_to_be_shifted[3]
14: shifted_point← torch.tensor([shifted_x, shifted_y, shifted_z, shifted_intensity])
15: return shifted_point
16: end function
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Candidate points are then chosen randomly (under a budget) to be shifted. Shifting is done
by converting the point’s Cartesian coordinates to Spherical coordinates, adjusting the radius to
reflect the change and then converting the coordinates back to the Cartesian coordinate system.

Figure 4.6: ORA pipeline
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Chapter 5

Evaluation

In this section we evaluate the success of our work by answering the research questions below.
Where necessary, we draw comparisons to the results presented in related works.

• RQ1 - How well does our simulated dataset reflect the findings in Goodin et al.[15]?

• RQ2 - How does the base detection rate of our pipeline compare to related works? Can we
establish reasonable thresholds for all sensors and object detectors?

• RQ3 - How do the results of our recreated Random ORA compare to the original ones from
Hau et al.[18]?

• RQ4 - How does rain impact the effectiveness of Random ORA?

• RQ5 - How well do our novel algorithms perform?

• RQ6 - Which target metric yields the best result for our approaches?

5.1 Experimental setup

As was discussed in Chapter 4, he MAVS simulator is used for creating the dataset these experi-
ments are run on. All test scenarios are categorised by these factors:

• Rain rate As briefly outlined in section 4.2, we utilise 5 different weather settings: clear,
light (for 2.5 mm/h rain), moderate (for 5 mm/h rain), heavy (for 10 mm/h rain) and extreme
for (25 mm/h rain). Although some related works have investigated even heavier rain than
our extreme case, 25 mm/h is the simulator’s limit

• Distance The ego and target vehicle are placed at varying distances, ranging from 5 to 25
meters. This interval was chosen based on the results from a breaking distance calculator[34]
which utilises the formula for stopping distance proposed by the American Association of
State Highway and Transportation Officials. Even when assuming an instant reaction time
which is unfeasible in practice, at 20 mph which is the lowest speed limit in the UK in school
zones and dry conditions, the breaking distance would be 5 meters. Thus, investigating dis-
tances shorter than that is not required. At 30 mph which is the speed limit for built-up
areas and in wet conditions the stopping distance would be 25 meters, thus justifying the
interval.

It is also important to consider the fact that the number of cases are distributed evenly
among 4 different distance buckets: 5-10 meters, 10-15 meters, 25-20 meters and 20-25 me-
ters.

• Sensor Two different sensors were used to create the dataset: the Velodyne HDL-64E and
Velodyne VLP-16. They were chosen due to the fact that they are some of the most widely
used and available sensors as well as the fact that the KITTI dataset (utilised for evaluation
in Hau et al.[18]) was created using a Velodyne HDL-64E sensor.
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For each combination of sensor and distance 40 different scenarios were created at varying dis-
tances, combining for a total of 400 distinct cases. Each of them consists of a labeled ".pcd" file as
well as reference and annotated pictures used for manual inspection of results. Although a larger
dataset would have improved the quality of our results, considering the resources available and the
computationally expensive nature of our approaches, training times would become unreasonably
large. Furthermore, a significant amount of manual intervention is required when creating such a
dataset in order to maintain quality standards.

(a) Reference image (b) Annotated image

As presented in Section 2.1.2, we use three different object detection algorithms: PointPillars,
SECOND and Part_A2_free (which is the Part_A2 version without predefined anchors). These
were selected because they all have state-of-the-art results as well as being extremely popular. In
addition to this, each of them is meant to represent a different category of object detector, Point-
Pillar being pillar based, SECOND being voxel based and Part_A2_free being point based.

All experiments were done on a Dell XPS 17 laptop with an Intel I7-11800H, 32 GB of RAM
and a Nvidia RTX 3060, running Ubuntu.

5.2 Research question 1

How well does our simulated dataset reflect the findings in Goodin et al.[15]?

Answering this question is essential for establishing the validity of our work since our synthetic
data needs to represent reality as accurately as possible. The first metric we compare is the to-
tal number of points detected in a scan, depending on rain rate, as this provides a solid overall
understanding of the effects of adverse weather.

Figure 5.2: Total number of points per rain rate from Goodin et al.[15], using the HDL-64E sensor
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Figure 5.3: Total points for different rain rates: clear - 0 mm/h, light - 2.5 mm/h, moderate - 5
mm/h, heavy - 10mm/h, extreme - 25 mm/h

An important first observation is that our rain rates are not numerically equidistant, thus re-
sulting in the overall different aspect of the results. Another clear difference is that the values for
the number of points differ notably, this being caused by differences in scenario and distance, and
therefore non-consequential. We are mostly interested in the proportional decrease in total points
caused by the rain, for example between the clear case and the extreme one. In our experiment,
this accounts for a 17% decrease compared to approximately 25% decrease for the results from
Goodin et al.[15].

The reduction in points can also be observed when specifically analysing only detected vehicle
points.

Figure 5.4: Number of vehicle points per distance for different conditions

We can notice that although rain does have an effect on the number of detected vehicle points,
when it comes to this particular metric, distance to the target is the most important factor. Further
analysing this result, based on Figure 5.5, the decrease in vehicle points is not caused by the target
vehicle falling outside of the maximum range of the sensor, as even in extreme conditions the range
is 27.3 meters.
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Figure 5.5: Max range for HDL-64E in different conditions

Thus, it is safe to assume that the sharp decrease in the number of vehicle points even at 10−15
meters is caused by the effect of rain on the point intensities, causing a number of them to fall
below the minimum threshold.

The next important metric we analyse is the decrease in intensity caused by adverse weather.
To this end, we utilise the following formulas from Gooding et al.[15]:

δ = (P − P0)/P0 (5.1)

δ = e−2aRbz − 1 (5.2)

Where P0 is the intensity reflected in the absence of rain, P is the intensity in the rain, z is the
distance to the target, R is the rain rate and a, b are constants defined as 0.001, 0.6. Thus, using
the intensity values for our clean scenarios, we can utilise the formula to calculate the predicted
intensity for each rainy case, which we can then compare to the recorded values.

Figure 5.6: Predicted and measured intensity for HDL-64E sensor at differing rain rates, calculated
using Equations 5.1, 5.2

The predicted results for intensities compare almost perfectly to the recorded ones, especially
considering the fact that the formula has to be averaged across all vehicle points because it is im-
possible to individually match each pair of points from two different readings. Therefore, averaged
intensity and distance values were used, still producing a very accurate prediction.

Furthermore, the results for the VLP-16 sensor also closely match our predictions, indicating
that the adverse weather intensities are calculated using the same formula and the same values for
coefficients a, b.
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Figure 5.7: Predicted and measured intensity for VLP-16 sensor at differing rain rates, calculated
using Equations 5.1, 5.2

Although not significant, the results for the VLP-16 sensor have more of a discrepancy between
the predicted and recorded values, caused by the the scarcity of points in the point cloud, making
our averaged formulas more prone to noise.

Figure 5.8: Measured intensity for HDL-64E and VLP-16 sensors in different conditions

Further comparing the sensors directly, we one again see that they closely reflect each-other.

5.2.1 Discussion

To answer our proposed question, our results for the HDL-64E and VLP-16 sensors accurately
represent the findings in Goodin et al.[15]. This conclusion is crucial because it supports the
validity of all further evaluation results. Nonetheless, comparing the number of total and vehicle
points between our two sensors (Figure 5.4, 5.3, Appendix B.8, B.7) we can observe that the HDL-
64E is overall the superior sensor, performing better in all metrics. Thus, although both sensors
are utilised in our evaluation, the HDL-64E is given the most attention.

5.3 Research question 2

How does the base detection rate of our pipeline compare to related works? Can we establish rea-
sonable thresholds for all sensors and object detectors?

Answering this question is essential as it serves to contextualise all further results in this chapter
and establishes a performance baseline which can be compared to later. Having chosen to replicate
ORA methodology, we use the results in Haut et al.[18] to asses our own findings. For the second
part of the question, we intend to establish realistic thresholds for our chosen metric specific to
each possible setup. For RQ2, RQ3, RQ4, RQ5 we use IoU as our chosen metric seeing as it is
the one mostly used in related works, including Hau et al.[18].
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Figure 5.9: Random ORA results using Point-RCNN (left) and Point-GNN (right) from Hau et
al.[18] At this stage, we are only concerned with the "clean" results depicted in blue, representing
the performance of the detectors on unperturbed data.

These results were compiled using the KITTI dataset that only includes clear weather data and
utilises a Velodyne HDL-64E sensor. Thus, for the most direct comparison, we recreate this exact
setup using our synthetic dataset. Furthermore, as results only include scenarios where the target
is between 5 and 20 meters from the ego vehicle, we only utilise cases that fall within that range.

Figure 5.10: Results for HDL-64E and VLP-16 sensors in clear scenarios, averaging the performance
across all 3 detectors used

By first comparing the results between our two sensors, it is easy to observe that as expected
the HDL-64E is overall the superior sensor, having better recall for all IoU thresholds.

As mentioned before, we mostly focus on the direct comparison between our results on the HDL-
64E and those presented in [18]. The first thing to notice is that for IoU values < 0.3, our results
have a perfect recall of 1 while both detectors from [18] completely miss some of the cases. This
might either be caused by the simulated data being generally more consistent or by the synthetic
scenarios we have chosen being more forgiving. However, the performance of our detectors starts
to decrease earlier but at a slower rate, the results from the KITTI dataset staying relatively level
for thresholds between 0 and 0.6. By manually inspecting case by case, we have determined that
this difference is most likely caused by the quality of the generated ground-truth boxes that al-
though relatively accurate, do not reflect reality as well as the manually annotated KITTI labels.
Nonetheless, it is important to consider that for an IoU of 0.5 the values between the two datasets
are still very similar, making this value a candidate for our chosen threshold.

Having looked at the comparison it is also crucial to establish the IoU thresholds for all our
different setups. Even though we continue to investigate the recall at all possible IoU values, we
require realistic values that fit the clear weather scenarios so that we can better understand the
effects of potential attacks and adverse weather conditions. For example, we first look at the
combination of the HDL-64E sensor and PointPillars detector.
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For this setup, a reasonable value for the threshold would be 0.5, with a recall value of 0.866.
Choosing a lower threshold would lead to many false positives while choosing a higher value would
deteriorate the detector’s performance excessively. Furthermore, at this threshold, the results from
Hau et al.[18] have similar recall values allowing for easier comparison for future research questions.

Using similar reasoning and using the graphs Appendix B.2, B.3, B.4, B.5, B.6, we can choose
the following IoU thresholds:

• HDL-64E PointPillars - 0.5, SECOND - 0.5, Part_A2 - 0.5

• VLP-16 PointPillars - 0.4, SECOND - 0.4, Part_A2 - 0.4

Although there are minor differences between the object detectors at the mentioned values, choosing
a single threshold simplifies the evaluation process while still maintaining realistic performance.

5.3.1 Discussion

Considering the large differences between the used datasets and overall setups, our findings compare
well to the ones in Hau et al.[18], in particular for the HDL-64E sensor. As previously mentioned,
one of the main factors for the disparity between the results is the quality of the ground-truth
bounding boxes. Significant effort has been allocated to refining the ground-truth bounding box
creation and augmentation systems, reaching optimal results considering the restrictions. For some
cases there are simply not enough vehicle points to determine an accurate approximated bounding
box or the box is misaligned because of the angle from which the target vehicle is seen. This is
particularly prevalent in cases where the target is perceived from one of the corners, where the
Principal Component Analysis (PCA) used in the Open3D library to create oriented bounding
boxes leads to misaligned boxes.

As for the thresholds, we consider the values chosen to be reasonable, especially for the HDL-
64E sensor where they would also be good fits for the results in Hau et al.[18]. As the VLP-16
sensor is a cheaper and simpler alternative, performance is lower thus requiring smaller thresholds.
Nonetheless, precisely because of the reasons mentioned, the VLP-16 is widely used therefore being
an important research target.

5.4 Research question 3

How do the results of our recreated Random ORA compare to the original ones from Hau et al.[18]?

In order to answer this question, we analyse the results of Random ORA for different budgets
from our work and Hau et al.[18] using the two methods primarily used in the cited paper:

• Firstly, we look at the impact of different budgets attacks on recall with regards to IoU
threshold. The graphs from Figure 5.9 are the reference point to which we compare our own
results.
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Figure 5.11: Results for HDL-64E (top) and VLP-16 (bottom) sensors in clear scenarios, averaging
the performance across all 3 detectors used at all budgets

We can observe that the impact of Random ORA on on the HDL-64E sensor is greatly
reduced compared to previous findings. Furthermore, as the HDL-64E sensor outputs a very
large amount of 3D points, only the biggest budget random ORA has a significant impact on
the detection performance. On the other hand, the attacks have more of an impact even for
lower budgets on the VLP-16 sensor, the results being closer to the ones in Hau et al.[18]. For
our chosen IoU threshold values, we observed a decrease in recall of 0.22 between the clean
and 200 budget scenarios on the HDL-64E sensor and a decrease of 0.544 for the VLP-16
sensor, which is close to the values reported in [18].

• Secondly, we analyse the impact of different budget attacks on recall with regards to dis-
tance (for a fixed IoU threshold). This analysis provides further insights into the real-world
performance and implication of Random ORA.

Figure 5.12: Recall metric by distance using Point-RCNN (left) and Point-GNN (right) from Hau
et al.[18]

It is important to observe that in general performance on the unperturbed data remains quite
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stagnant even at larger distances, with the notable exception of the Point-GNN detector which
struggles at detecting close vehicles. In contrast, the effectiveness of the attack increases with
distance, this probably being caused by the decreased number of vehicle points in the point
cloud.

Figure 5.13: Recall by distance for HDL-64E (top) and VLP-16 (bottom) sensors in clear scenarios,
averaging the performance across all 3 detectors used at all budgets. The IoU thresholds discussed
in the previous section were used (0.5 for the HDL-64E and 0.4 for the VLP-16)

First looking at the HDL-64E results, we can observe similar trends to those in the cited work,
namely that the performance on unperturbed data is relatively similar for all distances, while
the attacks become more effective with distance. The fact that our clean performance is not
completely the same across all distances can be attributed to the overall much smaller size of
our dataset, being more prone to noise caused by outlying cases. The effect of the attacks on
the VLP-16 sensor is even more pronounced, especially for distances greater than 14 meters,
recall dropping to 0.

5.4.1 Discussion

The first takeaway from the findings in this section is that less complex sensors such as the VLP-16
are extremely vulnerable to ORAs, especially at medium to large distances. This is a very impor-
tant security vulnerability considering that these are the distances most commonly encountered in
driving scenarios.

Overall, our results do not seem to accurately compare to the ones presented in Hau et al.[18],
specifically for the HDL-64E sensor when not taking distance into account. The data presented
can however be somewhat misleading, the main reason for the discrepancy being attributed to the
object detectors used.
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Figure 5.14: Results for Part_A2_free(top) and SECOND(bottom) detectors in clear scenarios

We can observe that while the SECOND detector is only marginally affected by the attacks,
Part_A2 is influenced the most out of all detectorss. This becomes even more relevant when con-
sidering that Part_A2 is an improvement of the Point_RCNN detector used in Hau et al.[18].

Taking all of this into account as well as the fact that the recall values by distance compare
favourably, we can assume that the inconsistency can be justified by the use of newer, more ef-
ficient object detection algorithms as well as the previously presented differences in the baseline
performance. Thus, as the methodology is simple, we presume that our recreation is valid and can
be used as reference for our future evaluation.

5.5 Research question 4

How does rain impact the effectiveness of Random ORA?

Answering this research question constitutes one of the main objectives of this work, thus ne-
cessitating significant attention. Having already analysed the effects of adverse weather on LiDAR
and the performance of Random ORA in clear scenarios, we can now investigate the attack’s per-
formance in rain. For this section, we continue using IoU as our metric in order to have a direct
comparison to previous findings.

We first analyse the results for the HDL-64E sensor across all detectors from Figure 5.15. Com-
paring the extremes, we can observe a 19% decrease in performance for the maximum budget
between clear and extreme rain conditions, while the change for the unperturbed data is only
13%. Therefore, we can already observe that adverse conditions have a disproportional effect on
the performance of the attacked point clouds. Moreover, the recall for the unperturbed data only
drops significantly for extreme conditions, while the attacks with the biggest budgets are sensitive
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to even a lesser amount of rain.

Figure 5.15: Recall for IoU = 0.5, on the HDL-64E sensor using different budgets of attack.
Averaged for all detectors

A recall value of just 0.5 for the perturbed data in extreme rain raises significant safety con-
cerns, having the potential for severe real life consequences. Similar results to the ones discussed
can also be observed for the VLP-16 sensor (Appendix B.9).

Figure 5.16: Results for Part_A2_free(top) and SECOND(bottom) detectors in extreme weather
conditions
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Another crucial aspect to consider is how the changes in condition affect each particular de-
tection algorithm. Analysing Figure 5.14 from the previous section we observed that in clear
conditions the SECOND detector is much more resilient to ORAs than Part_A2. However, for
extreme rain (Figure 5.16) this trend seems to be reversed, Part_A2 experiencing a proportional
overall decrease in performance, while for the SECOND detector the attacks become significantly
more efficient compared to the clean scenario. The same particularities in the performance of the
SECOND detector can also be observed for the VLP-16 sensor (Appendix B.10), further indicating
that this behaviour is caused by the detection algorithm.

Figure 5.17: Results for PointPillars using an HDL-64E sensor in clear (top) and extreme (bottom)
conditions

In most aspects, the performance of the PointPillars detector seems to fall somewhere in between
Part_A2 and SECOND, being affected by the attacks in a significant manner for both clear and
extreme conditions, while also exhibiting a further vulnerability to attacks in the extreme case.

5.5.1 Discussion

Overall, it is clear that rain has a major impact on the performance of Random ORA, making
the strategy even more potent, which validates our initial hypothesis. Furthermore, it is crucial to
consider recall values for attacked point clouds were already low in clear conditions, hence the fact
that the decrease in performance is proportionally larger than for unperturbed cases means that
these attacks have the potential to be catastrophic in a real scenario.

Another important takeaway from these results is that there are significant differences in the
behaviour of object detectors in adverse weather conditions. Most research into this field uses
the KITTI dataset for training and evaluation, completely disregarding performance in adverse
weather. Judging by our findings, we consider that there should be more emphasis on ensuring
object detectors are well suited to rainy conditions.
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5.6 Research question 5

How well do our novel algorithms perform?

In order to answer this question, we analyse the results of each our approaches from Chapter
3, while mainly utilising IoU as our target metric in order to have a straightforward comparison
with the findings from previous questions.

To begin with, we look at the two proposed heuristics, involving distance and intensity:

Figure 5.18: Results for distance and intensity heuristics for HDL-64E (top) and VLP-16(bottom),
using all detectors and in all weather conditions. All heuristics were applied with a budget of 200,
the "random-0" being the unperturbed case only included as a reference point. For the distance
heuristics, positive and negative refer to the direction the points were shifted (positive - further
away, negative - closer)

The reason for the inclusion of these strategies, especially considering that the intensity heuris-
tic is not feasible in a real scenario, is to illustrate that although the selection process for Random
ORA is simplistic, because of the very complex problem and data used it is still difficult to im-
prove on. Compared to the performance on the unperturbed data, especially on the HDL-64E, the
improvement that the heuristics make is limited.

We can also observe that the heuristics perform very differently on the two sensors. On the
VLP-16, all of the approaches have a bigger impact than Random ORA, shifting the closest points
to be even closer to the ego vehicle having the best results. However, the contrary is true for the
HDL-64E, the "distance_negative" heuristic having the worst performance, even worse than ran-
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dom selection. For this sensor, only the intensity heuristic manages to provide a small improvement.

We next analyse the results of both versions of BORA. As mentioned in Section 3.2, from now on
our results only utilise one object detection algorithm at a time. Our main focus is the PointPillars
detector as it is the least computationally expensive as well as the fact that in most aspect it’s
performance falls between the SECOND and Part_A2 algorithms. We start with our cross valida-
tion strategy which attempts to find underlying features in the data across all cases, not requiring
any further training for unseen data.

Figure 5.19: Recall for cross-validation BORA for HDL-64E (top) and VLP-16 (bottom), using
PointPillars in all conditions

Figure 5.20: Recall for cross-validation BORA on the HDL-64E sensor, utilising Part_A2
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For each sensor, the algorithm was run in 5 folds, each being able to evaluate the mean IoU
across all train cases 100 times, after which it was evaluated on the validation set. On the VLP-16
sensor, we can observe a decrease in performance for low IoU values which can be relevant in the
case an adaptive thresholding approach is used where this sensor would likely have a low threshold.
However, especially on the HDL-64E, the improvement is only marginal. Similar results can be
observed for the Part_A2 detector in Figure 5.24. Taking into account the fact that this method
requires no further calculations if applied on unseen data making it faster than Random ORA, even
the fact that it marginally outperforms Random ORA at all thresholds would make this approach
worth considering.

As mentioned in Section 3.6.2, the second BORA approach attempts to individually maximise
performance for each case, being allowed to evaluate the objective function 100 times. Although
this strategy does not conform to our threat model, it is nonetheless presented as a reference for
the hypothetical optimal results and could perhaps also be leveraged in an offline attack.

Figure 5.21: Recall for separate BORA for HDL-64E (top) and VLP-16 (bottom), using PointPillars
in all conditions

We can observe that for the HDL-64E sensor, there is a significant improvement when com-
pared to Random ORA. However, on the VLP-16 sensor, the difference is not as large, suggesting
that due to the sensor’s reduced overall capabilities, a random ORA attack is powerful enough to
extract most available performance.

Next, we analyse the results for our GORA approach, which is the most flexible and best per-
forming out of our novel strategies. Similarly to our first BORA approach, it is evaluated using
cross-validation ensuring that our results are not biased by our training set. As this approach is
meant to generalise effortlessly, it can be applied to unseen data without any additional computa-
tion, making it faster and more efficient than Random ORA. For each sensor, the algorithm was
run in 5 folds of 30 generations each, using a population of 50 individuals.

When compared to previous presented approaches, GORA has similar performance while dis-
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regarding the drawbacks. Furthermore, we can observe that GORA performs particularly well
for our IoU thresholds chosen in Section 5.2 (0.5 for HDL-64E and 0.4 for VLP-16), making its
performance more meaningful in a real scenario.

Figure 5.22: Recall for GORA for HDL-64E (top) and VLP-16 (bottom), using PointPillars in all
conditions

In particular for the VLP-16 sensor, at our chosen threshold of 0.4, the difference between
GORA and Random ORA using a budget of 200 points is similar to the one between the latter
and Random ORA using a budget of 100 points.

Figure 5.23: Recall for all strategies on the HDL-64E sensor using PointPillars
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Comparing GORA and BORA with the the best heuristic for each sensor, we can observe
that for the HDL-64E, GORA outperforms the infeasible intensity heuristic and has very similar
performance to separate case BORA. For our chosen threshold of 0.5, recall would fall from 0.86
for the unperturbed data to 0.56 for Random ORA with 200 budget, 0.42 for GORA and 0.39 for
separate case BORA.

Figure 5.24: Recall for all strategies on the VLP-16 sensor using PointPillars

Analysing the results for the VLP-16 sensor, it is very interesting to observe that GORA
outperforms separate case BORA, but the negative distance heuristic has the best performance of
all. This comparison is not completely fair, seeing as both BORA and GORA operate with a fixed
positive shifting distance, thus highlighting a potential area of improvement for our algorithms,
specifically for the VLP-16 sensor. At our chosen IoU of 0.4, recall would fall from 0.76 for the
unperturbed data to 0.26 for Random ORA with 200 budget, 0.18 for GORA, 0.22 for separate
case BORA and 0.15 for the distance heuristic.

5.6.1 Discussion

Overall, we can conclude that our novel approaches outperform random ORA across all cases,
showing significant improvement at the relevant IoU thresholds. In a real scenario, GORA is the
most robust option for both sensors, being efficient while not sacrificing any performance. It is also
crucial to take into account the fact that the GORA and BORA results presented were obtained
using very limited computational resources, having the potential to achieve even better figures.
Our findings also highlight the prospect of attempting to also optimise the shifting distance in our
novel approaches, specifically for the VLP-16 sensor.

Most results were only presented for the PointPillars algorithm because it has the most repre-
sentative performance while requiring less training time. It is important to consider that some
sensor and detector combinations require up to a few days to complete the training process.

5.7 Research question 6

Which target metric yields the best result for our approaches?

In this section we utilise confidence as our target metric and compare the results to the ones
from the previous research question. In order to answer this question, we mainly focus on the
VLP-16 sensor due to the fact that the HDL-64E sensor has little potential for an impactful attack
owing to its high confidence scores. Analysing Figure 5.26, we can observe that for the unperturbed
data recall values are very high, as well as the fact that attacks don’t have a significant impact.
Even if we were to select a high confidence threshold of 0.7, recall for the attacked data would still
not fall below 0.6. This is vastly inferior to the recall values obtained when utilising IoU as our
target metric.
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Figure 5.25: Recall for HDL-64E sensor using PointPillars

Being a less robust sensor, the VLP-16 presents more of an opportunity for this strategy of
attack.

Figure 5.26: Recall for VLP-16 sensor using PointPillars

Sadly, we can observe that although there is a significant difference in confidence between the
unperturbed data and Random ORA, our approaches fail to significantly improve its performance.
This indicates that attack strategy might not have a major impact on the confidence of object
detectors, being more influenced by the budget of the attack. At a reasonable threshold of 0.4,
the recall values are: 0.8 for unperturbed data; 0.57 for 200 budget Random ORA; 0.56 for cross-
validation BORA; 0.52 for GORA.

5.7.1 Discussion

To answer our research question, IoU is clearly the superior target metric when it comes to ORAs.
This does not however mean that using confidence as the target metric has no merit. Considering all
the presented results, minimising confidence for an object removal attack can still have a significant
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impact on a less complex sensor such as the VLP-16, although the results do not compare favourably
to the ones obtained in the previous sections. Nonetheless, the investigation into the effectiveness
of a confidence approach for ORAs has proven that there is potential to this strategy, which could
be exploited in the future using a specialised methodology or a larger attack budget.
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Chapter 6

Conclusion and future work

In this work, we successfully achieved all our objectives. We created a synthetic dataset and de-
veloped a detection pipeline, as presented in Chapter 4. Additionally, we validated the dataset
and pipeline, and comprehensively evaluated existing attacks under various weather conditions
using different sensors and detectors in Chapter 5. Furthermore, we have also introduced our own
state-of-the-art novel approaches, GORA and BORA, as described in Chapter 3.

Although due to its nature the project involves considerable amounts of research and evalua-
tion, a significant number of technical challenges also had to be overcome. The field of LiDAR
object detection is relatively recent, experiencing rapid development while still not being very
widespread. What this means in practice is that most tools such as simulators and object detec-
tors are complex to set-up and use, sometimes having limited documentation and assuming the
user is very proficient. A notable amount of effort was necessary just to establish the basis of our
detection pipeline and utilise the MAVS simulator at a basic level. Additionally, managing differ-
ent formats of data and bounding boxes proved to be difficult, especially considering our decision
to automatically generate ground-truth bounding boxes. Sadly, although this approach justifies
its use because of the flexibility provided, it has proven to be very challenging to obtain quality
ground-truth bounding boxes and impossible to get them to the level of manually annotated boxes,
leading to discrepancies in our comparison with previous works.

Another significant challenge that had to be overcome was improving the performance of GORA
and BORA. Although they demonstrated potential from the start, initial results were considerably
worse than the final ones. All design and implementation choices presented in Chapter 3 were dif-
ficult to make, requiring significant experimentation and analysis. This need for adjustments was
compounded by the main limitation we faced in developing this work, namely the limited compu-
tational resources available and the time required to train our approaches. Seeing as a full training
process which could take up to three days is necessary to extract meaningful insights about the
effects of a potential change in the algorithm, it became extremely burdensome to rapidly iterate
on our methodologies. Furthermore, an improvement method later discovered would invariably
lead to the need to scrap all previous results and retrain them, creating very difficult decisions.
Our approach for evaluating these novel strategies was also overambitious, aiming to evaluate each
of our three approaches, using two different target metrics, on two sensors and on all three object
detectors. Considering each of the combinations could take days to train, this was unrealistic,
leading to our evaluation section only focusing on some of the mentioned factors. Nonetheless, we
consider that through answering all of our research question we have showed the validity of our
findings, proving the merit of the novel strategies.

Another important topic to discuss is the recent publication of You et al.[40], which has won
the best paper award at the SafeThings workshop 2024. This work also tackles the problem of
improving the ORA methodology, proposing a novel attack strategy that involves restricting the
spoofing area and achieves a 15% improvement in performance with a 50% decrease in spoofing
area. Sadly, seeing as the paper was published in May 2024, it could not be considered in the pro-
cess of developing this work, even though it presents an interesting approach to a similar problem
to the one we faced. Although a direct comparison of results is not possible because of the fact
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that You et al.[40] utilises the KITTI dataset which only contains clear cases and the fact that
our threat model is considerably more restrictive by requiring knowledge of the object detector,
we can boast comparable figures, GORA achieving a 25% increase in performance at our chosen
IoU threshold over Random ORA on the HDL-64E sensor.

6.1 Future work

In this section we discuss possible additions to our project we would like to make in the future. Most
of these depend on the assumption that in the future we will have access to more computational
resources, allowing for faster training on complex scenarios.

• Evaluation on all possible setups: To start with, given more time and resources, the
evaluation could be made more comprehensive by showcasing results for all possible sensor,
metric and detection algorithm combinations.

• Multiple detectors GORA and BORA: This was attempted over the course of the
project but proved not to be feasible due to the amount of time required for training. Such
an approach is not difficult to implement and could potentially allow us to remove the re-
striction in our threat model that requires the attacker to have knowledge of the target’s
object detector. Although training on multiple detection algorithms at the same time is not
guaranteed to have the desired results, it would nonetheless be important to explore.

• Optimisation of shifting distance for GORA and BORA: As was shown in Chapter 5,
shifting distance can play a major role in the performance of ORA. We would like to further
investigate this by integrating shifting distance into the training process of both GORA and
BORA, allowing the algorithms to pick any distance between -2 and 2 meters for each selected
point.

• Further investigation into the use of confidence as the target metric: In the last
research question we have proven that trying to minimise detection confidence instead of IoU
might have potential that we did not manage to exploit. In the future, we would like to
further explore this approach, by adapting our existing methodologies or introducing a novel
one.

• Integration and comparison with You et al.[40]: Lastly, the findings in You et al.[40]
represent a unique approach to the problem of improving ORA, which could be comprehen-
sively compared to the results of our strategies. Furthermore, the work could be an important
source of inspiration, perhaps in the future leading to some form of integration with our own
findings.
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Appendix A

Ethical issues

Considering the nature of the project, it is very important to consider the ethical implications of
this work.

Firstly, regarding the dataset, seeing as exclusively synthetic data is used, there are no concerns
obscuring any kind of personal data. This ensures that privacy issues, often a significant concern
in data-driven research, are entirely mitigated.

Secondly, in this project we aim to explore the capabilities of ORAs in rainy conditions and further
improve the methodology. Because of the life-threatening effect such an attack can have, we con-
sider that this research is crucial for understanding the security risk this poses. Furthermore, an
attack that exploits vulnerabilities in LiDAR systems, especially under adverse weather conditions,
can lead to severe accidents, including collisions with other vehicles, pedestrians, and infrastruc-
ture. The ethical justifications for this research lies in its potential to further the understanding
of the vulnerabilities inherent to LiDAR systems, with the goal of facilitating the development of
specialised countermeasures.
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Appendix B

Additional figures

Figure B.1: IoU function

Figure B.2
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Figure B.3

Figure B.4

Figure B.5
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Figure B.6

Figure B.7

Figure B.8
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Figure B.9

Figure B.10
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