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Abstract

Despite much work on concurrent software verification in the last few decades, its practicality for use in
large-scale software systems remains limited. In part, this is inherent in the balance between increasing
the expressivity of the logics and reducing the complexity of the model the logic is checked against,
meaning that logics with the power to verify the kinds of highly complex interactions we see in programs
today frequently become complicated and therefore difficult to extend.

The introduction of TaDA, and later TaDALive, brought much increased expressivity to existing
logics by allowing the verification of partial correctness properties of finer-grained code, and later total
correctness properties. This thesis explores what it means to bring TaDALive’s expressivity, generality
and precision to TaDA, with a new concurrent separation logic: TaDA 2.0.

TaDA 2.0 provides a new semantic model based on that of TaDALive, in the process resolving sound-
ness issues with both earlier logics, and then simplifies much of the semantic model and proof rules. Much
of the technical work necessary for the soundness proof omitted in the earlier works is made explicit, as
well as the details of verified example code, and it is concluded from these examples that TaDA 2.0
provides the same expressivity and modularity as TaDALive. Furthermore, this thesis conjectures that
the simplifications to the logic are substantial enough for TaDA 2.0 to be extensible to more complex
concurrency patterns such as helping.
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Chapter 1

Introduction

Software verification has risen in popularity in recent decades, as the complexity of the software we use on
a day-to-day basis increases. Although useful for many things, it is clear that existing testing methods to
ensure correctness of software systems are insufficient when the scale of software we use on a day-to-day
basis is now large enough that it is impossible to ensure every component is bug-free, and more essential
than ever as we increasingly rely on our software systems for potentially life-saving and life-endangering
activities. Simultaneously, as the complexity of our programs increase, the need for ever-increasing speed
from our processors fails to be met, and programmers reach for parallelism as an alternative, leading to
nondeterminism in essential machinery which ca not easily to guaranteed to be correct with standard
testing methods - a nondeterministic bug which causes total failure almost never will still eventually
occur when software is used enough, and the consequences of these failures can be catastrophic. As a
result, much research in software verification has been done to advance the field to handle the increasing
complexities of the software we aim to verify, with tractable concurrent software verification for large-scale
software still very much an open problem.

The increasing scale of software systems requires programmers to write their code in a composable way:
it is essential for the clarity of the programmer to be able to write code in self-contained components which
are easier to reason about at their natural level of abstraction, with software systems as a whole composed
of the complex interactions of their many components. Similarly, a tractable software verification system
requires composability: the user simply cannot think at once about every single component, and relies
on being able to verify each software component separately and conclude a proof of the larger systems
by composing these smaller proofs. Indeed, advanced mathematics is also approached in this manner, as
an algebraic geometer simply can not work down to every definition, and instead applies lemmas of more
abstract properties of each components.

It is clear that composability relates in some sense to abstraction: it is sensible to define and prove
properties at different levels of abstraction. For example, verifying properties of a data structure such as
membership or ordering do not necessarily have to be dependent on the underlying implementation, and
indeed CAP [1] shows that it is necessary to express properties at the right level of abstraction in order
to be able to compose components with the same behaviour and different underlying implementations or
data representations.

Analogous to composability, is the need for modularity. While composability allows us to reduce each
proof to a tractable size, modularity allows us to reuse proofs about our components in different contexts,
so that we do not need to check the same property half a dozen times. Again, this corresponds to the
way a programmer often thinks about their code: no one would write a new implementation of a lock for
every data structure! They would simply use reuse the same one.

Work towards these goals has resulted in a long line of concurrent separation logics, as seen in Figure
1.1, building on each other in different ways to provide different strengths and weaknesses.
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Figure 1.1: A variety of program logics for different types of concurrency [2]

In order for verification to really be considered practical for the scale and complexity of software
systems in use in industry today, it is crucial that they are sufficiently expressive. It’s increasingly
common for large amounts of mutable data in software systems to be manipulated in a fine-grained
manner, where the programmer relies on very low-level control of the underlying representation in order
to guarantee correctness and deadlock-freedom. Much progress has been made on the correctness front
in recent decades with the extensions of concurrent separation logics which control interference on shared
memory very precisely. This is considered ownership-based reasoning. However, there are synchronization
techniques for fine-grained data structures which depend not on ownership-based reasoning, but on the
idea of atomicity: that if an action cannot be made to go wrong by interference and sequentially correct,
then it cannot go wrong. An alternative line of research into linearisability and the associated atomicity
based proofs has been fairly successful.

More recently, the two approaches were combined in TaDA [3], which has the expressivity required
to reason about increasingly complex algorithms which make use of both ownership-based reasoning and
linearisability properties within the same logic.

One measure of whether sufficient expressivity and simplicity has been achieved is the development of
computer tools for software verification. A number of academic tools such as Gillian [4] and industry tools
like [5] have arisen with success in verifying varying levels of safety and partial correctness properties.

There are a number of more complex concurrency patterns which occur naturally in software systems
which TaDA is unable to verify. Unfortunately, the nature of its semantic model is such that the au-
thor expects that a complete reformulation is required to be able to verify patterns such as helping or
synchronization. Meanwhile, research on verification of liveness properties has led to the introduction of
TaDALive [6], including a novel trace-based semantic model with precise control over the interactions of
environment and local threads, but the scale and complexity of which makes it difficult to extend to new
concurrency patterns.

With all of these concerns in mind, I aim to provide a precise and sound formulation of a program
logic for ownership-based and atomicity based proofs, with a new semantic model inspired by that of
TaDALive, in such a way which is extensible for further work on new concurrency patterns. I call this
logic TaDA 2.0.

1.1 Report Structure

Chapter 2 reviews the key contributions to the field of concurrent software verification necessary to
understand the scope of this thesis. It assumes the reader is familiar with Hoare logic and traditional
separation logic.

Chapter 3 provides an overview of TaDA [3] and TaDALive [6], with more detailed discussion on the
original TaDA program logic and TaDALive’s semantic model, aiming to provide the reader with some
intuition on how TaDA 2.0 is designed to be used, and how the components of the semantic model will
fit together. It assumes the reader is familiar with basic programming language semantics.
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Chapter 4 and 5 present TaDA 2.0 in full. Chapter 4 defines in full TaDA 2.0’s syntax and semantic
model. Chapter 5 defines TaDA 2.0’s specification language and syntactic judgement (a full set of proof
rules with accompanying side conditions). In both, attention is drawn to the introduction or correction
of components which were missing or imprecise in the original TaDA, and components which I have been
able to simplify or correct from TaDALive.

Chapter 6 proves in full the soundness of a selection of proof rules, and covers the technical work
required to reduce the soundness proof to a tractable statement. The soundness of several additional
rules is in Appendix D.

Chapter 7 verifies a specification for a spin lock implementation in TaDA 2.0 which is analogous to
that proven in TaDALive. The TaDA implementation fails to satisfy missing but necessary premises of
certain proof rules, and therefore is not correct.

Chapter 8 details the impact and significance of the choices made in TaDA 2.0 compared to TaDA and
TaDALive. Chapter 9 includes concrete recommendations for how to resolve solve of these limitations
and avenues for further work opened up by TaDA 2.0.

1.2 Contributions
This project aims to address the need for a precise and sound formulation of a program logic with the
capabilities of both ownership and linearisation based safety proofs in such a way which maintains the
modularity and composability properties of existing logics and is genuinely extensible to more complex
concurrency patterns. Its contributions are:

• A complete set of sound proof rules sufficient for safety proofs.

• A new trace-based semantic model for TaDA, beginning with stripping out the technical machinery
required for liveness reasoning in TaDALive. I then make a number of significant changes which
greatly simplify the soundness result, as well as make efforts to detail the properties which the
model is designed to satisfy in order to be correct.

• A complete set of technical infrastructure required for the components of the soundness proof to fit
together, which is not included in the existing literature. Also, explicit soundness proofs of many
types of proof rules, including the rules for which proofs exist in TaDALive, proof rules which are
new in TaDA 2.0, and a selection of others.

• Verification of a spin lock implementation. TaDALive demonstrates that this specification is strong
enough to be used in a variety of fine-grained client code.
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Chapter 2

Preliminaries

2.1 Separation Logic

Traditionally, Hoare logic has been used to verify pre- and postconditions for code, written

{P} C {Q}

The usual semantics of this notation would be: "If we begin the program C in a state with satisfies
predicate P , then we will not crash (fault), and if we terminate, we terminate in a state which satisfies
predicate Q". Observe that we do not make any guarantees about termination, as this would amount
to solving the halting problem, but we do guarantee that non-terminating programs never crash. Hoare
logic gives us the formalism we need to guarantee correctness, but for some time, preliminary work on
software verification based on Hoare logic had been intractable for larger programs: alongside the need for
generality of program logics to verify a wide range of programs, in order for a program logic to be useful,
it must provide some aspect of modularity, i.e. we would like to verify different components of software
separately, and ‘stick’ the proofs together, analogous to the modularity we expect from our software.
However, existing logics did not scale well to large mutable data structures, as this requires proofs of
disjointness of our data structures, resulting in exponential explosion in the size of our predicates [7]. Key
to a wealth of new research in the field of software verification then was the introduction of separation
logic by Reynolds et al. in [7]. Separation logic is based on earlier logics of bunched implications, with the
key insight that if disjointness was encoded into the semantics of predicates, then we would not suffer such
an exponential explosion in predicate size and our proofs would scale better to larger mutable structures.
For predicates P and Q, the semantics of the separating conjunction P ⋆ Q refer to objects (usually
concrete resources such as a heap) which can be divided into two disjoint components, one satisfying P
and the other satisfying Q. Crucially, this allows us to describe several mutable data structures while
guaranteeing ‘separation’ between them, and proofs of programs affecting one data structure can be
soundly reused in contexts with more (but separate) structures.

2.2 Concurrent Separation Logic

In order to correctly verify safety properties of concurrent programs, our program logics must be able to
ensure that every interleaving of threads is safe. Furthermore, to sensibly verify a postcondition, it must
be the case that the result of the program is not dependent on the interleaving of threads - we say the
code is race-free.
An intuitive but restrictive condition for concurrent programs to be race-free is the idea of disjoint
concurrency - that two programs execute in parallel, but do not have any shared resources, and therefore
cannot interfere with each other. Given that traditional separation logic’s key insight is the disjointness
of two resources connected by a separating conjunction, a restricted set of concurrent programs can be
verified by the introduction of the following rule, in combination with the condition that C1 does not
modify variables free in P2, C2 or Q2, and vice versa [8].

{P1}C1{Q1} {P2}C2{Q2}
{P1 ⋆ P2} C1||C2 {Q1 ⋆ Q2}
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A formal method for verification of programs with a limited amount of well-defined interference was
presented in [9], and is commonly referred to as the Owicki-Gries method, but this was subsumed by
more recent work of O’Hearn, Reynolds and Brookes in [8] and [10]. The newer work allows a more varied
nature of interference, and constructs programs in such a way that disallowed forms of interference are
implicitly forbidden by the proof rules, as opposed to requiring an additional check that the execution
of C2 cannot interfere in the proof of C1 and vice versa, as in the Owicki-Gries method. This ultimately
produces more modular proofs and therefore is more scalable. For these reasons, I present here the basic
ideas used in O’Hearn’s work and readers wishing to find a full semantic model and soundness proof
should refer to Brookes’ [10].

O’Hearn [8] extends the grammar of the commands of a typical while language with a construct to
execute two commands in parallel, and a command for accessing a resource in a conditional critical region:

C ::= ... | C1 || C2 | with r when B do C endwith

The with r when B do C endwith implies mutual exclusion of r - that is, no two with commands on r may
be simultaneously executed, and furthermore waits for B to hold before execution. Conditional critical
regions are frequently used to guarantee exclusive access to a mutable shared resource by programmers,
and as a result are key to verification of any non-disjoint programs. Here, O’Hearn concentrates on
programs with a special form, with resource declarations immediately followed by parallel composition:

resource r1 (variable list), . . . , rm (variable list)
C1 || . . . || Cn

where we declare each protected resource in a declaration which also specifies which variables may be used.
A with command protects a resource r which was previously declared, waits for the boolean expression
B to evaluate to true, and then once it does, executes C.

Additionally, O’Hearn places some requirements on programs to be ‘well-formed’:

• A variable belongs to at most one resource, i.e. appears in the variable list of the resource declaration
of at most one identifier;

• If a variable belongs to a resource, it may not appear in parallel processes unless inside a critical
region for r; and

• If a variable is modified in one process, it must not appear in another unless it belongs to a resource.

These conditions formalize how programmers would consider a shared resource to be protected by a
concurrency primitive, as it prevents two threads simultaneously accessing the same variable where at
least one is a write unless mutual exclusion is guaranteed by a region.
Each resource has a unique identifier r and resource invariant RIr, and modifications to it are verified
using the following proof rule:

{(P ∗RIr) ∧B}C{Q ∗RIr} No other process modifies
variables free in P or Q{P}with r when B do C endwith{Q}

Shared heap locations can be represented in this model as ‘owned’ by a resource, instead of a thread,
which allows them to be passed between parallel commands in a coarse-grained way. Using the assumption
that interleavings of threads may not interleave the bodies of with statements of the same resource
identifier, we can use this to verify execution traces of coarse-grained concurrent programs. With this
rule, we can use the same parallel rule as given above for disjoint concurrency, with the same side
condition that no variable free in P1 or Q1 may be modified in C2 and vice versa - the disjointness of
shared regions guaranteed by the semantics of with statements suffices to prove the parallel executions
are race-free if the previous disjointness conditions are satisfied. As shared heap locations are considered
to be owned by the resource context when not in use, this enforces that no part of the heap unprotected
by a resource may be shared between threads, while allowing some sharing in the mechanism described
above. In combination with the requirements for well-formedness which prevent race conditions with
shared variables, we get a sound logic with much more expressivity than previous work.

An important technical detail in CSL proofs is the notion of a ‘precise’ predicate. In traditional Hoare
logic, we have a proof rule for conjunction:

{P}C{Q} {P ′}C{Q′}
{P ∧ P ′}C{Q ∧Q′}

8



Without extra conditions on the predicates this rule is unsound in CSL. A predicate is precise if for all
states, there is at most one subheap which satisfies the predicate, and therefore there is no ambiguity
on which part of the heap the predicate refers to. By considering an imprecise predicate, we can derive
different conclusions in our proof trees when considering different parts of the heap, and by allowing the
conjunction rule, we can obtain a contradiction. For full details of Reynold’s counterexample, see [8], but
simply put, O’Hearn’s original paper enforces that all predicates be precise in order to ensure soundness,
while more modern separation logics often remove the conjunction rule altogether and sidestep the issue.

This model enables proofs of more styles of concurrent programming than previously possible. Cru-
cially, it can be used for mutual exclusion groups represented by semaphores typically in a matching lock
and unlock pattern, as well as unmatching patterns where semaphores are used to send signals between
processes. Both examples are lifted from [8] where the relevant proofs can be found.

P (s) ≜ with s when s > 0 do s := s− 1 endwith

V (s) ≜ with s when true do s := s+ 1 endwith

Standard semaphore encoding with CCR’s [8]

P(mutex)

critical piece of code

V(mutex)

Figure 2.1: An example of ‘matching’ concur-
rency from [8]

semaphore free:= 1; busy:= 0

... ...

P(free); P(busy);

10 := m; ∥ n := [10];

V(busy); V(free);

... ...

Figure 2.2: An example of ‘unmatching’ con-
currency from [8]

The matching pattern involves protecting a resource by only modifying shared memory from inside a
with command. This is the most basic coarse-grained concurrency pattern where the same lock is used to
protect access to an entire resource, and the resource may not be accessed outside of these protected states
(enforced by well-formedness of programs). The more interesting unmatching example uses semaphores
for two commands to signal each other - the right hand thread has to wait for the left hand thread to raise
the busy semaphore to 0 before it can proceed, which prevents the left hand thread from reducing the
free semaphore and subsequently reading the heap location at 10 until the right hand thread has written
it. This coordination enforces an ordering on the accesses to the heap location which does prevent race
conditions, despite the P and V operations being ‘unmatched’, and is still verifiable in this CSL.

This logic vastly increased the types of programs verifiable by first introducing concurrent programs,
and then accounting for limited forms of interference - precisely those which programmers would usually
refer to as coarse-grained concurrency. Coarse- and fine-grained concurrency don not have strict, formal
definitions, but refer to the notion of ‘how much’ of a resource is protected by the same primitive. For
example, if one lock protects an entire abstract data structure, then a large number of operations occur
within one protected region, and there will be a lot of contention for this lock, which is held for longer
times. In contrast, fine-grained patterns often involve several locks protecting different components of an
abstract data structure with a complex algorithm to lock everything in such a way that each lock indeed
protects a consistent component of the structure and their combined use guarantees race-freedom and
deadlock-freedom. This results in less contention for any individual lock, and each lock is locked for a
shorter period of time, which can often significantly increase performance.

Adjacent to this work, a line of research in more nuanced forms of interference surfaced in the forms of
rely-guarantee first introduced by Jones in [11] and deny-guarantee [12], the first of which was combined
with CSL by Vafeiadis as the RGSep logic in [13].
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2.3 Rely-Guarantee Reasoning
A major limitation of the Owicki-Gries method [9] is that each application of the parallel rule requires an
additional manual proof that each command cannot interfere with the proof of the other, which requires
checking that every intermediate assertion is preserved by all atomic actions of the other thread. This be-
comes unwieldy and makes the rule non-composable, as well as the method non-scalable. Rely-guarantee
reasoning is an attempt to rectify this by specifying as a relation precisely what the interference from the
environment may be on the thread, and what interference the local thread may have on the environment
[11].
In rely-guarantee logics, specifications have the form (P,R,G,Q), where P is a standard Hoare pre-
condition, Q is a two-state predicate postcondition, relating the initial state to the final state, R is a
two-state predicate describing the initial and final state after atomic actions by the environment and G
is a two-state predicate similarly modelling atomic actions of the program (this is interference for the
environment). An action P ⇝ Q is the effect of some command which transitions the state from one
satisfying P to one satisfying Q, and is permitted by R (resp. G) if (P,Q) ∈ R (resp. ∈ G). Interference
is any effect on the state made by another thread. Additionally, in order to be well-formed, it must
be the case that the pre- and postconditions P and Q are stable under R, that is they are resistant to
interference from the environment: (R;Q) =⇒ Q and (Q;R) =⇒ Q [13].

2.3.1 RGSep
In his PhD thesis [13], Vafeiadis conjoins traditional CSL with rely-guarantee reasoning to enable verifica-
tion of concurrent programs with well-defined and controlled interference. Crucial to this is the separation
of the logical state into local and shared states, with a unified assertion language enabling simultaneous
reasoning about the two. In RGSep, the syntax of assertions has the following form

p, q, r ::= P | P | p ⋆ q | p ∧ q | p ∨ q | ∀x. p | ∃x. p

where P,Q are standard separation logic assertions. The first construct, P describes local state, for
which interference is forbidden, and must be a traditional separation logic assertion. P is a shared state
assertion (and may not be nested). The shared state is indivisible - boxed assertions must correspond to
entire shared states (although there may be several distinct shared states) - and shareable:

P ⋆ Q ⇐⇒ P ∧Q

Instead of the relational specifications introduced in rely-guarantee reasoning, RGSep models interference
through actions P ⇝ Q, which describe changes performed to shared states. The semantics of this action
is to replace a part of the shared state satisfying P with something satisfying Q. Then the rely and
guarantee relations are the reflexive, transitive closure of some set of actions and some action is allowed
by R (resp. G) if its effect P ⇝ Q is contained in R (resp. G). Pre- and postconditions are required in
RGSep to be stable, that is, they cannot be invalidated by actions of the other thread. This is the notion
that for all states s satisfying separation logic assertion S, and for all actions (s, s′) ∈ R, it must be that
s′ satisfies S also.
Specifications in RGSep are quadruples (p,R,G, q), where p and q are RGSep assertions describing the pre-
and postcondition, respectively, and R and G are the rely and guarantee relations setting out precisely
the interference caused and tolerated by a thread. The links between the pre- and postcondition are
expressed with existentially quantified variables, as common to other separation logics, rather than the
relational postcondition seen in traditional rely-guarantee reasoning.

We understand the notion of a command C satisfying a specification (p,R,G, q) to mean: if the
program is in a state satisfying p and can rely on the environment not taking actions outside of those
in R, then after execution of C the state will satisfy q and will have only taken actions affecting the
environment satisfying G. Then ⊢ C sat (p,R,G, q).

The key proof rules for RGSep [13]:

⊢ C1 sat (p1, R ∪G2, G1, q1) ⊢ C2 sat (p2, R ∪G1, G2, q2) (Par)
⊢ (C1||C2) sat (p1 ∗ p2, R,G1 ∪G2, q1 ∗ q2)

The parallel rule clearly enforces that the execution of each parallel command can tolerate the interference
from both the environment and the other command, and that the interference it may have is tolerated
by the environment.
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There are two rules for atomic commmands, the first of which ensures the specification is stable under
R and reframes the proof as one of an empty R, and the second of which ensures that the change made
(P ⇝ Q) is allowed under G and asks for a proof of the equivalent non-atomic command. This implicitly
frames off the part of the shared state which is not modified, F .

⊢ ⟨C⟩ sat (p, ∅, G, q) p is stable under R q is stable under R
(AtomR)

⊢ ⟨C⟩ sat (p,R,G, q)

P ,Q are precise ⊢ C sat (P ∗ P ′, ∅, ∅, Q ∗Q′) (P ⇝ Q) ⊆ G
(Atom)

⊢ C sat ( P ∗ F ∗ P ′, ∅, G, Q ∗ F ∗Q′)

For soundness, the (Atom) rule also requires that all branches of the proof use the same P and Q for the
atomic region. This requirement, similarly to the precision requirement seen in traditional CSL ensures
that two correct proofs ca not be combined in such a way which introduces a contradiction.
Finally, for primitive commands which do not access the shared state, we have:

⊢SL {P}c{Q}
(Prim)

⊢ c sat (P,R,G,Q)

It should be clear that RGSep subsumes both SL and RG-reasoning, as the first is precisely those proofs
where the shared state is empty, and the second is precisely the case where the local state is empty.
RGSep also subsumes CSL by threading the resource invariant through the assertions, as demonstrated
in [13]. It follows that RGSep is strictly more expressive than all the above, and in fact introduces the
ability to formally verify fine-grained concurrent data structures. An example is given in [13] using a
linked list structure with a lock per node, but is much too detailed to reproduce here.

In [13], extensions are given to the above proof system to include procedures (to enable composabil-
ity), multiple shared regions, and ghost code to enable linearisability based proofs (more on this later).
However, there is still a long way to go in achieving true modularity in the notion programmers expect
of being able to swap out equivalent implementations, and linearisability proofs are unwieldy with the
introduction of ghost code.
From here, I go on to discuss two more key ideas from previous work in software verification which will
be combined with the ideas from RGSep to form the basis of the TaDA logic.

2.4 Atomicity and Linearisability
So far, we have considered methods of verification which rely on disjointness of space and the constraint of
interference to reason about programs. But it is common for programmers to reason informally in such a
way which relies on the disjointness of time to guarantee correctness of their programs. More precisely, we
consider certain actions of the program ‘atomic’, the idea that an effect takes place at a discrete point in
time and as such the environment may not observe any intermediate stage between the precondition and
the postcondition. Atomicity allows us to construct a total order on the operations of different threads
by considering certain actions uninterruptable. In separation logic, we already use this assumption about
primitive commands such as reads and writes to the heap, but we do not provide any framework to allow
the proof to declare other more complex actions atomic. Commonly, lock-free implementations of data
structures are provided by libraries for their improved performance, such as a non-blocking concurrent
linked list whose atomic remove might be done by modifying the pointer of the previous element, and
then cleaned up afterwards by disposing of the heap location. In a doubly-linked list, a non-blocking
concurrent implementation could involve an additional ‘removed’ flag, whose updating would form the
atomic remove while the pointers were modified and heap locations cleaned up later. These structures
are guaranteed to be race-free in a concurrent setting due to the atomicity properties they display: the
action appears to be instantaneous to clients.

To a certain extent, the shared regions of RGSep allow us to reason about disjointness of time - a
lock, which a programmer might use to reason about a thread being the only one at that time with access
to some portion of the state, forms a ‘shared region’, with ownership of the state protected by the lock
being transferred between the lock to the lock’s owner. As only one thread at a time can own the lock,
owning the shared region implies ownership of the lock which implies disjointness of time. However, this
is not strong enough to reason about certain synchronisation patterns which do not rely on this notion
of ownership transfer to guarantee atomicity.
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Alternative verification frameworks have been developed to reason about the disjointness of time
- we have a variety of properties in the literature, such as serialisability, sequential consistency and
linearisability [14]. We consider these properties in the context of a history : a sequence of invocation
and response events [15], each with an object, operation, arguments and process name. A subhistory is
a subsequence of these with the same ordering. A history is sequential if each invocation is followed by
a matching response and each response is preceded by a matching invocation. See that a well-formed
history restricted to any process must be sequential, but this is not necessarily the case when restricted
to an object.

Lamport defines sequential consistency as “the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program” [16]. A history is sequentially consistent if,
for all processes, the ordering of execution of the restriction of the history to the process is contained in
the ordering of the original history. This is non-composable, as several concurrent sequentially consistent
programs may execute in some interleaving which is not itself sequentially consistent.

Papadimitriou defines serialisability of an execution in [17] as having a result which is equivalent to
that of a sequential history of its individual transactions, i.e. each process completes a task before the
next can begin, without interference, but not necessarily maintaining the ordering of the original history.
serialisability again is non-composable, and some transactions may be required to block.

In contrast, an execution is linearisable as introduced by Herlihy and Wing in [15] if it can be modified
to a history by appending zero or more responses and removing invocations with no matching response
(and does not violate the semantics of the object) such that it is equivalent to some legal sequential
history whose induced ordering contains the induced ordering of the initial execution. The induced
ordering on a history is a partial ordering such that two operations are ordered if and only if the first’s
response comes before the second’s invocation. See that this differs from serialisability in two key ways:
serialisability does not enforce the ordering of the execution on the equivalent history, and does not allow
several operations within the same transaction to be interrupted.

Linearisability has several advantages over correctness conditions from ownership-transfer models and
serialisability conditions which make it the most significant existing correctness condition for concurrent
atomicity [15]:

• Unlike ownership-transfer models, it allows us to reason about atomicity without relying on invari-
ants of the heap to transfer ownership and guarantee lack of interference.

• Unlike serialisability and sequential consistency, linearisability is composable (or local, as referred
to by Herlihy): if all the components of a system are linearisable, then the entire system is. How-
ever, it is not modular: adding additional components requires re-verifying that all of the existing
components are also linearisable with respect to the new one.

• Linearisability can be used to reason about nonblocking concurrency. This is powerful because it
opens the door to verifying algorithms for real-time use with optimisations for speed and respon-
siveness.

This line of research has thus far been completely distinct from separation logic-based frameworks for
software verification, and until the introduction of TaDA [3] there was no way to reason about programs
which combined resource disjointness and atomicity within the same logic.

2.5 Abstract Predicates
We have discussed how composability and modularity are used to distinguish between the expressiveness
and usability of verification frameworks. In this section, we consider work to improve the modularity of
proof systems.

Composability is a property of a framework which allows you to prove a property of an object by
proving a property of all of its constituent pieces. Alternatively, proving the property for each part of the
system does not need to consider outside interference and so has also been referred to in the literature as
locality. The separation logic-based frameworks that we have seen above, as well as linearisability proofs,
are all composable. Composability improves scalability, as very large systems can be verified in smaller
pieces and then ‘composed’.

In contrast, modularity involves using an appropriate abstraction to define an interface for a module,
and verifying that a given implementation satisfies its interface. This promotes code reuse, as well
as scalability, as different implementations satisfying the same abstract specification can be swapped
within the client, without sacrificing the soundness of verification proofs. This mirrors our expectations
when we write code: that any implementation satisfying the interface we specify will result in correct
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code for a correct client. The separation logic frameworks we have so far seen are not particularly
modular, as specifying the action of a module usually requires a predicate which depends on the underlying
implementation. Existing work on context logics [18] allows some fine-grained reasoning on structured
data using additional structural connectives and formulae for reasoning about subdata but does not
extend to reason about concurrency as naturally as separation logics local reasoning.

Logically different properties of a shared structure using a given abstraction may not be separable
in the underlying heap representation, making certain abstractions incompatible with separation logic
This is most clearly exemplified by a set specification implemented with a linked list [1], where the
links between nodes prevent us from considering nodes separable pieces of data. This means we cannot
easily use separation logic to combine proofs about different nodes in the linked list as their underlying
representations are not independent. In order to reason about structures like these, concurrent abstract
predicates [1] provide the correct level of abstraction of a module specification without depending on
the implementation, providing a more modular verification framework. These predicates can specify
independent properties even when data is shared between them, and allow us to remove dependencies
between the proof of the client and implementation of a module, obtaining a modularity in verification
mirroring that which we expect when we swap out implementations of an interface in our code.

2.5.1 Concurrent Abstract Predicates

CAP’s [1] key modification to previous CSL’s was to adjust the treatment of predicates of shared regions
in such a way that provides the ‘fiction’ of disjointness and therefore permits the usual parallel rule in
a sound way without complicated additional side conditions. CAP extends the traditional separation
logic’s grammar of assertions as follows:

P,Q ::= ... | [γ(E1, ..., En)]
r
π | P

r

I
| α(E1, ..., En)

A boxed assertion is a CAP assertion about shared region r, with allowed actions on the state I(x⃗) all
being made by primitive atomic commands. CAP enforces that shared regions may not be split, so that
all boxed assertions describing region r always describe the whole shared region, which gives rise to the
same equivalence as in RGSep: P ∧Q

r

I
⇐⇒ P

r

I
∗ Q

r

I
. The permission assertion [γ(E1, ..., En)]

r
π

declares that the thread has permission π to perform action γ(E1, ..., En) ∈ I(x⃗) on region r, where π
is a fractional permission. This model permits the parallel rule as although shared region assertions can
always be duplicated, the actions taken on them are restricted to those specified in the environment and
to threads holding the relevant permissions.

The fiction of disjointness given by these regions allows us to specify modules with concurrent abstract
predicates: each module makes available a number of predicates and axioms which it guarantees for the
clients to use in their proofs. Then only in the proof that the module satisfies the specification is the
underlying implementation necessary. The final addition to the CAP assertions α(E1, ..., En) are these
concurrent abstract predicates, which can be logically manipulated according to the axioms guaranteed
by the module. Specifications for modules must be self-stable, that is stable under all actions permitted
by the module, which in turn means that clients never need to reason about internal interference to a
module. This layer of abstraction intuitively corresponds to the way programmers reason about their
own code.

∆;Γ ⊢ {P1}C1{Q1} ∆;Γ ⊢ {P2}C2{Q2}
Par

∆;Γ ⊢ {P1 ∗ P2}C1||C2{Q1 ∗Q2}

Consider the example of a traditional spin lock, lifted from the CAP paper [1]. To begin with, any lock,
no matter the underlying representation and implementation, must have functions to a) create a lock,
b) lock and c) unlock. The information a client of this module must be able to reason with is if it is
able to obtain the lock, and whether it has successfully locked (and therefore owns) it. For this, the lock
module defines the abstract predicates isLock(x), and Locked(x), such that the following specifications
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and abstract predicate formulae hold:

{isLock(x)} lock(x) {isLock(x) ∗ Locked(x)}

{Locked(x)} unlock(x) {emp}

{emp} makeLock(x) {∃x.ret = x ∧ isLock(x) ∗ Locked(x) ∗
n

�
i=1

(x+ i) 7−→ _}

isLock(x) ⇐⇒ isLock(x) ∗ isLock(x)

Locked(x) ∗ Locked(x) ⇐⇒ false

Figure 2.3: Abstract Lock Specification
These demonstrate the ability of a client to ‘share’ the knowledge that x refers to a lock, and that

it is not possible to lock x twice. Any implementation of a lock module would then have to satisfy this
specification.

In order to verify this implementation meets the specification, we must first have some notion of what
the underlying concrete representation of the predicates are - I reiterate that this is dependent on the
implementation, but is only used in the verification of the module specification, and not by the client,
and as such we can replace modules with different implementations which satisfy this specification in the
client code. In the case of the spinlock, we define the concrete representation of our predicates as

isLock(x) ≡ ∃r.∃π.[LOCK]rπ ∗ x 7−→ 0 ∗ [UNLOCK]r1 ∨ x 7−→ 1
r

I(r,x)

Locked(x) ≡ ∃r.[UNLOCK]r1 ∗ x 7−→ 1
r

I(r,x)

The above isLock definition says that knowing x is a lock gives you the (non-unique) permission to try
to lock it, and that the underlying heap location is either zero (in which case the shared region owns
full permission to unlock it), or it is one (and some thread(s) own permission to unlock it). The locked
predicate means a thread has full permission to unlock the lock (and thus implies this predicate is non-
duplicable, as the total permission for an action may not exceed 1) and that the thread can rely on the
shared heap location to have the value 1. Actions permitted on a shared region are declared in I(r, x),
and specify what allowed actions must satisfy in order to be allowed by a given label (which is associated
with a guard).

I(r, x) ≜

(
LOCK : x 7−→ 0 ∗ [UNLOCK]r1 ⇝ x 7−→ 1
UNLOCK : x 7−→ 1⇝ x 7−→ 0 ∗ [UNLOCK]r1

)

lock(x) {
local b;

do ⟨b := ¬CAS(&x, 0, 1)⟩
while(b)

}

unlock(x) {
⟨[x] := 0⟩

}

makelock(n) {
local x := alloc(n+ 1);

[x] := 1;

return x;

}

Figure 2.4: Implementation of a CAS-based spinlock [1]

We can see intuitively that the above implementation satisfies the specification we have given: make-
lock allocates memory, set the location representing the heap to 1, i.e. locks it, and then returns. The
proof relies on the idea that it is always possible to make a new shared state from a piece of heap that
you own. It is also fairly easy to see that unlock satisfies its specification - by holding the UNLOCK
permission, we may take this atomic action (atomic actions are surrounded by ⟨..⟩), after which the thread
no longer owns the lock. Meanwhile, lock ‘spins’ on the while, attempting to atomically update the lock
from 0 to 1. If this fails, it was because the lock is held elsewhere, and we continue spinning until we
succeed, in which case we can guarantee the cell had value 0 when we succeeded, and held the UNLOCK
permission. After the successful CAS, the thread holds the UNLOCK permission and can guarantee the
heap location is 1, so we can return Locked(x) as well as the isLock(x) we already had.
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CAP gives us reasoning about fine-grained concurrency with the abstractions necessary to have a
truly modular proof system, but does not incorporate any reasoning about linearisability. We will see
TaDA, which uses all the ideas we have discussed so far to construct an expressive logic for many types
of concurrent programs.
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Chapter 3

TaDA and TaDALive

3.1 TaDA

The original TaDA paper [3] made two primary contributions: atomic triples, to specify logical atom-
icity, and a program logic able to handle both separation based and linearisability based verification of
concurrent programs.

3.1.1 Atomic triples

The introduction of concurrent abstract predicates briefly presented in Section 2.5 allowed us to write
our specifications at a higher level of abstraction than previously, separating the specification of a module
from its implementation. Analogously to this, abstract atomic triples will allow us to specify an atomic
action at a higher level of abstraction than program execution, so that we can reason about atomic
actions whose implementation is more complex than a primitive command - the core idea behind ‘logical
atomicity’. An atomic triple judgement,

⊢ ⟨p⟩ C ⟨q⟩

reads as: when starting in a state satisfying separation logic assertion p, the program C and the environ-
ment both preserve p (although the underlying implementation of the state may change) until the atomic
update happens, and immediately following the atomic update the state must satisfy q. Once the atomic
update has happened, the environment is no longer under any obligation to preserve q and the thread
may not assume any ownership of the resources [3]. The atomicity of the program is inherently depen-
dent on the abstraction level of the predicates, as an environment observing the memory from a ‘lower’
abstraction level may observe intermediate steps and thus the C would no longer represent an atomic
action. This is similar to how the introduction of a new non-atomic function can break a linearisability
proof.

The natural next question to ask is how to use these atomic triples to write specifications for more
complex code: what if some parts of the concrete state are updated atomically, but other parts are not?
And how do we express interference on the atomically updated precondition, when it is clear that the
interference allowed by the environment is much less restricted than the thread itself (as the thread itself
must act on the atomically updated state represented by the atomic precondition at most once)?
Let us consider the following implementation of a spinlock: we aim to write a specification for lock(x).

def lock(x) {
var d = 0 in

while (d = 0)

d := CAS(x, 0, 1)

}

def unlock(x) {
[x] := 0

}

def makelock() {
var x = 0 in

x := new(1) ;

[x] := 0 ;

ret := x

}

Figure 3.1: Spinlock implementation
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The specification verified in CAP is

{isLock(x)} lock(x) {isLock(x) ⋆ Locked(x)}

(as in Example 2.3). To any programmer, locking a lock is considered an atomic action - it is crucial in
order to guarantee mutual exclusion that the locking action happens when a lock is unlocked and without
another thread interrupting in between to also lock it. In order to turn this into an atomic specification,
we consider some potential specifications (written in terms of their underlying heap representations).

⟨∃l. x 7→ l⟩lock(x)⟨x 7→ 1⟩

However, if the lock were already locked, this would allow the lock method to simply return without
taking action - this clearly does not guarantee mutual exclusion. Attempting to overcome this could lead
to the following specification:

⟨x 7→ 0⟩lock(x)⟨x 7→ 1⟩

This is more subtly wrong - in a number of ways. For example, this assumes the environment will not
change the state of the lock (so it is not shareable between threads and therefore defeats the purpose of
the lock), and furthermore still does not specify how the lock should behave if we want to acquire the
lock while it is held by another thread.

All of these issues, more ideologically, are caused by a fundamental imbalance in the way environment
interference can be tolerated on atomically updated objects: we expect other threads to also be acquiring
and releasing the lock, and our specification needs to be explicitly dependent on the state of the lock at the
time of the action (linearisation point) due to this environment interference, not just on the state before
the method was called. TaDA introduces a semantically new quantifier,

A

, to bound logical variables in
such a way to capture this interference.

A

l ∈ {0, 1}. ⟨x 7→ l⟩lock(x)⟨x 7→ 1 ⋆ l = 0⟩

This pseudoquantified logical variable l describes the following semantic meaning: the environment is
free to change l between 0 and 1 as many times as it wishes, as long as it does not change l outside the
bounds of the quantification, but the local thread may not change the value of l. At the linearisation
point of the code, the value of l is fixed (because this is an atomic action, so the environment may
not interrupt it to modify the value of l), and furthermore at the linearisation point, according to the
established postcondition, the lock was unlocked (l = 0), so regardless of the state of the lock initially,
the local thread did indeed lock the lock itself.

This explicit control of logically atomic actions in the proof system allows us to verify the imple-
mentation in Figure 3.1, which differs from implementation Figure 2.4 in the previous chapter, notably
in the missing angled brackets around the atomic actions. Before TaDA, it was frequently necessary
to include this ‘ghost’ construct in the commands where the atomicity of commands such as CAS was
essential to the race-freedom of the verified code. This would tell the proof system "this code inside the
angled brackets is implemented atomically and cannot be interrupted! Please just believe me!", in order
to dispatch additional technical requirements of the proof. The absence of this ghost code is the simplest
way to observe the key contribution of being able to do proofs relying on logical atomicity within the
logic itself.

We proceed from here, continuing with the example of the spinlock, to provide intuition on the key
introductions in TaDA’s program logic in order to first prove code is logically atomic, and second to use
these proofs to verify that client code does not contain race conditions.

3.1.2 Program Logic

Keeping in mind that TaDA is designed to be a self-contained program logic with logical atomicity proofs
an additional feature to existing separation logic based proofs, we need to combine Hoare specifications
and the RGSep-style shared regions and interference to maintain the ability to verify code which really
is fundamentally about ownership, as well as the genuinely new technical machinery to reason about
atomicity.

Specification language. TaDA’s specifications use assertions on both locally owned resources with
well-defined interference protocols and permissions (guards), and atomically updated resources which are

17



usually shared and require additional restrictions on the interference permitted from the environment.
Consider briefly the program

x := FAS(y, 1) ; z := x+ 1 (3.1)

This contains an atomic action - a FAS instruction - and could be embedded within a larger piece of code
which requires the update on the part of the heap at y to be atomic - perhaps this y represents a lock,
or other low-level flag for thread communication. We might require this action to be atomic in order for
our program to be race-free, and yet it is clear the program as a whole is not atomic, as it contains two
sequenced commands (with the potential for interruption between). To specify and verify such programs,
TaDA combines traditional Hoare triples with atomic triples to produce hybrid specifications.

A

x ∈ X.⟨pp | p(x)⟩ · ∃| y ∈ Y ⟨qp(x, y) | q(x, y)⟩

As discussed, this contains pseudoquantified logical variable x, a locally owned, private precondition pp
and an atomically modified (potentially with shared ownership) precondition p(x), dependent on the
pseudoquantified x, allowing us to express the different requirements of local interference versus environ-
ment interference on the shared part of the resources. As in some cases the result of the postcondition
could be nondeterministically dependent on the state of the resources at the linearisation point, we have
an additional pseudoexistentially quantified variable y which ties together the two parts of the postcon-
dition. Similar to the precondition, we have a locally owned, private postcondition qp(x, y), which may
still depend on the values produced at the linearisation point, and the atomic postcondition q(x, y). As
discussed in the previous section, the atomic postcondition is established at the linearisation point, after
which the environment interference is no longer controlled and therefore may be immediately externally
modified. Therefore the local thread may not assume it continues to hold any ownership of the resources
in the atomic postcondition (unless some ownership transfer has occurred, as is frequent in separation
logic based proofs), and these resources may henceforth be destroyed or modified in unspecified ways.
This hybrid specification is expressive enough to specify Example 3.1, allowing for environment interfer-
ence on the heap location at y and capturing the requirement that z is not updated as part of the atomic
action:

A

n ∈ Z.⟨ emp | y 7→ n ⟩ x := FAS(y, 1) ; z := x+ 1 ⟨z = x+ 1 | y 7→ 1 ⋆ x = n⟩

Shared regions and interference. TaDA’s handling of permission-based interference on shared re-
sources is in spirit very similar to RGSep and CAP, although the technical machinery looks a little
different. Explicitly, instead of boxed assertions with their own region label r and interference protocol I,
TaDA requires a globally defined set of shared region types and unique region identifiers, so we may have
many instances of shared regions corresponding, for example, to a spinlock region type spin, each with
a unique region identifier r. Then there are semantic and syntactic region interpretations: each region
type has a well-defined semantic interpretation in the model, as well as an underlying syntactic assertion
representing it. Concretely, for a spin lock, our syntactic interpretation of spinr(x, l) might be x 7→ l,
while the semantic interpretation must correspond exactly with the semantics of this assertion. This
allows us to use the assertion language of shared regions in order to control interference, while having
explicit control of the concrete underlying representation in order to verify code modifying it. As in CAP,
shared regions are shareable and should not be seen as their concrete underlying representation without
further machinery to guarantee exclusive control: tr ⇐⇒ tr ⋆ tr holds.

As is common among concurrent separation logics, TaDA is parameterised by a set of guards, which
are a construct of the assertions, and for each shared region, the guards associated with that region
form a partial commutative monoid with composition induced by the separating conjunction. Then,
a labelled transition system for each region type t, Guardt : AState ⇝ AState defines precisely which
actions are permitted by a guard. These guards fill the role of both rely and guarantee: we can rely
in our proofs on the environment not making modifications to shared regions for which it does not own
an appropriate guard, thus if a thread owns an exclusive guard, or there does not exist a compatible
guard with that owned by the thread, then the environment cannot make certain updates to shared
regions. This encapsulates much of the rely-guarantee reasoning for shared regions when the proof does
not depend on the notion of logical atomicity. This makes TaDA at least as expressive as these existing
proof systems.

The final technical detail required is region levels: as our shared regions are encapsulated in region
assertions tλr (x) and shareable, we need to prevent inconsistencies in the logic caused by opening the same
shared region twice - for example, spinr(x, l) ⋆ spinr(x, l) is a sensible assertion equivalent to spinr(x, l),
while the region interpretation x 7→ l ⋆ x 7→ l is obviously not well-defined. The issue is side-stepped by
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parameterising shared regions with a level from some well-founded order (typically λ ∈ N), and in the
proof rules including a region level in the context controlling which regions may be opened and modified.

Atomicity contexts and tracking resources. TaDA introduces a new type of ghost state to fuse
logical atomicity based proofs into the underlying logic. There are two primary goals: verify that code
which is not a primitive atomic command is logically atomic, and combine these proofs with the under-
lying proof system in such a way which allows us to verify atomic actions without the usual exclusivity
requirement guaranteeing race-freedom.

Before discussing examples, I provide an overview of the new constructs. There are two new compo-
nents: the atomicity context A, and the atomicity tracking resource r Z⇒ d, where d represents an element
of {♦,♢}⊎ (AState×AState). The atomicity context keeps information in the proof context about which
regions we are verifying some action is logically atomic, the abstract state the region may be in (initially
taken from the pseudoquantified logical variable), and the abstract state the action must establish. It
prevents us from trying to nest atomic actions (which would obviously lose their atomicity), as well as
determining which concrete changes do and do not represent abstract state changes, with respect to the
abstraction level of the initial predicate.
The atomicity tracking resource is an assertion which takes the place of a guard during proofs of logical
atomicity, i.e. provides ‘permission’ to update the shared resource, but also serves as a proof certificate
that the update occurred atomically and of the initial and resulting state at the linearisation point was.
The ♦ refers to an atomic action which the thread has the responsibility to take, the ♢ bears witness to
the linearisation point, and elements of AState × AState refer to the abstract state immediately before
the linearisation step and the resulting state.

Example of logical atomicity proof. Return to the locking of a spinlock, using the implementation
in 3.1, reproduced below.

def lock(x) {
var d = 0 in

while (d = 0)

d := CAS(x, 0, 1)

}

I use the machinery in the original TaDA paper for the following example, although this differs from the
machinery used to prove an equivalent specification in the TaDALive paper and the eventual proof in
this thesis.
For a shared region spinr(x, l) with interpretation x 7→ l, and a single non-zero guard G with transition
system

G : 0⇝ 1

G : 1⇝ 0

We aim to check

A

l ∈ {0, 1} ⟨ spinr(x, l) ⋆ [G]r ⟩ lock(x) ⟨ spinr(x, 1) ⋆ l = 0 ⋆ [G]r ⟩

The atomicity proof rule which allows us to prove lock(x) happens atomically ismake atomic:

r ̸∈ A { (x, y) | x ∈ X, y ∈ Q(x) } ⊆ Tt(G)∗

λ′, r : x ∈ X ⇝ Q(x),A ⊢ {pp ⋆ ∃x ∈ X. tλr (x) ⋆ r Z⇒ ♦} C {∃x ∈ X, y ∈ Q(x). qp(x, y) ⋆ r Z⇒ (x, y)}
λ′,A ⊢

A

x ∈ X. ⟨ pp | tλr (x) ⋆ [G]r ⟩ C ∃y ∈ Q(x). ⟨ qp(x, y) | tλr (y) ⋆ [G]r ⟩

At a general level, this proof rule should be read: C is safe and abstractly atomic if the update it makes
to the shared region tλr (x) is permitted by the owned guard G, we are not already in the midst of a proof
of some other atomic action on the same shared region r, and we can prove that this command is safe
and performs the action in the specification (in a non-atomic way), with the atomicity tracking resource
present to bear witness that the abstract state was only locally modified once from x to y. Observe that
the guard is replaced in the premise with the atomicity tracking assertion, preventing the guard from
justifying additional changes to the shared region.
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In our example, the guard [G]r in the precondition labels the transition 0 ⇝ 1, so is sufficient to give
permission to lock the shared region.

Moving forward, approximately, we aim to prove the following, where

L = {0, 1}
Y = {1}
C = while (d = 0) d := CAS(x, 0, 1)

λ′, r : l ∈ L⇝ Y ⊢ {d = 0 ⋆ ∃l ∈ L. spinr(x, l) ⋆ r Z⇒ ♦ } C { ∃l ∈ L, y ∈ Y. l = 0 ⋆ y = 1 ⋆ r Z⇒ (l, y) }

Following the application of make atomic, usual proof rules such as while and cons can be applied to
the Hoare specification in the premise of make atomic. This is not substantially different to a traditional
derivation. The remaining key to the puzzle is how to dispatch the atomic update: how to perform the
update using the atomicity tracking resource as permission, and update the certificate to reflect the values
at the linearisation point. We need one more atomicity rule for this, update region:

λ,A ⊢

A

x ∈ X. ⟨ pp | I(tλr (x)) ⋆ p(x) ⟩ C ∃y ∈ Y.

〈
qp(x, y)

∣∣∣ ∃z ∈ Q(x). I(tλr (z)) ⋆ q1(x, y) ∨
I(tλr (x)) ⋆ q2(x, y)

〉
λ+ 1, r : x ∈ X ⇝ y ∈ Y (x),A ⊢

A

x ∈ X, ⟨ pp | tλr (x) ⋆ p(x) ⋆ r Z⇒ ♦ ⟩
C

∃y ∈ Y.

〈
qp(x, y)

∣∣∣ ∃z ∈ Q(x). tλr (z) ⋆ q1(x, y) ⋆ r Z⇒ (x, z)∨
tλr (x) ⋆ q2(x, y) ⋆ a Z⇒ ♦

〉
Update region allows us to open up a shared region assertion into its interpretation to be manipulated
by command. Observe that this results in a reduction in the region level from λ+ 1 to λ, where λ is the
level of the region. This prevents us from duplicating the shared region assertion and then opening it
twice. The atomicity tracking context allows us to both modify some concrete part of the shared region,
while maintaining the abstract state (and thus maintaining the ♦), or performing an atomic update (such
as the CAS operation) and updating the abstract shared state, witnessed by an update of the atomicity
tracking resource to (x, z).

The usage of both proof rules is for locking a spinlock is demonstrated in Figure 3.2 as per the TaDA
paper [19].

A

l ∈ {0, 1} ⊢
⟨spinλ

r (x, l) ⋆ ⌈G⌉r⟩

m
ak

e
at

om
ic

r : y ∈ {0, 1}⇝ 1 ∧ y = 0 ⊢ {∃y ∈ {0, 1}. spinλ
r (x, l) ⋆ r Z⇒ ♦}

while (b = 0)

{∃y ∈ {0, 1}. spinλ
r (x, l) ⋆ r Z⇒ ♦}

up
da

te
re

gi
on ⟨x 7→ y⟩

b := CAS(x, 0, 1)〈
(x 7→ 1∧y = 0∧ b = 1)∨ (x 7→
l ∧ l ̸= 0 ∧ b = 0)

〉
{
∃y ∈ {0, 1}. spinrx, y ⋆
(r Z⇒ (0, 1) ∧ b = 1) ∨ (r Z⇒ ♦ ∧ b = 0)

}
⟨spinλ

r (x, 1) ⋆ ⌈G⌉r ⋆ l = 0⟩

Figure 3.2: Proof sketch for spin lock, as per TaDA [19]

Applying logical atomicity proof. The purpose of verifying that actions happen atomically is to
verify client code which relies on linearisability arguments is safe and correct. In order to apply these
arguments, TaDA provides a use atomic rule.

r ̸∈ A ∀x ∈ X. (x, f(x)) ∈ Tt(G(x))∗

λ,A ⊢

A

x ∈ X. ⟨ pp | I(tλr (x)) ⋆ p(x) ⋆ [G(x)]r ⟩ C ∃y ∈ Y.
〈
qp(x, y)

∣∣∣ I(tλr (f(x))) ⋆ q(x, y)
〉

λ+ 1,A ⊢

A

x ∈ X, ⟨ pp | tλr (x) ⋆ p(x) ⋆ [G(x)]r ⟩ C ∃y ∈ Y.
〈
qp(x, y)

∣∣∣ tλr (f(x)) ⋆ q(x, y)
〉
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See how this rule allows us to make changes to shared resources without enforcing the exclusive ownership
ideas from separation logic. Furthermore, the atomic weakening rule

λ,A ⊢

A

x ∈ X, ⟨ pp | p(x) ⋆ p′ ⟩ C ∃y ∈ Y.
〈
qp(x, y)

∣∣∣ q(x, y) ⋆ q′(x, y)
〉

λ,A ⊢

A

x ∈ X, ⟨ pp ⋆ p′ | p(x) ⟩ C ∃y ∈ Y.
〈
qp(x, y) ⋆ q′(x, y)

∣∣∣ q(x, y) 〉
allows us to use atomicity of updates to shared regions to verify the safety of non-atomic programs.

3.1.3 Evaluation
The original TaDA paper [3] had two significant novel contributions - the introduction of atomic triples
to reason about logical atomicity, and a program logic facilitating proofs based on separation logic and/or
linearisability within the same proof system. These contributions expand the set of verifiable programs
from previous logics to include those requiring a linearisation argument, which is often the case for heavily
optimised nonblocking concurrent code. Furthermore, by integrating linearisability proofs smoothly with
existing work on ownership proofs, TaDA is able to maintain the expressivity of RGSep and CAP in
handling fine-grained locking protocols. TaDA achieves these things while maintaining the modularity
properties that CAP [1] introduced, as it facilitates abstract predicate use in the proof rules and semantic
model of the program logic, thus ensuring that proofs are independent of the implementation of underlying
modules. This promotes proof reuse almost to the scale at which programmers require code reuse.

The published literature on TaDA, including the extended technical report [19] and PhD thesis [20],
is, in places, imprecise and incomplete.

• The example proofs frequently do not define necessary things like the operation on guards, and
some applications of the proof rules fail to satisfy necessary assumptions. There are also a number
of misleading or incorrect statements, notation or assumptions, like the pseudoexistential quantifier
in TaDA which has no additional meaning to a typical existential, and is replaced in TaDALive
with the usual ∃ symbol.

• There is an incorrect and generalised stability condition imposed on the predicates in specifications
describing shared resources, which in practice almost no specifications with meaningful atomic
behaviour satisfy

• Necessary side conditions for soundness on proof rules are frequently omitted (including non-trivial
stability assumptions).

• The existing semantic model is ad-hoc, without a coherent structure to reduce the complexity to
a tractable object, and is too imprecise to be able to find sources of unsoundness in the logic.
Its complexity makes it hard to extend for further work, and furthermore, the author, in the
conference paper, presents an expectation that the semantic model is insufficient to verify more
complex concurrent programming patterns, such as helping or synchronization, and further work is
required in order for TaDA to be extensible in this direction.

I revisit these points in Chapter 8 to discuss how I have addressed them.

3.2 TaDALive
Prior to the introduction of TaDALive [6], there existed a scattering of work on termination properties of
nonblocking concurrent code, often in conjunction with safety properties in the usual rely-guarantee style,
such as Total-TaDA [21] and Lili [22]. By nonblocking, we refer to algorithms in which the termination of
a thread does not depend on the actions of another - this is referred to in Total-TaDA as non-impedance. It
maintains the existing composabability of proofs (as the termination reasoning is thread-local) as well as
the ability to specify programs at different levels of abstraction, but the reality of fine-grained concurrent
programs is that they frequently employ a variety of busy-waiting style techniques for synchronization,
and usually it is the case that for example the successful acquiring of a locked lock is dependent on another
thread first releasing the same lock. To complicate things further, when this busy-waiting takes execution
steps without making any logical progress, there’s no sensible logical encoding of the execution steps in
such a well-founded way which would guarantee termination: TaDALive calls this pattern of taking steps
without making progress abstract atomic blocking. TaDALive makes a number of significant contributions
to break into these complex fine-grained termination patterns in such a way which is thread-local (thus
composable), and expressed at the correct abstraction level (so as not to lessen proof reuse).
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3.2.1 Liveness

Similar to the way rely-guarantee reasoning can be seen as invariant based - threads and the environment
must always act within their bounds - TaDALive’s fundamental idea is to base progress proofs on liveness
invariants - guarantees that a property will always eventually hold - and proposes that its ubiquitousness
in the way programmers reason about their own code supports the idea that this could be considered a
definition of abstract blocking, or at least a fundamental property of it. As in many modern separation
logics which have logical ghost state in the forms of guards to express rely-guarantees, TaDALive intro-
duces a novel form of logical ghost state, termed subjective obligations, which encode liveness invariants
in assertions. These are used in a thread-local way to encode both obligations which the environment
requires the thread to fulfill and obligations which the thread depends on the environment to eventually
fulfill in order to guarantee termination, although the composition of environment and local obligations is
rather subtly defined. This locality gives rise to a proof system which maintains composability of earlier
logics, with the parallel rule requiring very little additional machinery to be sound, except for a technical
detail to prevent unsound circular reasoning which is in practice easily dispatched.
As in the environment interference assumption

A

x ∈ X of TaDA, where the safety of a program is
conditional on additional restrictions to the environment interference, TaDALive introduces environment
liveness assumptions for specifications similar to TaDA’s, written

A

x ∈ X ↠ X ′. ⟨ Ph | Pa(x) ⟩ · ∃y. ⟨ Qh(x, y) | Qa(x, y) ⟩

Observe that the structure of TaDA’s hybrid specifications is kept except for minor notational changes
such as pp to P and the replacing of the pseudo-existential with a traditional existential which better
reflect the semantics. The key introduction is the environment liveness assumption

A

x ∈ X ↠k X ′, which
should be read as the environment interference on the abstract state x is restricted to modifications within
X, and furthermore, that the environment will always eventually update x to satisfy X ′.

The culmination of all this work is the ability to provide total specifications for spinlocks, CLH locks
and a variety of fine-grained client code.

3.2.2 Semantic Model

The new semantic model I present in this work is closely based on that of TaDALive’s, so I provide an
overview of the TaDALive semantic model, to provide the reader with some intuition in understanding
how the components of my semantic model fit together later.

Verification of liveness invariants of environment steps requires the semantic model to be able to reason
about environment steps at the resolution of one concrete execution step at a time - simply observing
the state before and after each logical step is insufficient, as it may be that the environment establishes
its obligations in an intermediate step and then subsequently violates them. Intuitively, this should still
satisfy the environments obligations, but needs to be observable by the model to be correctly specified
in the semantics. As a result, TaDALive’s semantic model is a novel trace-based design, with tight
control over the logical ghost state permitted and tracked in each step of the trace. This provides precise
reasoning about environment steps at the resolution of one concrete execution step at a time and is the
only way to guarantee that liveness assumptions are not missed. TaDALive has four different layers of
semantics, separating the concerns of different parts of the model, each with complex interactions.

The trace represents the underlying machine represention of a program. A program trace represents
the program execution of a program - similar to a trace, but with an additional component for the
program being executed. Then, the logical state (worlds) includes a heap as well as each type of ghost
state so that we can reason about resources at a more abstract level, and crucially are thread-local, with
composition giving us the perspective from several threads, and eventually the entire system. These
semantics gives rise to specification traces, whose states are logical instrumentations of the concrete
resources (worlds) and transitions checked against the rely and guarantee. Finally, world traces are used
to verify liveness properties. These clear boundaries between abstraction levels make it easier to reason
about each component, and the ultimate safety check is disjoint from the liveness check, which makes
these components more separable. The soundness judgement is defined by checking that all program
traces representing an execution of a given command have a safe logical instrumentation which satisfies
the specification, i.e. the initial state satisfies the precondition, if it terminates then it satisfies the
postcondition. The safety judgement is based on alternating data and determines whether each step is
permitted by the logical instrumentation, with environment steps represented by universally branching
transitions, and local steps by existentially branching transitions.
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3.2.3 Evaluation
TaDALive improves greatly on the variety and complexity of programs verifiable with total specifica-
tions, with a program logic that can handle liveness arguments dependent on other threads behaviour
without sacrificing on composability. With novel ghost states, TaDALive allows threads to express their
dependencies on the environment as subjective obligations, maintaining some modularity properties. The
environment liveness assumptions replace TaDA’s environment interference assumption while maintaining
TaDA’s reasoning about abstract logical atomicity, so that they can be expressed at the correct level of
abstraction. In achieving these goals, TaDALive’s new semantic model is completely different to TaDA’s,
with highly complex interactions between several types of logical ghost state handled in such a way that
each level of abstraction is self-contained and easier to work with, in comparison to the TaDA semantic
model which has little separation of elements of different abstraction levels.

In making such significant changes, the complexity of TaDALive is such that it is very difficult for
one person to be able to understand and connect together all of the pieces.

• The complexities of these liveness arguments are such that the semantic model is intractably large,
which makes it very difficult to extend further to verify other complex concurrency patterns such
as helping or synchronization. TaDALive does not currently improve on the safety verifications of
TaDA.

• The semantic model does not provide any definition or integration of abstract predicates, reducing
modularity compared to TaDA and earlier work.

• In fixing the problems with the original TaDA logic, TaDALive skates over more established technical
details, which in a few places, results in more technical complexity than is strictly necessary and
definitions which are not well-defined (although in comparison to TaDA, it is clear what the intention
is). Given the overwhelming size of the logic, this is not a surprise, but makes it necessary to find
genuine simplications to the model before it will be possible to extend to other concurrency patterns.

• Some of the issues with missing technical details are easily resolved, but notably explicit handling
of some parts of the logical state is missing, and the proof rules of some primitive commands are
not well-defined either.

Again, a full comparison of how TaDA 2.0 addresses these concerns is in Chapter 8.

3.3 Related Work
Lili Lili [22] is a predecessor to TaDALive which was also intended to introduce reasoning about liveness
properties to modern concurrent separation logics, and like TaDALive allows for linearisability proofs of
safety properties as well as liveness properties within the same logic under the assumption of fair schedul-
ing. Lili uses a completely different meta-theory to TaDALive, with contextual refinements providing
abstractions for concurrent objects. However, Lili does not have a parallel rule and thus cannot be used
to verify much of the concurrent programs TaDALive does. It also makes use of global ghost state, which
is less modular than TaDALive’s subjective obligations.

Iris The line of research which has surfaced as the major player in software verification in recent years
is Iris, a language-independent framework for reasoning about the safety of concurrent programs, with
a Coq implementation and instantiation into several different programming languages. Iris was inspired
by TaDA and consequently is built to accommodate ownership and linearisability based proofs. A large
amount of work has been put into simplifying the underlying concurrent separation logic into a number
of key constructs, in order for the framework to be appropriate for a wide variety of problems - this aims
to solve the ‘700 separation logics’ problem described by Matthew Parkinson in [23], that inventing a
new separation logic for each individual library and language was becoming commonplace and unfeasible
to continue. Iris seems thus far to be extensible in such a way to handle the variety of complex problems
asked of modern separation logics, including helping and synchronization, but the underlying logic does
contain a number of features not seen in traditional separation logics including a number of modalities,
and a higher-order assertion language [24]. It is likely that these features are why Iris has become so
easily extensible and therefore widely used, but raises the question of whether they are actually necessary
to solve certain problems. Specifically, the consolidation and continued work on TaDA and TaDALive
aims to handle more complex concurrent interactions without Iris’ higher-order state.
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Furthermore, in order to resolve soundness concerns with impredicative invariants, Iris uses a step-
indexed semantics [25] with a later modality to prevent circular dependencies. Spies et al. later deter-
mined that this step-indexed semantics is insufficient to prove liveness properties and use transfiniteness
to introduce reasoning about termination to Iris in [26], but is not sufficient for concurrent programs.

Trillium Trillium [27] is a brand-new framework which uses Iris to establish intensional refinements to
strengthen concurrent separation logics to accommodate for liveness properties, and is the first to verify
concrete implementations of distributed protocols such as Paxos are correct with respect to their abstract
TLA+ specifications. It hopes that applying Trillium to Transfinite Iris it would resolve some current
limitations, and bring the expressivity required to verify preservation of liveness properties. However, it
is ultimately for expansion into liveness proofs of Iris, rather than understanding how to verify safety
properties of more complex code with less complex logics.
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Chapter 4

TaDA 2.0 - Syntax and Semantic Model

Both the program and specification language range over the following:

b ∈ Bool ≜ {true, false}
v ∈ Val ≜ Z ∪ Bool

E ∈ Exp(Vars,Vals) ::= v | x | E1 + E2 | E1 − E2 | ...

B ∈ BExp(Vars,Vals) ::= b | x | ¬B | E1 ≤ E2 | ...

4.1 Commands
Our commands range over program expressions (and therefore program booleans and program values),
program variables, and f ∈ FName a set of function names.

x ∈ PVar ≜ {x, y, ...} ∪ {ret}
E ∈ PExp ≜ Exp(PVar,Val)

B ∈ PBExp ≜ BExp(PVar,Val)

Definition 4.1.1 (Commands).

C ::= skip | x := E | [E1] := E2 | x := [E] | x := CAS(E1, E2, E3) | x := FAS(E1, E2) |
x := new(E) | dispose(E) | C1 ; C2 | C1 || C2 | var x = E in C |
if (B) C1 else C2 | while (B) C | let f(x1, ..., xn) = C1 in C2 | y := f(E1, ..., En)

For well-formedness of C1 || C2, we require mod(C1 || C2) = ∅. We intend to model shared memory
concurrency through the heap without interference through shared variables, which this condition does
not restrict. We also require the obvious restriction for let f(x1, ..., xn) = C1 in C2 that pv(C1) ⊆
{x1, ..., xn, ret}.

Definitions of mod(C), pvE(E), pvB(B) and pvC(C) are provided in the Appendix A. I will later omit
the subscripts when unambiguous.

4.1.1 Trace semantics of commands

Addr ≜ N

σp ∈ PStore ≜ PVar ⇀f Val

h ∈ Heap ≜ Addr ⇀f Val

We represent the state of a program execution with a program configuration. This is either a tuple of a
program store, heap and command, or  (denotating a configuration which has faulted). A ✓ denotes a
terminated thread.

c ∈ Conf ≜ (PStore× Heap× (Cmd ⊎✓)) ⊎ { }

s ∈ Sched ≜ {loc, env}
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Programs execute within a function implementation context, with components for their program variable
parameters and the command to be executed.

φ ∈ FImpl ≜ FName ⇀ (PVar∗,Cmd)

We reason about traces of commands with respect to a standard operational semantics given by a relation
→φ ⊆ Conf×Sched×Conf defined in Appendix B. We write a s−→φ b for (a, s, b) ∈ →φ, using an expression
evaluation function J·Kσp : (PExp ⊎ PBExp) → Val (Appendix A). Given that the goal is to reason about
resource safety and thread interference, we are assuming that expressions always evaluate and evaluate to
an object of the right ‘type’ - type-checking and faults caused by such errors are unrelated to concurrency
problems and out of the scope of this field. Therefore, we assume that in while (B) C, it is always the
case that JBKσp ∈ Bool, in x := [E1] that JE1Kσp ∈ Addr, etc.

Definition 4.1.2 (Traces).

τ ∈ Traceφ ≜
{
(c0, s0, c1, s1, ..., sn−1, cn)

∣∣∣ ∀i ∈ N. ci
si−→φ ci+1

}
Trace ≜

⋃
φ∈FImpl

Traceφ

We use standard indexing notation on traces, i.e. τ [0] will always refer to the first configuration c0, and
σi, hi,Ci will always refer to the components of the i-th Conf in τ .

Finally, we define the semantics of commands:

Definition 4.1.3 (Trace Semantics of Commands).

JCKφ ≜
{

τ
∣∣∣ τ ∈ Traceφ ∧ τ [0] = (σ0,_,C)

∧ pv(C) ⊆ dom(σ0)

}
A trace τ is considered a concrete representation of an execution of command C in function implemen-

tation context φ, if it begins starting with C, each step is determined by the operational semantics −→φ

and each variable free in the command has a definition in σ0 (avoiding non-concurrency related faults).
By imposing no restrictions on the initial heap, it follows that the traces accepted by JCKφ are those
which represent genuine program executions of C.

Remark 4.1.1. TaDALive uses a complex inductive data structure called a PState in the third com-
ponent of program configurations in order to manage nested local variable declarations and usages. I
sidestep this complexity by providing a new operational semantics rule for handling local variables. This
greatly eases later inductive proofs.

Remark 4.1.2. In order for TaDALive’s trace semantics of commands and specifications to be directly
comparable, there is a further reduction from their program configurations to a more concrete trace with
no representation of the commands. Then, a third type of trace is used in defining the semantics of
specifications. In contrast, TaDA 2.0 only has one type of trace which suffices as the semantics of all its
components.

Remark 4.1.3. The semantics of TaDALive’s commands (and specifications) are all infinite traces.
Terminating executions are modelled by an infinite suffix of environment steps, and closed systems by
traces in which environment steps are all zero. This is necessary in order to reason about termination.
With the aim of reducing the semantic model to only that which is necessary for safety, I have elected to
use finite traces as the semantics for commands, which makes them easier to reason about. However, in
order to get the correct safety semantics for non-terminating executions, the semantics of commands in
TaDA 2.0 include what could be thought of as trace prefixes: for any given trace in JCKφ, every prefix of
that trace is also in JCKφ. This allows us to ensure we are also providing safety guarantees for all possible
finite executions of non-terminating programs.

Remark 4.1.4. As the satisfaction of a TaDALive specification depends on both the liveness and safety
conditions, TaDALive requires a fairness condition on the scheduler of its traces, which in turn requires
explicit identification and tracking of which thread took which step in the operational semantics. There-
fore it does not provide safety guarantees of unfairly scheduled traces (because the liveness result would
not hold in these cases). TaDA 2.0 has no dependence on the scheduling and provides safety guarantees
for all program executions.
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4.2 Assertions

Assertions require the following:
LVar, a set of logical variables disjoint from PVar
t ∈ RType, a set of region types
r ∈ RId, a set of region identifiers
λ ∈ Lvl ≜ N
a ∈ AState a set of abstract states. This can be abstract values, as well as sets or lists of these, for
example.
G ∈ Guard a set of all guards in the proof system.
AVal ≜ Val ∪ AState ∪ Guard ∪ RId
E ∈ LExp ::= Exp(LVar ⊎ PVar,AVal) logical numerical expressions
B ∈ LBExp ::= BExp(LVar ⊎ PVar,AVal) logical boolean expressions

Observe that PExp ⊆ LExp and PBExp ⊆ LBExp, so we may freely use PExps and PBExps which occur
in commands directly in our assertions and specifications. Analagous definitions of pv hold for logical
expressions and assertions.

Definition 4.2.1 (Atomicity tracking components).

d ::= ♦ | ♢ | (E1, E2)

Definition 4.2.2 (Assertions). Assertions are defined by the following grammar:

P ::= B | ∃x.P | P =⇒ Q | P ∧Q | P ∨Q | emp | P ⋆ Q | �
i∈S

(P (i)) |

E1 7→ E2 | tλr (E) | r Z⇒ d | ⌈G(E1, ..., En)⌉r

where t ∈ RType, λ ∈ Lvl, r ∈ RId ∪ LVar, G ∈ Guard ∪ LVar

4.2.1 World semantics of assertions

Ghost state is intended to provide additional machinery to reason about properties unobservable in the
program configuration. As it is used to represent the restrictions on interference, TaDA 2.0 provides a
logical representation of assertions to encode these expectations. This will be worlds. A world represents
a thread-local view of the program configuration - they represent only the resource owned or partially
owned by a thread (or set of threads). This will allow world composition to correspond to the program
state from the combined perspective of several threads. The term view is from [28], which introduces the
meta-theory of abstract local states which compose to form part of the wider system.

Define σl ∈ LStore ≜ LVar ⇀f AVal, and ς ∈ Store ≜ PVar ⊎ LVar ⇀f AVal the disjoint union
of pairs of LStores and PStores, (i.e. all PVar’s map to Vals.) Then expression evaluation extends to
J·Kς : (LExp ⊎ LBExp) → AVal.

Definition 4.2.3 (Worlds). For some R ⊆ RId, a world w ∈ WorldR, is the tuple w = (h, ρ, γ, χ) where
- h is the local heap, representing resources exclusively owned by the thread
- ρ ∈ RMap ≜ RId ⇀f (RType× Lvl× AState) determines the shared regions the thread knows about
- γ ∈ GMap ≜ RId ⇀f Guard is the locally owned guards
- χ ∈ AMapR ≜ R → ATrack is the atomicity tracking component of regions for which we are in the

midst of doing atomic actions.
R contains the region identifiers which have been opened (i.e. we are in the midst of tracking an atomic
update to a shared region with this identifer, and temporarily consider the concrete interpretation of the
region to be part of our semantics instead of the shared region component).
We impose the additional restrictions on worlds to be well-formed: dom(ρ) = dom(γ) ⊇ R and ∀r ∈
RId, ρ(r) = (t,_,_) =⇒ γ(r) ∈ Gt. This represents the condition that every shared region a thread
knows about must have its information accessible in the maps ρ and γ and that if ρ says a region identifier
has particular region type then the guard χ(r) must be contained within the guard algebra specific to
that region.

Remark 4.2.1. TaDA’s worlds contain components for CAP’s abstract predicates. TaDALive’s worlds
do not, but do contain additional components for ghost state relating to liveness properties.
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In order to understand a program configuration which is the composition of several concurrent threads,
we need to be able to compose worlds in a such a way which produces a view of the execution from the
combined perspective of the threads. In order to compose worlds, we first need to understand how to
compose each component.

Definition 4.2.4 (Guard Algebra). A guard algebra is a partial commutative monoid (Grd, •, {0}) with
Grd ⊆ Guard. Our proofs are parameterised by a function G(t) = (Gt, •t, 0t) from a region type to an
associated guard algebra, where Gt ⊆ Guard, so each region type has its own definition of composition
for the guards of G(t).

Definition 4.2.5 (Atomicity Tracking Algebra). An atomicity tracking algebra is a partial commutative
monoid

ATrack ≜ ((AState × AState) ⊎ {♦,♢}, •, Emp♦)

where
Emp♦ ≜ (AState× AState) ∪ {♢}

and as in TaDA, the operation is defined by

♦ • ♢ = ♢ • ♦ = ♦

♢ • ♢ = ♢

∀x, y ∈ AState, (x, y) • (x, y) = (x, y)

All other combinations are undefined.

Definition 4.2.6 (Disjointness). For some partial commutative monoid (X, •, X ′), x, y ∈ X are disjoint,
written x#y, if and only if x • y ̸= ⊥

Definition 4.2.7 (World Composition). For w1 = (h1, ρ1, γ1, χ1) and w2 = (h2, ρ2, γ2, χ2) ∈ WorldR,

h1 • h2 = h1 ⊎ h2

ρ1 • ρ2 = ρ1 if ρ1 = ρ2 and undefined otherwise
γ1 •ρ γ2 = λr ∈ dom(ρ), γ1(r) •t γ2(r)

if ∀r′ ∈ dom(ρ), ρ(r′) = (t’,_,_) ∧ γ1(r
′) •t’ γ2(r′) ̸= ⊥, and ⊥ otherwise

χ1 •R χ2 = λr ∈ R, χ1(r) • χ2(r)

if ∀r ∈ R, χ1(r) • χ2(r) ̸= ⊥

Then, ∀w1, w2 ∈ WorldR, w1 • w2 = (h1 • h2, ρ1 • ρ2, γ1 •ρ1 γ2, χ1 •R χ2).

As h1 and h2 represent a thread’s exclusively owned resources, these compose only if they are disjoint.
ρ1 and ρ2 defines the region type, region level and abstract state of shared resources, which play important
roles in ensuring interference is within the protocols defined for a given region. To ensure each thread is
‘playing by the same rules’, worlds only compose if they agree exactly on shared regions. The composition
of guards and atomicity tracking resources is lifted directly from the operation on the underlying algebra,
so we may use this operation to reason about disjoint worlds, i.e. if a world is such that γ(r) = G, for
some G which does not compose with any non-unit guard of the region type’s guard algebra, then we
may be certain that the guards owned by composed worlds may only represent a unit guard for that
region identifier. Similarly, the operation on atomicity tracking components forces threads to agree on
the location and justification of the linearisation point of a thread.

This gives us a world algebra (WorldR, •, EmpR), where

EmpR ≜

{
(∅, ρ, γ, χ)

∣∣∣ ∀r ∈ dom(ρ), ρ(r) = (t,_,_) =⇒ γ(r) = 0t
∀r ∈ R, χ(r) ∈ Emp♦

}
We consider worlds to be empty when they contain no fully owned resources, i.e. the guards and atomicity
tracking components are all units of their respective algebras and the heap is empty. We allow any shared
regions, as these are not fully locally owned resources, and world composition requires equality of the ρ
components.

We can lift world composition to sets of worlds in the following manner:

∀p1, p2 ∈ P(WorldR). p1 ∗ p2 ≜ {w1 •R w2 | w1 ∈ p1 ∧ w2 ∈ p2 ∧ w1#w2 } (4.1)
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ς, w |=R B ⇐⇒ JBKς ∧ w ∈ EmpR

ς, w |=R ∃x.P ⇐⇒ ∃v ∈ AVal. ς[x 7→ v], w |=R P

ς, w |=R P =⇒ Q ⇐⇒ ∀w′.w ⪯R w′ ∧ ς, w′ |=R P =⇒ ς, w′ |=R Q

ς,w |=R P ∧Q ⇐⇒ (ς, w |=R P ) ∧ (ς, w |=R Q)

ς, w |=R P ∨Q ⇐⇒ (ς, w |=R P ) ∨ (ς, w |=R Q)

ς, w |=R emp ⇐⇒ w ∈ EmpR

ς, w |=R P ⋆ Q ⇐⇒ ∃w1, w2. w = w1 • w2 ∧ (ς, w1 |=R P ) ∧ (ς, w2 |=R Q)

ς, w |=R �
i∈S

(P (i)) ⇐⇒ (S = ∅ =⇒ h ∈ EmpR) ∧ ∀i ∈ S, ∃wi ∈ WorldR.

ς, wi |=R P (i) ∧ w = (•R,i∈S wi)

ς, w |=R E1 7→ E2 ⇐⇒ w = (h, ρ, γ, χ) ∧ h = [JE1Kς 7→ JE2Kς ] ∧ (∅, ρ, γ, χ) ∈ EmpR

ς, w |=R tλr (E) ⇐⇒ w = (_, ρ,_,_) ∧ ρ(JrKς) = (t, λ, JEKς) ∧ w ∈ EmpR

ς, w |=R r Z⇒ d ⇐⇒ w = (h, ρ, γ, χ) ∧ χ(JrKς) = d ∧ (h, ρ, γ, χ[JrKς 7→ ♢]) ∈ EmpR

ς, w |=R ⌈G(E1, ..., En)⌉r ⇐⇒ w = (h, ρ, γ, χ) ∧ γ(JrKς) = JGKς(JE1Kς , ..., JEnKς)

∧ (h, ρ, γ[JrKς 7→ 0], χ) ∈ EmpR

Figure 4.1: World satisfaction relation

In order to provide a semantics for assertions which is flexible enough to allow composition any sensible
frame, we need to allow the ‘addition’ of shared regions to the logical justification of the state, as there
may be shared regions represented elsewhere in the entire state not observed locally. To do this, we
consider the semantics of assertions to be a set of upwards-closed worlds with respect to adding shared
regions. Define the ordering on WorldR, ⪯R, to be the smallest reflexive, transitive relation such that:

(h, ρ, γ, χ) ⪯R (h, ρ[r 7→ (t, λ, a)], γ[r 7→ 0t], χ) if r ̸∈ dom(ρ)

Then
World

↑
R ≜ { p ⊆ WorldR

∣∣ ∀w,w′ ∈ WorldR, w ∈ p ∧ w ⪯R w′ =⇒ w′ ∈ p }

We can check that this is sensible by observing that the set of empty worlds is indeed upwards closed, and
so can represent the logical instrumentation of any concrete state satisfying assertions with no resources
(such as true).

Lemma 4.1 (∀R ∈ P(RId). EmpR ∈ World
↑
R).

The logical state is represented by a store and world. The world satisfaction relation |=R ⊆ (Store×
WorldR) × Assert defines when a logical state is a genuine representation of an assertion, according to
Figure 4.1. It is parameterised by R, the region identifiers of open regions in the world.

Definition 4.2.8 (World Semantics of Assertions). The semantics of an assertion P is defined to be the
upwards closed set of worlds according to the world satisfaction relation:

WJP KςR ≜ { w | ς, w |=R P }

Lemma 4.2 (∀P ∈ Assert,R ∈ P(RId), ς ∈ Store. WJP KςR ∈ World
↑
R).
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4.2.2 Atomicity context, inteference and stability

To successfully verify programs employing linearisability reasoning for race-freedom, TaDA 2.0 needs to
be able to verify that a program which is not a primitive atomic command is in fact logically atomic.
In doing so, it uses most of the existing infrastructure to verify the safety of each component command
in the usual sequential way, with the atomicity context and atomicity tracking resource responsible for
ensuring that the abstract state of the shared resource is only updated once. Therefore, we need to be
able to track which shared regions we are in the process of verifying an abstract atomic program: this is
the role played by the atomicity context.

Definition 4.2.9 (Atomicity Context). An atomicity context A is a partial function from RId to
P(AState × AState), usually written A(r) = (X,T ) where X ⊆ AState and T ⊆ AState × AState.
We provide the shorthand interf(A, r) ≜ X and tr(A, r) ≜ T . For every r ∈ dom(A), we require
X ⊆ { x | (x,_) ∈ tr(A, r) }.

Notation 4.1.
WJP KςA ≜WJP Kςdom(A)

TaDA is parameterised by a region interference function Tt : Gt → P(AState × AState), which given
a region type t ∈ RType and a guard in the associated guard algebra, gives the set of transitions allowed
by this guard on the region. We require the relation to be reflexive, and monotone in the guards, that
is, G1 ⪯ G2 =⇒ Tt(G1) ⊆ Tt(G1), where the ordering ⪯ on the guards is the natural one induced
by the operation of the monoid. We use this to determine the rely and guarantee- a thread guarantees
to limit its interference on shared resources to only actions permitted by the guards it owns, and relies
on the environment doing the same. The partial nature of the guard monoid and definition of world
composition means that other threads can only own guards which are disjoint to that owned by the local
thread, which forms the basis of the rely.

To bake the rely-guarantee directly into the logical instrumentation of the state of an execution, we
define a world rely relation with respect to the atomicity context, RA ⊆ WorldR×WorldR as the smallest
reflexive, transitive closure which satisfies WR1 and WR2, of Figure 4.2.
WR1 admits transitions permitted by Tt(G) when the guards seen by the world (γ(r)) do not preclude
the environment of owning G. If the world is waiting for an atomic action to happen on r (χ(r) ∈ {♦,♢}),
then the transitions are further restricted to those which are permitted by the environment interference
of the atomicity context (interf(A)).
WR2 admits transitions where the environment performs the linearisation point.

γ(r) # G (a1, a2) ∈ Tt(G) χ(r) ∈ {♦,♢} =⇒ a2 ∈ interf(A, r)

(h, ρ[r 7→ (t, λ, a1)], γ, χ) RA (h, ρ[r 7→ (t, λ, a2)], γ, χ)
WR1

(a1, a2) ∈ tr(A, r)

(h, ρ[r 7→ (t, λ, a1)], γ, χ[r 7→ ♢]) RA (h, ρ[r 7→ (t, λ, a2)], γ, χ[r 7→ (a1, a2)])
WR2

Figure 4.2: World Rely Relation

The correctness of rely-guarantee reasoning hinges on being able to ensure that our logical instrumen-
tation of the concrete state is not violable by updates to the concrete state contained within the rely.
This is referred to as stability.

Definition 4.2.10 (Stability).

V iewA ≜ { p ∈ World
↑
A | ∀w,w′ ∈ WorldA, w ∈ p ∧ w RA w′ =⇒ w′ ∈ p }

Define the stability of assertions using the judgement

A |= P stable ≜ ∀ς ∈ Store. WJP KςA ∈ V iewA

and say P is A-stable.
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For A′ an extension of A, we can coerce elements p ∈ V iewA to p′ ∈ V iewA′ by extending the
atomicity tracking components for each additional shared region in every possible way.

Lemma 4.3 (Stability is closed under composition).

∀p, q ∈ V iewA. p ∗ q ∈ V iewA

Pure assertions, as well as x 7→ v and emp are stable under any atomicity context, as are guards.
Stability is preserved by ∗,∧,∨,∃. The important cases to check are regions assertions and atomicity
tracking components, for which the following rules are usually sufficient:

Lemma 4.4 (Sufficient conditions for stability).

∀x ∈ X,x′ ∈ AState, G′ ∈ Gt. G
′#G(x) ∧ (x, x′) ∈ Tt(G

′) =⇒ x′ ∈ X

A |= ∃x ∈ X. tλr (x) ∗ ⌈G(x)⌉r stable

interf(A, r) = X

A |= ∃x ∈ X. tλr ∗ r Z⇒ ♦ stable
r ∈ dom(A)

A |= r Z⇒ ♢ ∨ r 7→ (_,_) stable

4.2.3 Concrete semantics of assertions
Up until this point, we have constructed logical representations of the concrete state, in order to use the
language of assertions to specify commands and argue that our programs obey the restraints imposed by
different types of ghost state. In order for these logical instrumentations to be meaningful, we need to
understand when a logical instrumentation represents a program configuration. As the logical instrumen-
tations are thread-local, this will involve composing arbitrary but disjoint frames (worlds representing
the environment threads), and importing a representation for the shared resources.

The second is achieved by establishing region interpretations for shared regions which provide a logical
representation of the underlying resources of the shared region as both assertions and as worlds.

Definition 4.2.11 (Region Interpretations). The syntactic region interpretation Ir = (t, l, a, P ), where
fv(P ) ⊆ {r, l, a} and ∅ |= P stable.
For each t ∈ RType, the semantic region interpretation is ItJ·K : RId× Lvl× AState → V iew∅

Observe that we require shared regions to be stable, i.e. their underlying concrete representation is
inviolable by actions of the local or environment thread, and remember that being a V iewA requires
the semantic region interpretation to be an upwards-closed set of worlds, so this is a sensible semantics.
Frequently, the definition of P may depend on r and l, so we consider these LVars.

Notation 4.2. Where Ir = (t, l, a, P ),

I(tλE1(E2)) = P [E1/r, λ/l, E2/a]

For well-formedness, TaDA 2.0 requires that the semantic and syntactic definitions coincide:

ItJr, λ, aK = WJI(tλr (a))K∅∅

These semantics can be coerced to stable sets of worlds of any atomicity context and thus have the
flexibility needed to compose with other worlds.

Now that we have a concrete representation of the non-exclusively owned resources, we can finally
determine how logical states correspond to concrete resources.

Definition 4.2.12 (Region Collapse). For λ ∈ Lvl, w ∈ WorldA, let

closed(λ,w) = { r ∈ dom(ρ) | ρ(r) = (_, λ′,_) ∧ λ′ < λ }

Define region collapse to be

w↓λ ≜
{

w • w1 • ... • wn

∣∣∣ closed(λ,w) = {r1, ..., rn} ∧ ρw(ri) = (ti, λi, ai)
=⇒ wi ∈ ItiJri, λi, aiK

}
where we implicitly coerce wi ∈ World∅ to wi ∈ WorldA by extending the atomicity tracking component
to be compatible with the existing ghost state.
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Definition 4.2.13 (Reification). The world reification of w at level λ, is defined as

⌊w⌋λ ≜ {h ∈ Heap | (h,_,_,_) ∈ w↓λ}

and for any p ∈ World
↑
A, its reification at level λ is

JpKλ ≜
⋃
w∈p

⌊w⌋λ

For any assertion, we have constructed the set of heaps satisfying it to be those corresponding to the
heaps of the worlds of its semantics, composed with any additional shared resources. With the ultimate
goal here being to define traces as the semantics of specifications, we understand when a heap can
represent an assertion, and now need to understand when a transitions between concrete heaps respects
the logical instrumentation imposed by the assertion’s worlds.

4.2.4 Frame-preserving updates and generalised implication
The notion of transition for logical instrumentation is the frame-preserving update. Earlier, stability
was defined with the intention of making the sets of worlds used as semantics for assertions resistant to
permitted interference. Now, this definition is used to define precisely when an update to a heap can be
represented by a change in logical instrumentation which does not violate its guarantee.

Definition 4.2.14 (Frame-preserving update). For any h1, h2 ∈ Heap, p1, p2 ∈ World↑
A, λ ∈ Lvl, we

define the frame-preserving update as follows

(h1, h2) |=λ,A p1 _ p2 ⇐⇒ ∀f ∈ ViewA. h1 ∈ Jp1 ∗ fKλ =⇒ h2 ∈ Jp2 ∗ fKλ

This says that an update from Jp1Kλ to Jp2Kλ is frame-preserving on heap h1 if it updates it to h2

without modifying any stable frames. By ensuring that environment steps are only made by frame-
preserving updates, we get the essence of the rely, while ensuring that all local steps are frame-preserving
gives us the essence of the guarantee.

Lemma 4.5 (Frame-preserving updates can be augmented with stable worlds). For A ∈ AContext,
r, p, q ∈ World

↑
A, h0, h1 ∈ Heap

if A |= r stable and (h0, h1) |=λ,A p _ q

then (h0, h1) |=λ,A p ∗ r _ q ∗ r

This machinery allows us to consider a generalised notion of logical implication, which exists in
other concurrent separation logics, termed viewshift and denoted ⇛. It is strictly stronger than logical
implication, and is used to define when the heap satisfying some logical instrumentation implies that the
heap satisfies some other logical instrumentation - that one assertion can be viewshifted to another. This
requires not just the heap to satisfy the new logical state, but for this transition to have no impact on any
potential stable frames, and gives us the additional expressivity of updating ghost state such as guards
and region assertions.

Definition 4.2.15 (Viewshift). For p1, p2 ∈ World
↑
R, we write λ,A |= p1 ⇛ p2 when

∀h ∈ Heap, (h, h) |= p1 _ p2

For assertions P, Q, let P viewshifts to Q, written λ,A |= P ⇛ Q, mean

∀ς ∈ Store, λ,A |= WJP KςA ⇛WJQKςA

An important use case of the viewshift is to give shared regions the property tλr (a) ⋆ Q⇛ Q, so that
they can be created from locally owned resources satisfying their implementation.

Remark 4.2.2. This method of handling the rely and guarantee has a symmetry in the way the definition
is not dependent on which thread we consider (indeed, the guarantee, expressed by the frame-preserving
update, can be though of as not violating the rely of any possible environment threads).
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Chapter 5

TaDA 2.0 - Program Logic

5.1 Specifications

TaDA 2.0’s specifications are a hybrid of the typical Hoare triples and TaDA’s atomic triples, as in TaDA
and TaDALive.

Definition 5.1.1 (Specifications). Specifications, S ∈ Spec, have the general form

A

x ∈ X.⟨ Ph | Pa(x) ⟩ · ∃y.⟨ Qh(x, y) | Qa(x, y) ⟩λ,A,

We call the Ph and Qh assertions the Hoare pre- and post-condition, or private pre- and post-condition,
in reference to their usage in verifying specifications using standard separation logic reasoning. The re-
sources described by Ph and Qh should be considered as locally owned, although this is slightly misleading
as they frequently do contain shared regions which occur in sequential proofs. Pa and Qa are the atomic
pre- and postcondition, frequently thought of as shared resources, although again this is not quite correct
as it may also describe exclusively locally owned resources. For the best intuition, Pa and Qa should be
thought of as resources which are subject to additional interference, with ownership over the resources
only at the linearisation point.

Function specification contexts provide a specification for functions for which we have an implementa-
tion. The first component refers to the parameters of the variables, with PVar∗ an ordered list of pairwise
distinct program variables.

Definition 5.1.2 (Function Specification Contexts).

Φ ∈ FSpec ≜ FName ⇀ (PVar∗,S)

For well-formedness, require pv(P ) ⊆ x⃗ and pv(Q) = {ret}.

I provide syntactic sugar for the more traditional Hoare and atomic triples, and emphasise that these
are not different triples, but simply syntactic sugar for hybrid triples. As such, they allow the application
of proof rules without explicit conversion:

Notation 5.1 (Hoare triples).

Φ, λ,A ⊢ {P} C {Q} ≜ Φ, , λ,A ⊢

A

x ∈ AVal.⟨ P | emp ⟩ C ∃y.⟨ Q | emp ⟩

Notation 5.2 (Atomic triples).

Φ, λ,A ⊢

A

x ∈ X.⟨P (x)⟩ C ∃y.⟨Q(x, y)⟩ ≜

Φ, λ,A ⊢

A

x ∈ X.

〈
v⃗ = v⃗ ⋆ v⃗′ = v⃗′ ⋆
v⃗0 = v⃗0 ⋆ v⃗1 = v⃗1

∣∣∣ P (x)[v⃗/v⃗, v⃗′/v⃗′, v⃗0/v⃗0]

〉
C

∃y.
〈
v⃗ = v⃗ ⋆ v⃗0 = v⃗0 ⋆ v⃗1 = v⃗1

∣∣∣ Q(x, y)[v⃗/v⃗, v⃗′/v⃗′, v⃗1/v⃗1]
〉

where v⃗ = pv(C) \mod(C), v⃗′ = mod(C), v⃗0 = pv(P (x)) \ pv(C) and v⃗1 = pv(Q(x, y)) \ pv(C).
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The requirement of the atomic pre- and postcondition to not contain any program variables makes it
crucial to get this transformation right. In particular, the details of the soundness proof require that no
new logical variables are introduced in the postcondition, and of course, the usual requirement that the
value of logical variables cannot change during program execution. According to these requirements, we
ensure that every program variable referred to in the command, pre- and post-condition appear in the
Hoare pre-condition, and use the existential y to refer to the updated value of modified program variables
in hybrid specifications.

Remark 5.1.1. The transformation for atomic triples in the TaDALive paper is incorrect, because it does
not ensure that all logical variables (except for the existentially quantified y) used in the postcondition
exist in the precondition. This is a technical detail but necessary for soundness. Indeed, TaDALive makes
reference to the complications caused by atomically modified program variables, and says

“The program variables mentioned in the atomic pre-/post-conditions refer to the value
stored in them at the beginning of the execution of the command. Most commonly variables
used this way are not modified by the command.”

This is already a strange notational convention, but the second assumption is not true and actually means
their proof rules for read, CAS and FAS are not well-defined. I will discuss this in detail in the next
section.

We may omit the ∃y in cases y does not occur in the postcondition, which is frequently, as it is only
required when the state at the linearisation point is nondeterministic and the postcondition depends on
this non-deterministic choice. We may omit the environment liveness assumption

A

x ∈ X in the case
no environment interference is allowed, i.e. x ̸∈ fv(Pa) ∪ fv(Qh) ∪ fv(Qa). Its absence refers to the
assumption ∀x ∈ AVal, as in the notation for Hoare triples, but has uses in hybrid and atomic triples as
well.

5.1.1 Trace semantics of a specification
We have constructed sets of heaps as the concrete semantics for assertions, as well as worlds as the logical
instrumentation of the concrete state and frame-preserving updates as the transitions which respect
ghost states. We now construct the trace semantics for specifications of traces which begin in a program
configuration satisfying the precondition and end in one satisfying the postcondition. Let AVal′ ≜ (AVal⊎
(AVal× AVal)). Then define specification states as follows.

Definition 5.1.3 (Specification States).

(ph, pa, v) ∈ SState ≜ (ViewA × (AVal′ → World
↑
A)× AVal′)

We consider an SState to be all the possible logical interpretations of the concrete state, where the
ph component should be thought of as representing the locally owned resources (described by the Hoare
precondition), the pa component should be thought of as a function from the abstract state dependent on
the environment interference assumption to the shared resources (described by the atomic precondition)
and v the abstract state used by the environment interference assumption.
We use these to check that a trace is safe - that either it does not fault, or if it does, it was the environment
to blame, where blame is assigned by examining whether the transitions of program configurations repre-
sent a transition of logical instrumentations which obeys the assumptions (on stability and environment
interference).

The trace safety judgement is how we determine whether a trace indeed satisfies the safety assumptions
on it. This is more than just whether local steps fault, and requires examining the possible logical
instrumentations of the concrete state to assign blame for potential faults. We only need to find one
such logical instrumentation of the local steps of a trace to justify that the local step did not fault and
stayed within its guarantee, but the local trace needs to be able to accommodate for all possible logical
instrumentations of environment steps. This duality inspires the trace safety definition from alternating
automata, by which we accept a local step if we can find some frame-preserving update which justifies
it, but branch for all possible frame-preserving updates representing environment steps. This is seen
in particular by the construction of S in Env. Observe also by the implications in the Env and Env’
rules that if there are no possible safe instrumentations of the environment step then the semantics are
‘shortcircuited’, i.e. we have assigned the blame to the environment and S will be empty (representing
that there are no safely reachable end states). This is also the case in Env . In contrast, failure to find
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(σ, h,C) |=S σl, (ph, pa, v), {(ph, pa, v)}
Term

(σ2, h2,C2)τ |=S σl, (p
′
h, pa, v), S (h1, h2) |=λ,A ph ∗ pa(v)_ p′h ∗ pa(v)

C2 = ✓ =⇒ v ∈ AVal× AVal ∧ p′h = WJQh(v)Kσl◦σ2

A
(σ1, h1,C1) loc (σ2, h2,C2)τ |=S σl, (ph, pa, v), S

Stutter

(σ2, h2,C2)τ |=S σl, (p
′
h, pa, ⟨v, v′⟩), S

(h1, h2) |=λ,A ph ∗ pa(v)_ p′h ∗WJQa(v
′, v′′)Kσl

A C2 = ✓ =⇒ p′h = WJQh(v, v
′)Kσl◦σ2

A
(σ1, h1,C1) loc (σ2, h2,C2)τ |=S σl, (ph, pa, v), S

LinPt

S =
⋃

v′∈X. E(v′)

Sv′ v ∈ AVal ∀v ∈ X. E(v′) =⇒ (σ, h2,C)τ |=S σl, (ph, pa, v
′), Sv′

E(v′) ≜ ∃pe, p′e. h1 ∈ Jph ∗ pa(v) ∗ peKλ ∧ (h1, h2) |=λ,A pa(v) ∗ pe _ pa(v
′) ∗ p′e

(σ, h1,C) env (σ, h2,C)τ |=S σl, (ph, pa, v), S
Env

if ∃pe, p′e. h1 ∈ Jph ∗ peKλ ∧ (h1, h2) |=λ,A pe _ p′e then (σ, h2,C)τ |=S σl, (ph, pa, ⟨v, v′⟩), S else S = ∅
(σ, h1,C) env (σ, h2,C)τ |=S σl, (ph, pa, ⟨v, v′⟩), S

Env’

(σ, h,C) env  τ |=S σl, (ph, pa, v), ∅
Env 

Figure 5.1: Trace safety judgment

a frame-preserving update representing the update for local steps results in the trace safety judgement
rejected the trace.

Definition 5.1.4 (Trace Safety). Let S ∈ Spec with components as in (5.1.1). The trace safety judgement
is a relation |=S ⊆ Trace× (LStore×SState×P(SState)), with elements denoted as τ |=S σl, (ph, pa, v), S,
defined by the rules in Figure 5.1.

Remark 5.1.2. In order to collect liveness related ghost state and later check the trace fulfills its
obligations, TaDALive defines specification traces, with states (σ, h, ph, pa, v) and transitions determined
by the transitions of logical instrumentations which are deemed safe. Specification traces are constructed
by the trace safety judgement, and then world traces for liveness from those. Because this separation
between checking safety and liveness properties is built into the TaDALive semantic model, it is easier to
extract only the necessary constructions for safety properties here. So the semantic model of TaDA 2.0
only has one type of trace (compared to TaDALive’s four) sufficing for the semantics of each component.

Remark 5.1.3. The final component of the trace safety judgement intuitively corresponds to sets of
reachably safe end states, where reachably safe refers to logical instrumentations of the final concrete state
where each transition made to get there is safe. There are very little requirements on this component,
and so it may be possible in future to explore removing it, further simplifying the trace safety judgement.
I require it for the soundness proof in order to be able to reason about the postcondition when appending
steps to a trace.

Definition 5.1.5 (Specification semantics).

JSK ≜

{
(σ0, h0,C0)τ

∣∣∣ (σ0, h0,C0)τ ∈ Trace, ∀σl ∈ LStore, v ∈ X. if h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ
then ∃S. τ |=S σl, (ph, pa, v), S

}
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where

ph = WJPhKσ0◦σl

A

pa = λx. WJPa(x) ∗ x ∈ XKσl

A

A trace satisfies a specification if for any additional logical instrumentation (the LStore and abstract
state v ∈ X) such that the first program configuration is a concrete representation of the precondition,
then the trace is safe (which encompasses the postcondition).

Remark 5.1.4. TaDALive does not have any notion of LStore in its trace semantics of specifications, and
thus the trace safety judgement is not strictly well-defined where the postcondition is checked. I resolve
this by quantifying over logical stores and providing them as a component of the trace safety judgement
which is constant across the entire trace, modelling the unchanging value of logical variables. The universal
quantification is necessary to obtain the correct semantics upon satisfaction of the precondition.

Lemma 5.1 (Specifications of skip). Let S ∈ Spec and Φ ∈ FSpec. The following holds:

if |=Φ skip : S
then ∀v ∈ X,∃v′ ∈ AVal. λ,A |= Ph ⋆ Pa(v)⇛ Qh(v, v

′) ⋆ Qa(v, v
′).

Remark 5.1.5. The ✓ is simply a technical feature to ensure that all programs can take a step -
otherwise its trace semantics would only be single states, and we could not verify the postcondition. This
would cause unsoundness in sequencing skip with other commands.

Definition 5.1.6 (Semantic Judgement). Our semantic judgement is that a command satisfies a speci-
fication with a given function implementation when:

|=φ C : S ⇐⇒ JCKφ ⊆ JSK

Definition 5.1.7 (Semantics of function implementations). We say that a function implementation φ
satisfies a function specification context Φ, and denote it as |= φ : Φ, when

∀f, x⃗,S. Φ(f) = (⃗x,S) =⇒ ∃C. φ(f) = (⃗x,C)∧ |=φ C : S

Definition 5.1.8 (Generalised Semantic Judgement). The generalised semantic judgement, that a com-
mand satisfies a specification in a given function specification context Φ is

|=Φ C : S ⇐⇒ ∀φ. |= φ : Φ =⇒ |=φ C : S

5.2 Proof Rules
Definition 5.2.1 (Syntactic Judgement). The generalised syntactic judgement is ⊢Φ C : S, written

Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⟩ C ∃y.⟨ Qh(x, y) | Qa(x, y) ⟩

with a well-formedness conditions that the Hoare pre- and postconditions Ph and Pa(x) are A-stable,
pv(Pa(x)) = pv(Qa(x, y)) = ∅, ∃x ∈ X.Pa(x) is A-stable and X ⊆ AVal. These are parameterised by
a level λ, atomicity context A and function specification context Φ. Its definition is given by the proof
rules in Figures 5.2 to 5.5.

The TaDA 2.0 proof system has rules for each command construct, as well as a number of standard
logical rules, some new logical rules to assist in atomicity rules, and three atomicity rules. assign,
mutate, alloc and dealloc are as in TaDALive. read, cas and fas are completely new and have
replaced the atomic triples with hybrid triples explicitly handling the mutated program variable. The
TaDALive read rule was

λ,A ⊢Φ

A

v. ⟨E 7→ v⟩x := [E] ⟨ E 7→ v ∧ x = v ⟩

Unfolding this as per their syntactic sugar gives

λ,A ⊢Φ

A

v. ⟨ v⃗0 = fv(E) | E[v⃗0/fv(()E)] 7→ v ⟩
x := [E]

∃y. ⟨ v⃗0 = fv(E) ⋆ x = x | E[v⃗0/fv(E)] 7→ v ∧ x = v ⟩
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(Assign)
Φ, λ,A ⊢ {x = v} x := E {x = E[v/x]}

(Read)
w⃗ = fv(E) \ {x}

Φ, λ,A ⊢

A

n ∈ Z.
〈

x = x ⋆
w⃗ = w⃗

∣∣∣ E[w⃗/w⃗, x/x] 7→ n
〉

x := [E]
〈
x = n ⋆
w⃗ = w⃗

∣∣∣ E[w⃗/w⃗, x/x] 7→ n
〉

(Mutate)
Φ, λ,A ⊢

A

n ∈ Z.⟨E1 7→ n⟩ [E1] := E2 ⟨ E1 7→ E2 ⟩

(CAS)
w⃗ = fv(E1) ∪ fv(E2) ∪ fv(E3) \ {x}

Φ, λ,A ⊢

A

n ∈ Z.
〈
x = x ⋆
w⃗ = w⃗

∣∣∣ E1[w⃗/w⃗, x/x] 7→ n
〉

x := CAS(E1, E2, E3)

∃y.
〈

x = y ⋆
w⃗ = w⃗

∣∣∣ (n = E2[w⃗/w⃗, x/x] ∧ y = 1 ⋆ E1[w⃗/w⃗, x/x] 7→ E3[w⃗/w⃗, x/x]) ∨
(n ̸= E2[w⃗/w⃗, x/x] ∧ y = 0 ⋆ E1[w⃗/w⃗, x/x] 7→ n)

〉

(FAS)
w⃗ = fv(E1) ∪ fv(E2) \ {x}

Φ, λ,A ⊢

A

n ∈ Z.
〈
x = x ⋆
w⃗ = w⃗

∣∣∣ E1[w⃗/w⃗, x/x] 7→ n
〉

x := FAS(E1, E2)〈
x = n ⋆
w⃗ = w⃗

∣∣∣ E1[w⃗/w⃗, x/x] 7→ E2[w⃗/w⃗, x/x]
〉

(Alloc)
Φ, λ,A ⊢ { E ≥ 0 ⋆ x = x} x := new(E) { ∃y, v⃗.x = y ⋆ �

0≤i≤E[x/x]−1
(y + i 7→ vi) }

(Dealloc)
Φ, λ,A ⊢ {∃v. E 7→ v} dispose(E) { emp }

Figure 5.2: Proof rules: primitive commands

This is wrong for two reasons. The first is that a new logical variable is introduced in the postcondition, x,
which for technical reasons is impossible - logical stores must remain constant across a program execution.
Secondly, x represents the value of the program variable x after the execution of the command. Therefore
it’s obvious that the statements made in TaDALive about program variables representing their value
from before the command in the postcondition is inconsistent with their proof rules. I partially resolve
the issue of not being able to introduce new logical variables by ensuring a corresponding logical variable
is provided by every program variable required by the pre- and post-condition, in the precondition. The
unhandled case with this solution is when an atomically modified program variable is present, like the x

in a read, cas or fas instruction. As the value of x at the linearisation point is unknown in the initial
state, we cannot bind a logical variable to carry this value forward into the postcondition, and must
instead make deliberate use of the ∃y to obtain this value. In the case of read and fas, it is sufficient
to use the pseudoquantified variable in the environment interference assumption to bind the value of x
in the postcondition, but the nondeterministic nature of the result of a CAS requires y. The TaDA 2.0
proof rule for read defined in Figure 5.2 is

(Read)
w⃗ = fv(E) \ {x}

Φ, λ,A ⊢

A

n ∈ Z.
〈

x = x ⋆
w⃗ = w⃗

∣∣∣ E[w⃗/w⃗, x/x] 7→ n
〉

x := [E]
〈
x = n ⋆
w⃗ = w⃗

∣∣∣ E[w⃗/w⃗, x/x] 7→ n
〉

Observe that the definition explicitly omits logical variables which corresponded to earlier values of
modified program variables from the postcondition.

It’s important to note that this transformation results in a proof rule which has slightly unexpected
semantics: the x = n component of the postcondition is necessarily in the Hoare part, which has the
consequence of disconnecting this assignment from the atomic action, meaning that this specification for
read asserts that:

• the value in the heap at JEKσ0
is retrieved atomically

• the program variable x is set to the value which was retrieved, but not necessarily at the same time
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(Seq)
Φ, λ,A ⊢ { P } C1 { R } Φ, λ,A ⊢ { R } C2 { Q }

Φ, λ,A ⊢ { P } C1 ; C2 { Q }

(If)
Φ, λ,A ⊢ { P ∗ B } C1 { Q } Φ, λ,A ⊢ { P ∗ ¬B } C2 { Q }

Φ, λ,A ⊢ { P } if (B) C1 else C2 { Q }

(While)
Φ, λ,A ⊢ { P ∗ B } C { P }

Φ, λ,A ⊢ { P } while (B) C { P ∗ ¬B }

(Var)

x ̸∈ fv(Ph) ∪ fv(Qh) ∪ fv(E)
Φ, λ,A ⊢

A

y ∈ X. ⟨ Ph ⋆ x = E | Pa(y) ⟩ C ∃z.⟨ Qh(y, z) | Qa(y, z) ⟩
Φ, λ,A ⊢

A

y ∈ X. ⟨ Ph | Pa(y) ⟩ var x = E in C ∃z.⟨ Qh(y, z) | Qa(y, z) ⟩

(Par)
Φ, λ,A ⊢ { P1 } C1 { Q1 } Φ, λ,A ⊢ { P2 } C2 { Q2 }

Φ, λ,A ⊢ { P1 ⋆ P2 } C1 || C2 { Q1 ⋆ Q2 }

(Let)
pv(S1) ⊆ x⃗ ∪ {ret} f ̸∈ dom(Φ) ⊢Φ C1 : S1 Φ′ = Φ[f 7→ (⃗x,S1)] ⊢Φ′ C2 : S2

⊢Φ let f (⃗x) = C1 in C2 : S2

(Call)
(⃗x,

A

y ∈ Y.⟨ Ph | Pa(y) ⟩ · ∃z.⟨ Qh(y, z, ret) | Qa(y, z) ⟩λ,A ) ∈ Φ(f)

Φ, λ,A ⊢

A

y ∈ Y.⟨ Ph [⃗E/x⃗] | Pa(y) ⟩ a := f (⃗E) ∃z.⟨ Qh(y, z, a) | Qa(y, z)⟩

Figure 5.3: Proof rules: Hoare commands

as the retrieval
This is exemplified by an example program similar to that discussed in Section 3.1, which also satisfies
the specification of the read rule.

y := [E] ; x := y

This change in semantics is particularly interesting as although it is not quite a true reflection of the
operational semantics, it is actually a more accurate model of how programs execute on hardware, where
the memory retrieval operation is at a different level of abstraction to the setting of a program variable
and although considered to be atomic by the programmer, is not technically atomic on the machine
(although interference cannot cause any issue).
I propose that this change in semantics is potentially a better model for atomic operations such as
read, CAS and FAS, as it closer reflects the physical machine and although it is not necessitated by the
operational semantics it is still a correct specification, and potentially may open up further work into
verification of programs executed in machines with a different memory model.

Remark 5.2.1. TaDA does not impose any requirements on the program variables of atomic pre- and
postconditions, so in this respect TaDA 2.0 inherits slightly weaker proof rules than TaDA from TaDALive.
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(Frame)

mod(C) ∩ pv(Rh) = ∅ mod(C) ∩ pv(Ra(x)) = ∅ A |= Rh stable
∀x ∈ X. A |= Ra(x) stable Φ,A, λ ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⟩ C ∃y. ⟨ Qh(x, y) | Qa(x, y) ⟩
Φ,A, λ ⊢

A

x ∈ X.⟨ Ph ⋆ Rh | Pa(x) ⋆ Ra(x) ⟩ C ∃y. ⟨ Qh(x, y) ⋆ Rh | Qa(x, y) ⋆ Ra(x) ⟩

(∃Elim)
∀x ∈ X. Φ, λ,A ⊢ { P (x) } C { Q }
Φ, λ,A ⊢ { ∃x ∈ X.P (x) } C { Q }

(A∃Elim)
Φ, λ,A ⊢

A

(x, z) ∈ X × Z.⟨ Ph | Pa(x, z) ⟩ C ∃y. ⟨ Qh(x, y) | Qa(x, y, z) ⟩
Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | ∃z ∈ Z.Pa(x, z) ⟩ C ∃y. ⟨ Qh(x, y) | ∃z ∈ Z.Qa(x, y, z) ⟩

(Lvl-weakening)
λ1 ≤ λ2 λ1,A ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⟩ C ∃y.⟨ Qh(x, y) | Qa(x, y) ⟩
λ2,A ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⟩ C ∃y. ⟨ Qh(x, y) | Qa(x, y) ⟩

(Atomic-weaken)

A |= Ph ⋆ P stable ∀x ∈ X,A |= Q(x, y) stable
Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | P ⋆ Pa(x) ⟩ C ∃y. ⟨ Qh(x, y) | Q(x, y) ⋆ Qa(x, y) ⟩
Φ, λ,A ⊢

A

x ∈ X.⟨ Ph ⋆ P | Pa(x) ⟩ C ∃y.⟨ Qh(x, y) ⋆ Q(x, y) | Qa(x, y) ⟩

(Cons)

A |= Ph stable
λ,A |= Ph ⇛ P ′

h ∀x ∈ X. A |= P ′
a(x)⇚⇛ Pa(x) ∀(x, y) ∈ X × Y. A |= Qh(x, y) stable

∀(x, y) ∈ X × Y. λ,A |= Q′
a(x, y)⇛ Qa(x, y) ∀(x, y) ∈ X × Y. λ,A |= Q′

h(x, y)⇛ Qh(x, y)
Φ, λ,A ⊢

A

x ∈ X.⟨ P ′
h | P ′

a(x) ⟩ C ∃y.⟨ Q′
h(x, y) | Q′

a(x, y) ⟩
Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⟩ C ∃y.⟨ Qh(x, y) | Qa(x, y) ⟩

(Subst)

f : X → Y ∀x ∈ X. A |= P ′
a(x)⇚⇛ Pa(f(x))

∀x ∈ X, z. A |= Qh(f(x), z)⇛ Q′
h(x, z) ∀x ∈ X, z. A |= Qa(f(x), z)⇛ Q′

a(x, z)
Φ, λ,A ⊢

A
y ∈ Y.⟨ Ph | Pa(y) ⟩ C ∃z.⟨ Qh(y, z) | Qa(y, z) ⟩

Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | P ′
a(x) ⟩ C ∃z.⟨ Q′

h(x, z) | Q′
a(x, z) ⟩

Figure 5.4: Proof rules: Logical rules

(Open region)
∀x ∈ X. (x, z) ∈ {(x, z)|x ∈ X ∧R(x, z) ∧ (x, z) ∈ Tt(G(x))∗} r ∈ dom(A) =⇒ R = id

Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⋆ I(tλr (x)) ⋆ ⌈G(x)⌉r ⟩ C ∃y.⟨ Qh(x, y) | ∃z. Qa(x, y, z) ⋆ I(tλr (z)) ⋆ R(x, z) ⟩
Φ, λ+ 1,A ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⋆ tλr (x) ⋆ ⌈G(x)⌉r ⟩ C ∃y.⟨ Qh(x, y) | ∃z. Qa(x, y, z) ⋆ tλr (z) ⋆ R(x, z) ⟩

(Update Region)
r ∈ dom(A) A′ = A[r 7→ ⊥] A(r) = (_, T )

Φ, λ,A′ ⊢

A

x ∈ X
〈
Ph | Pa(x) ⋆ I(tλ

′

r (x))
〉
C ∃y

〈
Qh(x, y) |

(∃z ∈ T (x).

Qa(x, y) ⋆ I(tλ
′

r (z)))

∨ (Q′
a(x, y) ⋆ I(tλ

′

r (x)))

〉

Φ, λ+ 1,A ⊢

A

x ∈ X.
〈
Ph | Pa(x) ⋆ tλ

′

r (x) ⋆ r Z⇒ ♦
〉
C ∃y.

〈
Qh(x, y) |

(∃z ∈ T (x).

Qa(x, y) ⋆ tλ
′

r (z) ⋆ r Z⇒ (x, z))

∨ (Q′
a(x, y) ⋆ tλ

′

r (x) ⋆ r Z⇒ ♦)

〉

(Make atomic)
r ̸∈ dom(A) ∀x ∈ X. A |= tλ

′

r (x) ⋆ ⌈G⌉r stable A′ = A[r 7→ (X,T )] T ⊆ Tt(G) λ′ < λ

Φ, λ,A′ ⊢ { Ph ⋆ ∃x ∈ X. tλ
′

r (x) ⋆ r Z⇒ ♦ } C {∃x, y. T (x, y) ⋆ Qh(x, y) ⋆ r Z⇒ (x, y) }
Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | tλ
′

r (x) ⋆ ⌈G⌉r ⟩ C ∃y.⟨ Qh(x, y) | tλ
′

r (y) ⋆ ⌈G⌉r ⋆ T (x, y) ⟩

Figure 5.5: Proof rules: Atomicity rules
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Chapter 6

Soundness

We prove the soundness of TaDA 2.0 against the semantic model we have described in Chapters 4 and 5.
As the semantic model of TaDA is so far removed from that of TaDA 2.0, there is little to be gained in
comparing their soundness proofs. However, the semantic model of TaDA 2.0 is closely related to that of
TaDALive, so I complete all of the cases done explicitly in the TaDALive paper, and draw attention to
the significance of the simplifications of TaDA 2.0 for the soundness proof.
I have proven the soundness of TaDA 2.0, Theorem 6.1, for more than half of the proof rules, including
a number of each ‘type’ of rule, all of the proof rules for which a proof exists in TaDALive, and all of the
proof rules to which I have made meaningful changes. The structure of this soundness proof is similar to
that of TaDALive, but in the interest of conciseness, TaDALive omits all of the technical work required
to fit together the structures of different components, which is nontrivia. For TaDA 2.0, this is provided
explicitly in Appendix C and is intended to aid in developing the readers intuition for how the interactions
of each component of the semantic model are tightly controlled in order to respect our intuition about
the restrictions ghost states place on program executions.

Theorem 6.1 (TaDA 2.0 is sound). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec.

if ⊢Φ C : S then |=Φ C : S.

The proof proceeds by structural induction on the syntactic judgement ⊢Φ C : S, and in each case,
requires proving that ∀φ ∈ FImpl. |= φ : Φ =⇒ JCKφ ⊆ JSK. This requires detailed understanding of
the types of traces in JCKφ, particularly for the proof rules corresponding to primitive commands and
Hoare commands which requires induction over the trace as well. I provide the soundness proof here of
some illustrative cases, which I use to demonstrate how much of the surrounding technical work is used
to reduce each case to a tractable statement (with the proofs of these lemmas in Appendix C). To aid
the reader, we split Theorem 6.1 into a number of smaller theorems for each case.

6.1 Read
Theorem 6.2 (Soundness of read). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of read

then |=Φ C : S.

Proof. Assume ⊢Φ C : S, and that this holds by application of read. We need to prove that |=Φ C : S,
which by Definition 5.1.8 is that statement ∀φ ∈ FImpl, |= φ : Φ =⇒ JCKφ ⊆ JSK. Take φ ∈ FImpl
arbitrary and assume |= φ : Φ. The command, C, and specification, S, from examination of read
(Section 5.2) must be

C = x := [E]

S = Φ, λ,A ⊢

A

n ∈ Z.
〈

x = x ⋆
w⃗ = w⃗

∣∣∣ E[w⃗/w⃗, x/x] 7→ n
〉

· ∃y.
〈
x = n ⋆
w⃗ = w⃗

∣∣∣ E[w⃗/w⃗, x/x] 7→ n
〉
λ,A

Our command and specification semantics (Definitions 4.1.3, 5.1.5) are traces - a finite sequence of
program configurations. So we take τ ∈ JCKφ and proceed by induction on traces, with different reasoning
depending on if the step was made by the environment or the local thread. In each case, we aim to prove
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that τ ∈ JSK, i.e. that ∀σl ∈ LStore, v ∈ X, if h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ then ∃S. τ |=S σl, (ph, pa, v), S,
where h0 is the initial heap of τ , σ0 is the initial PStore of τ , and

ph = WJx = x ⋆ w⃗ = w⃗Kσ0◦σl

A

pa = λn. WJE[w⃗/w⃗, x/x] 7→ n ⋆ n ∈ ZKσl

A

I use these notational conventions freely in subsequent proofs.
If trace is a single state (τ = (σ0, h0,C)), then take σl ∈ LStore, v ∈ Z arbitrarily and assume

h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ

The trace safety (Definition 5.1) rule term says (σ0, h0,C) |=S σl, (ph, pa, v), {(ph, pa, v)}. That concludes
this case.

Now we consider τ with exactly one step. The structure of the trace safety judgement is carefully
designed to designate blame to either the local thread or environment thread, and is such that if the
precondition of the specification is satisfied and the environment step is safe, then it will maintain the
precondition. This means that it suffices only to consider traces which begin with a local step, and can
freely prepend environment steps to cover the rest of the traces. This reasoning is captured in Lemma
6.1.

Lemma 6.1 (Suffices to consider traces beginning with a local step). Let C ∈ Cmd,S ∈ Spec and
φ ∈ FImpl such that |= φ : Φ. The following holds:

if (∀ ((σ0, h0,C) s0 τ) ∈ JCKφ. if s0 = loc then τ ∈ JSK)
then (∀τ ∈ JCKφ. τ ∈ JSK)

With this out of the way, let us consider τ of exactly one step, which is made by the local thread.
Take σl ∈ LStore, v ∈ Z arbitrarily and assume h0 ∈ Jph ∗ pa(v) ∗TrueAKλ. The assumption on h0 implies
from the world satisfaction relation (Figure 4.1) and definition of pa that JEKσ0 ∈ dom(h0). Conclude
that the only applicable local step in the operational semantics is the success case, (Figure B.1), and so
τ = (σ0, h0,C)loc(σ1, h1,✓), with σ1 = σ0[x 7→ h0(JEKσ0

)] and h1 = h0.
We aim to check that ∃S ⊆ P(SState). τ |=S σl, (ph, pa, v), S, by an application of linpt (Figure 5.1).

Let
qh = WJx = v ⋆ w⃗ = w⃗Kσ1◦σl

A .

To verify the premises of LinPt we need to apply the Term rule to obtain

(σ1, h1,✓) |=S σl, (qh, pa, ⟨v, v⟩), {(qh, pa, ⟨v, v⟩)}

Now we need to check

(h0, h1) |=S ph ∗ pa(v) _ qh ∗WJE[w⃗/w⃗, x/x] 7→ vKσl

A (6.1)

Take f ∈ V iewA arbitrary (as per the definition of frame-preserving updates, Definition 4.2.14) and as-
sume h0 ∈ Jph∗pa(v)∗fKλ. The lift of world composition to sets (Equation 4.1) and implied nonemptiness
of ph tells us that σ0(x) = σl(x) and σ0(⃗w) = σl(w⃗). From the definition of σ1 it must be that σ1(⃗w) = w⃗.
To find the value of σ1(x), find some wa ∈ pa(v), wf ∈ f such that h0 ∈ ⌊wa • wf⌋λ (world reification,
Definition 4.2.13). From the definition of pa(v), find that wa ∈ WJE[w⃗/w⃗, x/x] 7→ vKσl

A , and therefore
h(JEKσ0

) = v. Therefore, σ1(x) = v, and so qh = EmpA. Conclude as h0 = h1 that h0 ∈ ⌊wa •wf⌋λ implies
h1 ∈ Jqh ∗WJE[w⃗/w⃗, x/x] 7→ vKσl

A ∗ fKλ.
The final premises to check of linpt is that ✓ = ✓ =⇒ qh = WJx = v ⋆ w⃗ = w⃗Kσ1◦σl

A . This clearly true
by construction. Therefore, application of LinPt yields τ |=S σl, (ph, pa, v), {(qh, pa, ⟨v, v⟩)}. Therefore
τ ∈ JSK.

Continue with the induction over τ - we need to check any subsequent steps maintain membership of
JSK. From the operational semantics (Appendix B), ✓ is a stuck configuration for the local thread, that
is, the local thread is considered to have terminated. Therefore, all subsequent steps of τ are environment
steps. Consider τ = τ ′envC. As we discussed before, the specification semantics are carefully designed
to be such that environment steps cannot themselves result in a program not satisfying a specification,
i.e. we should be able to freely append any environment steps to a trace. This is captured in Lemma 6.2.
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Lemma 6.2 (Trace safety is closed under appending env steps). Let S ∈ Spec, τ env C ∈ Trace, σl ∈
LStore and (ph, pa, v) ∈ SState. The following holds:

if τ |=S σl, (ph, pa, v), S

then ∃S′. τ env C |=S σl, (ph, pa, v), S
′

We use this Lemma in conjunction with the inductive hypothesis of τ ′ ∈ JSK to find that τ ∈ JSK.
Conclude that ∀τ ∈ JCKφ, τ ∈ JSK, and so read is sound.

Remark 6.1.1. In other cases of the soundness proof where we are required to check several steps of the
local thread determined by the operational semantics, Lemma 6.2 suffices to handle all the interleaving
environment steps as well.

Remark 6.1.2. The proof of Theorem 6.2 demonstrates that we cannot soundly introduce logical vari-
ables in the postcondition of specifications which are not bound in the precondition. Loosely, this is
because we infer the values of logical variables from the σl ∈ LStore used to check the precondition, and
as logical variables cannot change, we use the same σl to check the postcondition. This motivates the
need for the additional σl component in the trace safety judgement, as well as the change in transfor-
mation of TaDA 2.0 between atomic triples and the hybrid triples they represent. Finally, read should
also demonstrate the difficulty which TaDALive was trying to express with managing atomically updated
program variables: we need a logical variable to refer to their value in the atomic post-condition, but can-
not simply create a new one. In the case of read and fas, the iniitally pseudoquantified logical variable
suffices, but this is not the case for cas, where the value of the atomically modified program variable is
more nondeterministic. Here, it is absolutely essential to have the ∃y in hybrid specifications to bound
atomically modified logical variables to a value, despite the ∃y not having a more unusual meaning (as
implied in the original TaDA with the pseudo existential).

Remark 6.1.3. The properties of the trace safety captured by the above lemmas are relied upon in
TaDALive for the soundness proof to hold, although never explicitly stated or proven. Also, their infinite
traces would require the argument above to be coinductive.

6.2 Sequence

To prove soundness in the case the last rule applied is Seq, we again need to understand the structure
of the traces which can be members of JC1 ; C2Kφ. This reasoning is applied in the soundness proofs
of other Hoare rules, such as while, so the following lemmas are designed to be general enough to be
applicable for other cases.

Definition 6.2.1 (Trace sequencing). For C1,C2 ∈ Cmd and τ ∈ Traceφ, define τ;C2
to be the result of

the following transformation:

τ;C2
=

{
(σ, h,C1 ; C2) τ = (σ, h,C1)

τ ′;C2
si (σ, h,C1 ; C2) τ = τ ′si(σ, h,C1)

This is lifted to sets in the obvious way. For τ1, τ2 ∈ Traceφ,

τ1; τ2 =

{
τ1;C si τ2 τ2[0] = (_,_,C) ∧ τ1;C[−1]

si−→φ τ2[0]

⊥ otherwise

where τ [−1] refers to the final program configuration of the trace. We lift this to sets of PTraces in the
following manner:
For T1,T2 ∈ P(Traceφ),

T1;T2 =

{
T1;C ∪ { τ1; τ2 | τ1 ∈ T1, τ2 ∈ T2, τ1; τ2 ̸= ⊥ } ∀τ ∈ T2, τ [0] = (_,_,C)
∅ otherwise

This is only well-defined when every trace in T2 begins in a configuration with the same command.
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Lemma 6.3 (Semantics of sequenced commands). For C1,C2 ∈ Cmd, φ ∈ FImpl,

JC1 ; C2Kφ = JC1Kφ; JC2Kφ

In order to use the above to prove soundness, we need some work to be able to use the premises of
proof rules by transform a trace safety judgement of each part of the trace to one which verifies the safety
of the combined trace. As part of this, to apply the definition of JSK to find the trace safety judgement
statement, we need to be able to argue about terminating traces ending in a configuration satisfying the
postcondition.

Lemma 6.4 (Terminated traces satisfying precondition satisfy postcondition). Let τ ∈ Trace, S ∈
Spec, σl ∈ LStore, ph ∈ V iewA and v ∈ X. Then, for pa = λx. WJPa(x)Kσl

A and qh = WJQhK
σi+1◦σl

A ,
following holds:

if h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ and ∃S. (S is nonempty and τ |=S σl, (ph, pa, v), S) and
τ = τ ′(hi, σi,Ci)si(hi+1, σi+1,✓) then hi+1 ∈ Jqh ∗ TrueAKλ.

Lemma 6.5 (Safety of concatenated traces). For C1,C2 ∈ Cmd, P,Q,R ∈ Assert, φ ∈ FImpl such that
|= φ : Φ, τ ∈ JC1Kφ; JC2Kφ, if |=Φ C1 : S1 and |=Φ C2 : S2, where

S1 =

A

x ∈ AVal. ⟨ P | emp ⟩ · ∃y. ⟨ R | emp ⟩λ,A
S2 =

A

x ∈ AVal. ⟨ R | emp ⟩ · ∃y. ⟨ Q | emp ⟩λ,A

then τ ∈ JSK, where
S =

A

x ∈ AVal. ⟨ P | emp ⟩ · ∃y. ⟨ Q | emp ⟩λ,A
Theorem 6.3 (Soundness of seq). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of seq

then |=Φ C : S.

Proof.

C = C1 ; C2

S =

A

x ∈ AVal. ⟨ P | emp ⟩ · ∃y. ⟨ Q | emp⟩λ,A

Assume ⊢Φ C : S. Then we find some assertion R such that for

S1 =

A

x ∈ AVal. ⟨ P | emp ⟩ · ∃y. ⟨ R | emp⟩λ,A
S2 =

A

x ∈ AVal. ⟨ R | emp ⟩ · ∃y. ⟨ Q | emp⟩λ,A

we have ⊢Φ C1 : S1 and ⊢Φ C2 : S2. By the inductive hypothesis we have

|=Φ C1 : S1 (6.2)

|=Φ C2 : S2 (6.3)

We need to prove |=Φ C : S, so take φ arbitrary and assume that |= φ : Φ. Take τ ∈ JCKφ arbitrary.
From Lemma 6.3, τ ∈ JC1Kφ; JC2Kφ, and Lemma 6.5 gives the result.

See how almost all of the heavy lifting of this proof is in Lemmas 6.3 and 6.5. As induction on
the operational semantics of traces of other Hoare commands can reduce them to a statement about
sequenced traces, these lemmas are directly application to those cases (such as while).

Remark 6.2.1. TaDA 2.0’s traces are sequences of program configurations, defined in Definition 4.1.2
as

c ∈ Conf ≜ (PStore× Heap× (Cmd ⊎✓)) ⊎ { }

The equivalent type of trace in TaDALive is a program trace, of which the final component is not Cmd⊎✓,
but an inductive construction PState which approximately represents commands and locally defined
program variables in nested program stores. This greatly complicates the inductive step of the soundness
of Hoare rules, as subparts of traces which are produced by the operational semantics are still not in the
semantics of TaDALive’s commands (as this requires the initial state to represent a genuine command
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and not a nested structure). This can be seen most explicitly by considering C = var x = E in C′,
whose operational semantics in TaDALive produces a trace (σ0, h,C)loc(σ0, h, ([x 7→ JEKσ0

],C′))τ ′. It is
immediately clear that (σ0, h, ([x 7→ JEKσ0 ],C′))τ ′ is not a member of JC′Kφ, and thus the premise of the
var rule is inapplicable to check safety of the rest of the trace. Furthermore, it would require a lot of
technical work to get around this, likely in the form of some kind of very general trace transformation from
(σ0, h, ([x 7→ JEKσ0

],C′))τ ′ to (σ0[x 7→ JEKσ0
], h,C′)τ ′′. TaDA 2.0 sidesteps this by providing a different

operational semantics rule for var x = E in C′, and as a result the premises of Hoare proof rules are
immediately applicable. This materialises not just in the proof rule for var, but also seq, while and
par.

Remark 6.2.2. In TaDALive, all of the traces are infinite, and so the trace safety judgement is coin-
ductive, rather than inductive. As a result, any of these lemmas with proofs via induction over the trace
safety judgement, such as Lemma 6.5 (but is a common proof pattern occuring in most of the soundness
proofs for logical proof rules) are by coinduction.

6.3 Parallel
Similar to in the seq case, we aim to determine the traces which are in JC1 || C2Kφ by defining how
these traces are constructed from those of JC1Kφ and JC2Kφ, using the ▷◁ operator. Definition 6.3.1 will
be sufficient for this, although it seems restrictive in disallowing updates to the program store. Actually,
the well-formedness requirement of the parallel command, mod(C1 || C2) = ∅, and Lemma 6.6 shows us
that ∀τ ∈ JC1 || C2K, i ̸= j. σi = σj , so this is not a concern.

Lemma 6.6. For φ ∈ FImpl,C ∈ Cmd, τ ∈ Trace,

τ(σ0, h0,C0)s0(σ1, h1,C1) ∈ JCKφ =⇒ ∀x ∈ PVar \mod(C). σ0(x) = σ1(x)

Definition 6.3.1 (Bowtie).

(σ, h,C1) ▷◁ (σ, h,C2) = (σ, h,C1 || C2)

τ ′1loc(σ, h,C′
1) ▷◁ τ ′2env(σ, h,C1) =

(τ ′1 ▷◁ τ ′2)loc(σ, h,C′
1 || C2)

τ ′1env(σ, h,C1) ▷◁ τ ′2loc(σ, h,C′
2) =

(τ ′1 ▷◁ τ ′2)loc(σ, h,C1 || C′
2)

τ ′1env(σ, h,C1) ▷◁ τ ′2env(σ, h,C2) =

(τ ′1 ▷◁ τ ′2)env(σ, h,C1 || C2)

where ▷◁ is undefined in all other cases. Lift this to sets as following:

T1 ▷◁ T2 ≜
{
τ1 ▷◁ τ2

∣∣∣ τ1 ∈ T, τ2 ∈ T
}
∪{

(τ1 ▷◁ τ2)loc(σ, h,✓)
∣∣∣ ∀i ∈ {1, 2}. τi ∈ Ti ∧ τi[−1] = (_,_,✓) ∧
(τ1 ▷◁ τ2)loc(σ, h,✓) ∈ Trace

}
Lemma 6.7 (Semantics of parallel commands is bowtie of semantics of each command).

∀C1,C2 ∈ Cmd, φ ∈ FImpl. JC1 || C2Kφ ⊆ JC1Kφ ▷◁ JC2Kφ

Again, similar to the seq case, we provide the following lemma to transform trace safety judgements
of traces of the constituent parts of the parallel command into one from their combined perspective. This
is where the bulk of the work for the soundness of par comes in. As usual, the proof is in Appendix C.

Lemma 6.8 (Safety of parallel traces). For τ1, τ2 ∈ Trace, v ∈ AVal′, σl ∈ LStore, S1, S2 ∈ P(SState),
p1h, p2h ∈ V iewA such that τ1 ▷◁ τ2 is well-defined and (τ1 ▷◁ τ2)[0] = (h,_,_),

if
(
τ1 |=S1 σl, (p1h, p1a, v), S1 and τ2 |=S2 σl, (p2h, p2a, v), S2 and

h ∈ Jp1h ∗ p2h ∗ p1a(v) ∗ p2a(v) ∗ TrueAKλ

)
then τ1 ▷◁ τ2 |=S σl, (p1h ∗ p2h, p1a ∗ p2a, v), S

where
S = { (q1h ∗ q2h, p1a ∗ p2a, v′) | (q1h, p1a, v′) ∈ S1 ∧ (q2h, p2a, v

′) ∈ S2 }
and p1a = p2a = λx.EmpA, and I also write p1a ∗ p2a to denote λx. p1a(x) ∗ p2a(x).
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Finally, observe from the lift of ▷◁ to sets of traces that we have an additional case for the terminating
step of a trace in JC1 || C2Kφ. Unfortunately, this requires reasoning about the trace safety by appending
rather than prepending execution steps. To this end, we provide a lemma on appending local steps to a
trace.

Lemma 6.9 (Trace safety is closed under appending safe local steps). Let S ∈ Spec, f : SState →
V iewA, g : SState → AVal and τ(σ1, h1,C1) loc (σ2, h2,C2) ∈ Trace. The following hold:

1. if τ(σ1, h1,C1) |=S σl, (ph, pa, v), S and
∀(p′h, pa, v′) ∈ S. (h1, h2) |=λ,A p′h ∗ pa(v′) _ f(p′h, pa, v

′) ∗ pa(v′) and
(if C2 = ✓ then f(p′h, pa, v

′) = WJQh(v
′)Kσl◦σ2

A and v′ ∈ AVal× AVal)

then τ(σ1, h1,C1)loc(σ2, h2,C2) |=S σl, (ph, pa, v), { (f(p′h, pa, v
′), pa, v

′) | (p′h, pa, v′) ∈ S }

2. if τ(σ1, h1,C1) |=S σl, (ph, pa, v), S and
∀(p′h, pa, v′) ∈ S. (h1, h2) |=λ,A p′h ∗ pa(v′) _ f(p′h, pa, v

′) ∗WJQa(v, g(p
′
h, pa, v

′))Kσl

A and
(if C2 = ✓ then f(p′h, pa, v

′) = WJQh(v
′)Kσl◦σ2

A )

then τ(σ1, h1,C1)loc(σ2, h2,C2) |=S σl, (ph, pa, v), { (f(p′h, pa, v
′), pa, g(p

′
h, pa, v

′)) | (p′h, pa, v′) ∈ S }

Remark 6.3.1. The S component of the trace safety judgement is only needed to reason about satisfying
the postcondition when appending to a trace. It is possible that an alternative proof of soundness may
not require this, in which case the set of SStates could be removed entirely.

Checking that terminated threads satisfy their postcondition is intertwined within the trace safety
judgement. The following is the final lemma we need which allows for reasoning about the postcondition
while inducting on trace safety.

Lemma 6.10 (Safe terminated traces satisfy postcondition). Let τ(σn, hn,Cn) ∈ Trace, C ∈ Cmd, S ∈
Spec, φ, σl ∈ LStore, v ∈ X and S ∈ P(SState). The following holds:

if τ(σn, hn,Cn) ∈ JCKφ and Cn = ✓ and τ(σn, hn,Cn) |=S σl, (ph, pa, v), S and S nonempty
then ∀(p′h, pa, v′) ∈ S. p′h = WJQh(v

′)Kσn◦σl

A and v′ ∈ AVal× AVal

We are ready to prove the soundness of par.

Theorem 6.4 (Soundness of par). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of par

then |=Φ C : S.

Proof.

C = C1 || C2

S =

A

x ∈ AVal. ⟨ P1 ⋆ P2 | emp ⟩ · ∃y. ⟨ Q1 ⋆ Q2 | emp ⟩λ,A

Assume ⊢Φ C : S. Then for

S1 =

A

x ∈ AVal. ⟨ P1 | emp ⟩ · ∃y. ⟨ Q1 | emp ⟩λ,A
S2 =

A

x ∈ AVal. ⟨ P2 | emp ⟩ · ∃y. ⟨ Q2 | emp ⟩λ,A

we have by the inductive hypothesis that
|=Φ C1 : S1 (6.4)

and
|=Φ C2 : S2 (6.5)

By Lemma 6.7, it suffices to prove that JC1Kφ ▷◁ JC1Kφ ⊆ JSK. Take τ ∈ JC1Kφ ▷◁ JC1Kφ, σl ∈
LStore, v ∈ AVal arbitrary, let p1h = WJP1Kσl◦σ

A , p2h = WJP2Kσl◦σ
A , p1a = p2a = λx. EmpA and assume

h0 ∈ Jp1h ∗ p2h ∗ p1a(v) ∗ p2a(v) ∗ TrueAKλ (6.6)
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As τ ∈ JC1Kφ ▷◁ JC1Kφ we begin with the case that ∃τ1, τ2 such that τ1 ∈ JC1Kφ, τ2 ∈ JC2Kφ and
τ = τ1 ▷◁ τ2. Observe from the definition of ▷◁ that τ, τ1, τ2 agree on the heap and store in each
configuration. It must be the case that h0 ∈ Jp1h ∗p1a(v)∗TrueAKλ and h0 ∈ Jp2h ∗p2a(v)∗TrueAKλ, and
thus as the inductive hypothesis says τ1 ∈ JS1K and τ2 ∈ JS2K, we find ∃S1, S2. τ1 |=S1 σl, (p1h, p1a, v), S1

and τ2 |=S2 σl, (p2h, p2a, v), S2. Thus, Lemma 6.8 gives us that ∃S. τ1 ▷◁ τ2 |=S σl, (p1h∗p2h, p1a∗p2a, v), S
and therefore τ ∈ JSK.

In the case that

τ ∈
{

(τ1 ▷◁ τ2)loc(σ, h,✓)
∣∣∣ ∀i ∈ {1, 2}. τi ∈ Ti ∧ τi[−1] = (_,_,✓) ∧
(τ1 ▷◁ τ2)loc(σ, h,✓) ∈ Trace

}
it must be that τ has the form τ ′(σ, h,✓ || ✓)loc(σ, h,✓) (as ▷◁ implies its final command is of the
form C1 || C2, only one operational semantic rule is applicable) and see by the same argument as above
that ∃S. τ ′(σ, h,✓ || ✓) |=S σl, (ph, pa, v), S. I claim that τ |=S σl, (ph, pa, v), S for the same S and aim
to apply Lemma 6.9. For f : SState → V iewA, (p′h, pa, v

′) 7→ p′h, it is clear that ∀(p′h, pa, v′) ∈ SState,
(h, h) |=λ,A p′h ∗ pa(v′) _ f(p′h, pa, v

′) ∗ pa(v′). It remains to prove that

∀(p′h, pa, v′) ∈ S. p′h = WJQ1 ∗Q2Kσ◦σl

A ∧ v′ ∈ AVal× AVal (6.7)

(as S = {(f(p′h, pa, v′), pa, v′) | (p′h, pa, v′) ∈ S}) and then we can conclude from Lemma 6.9 that τ |=S
σl, (ph, pa, v), S and we are done. In order to prove Equation 6.7, we need to explicitly reason about the
form of S, so let’s remind ourselves that from the definition of τ ′(σ, h,✓ || ✓) = τ1 ▷◁ τ2, therefore that
τ1 and τ2 terminate, and therefore by Lemma 6.10 it must be that

∀(p′h, pa, v′) ∈ S1. p
′
h = WJQ1Kσ◦σl

A ∧ v′ ∈ AVal× AVal (6.8)

∀(p′h, pa, v′) ∈ S2. p
′
h = WJQ2Kσ◦σl

A ∧ v′ ∈ AVal× AVal (6.9)

From Lemma 6.8, we find that S satisfies Equation 6.7 so a final application of Stutter is legal here and
provides τ |=S σl, (p1h ∗ p2h, p1a ∗ p2a, v), S.

6.4 Frame

As in the soundness of seq or par, the soundness proof of frame (and almost every other logical
proof rule) requires an inductive proof over the structure of the trace safety lemma to convert a safety
statement with respect to S′ to one of S. I include this inductive proof here as it illustrates this in a
more manageable form than that of seq or par, and because it provides insight into why we require the
premise ∀x ∈ X. A |= Ra(x) stable, which seems unreasonably strong at first sight.

Theorem 6.5 (Soundness of frame). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of frame

then |=Φ C : S.

Proof. Assume ⊢Φ C : S. Let

S =

A

x ∈ X. ⟨ Ph ⋆ Rh | Pa(x) ⋆ Ra(x) ⟩ · ∃y. ⟨ Qh(x, y) ⋆ Rh | Pa(x, y) ⋆ Ra(x) ⟩λ,A
S′ =

A

x ∈ X. ⟨ Ph | Pa(x) ⟩ · ∃y. ⟨ Qh(x, y) | Pa(x, y) ⟩λ,A

Then by assumption

mod(C) ∩ pv(Rh) = ∅ (6.10)
mod(C) ∩ pv(Ra(x)) = ∅ (6.11)
A |= Rh stable (6.12)
∀x ∈ X. A |= Ra(x) stable (6.13)
⊢Φ C : S′ (6.14)

From our inductive hypothesis, we have
|=Φ C : S′ (6.15)
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Lemma 6.11. For τ ∈ JCKφ, v ∈ X,σl ∈ LStore,

if ∃S′. τ |=S′ σl, (ph, pa, v), S
′ and h0 ∈ Jph ∗ rh ∗ pa(v) ∗ rh(v) ∗ TrueAKλ

then ∃S. τ |=S σl, (ph ∗ rh, pa ∗ ra, v), S

where
S ⊆ { (qh ∗ rh, pa ∗ ra, v′) | (qh, pa, v′) ∈ S′}

and ph = WJPhKσ0◦σl

A , pa = λx. WJPa(x) ⋆ x ∈ XKσl

A , ra = λx. WJRa(x) ⋆ x ∈ XKσl

A and
rh = WJRhKσ0◦σl

A . Denote by pa ∗ ra = λx. WJPa(x) ⋆ Ra(x) ⋆ x ∈ XKσl

A .

Proof. Observe that ph ∗rh = WJPh ⋆ RhKσ0◦σl

A . Take τ ∈ JCKφ, v ∈ X,σl ∈ LStore arbitrary, find S′ such
that τ |=S′ σl, (ph, pa, v), S

′ and h0 ∈ Jph ∗ rh ∗ pa ∗ rh ∗ TrueAKλ. Proceed by induction on the structure
of τ |=S′ σl, (ph, pa, v), S

′

• Case: Term.
If τ is safe by an application of Term, then it must be we have τ |=S′ σl, (ph, pa, v), { (ph, pa, v)}
and that τ is a single state, thus an application of Term also gives τ |=S σl, (ph ∗rh, pa ∗ra, v), {(ph ∗
rh, pa ∗ ra, v)}.

• Case: Stutter. I do the Stutter case - the LinPt case is identical.
Assume τ |=S′ σl, (ph, pa, v), S

′ by an application of Stutter, so in fact

τ = (σ0, h0,C0)loc(σ1, h1,C1)τ
′

From the premises it must be that (h0, h1) |=λ,A p′h ∗ pa(v) _ p′h ∗ pa(v) for some p′h and that
(σ1, h1,C1)τ

′ |=S′ σl, (p
′
h, pa, v), S

′. From the inductive hypothesis we find that

(σ1, h1,C1)τ
′ |=S σl, v, (p

′
h ∗ rh, pa ∗ ra, v), S

where
S ⊆ { (qh ∗ rh, pa ∗ ra, v′) | (qh, pa, v′) ∈ S′} (6.16)

From Lemma 4.5, and the stability conditions of rh and ra, find that

(h0, h1) |=λ,A ph ∗ rh ∗ pa(v) ∗ ra(v) _ p′h ∗ rh ∗ pa(v) ∗ ra(v)

Again from the premises of Stutter, if C1 = ✓ then p′h = WJQh(v)Kσ1◦σl

A . Given that

p′h ∗ rh = WJQh(v
′)Kσ1◦σl

A ∗WJRhKσ0◦σl

A

and WJRhKσ0◦σl

A = WJRhKσ1◦σl

A (from Equation 6.10), find

ph ∗ rh = WJQh(v) ⋆ RhKσ0◦σl

A

Finally, reapply Stutter to conclude that τ |=S σl, (ph ∗ rh, pa ∗ ra, v), S, with S given by Equation
6.16.

• Case: Env. I do the Env case, the Env’ case is simpler.
Assume τ |=S′ σl, (ph, pa, v), S by an application of Env, i.e.

τ = (σ, h0,C)env(σ, h1,C)τ ′

and from the premises of Env,

∀v′ ∈ X. E(v′) =⇒ (σ, h1,C)τ ′ |=S′ σl, (ph, pa, v
′), S′

v′

where

E(v′) ≜ ∃pe, p′e. h1 ∈ Jph ∗ pa(v) ∗ peKλ ∧ (h1, h2) |=λ,A pa(v) ∗ pe _ pa(v
′) ∗ p′e

Let

F (v′) ≜ ∃ps, p′s. h1 ∈ Jph ∗ rh ∗ pa(v) ∗ ra(v) ∗ psKλ ∧
(h1, h2) |=λ,A pa(v) ∗ ra(v) ∗ ps _ pa(v

′) ∗ ra(v′) ∗ p′s
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I aim to prove

∀v′ ∈ X. F (v′) =⇒ (σ, h1,C)τ ′ |=S′ σl, (ph ∗ rh, pa ∗ ra, v′), Sv′

where
Sv′ = { (qh ∗ rh, pa ∗ ra, v′) | (qh, pa, v′) ∈ Sv′ }

Take v′ ∈ X arbitrary and assume F (v′). By taking pe = ps ∗ rh ∗ ra(v), p′e = p′s ∗ rh ∗ ra(v) we
find E(v′), so from the premise of Env we have (σ, h1,C)τ ′ |=S′ σl, (ph, pa, v

′), S′
v′ and applying the

inductive hypothesis finds (σ, h1,C)τ ′ |=S σl, (ph ∗ rh, pa ∗ ra, v
′), Sv′ , with the necessary relation

between Sv′ and S′
v′ . The other premises of Env carry over to result in (σ, h1,C)env(σ, h2,C)τ ′ |=S

σl, (ph ∗ rh, pa ∗ ra, v), S where S is the union of the earlier Sv′s.

• Case: Env .
If τ |=S′ σl, (ph, pa, v), S

′ by an application of Env , then in fact we have

(σ, h,C)env τ ′ |=S′ σl, (ph, pa, v), ∅

By Env we also find (σ, h,C)env τ ′ |=S σl, (ph ∗ rh, pa ∗ ra, v), ∅.

Now we are ready to prove the result. Take τ ∈ JCK, σl ∈ LStore, v ∈ X arbitrary, and assume

h0 ∈ Jph ∗ rh ∗ pa ∗ rh ∗ TrueAKλ

From our inductive hypothesis, τ ∈ JS′K, and from our assumption, h0 ∈ Jph ∗ pa ∗ TrueAKλ. So

∃S. τ |=S σl, (ph, pa, v), S

Lemma 6.11 tells us ∃S′. τ |=S σl, (ph, pa, v), S
′. Conclude τ ∈ JSK.

Remark 6.4.1. In the stutter case of Lemma 6.11, we need to use Lemma 4.5 to conclude that the
frame-preserving update of the premise of the trace safety judgement is transformable into a frame-
preserving update with worlds representing the framed components Rh and Ra(x). This is why it is
crucial for the premise ∀x ∈ X. A |= Ra(x) stable to hold - without it, we wouldn’t even be able to ensure
that the abstract state of the region hasn’t changed. I initially investigated whether an ∃x ∈ X. Ra(x)
stable requirement would suffice, but unfortunately we simply do not have the technical machinery at
present to express a requirement of the x in Ra(x) and Pa(x) to agree, which is necessary to ensure the
value of x in Ra(x) is not modified in such an update. In practice, this greatly restricts any dependence
on x of Ra(x), but whether this restriction poses a genuine reduction in expressivity of TaDA 2.0 is
unclear.
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Chapter 7

Spinlock

We verify the following standard implementation of a spinlock.

let lock(x) =

var d = 0 in

while (d = 0)

d := CAS(x, 0, 1)

let unlock(x) =

[x] := 0

let makelock() =

var x = 0 in

x := new(1) ;

[x] := 0 ;

ret := x

Figure 7.1: Spinlock implementation

The heap location of x behaves as we would expect of a lock: it’s never the case that a thread can’t be
sure if it has exclusive access to the lock, as the atomicity of the CAS provides absolute certainty that the
lock was unlocked (heap location had value 0) at the time of locking (updating to heap value 1), and that
no other thread could have interrupted and locked the lock in betweeen the thread checking this value
and performing the update. Observe again here that this only requires the value retrieved from the heap
to be atomic with the operation, and not the setting of the program variable to that value to be atomic
with the heap operation (as discussed in Section 5.2). Therefore, our new primitive proof rules should
suffice for atomicity behaviour such as this. Let us define the components of the ghost state needed to
verify the behaviour of the lock.

The lock is intended to be used for threads to compete for shared resources, so it is crucial that it
is shareable. Therefore, define a region spinr(x, l), with syntactic region interpretation I(spinλ

r (x, l)) ≜
x 7→ l. Define its semantic interpretation IspinJr, λ, (x, l)K to be WJx 7→ lK∅A This clearly corrresponds to
the concrete resources used in the implementation of the lock, and satisfies the stability requirement on
region interpretations.
Its guard algebra is ({0,E}, •, {0}), with 0 • 0 = 0, 0 • E = E = E • 0 and E • E = ⊥, i.e. we have one
exclusive guard ⌈E⌉r, used to complete the logically atomic actions of locking and unlocking. The region
interference function Tspin(E) is the reflexive, transitive closure of {(0, 1), (1, 0)} (and Tspin(0) = ∅).

We aim to prove the following specifications:

Φ, λ+ 1,A ⊢ {emp} makelock() {∃r. spinλ
r (ret, 0) ⋆ ⌈E⌉r}

Φ, λ+ 1,A ⊢

A

l ∈ {0, 1}.
〈
spinλ

r (x, l) ⋆ ⌈E⌉r
〉

lock(x)
〈

spinλ
r (x, 1) ⋆ ⌈E⌉r ⋆ l = 0

〉
Φ, λ+ 1,A ⊢

〈
spinλ

r (x, 1) ⋆ ⌈E⌉r
〉

unlock(x)
〈

spinλ
r (x, 0) ⋆ ⌈E⌉r

〉
where r ̸∈ dom(A).

Briefly consider the precise semantics of this specification, to provide some intuition for why the
exclusive guard does not prohibit sharing the lock with other threads. Section 9.2 provides guidance on
how to use the lock for a client module.
After the call to makelock, the thread creating the lock has true ownership over the heap resource
representing the shared location. This is represented by returning the shared region in the Hoare (or
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private) part of the postcondition with the exclusive guard - there is no potential for race conditions on
the resource until the creating thread has made it available to others. This represents genuinely exclusive
ownership of the region.

Lock and unlock are both abstractly atomic actions with the shared region and the exclusive guard
in the precondition. Here it is really essential to not be thinking of the atomic pre- and post-conditions
as partial ownership - instead they represent resources that the thread knows to exist, and that will
claim exclusive ownership over at the linearisation point. This intuition is key to understanding why the
exclusive guard is does not prevent the sharing of the lock with other threads (clearly this would defeat
the purpose of the lock as it would not be able to be used to compete for access to other shared resources).
Finally, the lock specification mirrors that discussed in Section 3.1, with the pseudoquantifier being used
to accept environment interference and restrict the value of the shared resource at the linearisation point,
instead of in the precondition.

Makelock

We begin with the makelock deriviation, the proof sketch for which is given in Figure 7.2, demonstrating
the standard ownership based reasoning in TaDA 2.0 and how to create shared regions out of locally
owned resources. The proof of makelock is fairly standard in separation logic style proofs, as throughout
the code the thread has true ownership over the resources. The only detail in the proof which provides
insight into the workings of TaDA 2.0 is the use of the viewshift in the final application of cons, to update
the logical view of the world from that of exclusively owned shared resources to that of a shared region
with the same concrete representation:

λ+ 1,A |= ret = x ⋆ x 7→ 0⇛ ∃r. spinλ
r (ret, 0) ⋆ ⌈E⌉r

Using Definitions 4.2.15 (Viewshift) and 4.2.14 (Frame-preserving update), if we take an arbitrary ς ∈
Store, h ∈ Heap, f ∈ V iewA, and assume that h ∈ JWJret = x ⋆ x 7→ 0KςA • fKλ+1, so find some wh ∈
WJret = x ⋆ x 7→ 0KςA, wf ∈ f such that h ∈ ⌊wh • wa⌋λ+1. From the world semantics, it must be that
ςret = ςx, and furthermore from the region interpretation of spinlock, that wh ∈ IspinJr, λ, (ret, 0)K.
As f ∈ World

↑
A, there must be some w′

f adding the region spinλ
r (ret, 0) to its ρ such that w′

f ∈ f ,
so we can find that h ∈ JWJ∃r. spinλ

r (ret, 0)K
ς
A ∗ fKλ+1. This illustrates how we can create shared

regions out of exclusively owned resources. Finally, to conclude that h represents some world consistent
with owning the guard ⌈E⌉r, observe that when we added spinλ

r (ret, 0) to wh and wf (finding some
w′

h ∈ WJspinλ
r (ret, 0)K

ς
A and w′

f ∈ f), we are implicitly updating both γ’s to represent the zero guard
of the guard algebra Gspin. Therefore, w′

f is consistent with the local thread owning the exclusive
guard, so we can find some wg ∈ WJ⌈E⌉rKςA such that h ∈ ⌊w′

h • wg • wf⌋λ+1 and conclude that
h ∈ JWJ∃r. spinλ

r (ret, 0) ⋆ ⌈E⌉rKςA ∗ fKλ+1. This gives the premise we needed to apply cons to the
exclusively owned resources to find the shared region and guard in the postcondition of makelock.

Unlock

Unlock will show us how we use an atomic operation to modify a shared region (Figure 7.3). It uses open
region to update the abstract state of the region corresponding to the concrete update in the code of
the region interpretation.
(Open region)

∀x ∈ X. (x, z) ∈ {(x, z)|x ∈ X ∧R(x, z) ∧ (x, z) ∈ Tt(G(x))∗} r ∈ dom(A) =⇒ R = id

Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⋆ I(tλr (x)) ⋆ ⌈G(x)⌉r ⟩ C ∃y.⟨ Qh(x, y) | ∃z. Qa(x, y, z) ⋆ I(tλr (z)) ⋆ R(x, z) ⟩
Φ, λ+ 1,A ⊢

A

x ∈ X.⟨ Ph | Pa(x) ⋆ tλr (x) ⋆ ⌈G(x)⌉r ⟩ C ∃y.⟨ Qh(x, y) | ∃z. Qa(x, y, z) ⋆ tλr (z) ⋆ R(x, z) ⟩
The use of the rule in the unlock derivation is

∀y ∈ {1}. (y, z) ∈ {(y, z)|y ∈ {1} ∧ z = 0 ∧ (y, z) ∈ Tspin(E)∗} r ∈ dom(A) =⇒ R = id
Φ, λ,A ⊢

A

y ∈ {1}.⟨ x = x | x 7→ y ⋆ ⌈E⌉r ⟩ C ⟨ x = x | ∃z. x 7→ z ⋆ z = 0 ⟩
Φ, λ+ 1,A ⊢

A

y ∈ {1}.⟨ x = x | spinλ
r (x, y) ⋆ ⌈E⌉r ⟩ C ⟨ x = x | ∃z. spinλ

r (x, z) ⋆ z = 0 ⟩

where by assumption r ̸∈ dom(A) and (1, 0) ∈ Tspin(E). This illustrates how to take a logically atomic
step (which does not necessarily have to be primitive atomic) to update a shared region, when we hold
the permissions for such an action. The atomicity of the step is crucial to preventing race-conditions,
as there is no assumption on exclusive access to the resources. In the case of unlocking a spinlock, the
action is actually primitive atomic, so we do not need to use any of the other atomicity rules to verify
this - the existing mutate rule does the job.
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Φ, λ+ 1,A ⊢

A

y ∈ AVal. ⟨ emp | emp ⟩
var x = 0 in

// Var.
// x ̸∈ fv(Ph) ∪ fv(Qh) ∪ fv(E) where Ph = Qh = emp and E = 0

A

y ∈ AVal. ⟨ x = 0 | emp ⟩
C

on
s,

∃E
lim // λ+ 1,A |= x = 0⇛ ∃x. 1 ≥ 0 ⋆ x = x and A |= x = 0 stable

⟨ 1 ≥ 0 ⋆ x = x | emp ⟩
x := new(1)
⟨ ∃y, v. x = y ⋆�0≤i≤0 y + i 7→ v | emp ⟩

// λ+ 1,A |= ∃y, v. x = y ⋆ �
0≤i≤0

y + i 7→ v ⇛ ∃v. x 7→ v and

// A |= ∃v. x = v stable

⟨ ∃v. x 7→ v | emp ⟩

// Seq.

A

y ∈ AVal. ⟨ ∃v. x 7→ v | emp ⟩

co
ns

,∃
E

lim

// λ+ 1,A |= ∃v. x 7→ v ⇛ ∃v, x.x = x ⋆ x 7→ v and
// A |= ∃v. x = v stable
⟨ x = x ⋆ x 7→ v| emp ⟩

A
to

m
ic

-w
ea

ke
n,

Su
bs

t

// A |= x = x ⋆ x 7→ v stable
// f : AVal → N is the constant function whose image is v.
// ∀y ∈ AVal, z. λ+ 1,A |= x 7→ v ⇚⇛ x 7→ f(y)

A

y ∈ N. ⟨ x = x| x 7→ v ⟩
[x] := 0
// Mutate.
⟨ x = x| x 7→ 0 ⟩

// A |= x 7→ 0 stable
⟨ x = x ⋆ x 7→ 0 | emp ⟩

// ∀y ∈ AVal, z. λ+ 1,A |= x = x ⋆ x 7→ 0⇛ x 7→ 0 and
// A |= x 7→ 0 stable
⟨ x 7→ 0 | emp ⟩
// Seq.

A

y ∈ AVal. ⟨ x 7→ 0 | emp ⟩

C
on

s

⟨ x 7→ 0 | emp ⟩

Fr
am

e

// A |= x 7→ 0 stable and mod(ret := x) ∩ {x} = ∅
⟨ emp | emp ⟩
ret := x

// Assign.
⟨ ret = x | emp ⟩

⟨ ret = x ⋆ x 7→ 0 | emp ⟩
// λ+ 1,A |= ret = x ⋆ x 7→ 0⇛ ∃r. spinλ

r (ret, 0) ⋆ ⌈E⌉r and

// A |= ∃r. spinλ
r (ret, 0) ⋆ ⌈E⌉r stable

⟨ ∃r. spinλ
r (ret, 0) ⋆ ⌈E⌉r | emp ⟩

Figure 7.2: Make lock proof sketch for spin lock
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Φ, λ+ 1,A ⊢

A

y ∈ AVal. ⟨ x = x | spinλ
r (x, 1) ⋆ ⌈E⌉r ⟩

Su
bs

t,
C

on
s

// f : AVal → {1} is the constant function.
// ∀x ∈ AVal. λ+ 1,A |= spinλ

r (x, l) ⋆ ⌈E⌉r ⇚⇛ spinλ
r (x, f(x)) ⋆ ⌈E⌉rA

y ∈ {1}. ⟨ x = x | spinλ
r (x, y) ⋆ ⌈E⌉r ⟩

O
pe

n-
re

gi
on

// (1, 0) ∈ {(y, z) | y ∈ {1} ∧ z = 0 ∧ (y, z) ∈ Tr(E)}
// r ̸∈ dom(A)
⟨ x = x | x 7→ y ⋆ ⌈E⌉r ⟩

Su
bs

t,
C

on
s,

Fr
am

e
// f : {1} → N is the identity.
// ∀y ∈ {1}. λ,A |= x 7→ y ⋆ ⌈E⌉r ⇚⇛ x 7→ f(y) ⋆ ⌈E⌉r
// A |= ⌈E⌉r stable
⟨ x = x | x 7→ b ⟩
[x] := 0
// Mutate.
⟨ x = x | x 7→ 0 ⟩

// λ,A |= x 7→ 0 ⋆ ⌈E⌉r ⇛ ∃a. x 7→ a ⋆ ⌈E⌉r ⋆ a = 0
⟨ x = x | ∃a. x 7→ a ⋆ ⌈E⌉r ⋆ a = 0 ⟩

⟨ x = x | ∃a. spinλ
r (x, a) ⋆ ⌈E⌉r ⋆ a = 0 ⟩

// λ+ 1,A |= ∃a. spinλ
r (x, a) ⋆ ⌈E⌉r ⋆ a = 0⇛ spinλ

r (x, 0) ⋆ ⌈E⌉r
// A |= spinλ

r (x, 0) ⋆ ⌈E⌉r stable

⟨ x = x | spinλ
r (x, 0) ⋆ ⌈E⌉r ⟩

Figure 7.3: Unlock proof sketch for spin lock

Lock

Lock is the most interesting proof here, as it demonstrates how to prove that a logically atomic action
indeed only represents one update of the abstract state. In order to prove that the function is atomic, we
have to use the make atomic rule, and then dispatch the actual update to the shared region using update
region. The full proof sketch is in Figure 7.4, with some additional premises made explicit in Figure 7.5.

In the derivation, make atomic is used to verify that while (d = 0) d := CAS(x, 0, 1) is an abstractly
atomic operation, i.e. updates the abstract state l of spinλ

r (x, l) only once (represented by the heap
resource x 7→ l). Make atomic takes the guard from the pre- and post-condition and replaces it with the
atomicity tracking resource, representing permission to perform the same operation as the guard (in our
case, {(0, 1)}), but preventing the guard from being used to perform more than one update to the lock
(for example, first unlocking the lock, and then relocking it would not be verifiable here). The stability
premise of make atomic is what absolutely necessitates the guard associated with the lock to be exclusive.
Otherwise, we could not be certain that the environment can’t interfere with something in the midst of
performing our logically atomic action. However, it is sufficient for this exclusivity to hold only at the
linearisation point in make atomic, which is how we will be able to share the lock with other threads.

The only way to use the atomicity tracking resource to perform an update is via the update region
rule. In our case, this is the mechanism for using the concrete update to heap location x to justify an
update to the abstract state of the lock (l updating from 0 to 1). Furthermore, the disjunction in the
update region postcondition is actually necessary for the components of this derivation to correctly fit
together - otherwise, the nondeterministic nature of CAS would prevent us from using update region.
Finally, it can be observed that the new CAS rule, with the atomicity separation of the store and heap
update is sufficient here for the derivation.

One more interesting technical detail of the proof is the way we discard the shared region to match
the premise of make atomic. Make atomic does not require any longevity of the shared region after
the linearisation (in keeping with our intuition that after the linearisation point, we cannot make any
assumptions on how the environment will act on it), but in our case we actually do maintain some notion
of ownership of the shared region. Therefore, being able to use viewshift to discard the shared region
from the assertions is crucial here.
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Φ, λ+ 1,A ⊢

A

l ∈ {0, 1}. ⟨ x = x | spinλ
r (x, l) ⋆ ⌈E⌉r ⟩

var d = 0 in

// Var

⟨ x = x ⋆ d = 0 | spinλ
r (x, l) ⋆ ⌈E⌉r ⟩

C
on

s

⟨ x = x ⋆ d = 0 | spinλ
r (x, l) ⋆ ⌈E⌉r ⟩

M
ak

e
at

om
ic

// r ̸∈ dom(A) and λ ≤ λ+ 1 and
// ∀l ∈ {0, 1}. A |= spinλ

r (x, l) ⋆ ⌈E⌉r stable and
// A′ = A[r 7→ (AVal, {(0, 1)})] and {(0, 1)} ⊆ Tspin(E)

Φ, λ+ 1,A′ ⊢

A

y ∈ AVal. ⟨ x = x ⋆ d = 0 ⋆ ∃l ∈ {0, 1}. spinλ
r (x, 1) ⋆ r Z⇒ ♦ | emp⟩

C
on

s

// (1)
// This is the while invariant〈

x = x ⋆ ∃l ∈ {0, 1}. spinλ
r (x, l) ⋆

(d = 0 ∧ r Z⇒ ♦) ∨
(d = 1 ∧ r Z⇒ (0, 1) ∧ l = 0)

∣∣∣ emp

〉
while (d = 0)

W
hi

le
,C

on
s

// (2)〈
x = x ⋆ d = 0 ⋆ ∃l ∈ {0, 1}. spinλ

r (x, l) ⋆ r Z⇒ ♦
∣∣∣ emp

〉

A
to

m
ic

-w
ea

ke
n,

Lv
l-w

ea
ke

n,
A
∃E

lim

// A′ |= x = x ⋆ d = 0 ⋆ ∃l ∈ {0, 1}. spinλ
r (x, l) ⋆ r Z⇒ ♦ stable

Φ, λ+ 1,A′ ⊢

A

l ∈ {0, 1}.
〈
x = x ⋆ d = 0 | spinλ

r (x, l) ⋆ r Z⇒ ♦
〉

U
pd

at
e

re
gi

on

// r ∈ dom(A′) and A′ = A[r 7→ ⊥] and A(r) = (_, {(0, 1)})
Φ, λ,A ⊢

A

l ∈ {0, 1}. ⟨ x = x ⋆ d = 0 | x 7→ l ⟩

C
on

s,
∃E

lim

// λ,A |= x = x ⋆ d = 0⇛ ∃d. x = x ⋆ d = d
// A |= x = x ⋆ d = 0 stable
⟨ d = d ⋆ x = x | x 7→ l ⟩
d := CAS(x, 0, 1)
// CAS

∃y.
〈

d = y ⋆ x = x
∣∣∣ (l = 0 ∧ y = 1 ⋆ x 7→ 1) ∨
(l ̸= 0 ∧ y = 0 ⋆ x 7→ l)

〉
// (3)

∃y.
〈

d = y ⋆ x = x
∣∣∣ (∃z. ∈ T (l). l = 0 ∧ y = 1 ⋆ x 7→ z) ∨
(l ̸= 0 ∧ y = 0 ⋆ x 7→ l)

〉
∃y.

〈
d = y ⋆ x = x

∣∣∣
(∃z. ∈ T (l).
l = 0∧y = 1 ⋆ spinλ

r (x, z) ⋆ r Z⇒ (x, z))∨
(l ̸= 0 ∧ y = 0 ⋆ spinλ

r (x, l) ⋆ r Z⇒ ♦)

 〉

// A′ |= ∃l ∈ {0, 1}.

(∃z. ∈ T (l).
l = 0∧y = 1 ⋆ spinλ

r (x, z) ⋆ r Z⇒ (x, z))∨
(l ̸= 0 ∧ y = 0 ⋆ spinλ

r (x, l) ⋆ r Z⇒ ♦)

 stable

∃y.

〈
d = y ⋆
x = x

⋆ ∃l ∈ {0, 1}.

(∃z. ∈ T (l).
l = 0∧y = 1 ⋆ spinλ

r (x, z) ⋆ r Z⇒ (x, z))∨
(l ̸= 0 ∧ y = 0 ⋆ spinλ

r (x, l) ⋆ r Z⇒ ♦)

 ∣∣∣ emp

〉
〈

x = x ⋆ ∃l ∈ {0, 1}. spinλ
r (x, l) ⋆

(d = 0 ∧ r Z⇒ ♦) ∨
(d = 1 ∧ r Z⇒ (0, 1) ∧ l = 0)

∣∣∣ emp

〉
// While invariant re-established

// (4)
∃z. ⟨ l = 0 ∧ z = 1 ⋆ x = x ⋆ r Z⇒ (l, z) | emp⟩

⟨ x = x | spinλ
r (x, z) ⋆ ⌈E⌉r ⋆ l = 0 ∧ z = 1 ⟩

// λ+ 1,A |= spinλ
r (x, z) ⋆ ⌈E⌉r ⋆ l = 0 ∧ z = 1⇛ spinλ

r (x, 1) ⋆ ⌈E⌉r ⋆ l = 0

⟨ x = x | spinλ
r (x, 1) ⋆ ⌈E⌉r ⋆ l = 0 ⟩

Figure 7.4: Lock proof sketch for spin lock
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We have the following additional side conditions for rules applied in the lock proof sketch.

(1) : λ+ 1,A′ |= x = x ⋆ d = 0 ⋆ ∃l ∈ {0, 1}. spinλ
r (x, 1) ⋆ r Z⇒ ♦ ⇛

x = x ⋆ ∃l ∈ {0, 1}. spinλ
r (x, l) ⋆

(
(d = 0 ∧ r Z⇒ ♦) ∨
(d = 1 ∧ r Z⇒ (0, 1))

)
and

A′ |= x = x ⋆ d = 0 ⋆ ∃l ∈ {0, 1}. spinλ
r (x, 1) ⋆ r Z⇒ ♦ stable

(2) : λ+ 1,A′ |= x = x ⋆ ∃l ∈ {0, 1}. spinλ
r (x, l) ⋆

(d = 0 ∧ r Z⇒ ♦) ∨
(d = 1 ∧ r Z⇒ (0, 1) ∧ l = 0)

⋆ d = 0⇛

x = x ⋆ d = 0 ⋆ ∃l ∈ {0, 1}. spinλ
r (x, l) ⋆ r Z⇒ ♦ and

A′ |= x = x ⋆ ∃l ∈ {0, 1}. spinλ
r (x, l) ⋆

(d = 0 ∧ r Z⇒ ♦) ∨ (d = 1 ∧
r Z⇒ (0, 1) ∧ l = 0)

⋆ d = 0 stable

(3) : λ,A |= (l = 0 ∧ y = 1 ⋆ x 7→ 1) ∨
(l ̸= 0 ∧ y = 0 ⋆ x 7→ l)

⇛
(∃z. ∈ T (l). l = 0 ∧ y = 1 ⋆ x 7→ z) ∨
(l ̸= 0 ∧ y = 0 ⋆ x 7→ l)

(4) : λ+ 1,A′ |= x = x ⋆ ∃l ∈ {0, 1}. spinλ
r (x, l) ⋆

(d = 0 ∧ r Z⇒ ♦) ∨
(d = 1 ∧ r Z⇒ (0, 1) ∧ l = 0)

⇛

l = 0 ∧ z = 1 ⋆ x = x ⋆ r Z⇒ (l, z) and
A′ |= l = 0 ∧ z = 1 ⋆ x = x ⋆ r Z⇒ (l, z) stable

Figure 7.5: Side-conditions for lock proof sketch

Remark 7.0.1. Depending on how the lock operation is thought of, it would be reasonable to think of
its abstract atomic properties as resulting from the fact that the while loop is constructed to perform
precisely one ‘step’ of progress, where the underlying progress is atomic, rather than the entire while
construct. This is a subtle difference, but not quite how the above proof proceeds. Indeed, the primitive
atomicity of the CAS operation is actually not necessary for the derivation to hold, only the fact that the
region is only updated once. This can be seen in the way the make atomic rule is used before the while
rule, and the repeated attempts at CAS are specified with a Hoare triple rather than atomic triple. This
subtlety in the proof sketch is exactly the reason why we require an exclusive guard for the make atomic
operation. Unfortunately, any modification to the proof system to capture this (i.e. for the derivation
to proceed by while, then open region, rather than make atomic, while, update region) would require
significant overhaul to provide a mechanism of tracking the quantity of progress made by a while construct
and for the while proof rule to be a hybrid triple. It would also require the CAS rule to capture the
update to the store and the heap as a single atomic update (I discuss how this could be done in Section
9.2). The complexity and work required to make this extension to while is infeasible and should not be
considered as a solution to the exclusivity of the guard required by spinlock.

Remark 7.0.2. TaDA also provides a verification of a specification for spinlock. Unfortunately, it is
unclear whether the stability requirement on make atomic is satisfied in that derivation, and the stability
requirement on make atomic is not present on the proof rules of that version.

Discussion on how to stack the spinlock verification with more complex clients is in Section 9.2.
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Chapter 8

Evaluation

I consider TaDA 2.0 strengths and weaknesses along several axes: ease of use for verification (simplicity of
the proof rules, composability and modularity), simplicity and expressivity of the semantic model (which
provides more certainty of the soundness proof and improved extensibility) and expressivity of the logic
(complexity of verifiable programs).

8.1 In comparison with TaDA
One goal of this project was to produce a logic similar to TaDA’s, but precise and sound. This has been
achieved - I have to the best of my ability been meticulous with the details of the definitions and lemmas
required for the soundness proof of TaDA 2.0, and find additional certainty in the correctness of most of
the proof rules by leaning on the equivalences with TaDALive.

• Some of TaDA’s proof rules were missing important premises for soundness (some of which covered
by a sweeping but incorrect stability assumption deeper in the model) such as make atomic or frame.
These problems are corrected in the proof rules of TaDA 2.0. Furthermore, I make consistent the
notational choices in TaDA 2.0 with TaDALive, and provide the spinlock example in full detail.

• TaDA’s proof rules were not always stated at the correct level of generality or abstraction. For
example, the original TaDA consequence rule did not allow for a viewshift of the atomic precondition.
TaDA also had in number many more proof rules than TaDA 2.0, as it provided several separate
proof rules for atomic specifications, such as a separate frame rule, and several different substitution
rules or atomicity rules which are subsumable by the more general rules of TaDA 2.0.

• The semantic model of TaDA is ad hoc. TaDA 2.0 presents a precise and detailed model, which
I conjecture is tractable for mechanisation, and has clear abstraction boundaries between different
components. How much this improves extensibility to more complex concurrency patterns is difficult
to evaluate without doing the further work, but is likely to at least be a significant improvement
on the extensibility of TaDA. Indeed, stronger properties such as needing to specify control over
environment behaviour at the level of one execution step at a time as done in the TaDALive model
requires only an additional axiom on its frame-preserving updates.

There are two places in which TaDA 2.0 is weaker than TaDA. The first is that the semantic model does not
explicitly deal in CAP’s abstract predicates, which restricts abstraction and thus proof reuse. However,
this should not be too difficult to extend the model to handle, and almost all of the necessary components
are present in TaDA. The second is in the requirement of the atomic parts of hybrid specifications to not
contain program variables. This requirement is how we reached the new proof rules for read, cas and
fas, which are strictly weaker than TaDA’s (and can be constructed by TaDA’s rules). Whether this
difference is genuinely a problem is a matter for how the software system should be modelled, as on a
hardware level the update to a program variable is not necessarily atomic with the memory update, but
it certainly is atomic at the abstraction level of a programs operational semantics and results in a strictly
weaker logic.

The stability premises of rules such as make atomic and frame make at first glance TaDA 2.0 appear
weaker than TaDA. However, TaDA makes a sweeping stability assumption in the model which is incorrect
and encompasses these. Furthermore, without this stability assumption, the rules are unsound, so in fact
these premises serve only to provide the sound rules TaDA was trying to express.
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I explain how to solve all of these more fully in Section 9.2, and draw attention to where the time
constraints of the project made it impossible for me to certain of their correctness.

8.2 In comparison with TaDALive
Another important aim of the project was to reduce the complexity of TaDALive’s semantic model. This
I have made significant progress with the following changes.

• Removing the PState component of program configurations greatly simplifies the inductive nature
of the soundness proof. Remark 6.2.1 discusses how this prevents a typical induction over the
structure of TaDALive’s PTraces, and how my modification to the operational semantics and change
in program configurations resolves this to induct as usual over the length of a trace. A sound
inductive principle to handle this additional inductive structure is missing from the TaDALive
paper, while I include an explicit example of how this works in TaDA 2.0 in the proof of Theorem
6.2.

• TaDALive’s traces are infinite, so most of the inductive proofs in TaDA 2.0 become coinductive in
TaDALive.

• TaDALive constructs traces of logical intrumentations corresponding to a concrete trace in the trace
safety judgement, while TaDA 2.0 constructs only the initial state and reachable end states. These
logical instrumentations are used in TaDALive to check liveness properties, and their absence in
TaDA 2.0 eases proof burden when inducting over the trace safety judgement.

• The TaDALive semantic model uses four different types of traces to model the program at different
abstraction levels. I maintain the abstraction boundaries in components of the semantic model
between logical ghost state versus execution states, while reducing the TaDA 2.0 semantic model to
only require one type of execution trace. This greatly reduces the number of interactions between
different components of the semantic model and thus make it easier to reason about.

• Removing liveness conditions from the proof rules and simplifying them in certain cases reduces the
number of premises from as many as eleven to three - this provides evidence that verifying liveness
properties in some cases obscures the safety proof. This process was more than just removing the
subjective obligation related components from premises and usually required some back and forth
with the soundness proof to settle on the right choices.

These changes motivate the conclusion that TaDA 2.0’s semantic model is not simply TaDALive’s without
liveness, but provides a true reduction in simplicity and indeed the technical work provided in getting
the soundness proof of TaDA 2.0 to hold is insufficient for TaDALive.

The complexity of TaDALive’s semantic model has left some incorrect technical details unnoticed in
the paper, which I have fixed.

• The trace safety judgement is not well-defined, as it asks for the world semantics of assertions
without providing a logical store to resolve logical variables in expression evaluations, and similarly,
specification semantics do not resolve logical variables when checking the precondition. I explicitly
quantify over LStores in the specification semantics and require each LStore to result in a correct
trace safety judgement, which has a constant LStore across the whole trace.

• Furthermore, the syntactic sugar for atomic triples results in unsound proof rules as several logical
variables are missing from the precondition, and modified variables are unhandled (discussed in
Remark 5.1.1 and Section 5.2). This means any derivations of TaDALive proof rules using mutate,
read, cas and fas are likely to be incorrect. I have resolved this by providing a correct inter-
pretation from atomic triples to hybrid triples and new proof rules for read, cas and fas with
the associated soundness proofs. This allows TaDA 2.0 to verifies atomically modified program
variables, which TaDALive does not.

Next, we consider the relative expressivity of TaDA 2.0 and TaDALive.

• The focus on liveness properties in TaDALive requires a fairness assumption on the scheduler. By
contrast, safety properties have no dependence on fairness, and so TaDA 2.0 could be considered
strictly stronger with respect to safety proofs than TaDALive.
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• It would not be fair to say that TaDA 2.0 is weaker than TaDALive due to the new, weaker, proof
rules for read, cas and fas, as the TaDALive rules are incorrect, and due to the similarity of the
other proof rules it would be reasonable to expect TaDA 2.0 to be able to verify safety properties
of all of the programs TaDALive can.

• Due to time constraints, I have not been able to produce further, more complex examples of the
uses of TaDA 2.0, but it would be surprising if TaDA 2.0 could not verify a CLH lock with the same
specification as TaDALive (without the ghost state for liveness). Furthermore, the specification we
prove for a spinlock in Chapter 7 is closely aligned with that of TaDALive, so it would be reasonable
to infer that it is sufficiently strong to verify fine-grained client code, as done in TaDALive.

• It is reasonable to say that TaDA 2.0 is significantly weaker than TaDALive, as it provides no
reasoning for liveness properties. However this was intentional, as liveness is out of the scope of
the project, and indeed likely to be in the best interest of further work - the scale and complexity
of the TaDALive model makes it harder to extend than TaDA 2.0 to more complex concurerncy
patterns. Also, unlike atomicity and ownership based properties which often have be used in tandem
to produce complete safety proofs, safety and liveness properties are more separable, so it does not
restrict the complexity of programs whose safety properties are verifiable in TaDA 2.0.

• Although unacknowledged in the original TaDALive paper, TaDALive is weaker in modularity than
TaDA as it does not support abstract predicates in the semantic model. This is ignored when
producing examples such as the spin lock, for which TaDALive does use abstract predicates. In this
sense, I have not further weakened the modularity properties of the existing logics by not including
abstract predicates in the semantic model of TaDA 2.0.

8.3 In comparison with other work
As was the goal of the project, we have tackled the issue of precision in TaDA and complexity in TaDALive,
without yet more complex constructions in the semantic model and proof rules. Therefore, we maintain
the relative simplicity of the logic compared to the higher-order Iris, or liveness focused Trillium.
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Chapter 9

Conclusion

9.1 Summary
We commenced this project with the aim of producing a precisely stated, sound program logic for owner-
ship and atomicity reasoning about safety properties of programs. To the best of our knowledge, we have
achieved this with TaDA 2.0, which is explicit in all of the details, including the necessary side conditions
for its proof rules, (and reduces the number by stating them in better generality). In doing so, we have
replaced the semantic model of TaDA with a new trace-based model, closely related to that of TaDALive,
and then applied a number of simplifications to the model. The most impactful of our simplifications was
to remove the PState construct by modifying the operational semantics and program configurations, and
reduce our traces to only finite ones, as this permitted a standard induction over traces which is necessary
in the soundness proof. We also reduced the number of types of traces of TaDALive model from four to
one, greatly reducing the complexity of the model for someone to consider further extensions.

TaDA 2.0 resolves some incorrect technical details in TaDALive, which are a cause for either un-
soundnes (in the case of certain primitive proof rules) or incorrect semantics (in the case of the missing
LStore in specification semantics). By replacing the syntactic sugar for atomic triples the existing mutate
rule becomes sound, and the read, cas and fas rules are totally new, intended to handle atomically
modified program variables, which TaDALive cannot do.

Then, we provide all of the technical work required to make the soundness proof hold, much of which
is omitted from the TaDALive paper and highly nontrivial (as in the case of induction over traces).
We also include soundness proofs of proof rules for which a proof exists in TaDALive, so our soundness
proof covers strictly more than theirs (the TaDA semantic model is so different that any comparison of
complexity or scale of the soundness proof is close to meaningless). We include the soundness proofs of
all rules which are new and then a selection more of each type of rule.

We demonstrate through the use of the spinlock example that these new proof rules do not substan-
tially weaken the expressivity of the logic, and furthermore observe that the spin lock verification in
TaDA is imprecise and possibly incorrect. As the specification we verify of the spinlock is analogous to
that of TaDALive, we conclude that it is strong enough to be used in a range of fine-grained client code.

9.2 Further Work
Exploration of further examples Due to time constraints, I have not been able to produce detailed
proofs of the CLH lock verified in TaDALive, nor the client code which makes use of the spin lock
verification. A verification of these examples in TaDA 2.0 would strengthen the argument that TaDA 2.0
is at least as expressive as TaDALive with respect to safety properties, and I believe there may be further
insight to be made into simplifying the proof rules and semantic model by working through these more
complex examples.

TaDALive verifies a blocking counter, using its spinlock to guarantee race-freedom. As the specification
TaDA 2.0 provides is equivalent, the construction TaDALive uses should be sufficient to guide a TaDA
2.0 verification of the blocking counter, which is to use two nested regions to abstract away information
about the abstract state of the spinlock. I did not have time to investigate whether the removal of liveness
components makes it possible to verify the blocking counter with only one shared region, rather than
the nesting seen in TaDALive. The requirements on opening these nested regions provide the exclusivity
needed by the spinlock to lock and unlock, essentially pushing that reason up to the client, and without

58



modification to the stability requirement on make atomic cannot be improved upon in the current version
of TaDA 2.0.

Requirements on atomic conditions The technical requirement for atomic pre- and post-conditions
to not contain any program variables could be potentially be lifted by making some changes to the trace
safety judgement. This requirement is imposed shared resources referenced in the atomic precondition
must not change in abstract representation due to updates in the program variables outside of the
linearisation point. Otherwise the abstract state of the resources would change more than once. Therefore,
the trace safety judgement uses a constant pa : AVal → World

↑
A with no dependence on the program store

of the trace, enforcing that an update to the shared resources happens only once. This restriction could
potentially be lifted by modifying pa : PStore × AVal → World

↑
A (the logical variables cannot change

in value across a trace so there is no need for an LStore parameter). In order to correctly model the
atomicity property, the stutter rule would require an additional premise that pa(σ0, v) = pa(σ1, v),
preventing changes to the program variables breaking atomicity.
I have not implemented this change in TaDA 2.0, as I am uncertain if it may allow race conditions in
the event the environment is responsible for completing the linearisation point. The current trace safety
judgement marks the linearisation point as the moment in which the local trace observes the update,
rather than when the environment makes it. I worry that a race between an environment step completing
the linearisation point and the local trace updating a program variable required for the atomic pre- or
post-condition could arise from this modification. It may be that the correct way to prevent this is by
introducing a new rule to the trace safety judgement for the linearisation point to be marked at the point
it is completed by the environment but the subtlety of the trace safety semantics is such that I can’t be
certain this is correct.
Lifting this restriction would admit the following, stronger, proof rules for read, cas and fas:

(Read)
Φ, λ,A ⊢

A

n ∈ Z. ⟨ x = x | E 7→ n ⟩ x := [E] ⟨ emp | E[x/x] 7→ n ⋆ x = n ⟩

(CAS)
Φ, λ,A ⊢

A

n ∈ Z.⟨ x = x| E1 7→ n⟩
x := CAS(E1, E2, E3)

∃y.
〈

emp | (n = E2[x/x] ∧ x = 1 ⋆ E1[x/x] 7→ E3[x/x]) ∨
(n ̸= E2[x/x] ∧ x = 0 ⋆ E1[x/x] 7→ n)

〉
(FAS)

Φ, λ,A ⊢

A

n ∈ Z. ⟨ x = x | E1 7→ n⟩ x := FAS(E1, E2) ⟨ emp | E1[x/x] 7→ E2[x/x] ⋆ x = n ⟩

These are the rules TaDA provides, and which TaDALive was attempting to capture.

Abstract Predicates TaDA 2.0 does not explicitly support abstract predicates in its semantic model.
In line with TaDA, I expect it to be possible to extend the semantic model and proof rule to explicitly deal
in abstract predicates, by including a fifth component of worlds corresponding to abstract predicate names
and arguments, similar to the existing ρ. An abstract predicate interpretation would be required. Then a
step-indexed semantics is given to circumvent circularity problems for soundness in TaDA. Following this
approach, it should be feasible to include abstract predicates in TaDA 2.0’s worlds, but I am uncertain of
the impact this would have on defining interference and frame-preserving updates. Probably the abstract
predicate interpretations would have to be V iews, beyond this I’m unsure of the knock-on effect to the
rest of the model.

Further simplifications to the model I have made substantial simplification to the semantic model
for TaDA 2.0, but there is still a lot of different components with complex interactions. It is possible
that a fresh pair of eyes may be able to further reduce the complexity of the model without reducing
its expressivity. As commented on in Remark 5.1.3, the final component of the trace safety judgement,
S ∈ P(SState) is only used when appending to traces, required in a small number of inductions over
the operational semantics. I expect that more time studying the soundness proof would bring rise to
proof methods which did not require this component. Furthermore, by imposing the intuitive A |= ∃x ∈
X.Pa(x) stable condition on specifications, more simplifications to the soundness proof may be possible
- this was suggested to me by the authors of the TaDALive paper.
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Stability The stability requirements on frame and make atomic are impractically strong, and re-
alistically forbid any interference on certain components beyond that restricted by the environment
interference assumption. This is in line with that of TaDALive and does not represent a weakening of
TaDA 2.0, as the stability requirements are necessary and a point of unsoundness for TaDA.

(Make atomic)
r ̸∈ dom(A) ∀x ∈ X. A |= tλ

′

r (x) ⋆ ⌈G⌉r stable A′ = A[r 7→ (X,T )] T ⊆ Tt(G) λ′ < λ

Φ, λ,A′ ⊢ { Ph ⋆ ∃x ∈ X. tλ
′

r (x) ⋆ r Z⇒ ♦ } C {∃x, y. T (x, y) ⋆ Qh(x, y) ⋆ r Z⇒ (x, y) }
Φ, λ,A ⊢

A

x ∈ X.⟨ Ph | tλ
′

r (x) ⋆ ⌈G⌉r ⟩ C ∃y.⟨ Qh(x, y) | tλ
′

r (y) ⋆ ⌈G⌉r ⋆ T (x, y) ⟩

Using make atomic as the example, the ∀x ∈ X. A |= tλ
′

r (x) ⋆ ⌈G⌉r stable requirement in practice
prevents the shared region having any dependence on X. This is the crux of why our spin lock example
requires an exclusive guard. An improved logic may be able to further refine the notion of stability or the
premises required for these rules to be more permissive, and therefore not require this exclusive guard
for the spinlock.

Modifications to proof rules A number of the Hoare proof rules may be stronger than strictly
necessary. For example, seq, which can only conclude a Hoare triple from the specifications of C1 and
C2 should be modifiable to accommodate for atomic actions.

(Seq’.1)

Φ, λ,A ⊢

A

x ∈ X. ⟨ Ph | Pa(x) ⟩ C1 ∃y. ⟨ R(x, y) | Qa(x, y) ⟩
Φ, λ,A ⊢ { R(x, y) } C2 { Qh(x, y) }

Φ, λ,A ⊢

A

x ∈ X. ⟨ Ph | Pa(x) ⟩ C1 ; C2 ∃y. ⟨ Qh(x, y) | Qa(x, y) ⟩

(Seq’.2)
Φ, λ,A ⊢ { P } C2 { R } Φ, λ,A ⊢

A

x ∈ X. ⟨ R | Pa(x) ⟩ C1 ∃y. ⟨ Qh(x, y) | Qa(x, y) ⟩
Φ, λ,A ⊢

A

x ∈ X. ⟨ Ph | Pa(x) ⟩ C1 ; C2 ∃y. ⟨ Qh(x, y) | Qa(x, y) ⟩

Specifically, if an atomic action occurs in exactly one of the commands, we should be able to conclude some
atomic action of the sequenced command. I believe this should be possible without requiring extension
to the semantic model but may require additional premises for soundness.

A similar idea could be applicable to parallel, in which an atomic action occuring in exactly one
of the threads can be used to justify an atomic action when viewing the system as both threads. Again,
this should be possible without requiring extension to the semantic model, but the complexity of the
soundness of par is such that it would be harder to certain of its correctness without a mechanization.

Helping One more complex concurrency which some other modern separation logics can verify is help-
ing, when the atomic action is completed by some other thread, without necessarily being directly caused
by the thread which requires the atomic action. It can even be the case that the thread which takes
the atomic action is nondeterministic. An easily digestible example of this pattern is in a ticket lock,
where threads wishing to lock the ticketlock will “take a ticket” (increment a next counter), and then wait
until some other threads updates the ownership of the lock to match the ticket. The primary reason this
is impossible in TaDA (and TaDA 2.0) is that the atomicity rules are designed in such a way that the
linearisation point is directly connected to the implementation, and not transferable in any way to other
threads. [20] outlines in Chapter 8 how TaDA (and TaDA 2.0) may be extensible to helping, requiring
an overhaul of the atomicity tracking resource to be transferable between threads.

Mechanization I believe TaDA 2.0 is precisely stated enough for the definitions and soundness to be
mechanizable. This would also allow our examples to be computer verified.

Different memory models The hybrid specifications allow for us to specify the same functional
behaviour at different levels of atomicity. Using read as an example, the following rules have different
semantics: the first asserts that the operation happens atomically with the update to the store and heap
at the same time, while the second asserts only that the heap operation happens atomically and third
simply that it happens.

A

n ∈ N. ⟨x = x | E 7→ n⟩ x := [E] ∃y. ⟨emp | x = n ⋆ E[x/x] 7→ n⟩

A

n ∈ N. ⟨x = x | E 7→ n⟩ x := [E] ∃y. ⟨x = n | E[x/x] 7→ n⟩

A

n ∈ N. ⟨x = x ⋆ E 7→ n | emp⟩ x := [E] ∃y. ⟨x = n ⋆ E[x/x] 7→ n | emp⟩
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As discussed earlier in this project, the TaDA 2.0 rules provided for read, cas and fas correspond to
the second atomicity abstraction here. The original TaDA paper conjectures that these ideas could be
extended for proof systems modelling weaker memory models such as TSO, and to my knowledge has not
been explored.
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Appendix A

Additional Definitions

Notation A.1. Write f : X ⇀ Y for a partial function, and f : X ⇀f Y for a finite partial function.

mod(skip) = ∅
mod(x := E) = {x}

mod([E1] := E2) = ∅
mod(x := CAS(E1, E2, E3)) = {x}

mod(x := FAS(E1, E2)) = {x}
mod(x := new(E)) = {x}
mod(dispose(E)) = ∅

mod(C1 ; C2) = mod(C1) ∪mod(C2)

mod(C1 || C2) = mod(C1) ∪mod(C2)

mod(var x = E in C) = mod(C) \ {x}
mod(if (B) C1 else C2) = mod(C1) ∪mod(C2)

mod(while (B) C) = mod(C)
mod(y := f (⃗x)) = {y}

mod(let f(E) = C1 in C2) = mod(C2)

pvB(b) = ∅
pvB(¬B) = pvB(B)

...

pvE(v) = ∅
pvE(x) = {x}

...

pvB(v) = {v}
pvB(B1 ∧ B2) = pvB(B1) ∪ pvB(B2)

...

pvE(E1 + E2) = pvE(E1) ∪ pvE(E2)

pvE(E1 − E2) = pvE(E1) ∪ pvE(E2)

...

pvC(skip) = ∅
pvC(x := E) = {x} ∪ pvE(E)

pvC([E1] := E2) = pvE(E1) ∪ pvE(E2)

pvC(x := CAS(E1, E2, E3)) =

{x}∪pvE(E1) ∪ pvE(E2) ∪ pvE(E3)

pvC(x := FAS(E1, E2)) = {x} ∪ pvE(E1) ∪ pvE(E2)

pvC(x := new(E)) = {x} ∪ pvE(E1)

pvC(dispose(E)) = pvE(E)

pvC(C1 ; C2) = pvC(C1) ∪ pvC(C2)

pvC(C1 || C2) = pvC(C1) ∪ pvC(C2)

pvC(var x = E in C) = pvE(E) ∪ (pvC(C) \ {x})
pvC(if (B) C1 else C2) =

pvB(B) ∪ pvC(C1) ∪ pvC(C2)

pvC(while (B) C) = pvB(B) ∪ pvC(C)
pvC(y := f(E)) = {y} ∪ pvE(E)

pvC(let f(E) = C1 in C2) = pvC(C2)

Let the right-biased union of two partial functions σ1 ◁ σ2 be

σ1 ◁ σ2(x) =

{
σ2(x), x ∈ dom(h)

σ1(x), otherwise

Modification to a right biased union is defined to be

(σ1 ◁ σ2)[x 7→ v] =

{
(σ1[x 7→ v]) ◁ σ2, x ∈ dom(σ1) ∧ x ̸∈ dom(σ2)

σ1 ◁ (σ2[x 7→ v]), otherwise
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Definition A.0.1 (Program Expression Evaluation). Define J·K· : (PExp ⊎ PBExp)× PStore → Val

JtrueKσp
= True

JfalseKσp
= False

J¬BKσp
= ¬JBKσp

JE1 ≤ E2Kσp
= JE1Kσp

≤ JE2Kσp

...

JvKσp
= v

JxKσp
= σp(x)

JE1 + E2Kσp
= JE1Kσp

+ JE2Kσp

JE1 − E2Kσp
= JE1Kσp

− JE2Kσp

...

Definition A.0.2 (Expression Evaluation). Define J·K· : (LExp ⊎ LBExp)× Store → AVal

JtrueKσ = True
JfalseKσ = False
J¬BKσ = ¬JBKσ

JE1 ≤ E2Kσ = JE1Kσ ≤ JE2Kσ
...

JvKσ = v

JxKσ = σ(x)

JxKσ = σ(x)

JE1 + E2Kσ = JE1Kσ + JE2Kσ
JE1 − E2Kσ = JE1Kσ − JE2Kσ

...
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Appendix B

Operational Semantics

σ, h, skip
loc−−→φ σ, h,✓ σ, h, x := E

loc−−→φ σ[x 7→ JEKσ], h,✓

JE1Kσ ∈ dom(h)

σ, h, [E1] := E2
loc−−→φ σ, h[JE1Kσ 7→ JE2Kσ],✓

JEKσ ∈ dom(h)

σ, h, x := [E]
loc−−→φ σ[x 7→ h(JEKσ)], h,✓

JE1Kσ ∈ dom(h) h(JE1Kσ) ̸= JE2Kσ

σ, h, x := CAS(E1, E2, E3)
loc−−→φ σ[x 7→ 0], h,✓

JE1Kσ ∈ dom(h) h(JE1Kσ) = JE2Kσ

σ, h, x := CAS(E1, E2, E3)
loc−−→φ σ[x 7→ 1], h[JE1Kσ 7→ JE3Kσ],✓

JE1Kσ ∈ dom(h)

σ, h, x := FAS(E1, E2)
loc−−→φ, σ[x 7→ h(JE1Kσ)], h[JE1Kσ 7→ JE2Kσ],✓

i = JEKσ i > 0 {x, ..., x+ i− 1} ∩ dom(h) = ∅
h′ = h[x 7→ v0, ..., x+ i− 1 7→ vi−1]

σ, h, x := new(E)
loc−−→φ σ[x 7→ x], h′,✓

JEKσ ∈ dom(h)

σ, h, dispose(E)
loc−−→φ σ, h[JEKσ 7→ ⊥],✓

σ, h,C1
loc−−→φ σ′, h′,C′

1

σ, h,C1 ; C2
loc−−→φ σ′, h′,C′

1 ; C2 σ, h,✓ ; C2
loc−−→φ σ, h,C2

σ, h,C1
loc−−→φ σ′, h′,C′

1

σ, h,C1 || C2
loc−−→φ σ′, h′,C′

1 || C2

σ, h,C2
loc−−→φ σ′, h′,C′

2

σ, h,C1 || C2
loc−−→φ σ′, h′,C1 || C′

2 σ, h,✓ || ✓ loc−−→φ σ, h,✓ σ, h, var x = E in ✓
loc−−→φ σ, h,✓

σ[x 7→ JEKσ], h,C
loc−−→φ σ′, h′,C′

σ, h, var x = E in C loc−−→φ σ′[x 7→ σ(x)], h′, var x = σ′(x) in C′

JBKσ

σ, h, if (B) C1 else C2
loc−−→φ σ, h,C1

¬JBKσ
σ, h, if (B) C1 else C2

loc−−→φ σ, h,C2

¬JBKσ
σ, h, while (B) C loc−−→φ σ, h,✓

JBKσ

σ, h, while (B) C loc−−→φ σ, h,C ; while (B) C

σ, h,C2
loc−−→φ′ σ′, h′,C′

2 φ′ = φ[f 7→ (⃗x,C1)]

σ, h, let f (⃗x) = C1 in C2
loc−−→φ σ′, h′, let f (⃗x) = C1 in C′

2

σ, h, let f (⃗x) = C1 in ✓
loc−−→φ σ, h,✓

φ(f) = (⃗x,C)

σ, h, y := f (⃗E)
loc−−→φ σ, h, var ret = 0 in (var x⃗ = E⃗ in C ; y := ret)

Figure B.1: Operational Semantics - Local steps (success cases)
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JE1Kσ ̸∈ dom(h)

σ, h, [E1] := E2
loc−−→φ  

JEKσ ̸∈ dom(h)

σ, h, x := [E]
loc−−→φ  

JE1Kσ ̸∈ dom(h)

σ, h, x := CAS(E1, E2, E3)
loc−−→φ  

JE1Kσ ̸∈ dom(h)

σ, h, x := FAS(E1, E2)
loc−−→φ  

JEKσ ̸∈ dom(h)

σ, h, dispose(E)
loc−−→φ  

σ, h,C1
loc−−→φ  

σ, h,C1 ; C2
loc−−→φ  

σ, h,C1
loc−−→φ  

σ, h,C1 || C2
loc−−→φ  

σ, h,C2
loc−−→φ  

σ, h,C1 || C2
loc−−→φ  

σ[x 7→ JEKσ], h,C
loc−−→φ  

σ, h, var x = E in C loc−−→φ  

σ, h,C2
loc−−→φ′  φ′ = φ[f 7→ (⃗x,C1)]

σ, h, let f (⃗x) = C1 in C2
loc−−→φ  

f ̸∈ dom(φ)

σ, h, y := f (⃗E)
loc−−→φ  

Figure B.2: Operational Semantics - Local steps (failure cases)

c
env−−→φ  σ, h,C env−−→φ σ, h′,C

Figure B.3: Operational Semantics - Environment steps
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Appendix C

Lemmas

Lemma (4.5 Frame-preserving updates can be augmented with stable worlds). For A ∈ AContext,
r, p, q ∈ World

↑
A, h0, h1 ∈ Heap

if A |= r stable and (h0, h1) |=λ,A p _ q

then (h0, h1) |=λ,A p ∗ r _ q ∗ r

Proof. Take A ∈ AContext,
r, p, q ∈ World

↑
A, h0, h1 ∈ Heap arbitrary and assume A |= r stable. Take f ∈ V iewA and assume

h0 ∈ Jp ∗ r ∗ fKλ. As stability is closed under world composition, find that r ∗ f ∈ V iewA. Application of
the second premise yields h1 ∈ Jq ∗ r ∗ fKλ.

Lemma (5.1 Specifications of skip). Let S ∈ Spec and Φ ∈ FSpec. The following holds:

if |=Φ skip : S
then ∀v ∈ X,∃v′ ∈ AVal. λ,A |= Ph ⋆ Pa(v)⇛ Qh(v, v

′) ⋆ Qa(v, v
′).

Proof. Take S arbitrary and assume |=Φ skip : S. Take φ ∈ FImpl, σ ∈ Store, h ∈ Heap arbitrary such
that |= φ : Φ and denote by σp, σl the PStore and LStore components such that σ = σp◦σl. It’s clear that
(σp, h, skip)loc(σp, h,✓) ∈ JskipKφ from the operational semantics. Take v ∈ X, f ∈ V iewA arbitrary
and assume h0 ∈ JWJPhKσA ∗WJPa(v)Kσl

A ∗fKλ. Thus h ∈ Jph ∗pa(v)∗TrueAKλ where ph = WJPhKσ◦σl

A and
pa = λx. WJPa(x) ⋆ x ∈ XKσl

A and from |=Φ skip : S find that (σ, h, skip)loc(σ, h,✓) ∈ JSK and therefore
∃S. (σ, h, skip)loc(σ, h,✓) |=S σl, (ph, pa, v), S. Upon examination of the trace safety judgement, find that
it must be an application of LinPt which concludes this (as otherwise we cannot meet the condition that
linearisation must have happened by termination in the Stutter rule). Therefore from the premises, it must
be that as the final Conf concludes in a ✓, that (h, h) |=λ,A ph ∗ pa(v) _ WJQh(v, v

′)KσA ∗WJQa(v, v
′)KσA

and so from f ∈ V iewA, conclude h ∈ JWJQh(v, v
′)KσA ∗WJQa(v, v

′)KσA ∗ fK and thus we have found some
v′ such that λ,A |= Ph ⋆ Pa(v)⇛ Qh(v, v

′) ⋆ Qa(v, v
′).

Lemma (6.1 Suffices to consider traces beginning with a local step). Let C ∈ Cmd,S ∈ Spec and
φ ∈ FImpl such that |= φ : Φ. The following holds:

if (∀ ((σ0, h0,C) s0 τ) ∈ JCKφ. if s0 = loc then τ ∈ JSK)
then (∀τ ∈ JCKφ. τ ∈ JSK)

Proof. Take C,S, φ arbitrary and assume ∀τ ∈ JCKφ. s0 = loc =⇒ τ ∈ JSK. Take τ ∈ JCKφ arbitrary.
We induct on the number of initial environment steps. Obviously if the first step of τ is a local step, then
the result is given by the assumption. Let’s assume that for n initial environment steps the result holds.
Take τ ∈ JCKφ arbitrarily except that the first n + 1 steps must be environment steps and the n + 2’th
step must be a local step. Take σl, v arbitrary and assume h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ, where h0 is the
first heap of τ and ph, pa are as in the definition of JSK. We need to show that ∃S. τ |=S σl, (ph, pa, v), S.
By construction τ = (σ, h0,C)env(σ, h1,C)τ ′, where τ ′ begins with no more than n environment steps, so
τ ′ ∈ JSK. We aim to apply Env and the inductive hypothesis to give us the result. In particular, we need
to check that ∀v′ ∈ X, . E(v′) =⇒ ∃S′

v. (σ, h1,C)τ ′ |=S σl, (ph, pa, v
′), Sv′ . So take v′ ∈ X arbitrary and

assume E(v′), that is, that ∃pe, p′e such that

h0 ∈ Jph ∗ pa(v) ∗ peK (C.1)
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(h0, h1) |=λ,A pa(v) ∗ pe _ pa(v
′) ∗ p′e (C.2)

From C.1, C.2, and ph ∈ V iewA, deduce that h1 ∈ Jph ∗ pa(v
′) ∗ p′eKλ ⊆ Jph ∗ pa(v

′) ∗ TrueAKλ and so
from (σ, h1,C)τ ′ ∈ JSK and the stores not changing in environment steps, we find some Sv′ such that
(σ, h1,C)τ ′ |=S σl, (ph, pa, v), Sv′ . Finally, we have satisfies the premises of Env, and so we can find S
such that τenvC |=S σl, (ph, pa, v), S.

Lemma (6.2 Trace safety is closed under appending env steps). Let S ∈ Spec, τ env C ∈ Trace, σl ∈
LStore and (ph, pa, v) ∈ SState. The following holds:

if τ |=S σl, (ph, pa, v), S

then ∃S′. τ env C |=S σl, (ph, pa, v), S
′

Proof. Take S, τenvC ∈ Trace, σl, (ph, pa, v) arbitrary and assume τ |=S σl, (ph, pa, v), S. We aim to show
∃S′. τenvC |=S σl, (ph, pa, v), S

′ by induction on the structure of the trace safety judgement.

• Case: Term Assume ∃S. τ |=S σl, (ph, pa, v), S by an application of Term, i.e. τ = (σ, h,C), and
S = {(ph, pa, v)}. If C =  , an application of Env finds (σ, h,C)env |=S σl, (ph, pa, v), ∅. If
C = (σ, h′,C), then Term finds ∀v′ ∈ X. (σ, h′,C) |=S σl, (ph, pa, v

′), {(ph, pa, v′)}, and then Env or
Env’ finds (σ, h,C)env(σ, h′,C) |=S σl, (ph, pa, v), S.

• Case: Stutter, LinPt These cases are straightforward application of the inductive hypothesis - I
do the Stutter case explicitly. Assume ∃S. τ |=S σl, (ph, pa, v), S by an application of Stutter, i.e. τ =
(σ1, h1,C1)loc(σ2, h2,C2)τ

′. From the premises of Stutter, find that (h1, h2) |=λ,A ph ∗pa(v) _ p′h ∗
pa(v), C2 = ✓ =⇒ p′h = WJQh(v)Kσ2◦σl

A ∧ v ∈ AVal× AVal, and (σ2, h2,C2)τ
′ |=S σl, (p

′
h, pa, v), S.

From the inductive hypothesis, find that ∃S′. (σ2, h2,C2)τ
′envC |=S σl, (p

′
h, pa, v), S

′ and from
Stutter we can stitch that straight back up to find for the same S′ that τenvC |=S σl, (p

′
h, pa, v), S

′.

• Case: Env, Env’ These are also straightforward application of the inductive hypothesis - I do the
Env’ case. Assume ∃S. τ |=S σl, (ph, pa, ⟨v, v′⟩), S by an application of Env’, i.e.
τ = (σ, h1,C)env(σ, h2,C)τ ′. From the premises of Env’, find that if ∃pe, p′e such that h1 ∈ Jph ∗
peKλ ∧ (h1, h2) |=λ,A pe _ p′e then (σ, h2,C)τ ′ |=S σl, (ph, pa, ⟨v, v′⟩), S and otherwise S = ∅. Apply
the inductive hypothesis to the first case to find ∃S′. (σ, h2,C)τ ′envC |=S σl, (ph, pa, ⟨v, v′⟩), S′ and
then reapply Env’ to find ∃S′. τenvC |=S (ph, pa, ⟨v, v′⟩), S′.

• Case: Env Assume ∃S. τ |=S σl, (ph, pa, v), S by an application of Env , i.e. τ = (σ, h,C)env τ ′.
Then (σ, h,C)env τ ′envC |=S σl, (ph, pa, v), ∅ also by an application of Env .

Lemma (6.3 Semantics of sequenced commands). For C1,C2 ∈ Cmd, φ ∈ FImpl,

JC1 ; C2Kφ = JC1Kφ; JC2Kφ

Proof. Take C1,C2, φ arbitrary. It’s clear that every τ ∈ JC2Kφ begins with (_,_C2) so the sequencing
is well-defined. I prove both inclusions.
JC1 ; C2Kφ ⊆ JC1Kφ; JC2Kφ. Induct on τ ∈ JC1 ; C2Kφ. There are 2 relevant rules from the operational
semantics:

(σ, h,C1)
loc−−→φ (σ, h,C′

1)

(σ, h,C1 ; C2)
loc−−→φ (σ, h,C′

1 ; C2)
(1)

(σ, h,✓ ; C2)
loc−−→φ (σ, h,C2)

(2)

Let’s begin with some τ = (σ, h,C1 ; C2), i.e. no steps have been taken. Then for τ ′ = (σ, h,C1) ∈ JC1Kφ,
τ = τ ′;C2

∈ JC1Kφ;C2 ⊆ JC1Kφ; JC2Kφ. Now consider τ ∈ JC1Kφ of length 1, i.e. rule (1) has been used.
Then τ = (σ, h,C1 ; C2)loc(σ, h,C1 ; C2), where τ ′ = (σ, h,C1)loc(σ, h,C′

1) ∈ Traceφ. Then clearly
τ = τ ′;C2

, so τ ∈ JC1Kφ; JC2Kφ.
Now consider τsi(σi, hi,Ci) where the final step is justified by (2). From the induction hypothesis, we
find τ ∈ JC1Kφ; JC2Kφ and that in both cases τ ∈ JC1Kφ;C2 , i.e. ∃τ ′ ∈ JC1Kφ. τ = τ ′;C2

. In the (2) case, we
find that Ci = C′

i ; C2, and therefore from the premise of (2) that τsi(σi, hi,Ci) = (τ ′si(σ, h,C′
i));C2 ∈

JC1Kφ;C2
⊆ JC1Kφ; JC2Kφ.

There are two more cases to consider: τsi(σi, hi,Ci), where Ci is no longer a sequencing construct,
i.e. C1 has terminated, and environment steps. In the first, τ is divisible into τ1 ∈ JC1Kφ;C2

and
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τ2 ∈ JC2Kφ such that τ = τ1; τ2, and it’s clear therefore that τ2si(σi, hi,Ci) ∈ JC2Kφ so we are done. For
environment steps, again it’s clear that if τenv(σi, hi,Ci), then this final step can be justifiably sequenced
onto τ ∈ JC1Kφ; JC2Kφ regardless of which case is used to justify membership.

JC1Kφ; JC2Kφ ⊆ JC1 ; C2Kφ direction is obvious.

Lemma (6.4 Terminated traces satisfying precondition satisfy postcondition). Let τ ∈ Trace, S ∈
Spec, σl ∈ LStore, ph ∈ V iewA and v ∈ X. Then, for pa = λx. WJPa(x)Kσl

A and qh = WJQhK
σi+1◦σl

A ,
following holds:

if h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ and ∃S. (S is nonempty and τ |=S σl, (ph, pa, v), S) and
τ = τ ′(hi, σi,Ci)si(hi+1, σi+1,✓) then hi+1 ∈ Jqh ∗ TrueAKλ.

Proof. Take τ,S, σl, v arbitrary and assume τ = τ ′(hi, σi,Ci)si(hi+1, σi+1,✓), ∃S. τ |=S σl, (ph, pa, v), S
and h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ. Proceed by induction on the length of τ ′:
Consider τ ′ = (σ0, h0,C0) a single state. From our assumptions, ∃S. τ |= σl, (ph, pa, v), S and by definition
of the trace safety judgement, it must be that S = {(p′h, pa, v)}, for some p′h. Regardless of whether Stutter
or LinPt is used to get the safety result, the premise of the rule is that (hi, hi+1) |=λ,A ph ∗ EmpA _
p′h ∗ EmpA and therefore from the initial assumption on h0 we find that hi+1 ∈ Jp′h ∗ TrueAK. As τ ends
with ✓, that p′h = qh.
So let τ ′ = (σ0, h0,C)s0(σ1, h1,C1)τ

′′, where the result holds for (σ1, h1,C1)τ
′′si(hi+1, σi+1,✓). If s0 =

env, ∃S. τ |=S σl, (ph, pa, v), S is either an application of Env or Env’, in either case, the premises of the
proof rule and S nonempty find (σ1, h1,C1)τ

′′si(hi+1, σi+1,✓) |=S σl, (ph, pa, v
′), S in precisely the cases

for which ∃pe, p′e. h0 ∈ Jph ∗ pa(v) ∗ peK ∧ (h0, h1) |=λ,A pa(v) ∗ pe _ pa(v
′) ∗ pe in the case of Env (and

there exists such a case), or v = v′ and ∃pe, p′e. h0 ∈ Jph ∗peKλ∧(h0, h1) |=λ,A pe _ pe in the case of Env’.
In either, we find the necessary premises to apply the inductive hypothesis and find hi+1 ∈ Jqh ∗TrueAKλ.
If s0 = loc, then the safety judgement is by an application of either Stutter or LinPt, and similarly to
in the τ ′′ is a single state case, the frame-preserving update premise and the assumption on h0 provide
exactly what we need to apply the inductive hypothesis and find hi+1 ∈ Jqh ∗ TrueAKλ.

Lemma (6.5 Safety of concatenated traces). For C1,C2 ∈ Cmd, P,Q,R ∈ Assert, φ ∈ FImpl such that
|= φ : Φ, τ ∈ JC1Kφ; JC2Kφ, if |=Φ C1 : S1 and |=Φ C2 : S2, where

S1 =

A

x ∈ AVal. ⟨ P | emp ⟩ · ∃y. ⟨ R | emp ⟩λ,A
S2 =

A

x ∈ AVal. ⟨ R | emp ⟩ · ∃y. ⟨ Q | emp ⟩λ,A

then τ ∈ JSK, where
S =

A

x ∈ AVal. ⟨ P | emp ⟩ · ∃y. ⟨ Q | emp ⟩λ,A
Proof. Take C1,C2, P,Q,R, φ, τ ∈ JC1Kφ; JC2Kφ arbitrary and assume |=Φ C1 : S1, |=Φ C2 : S2. In the
case τ ∈ JC1K;C2 , the assumption |=Φ C1 : S1 directly gives some S such that τ |=S1 σl, (ph, pa, v), S.
As S and S1 differ only in their postcondition, an induction on the trace safety judgement allows us to
immediately conclude that τ |=S σl, (ph, pa, v), S (we know τ does not terminate which is the only place
we use the Hoare postcondition in the trace safety judgement).

So let’s consider the case τ ∈ { τ1; τ2 | τ1 ∈ T1, τ2 ∈ T2, τ1; τ2 ̸= ⊥ }, i.e. find some τ1 ∈ JC1Kφ,
τ2 ∈ JC2Kφ such that τ = τ1; τ2. Proceed by induction on the length of τ1. Take σl, v arbitrary and
assume h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ for ph = WJP Kσ0◦σl

A and pa = λx. EmpA. We need to show ∃S. τ |=S
σl, (ph, pa, v), S.
τ1 must have a local step, as τ1 ∈ JC1Kφ and terminates.
For τ1 = (σ0, h0,C1)loc(σ1, h1,✓), from the hypotheses find τ1 |=S1 σl, (ph, pa, v), S1, by LinPt and then
Term, with S1 = {(rh, pa, ⟨v, v⟩)}. The premises of LinPt, the assumption on h0 and Lemma 6.4 tell
us that h1 ∈ Jrh ∗ TrueAKλ where rh = WJRKσi◦σl

A . Again from the sequencing connective, we know
τ2’s initial state is (σ1, h1,C2). We have just verified that h1 satisfies the precondition of S2, so from
|=Φ C2 : S2, find some S2 such that τ2 |=S2 σl, (rh, pa, v), S2. As S and S2 differ only in the precondition,
find that τ2 |=S σl, (rh, pa, v

′), S2. We can use Stutter to check (σ1, h1,✓;C2)locτ2 |=S σl, (rh, pa, v)S2:
as this step makes no modification to the store or heap (by the operational semantics), the premises of
Stutter are trivially satisfied. The premises of LinPt on τ1 suffice to apply Stutter a second time and find
(σ0, h0,C1;C2)loc(σ1, h1,✓;C2)τ2 = τ1; τ2 |=S σl, (ph, pa, v), S2.
For τ1 = (σ0, h0,C1)loc(σ1, h1,✓)τ ′ with τ ′ only having environment steps, we induct on the number
of environment steps to show ∃S. (σ1, h1,✓)τ ′; τ2 |=S σl, (rh, pa, v), S. The case of τ ′ with no steps is
by application of Stutter to τ2 |=S σl, (rh, pa, v), S to give (σ1, h1,✓ || C2)locτ2 |=S σl, (rh, pa, v), S,
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as from the definition of the sequencing operator we have the heap does not change in this step, so
(h1, h1) |=λ,A rh ∗ pa(v) _ rh ∗ pa(v), and clearly this step is not terminating. For (σ1, h1,✓)τ ′ =
(σ1, h1,✓)env(σ1, h2,✓)τ ′′, the inductive hypothesis gives us ∀v′,∃S. (σ1, h2,✓)τ ′′ |=S (rh, pa, v

′), S.
Immediately, we can apply Env to yield ∃S′. (σ1, h1,✓)env(σ1, h2,✓)τ ′′ |=S (rh, pa, v

′), S′. Finally, as in
the case with no env steps, an application of Stutter will allow us to deduce
(σ0, h0,C1)loc(σ1, h1,✓)env(σ1, h2,✓)τ ′′ |=S (ph, pa, v), S

′ with the premises immediately transferable
from the construction of (σ0, h0,C1)loc(σ0, h0,✓) |=S1 σl, (ph, pa, v), S

′.
For τ1 = (σ0, h0,C1)loc(σ1, h1,C′

1)τ
′, find τ1 |=S1 σl, (ph, pa, v), S1 is by either Stutter or LinPt. From

the premises and the inductive hypothesis, (σ1, h1,C′
1)τ

′; τ2 |=S σl, (p
′
h, pa, v), S2. As C′

1;C2 cannot be
✓ and pa(v) = WJQa(v, v)Kσl

A , the premises of Stutter are immediately applicable to find τ1; τ2 |=S
σl, (ph, pa, v), S2.

For τ1 = (σ0, h0,C1)env(σ0, h1,C1)τ
′, find τ1 |=S1 σl, (ph, pa, v), S1 is by either Env or Env’. In the

Env case, the premises tell us for E(v′) ≜ h0 ∈ Jph ∗ pa(v) ∗ peKλ ∧ (h0, h1) |=λ,A pa(v) ∗ pe _ pa(v
′) ∗ p′e

that E(v′) =⇒ ((σ0, h1,C1)τ
′) |=S1 σl, (ph, pa, v

′), Sv′ . For each v′ such that E(v′), the inductive
hypothesis tells us that ∃Sv′ . ((σ0, h1,C1)τ

′); τ2 |=S σl, (ph, pa, v
′), Sv′ thus we can reapply Env to find

∃S. τ |=S σl, (ph, pa, v), S.
In the Env’ case the premises tell us that if ∃pe, p′e such that h0 ∈ Jph ∗ peKλ ∧ (h0, h1) |=λ,A pe _ p′e
then (σ0, h1,C1)τ

′ |=S1 σl, (ph, pa, v), S1 else S1 = ∅. As pa = λx. EmpA, this is precisely equivalent
to E(v′) ≜ h0 ∈ Jph ∗ pa(v) ∗ peKλ ∧ (h0, h1) |=λ,A pa(v) ∗ pe _ pa(v

′) ∗ p′e. So we find from the
inductive hypothesis that E(v′) =⇒ ((σ0, h1,C1)τ

′); τ2 |=S σl, (ph, pa, v
′), Sv′ (and that either ∀v′. E(v′)

or ∀v′. ¬E(v′)). Application of Env gives us ∃S. τ1; τ2 |=S σl, (ph, pa, v), S.

Lemma (6.6). For φ ∈ FImpl,C ∈ Cmd, τ ∈ Trace,

τ(σ0, h0,C0)s0(σ1, h1,C1) ∈ JCKφ =⇒ ∀x ∈ PVar \mod(C). σ0(x) = σ1(x)

Proof. Take φ,C, τ arbitrary and assume τ(σ0, h0,C0)s0(σ1, h1,C1) ∈ JCKφ. Take x ∈ PVar \ mod(C)
arbitrary and proceed by induction on the operational semantics. Of the base cases, there are 5 of
which change the store (assignment, read, CAS, FAS and alloc), for which the only variables changed
are those in mod(C). Of the inductive cases, all are trivial application of the inductive hypothesis
except for the var rule. In the case of var, the variables which may change from σ0 to σ1 is a subset of
{ y | y ∈ mod(C′) ∧ y ̸= x } of the inner command, but given the definition of mod(var x = E in C′),
this implies that x for which σ0(x) ̸= σ1(x) is such that x ∈ mod(C).

Lemma (6.7 Semantics of parallel commands is bowtie of semantics of each command).

∀C1,C2 ∈ Cmd, φ ∈ FImpl. JC1 || C2Kφ ⊆ JC1Kφ ▷◁ JC2Kφ

Proof. Take τ ∈ JC1 || C2Kφ arbitrary. We need to find τ1, τ2 such that τ = τ1 ▷◁ τ2. We proceed by
induction on the length of τ .
For τ of only one configuration, it’s clear from JC1 || C2Kφ that τ = (σ, h,C1 || C2). Then (σ, h,C1)
and (σ, h,C2) are in the semantics of C1 and C2 respectively, and that (σ, h,C1) ▷◁ (σ, h,C2) = τ .
For the inductive cases, consider separately when environment steps versus local steps are appended.
Begin with environment steps: take τ = τ ′(σ, h1,C′)env(σ, h2,C′). From the inductive hypothesis, find
τ1, τ2 such that τ ′(σ, h1,C′) = τ1 ▷◁ τ2. From the definition of ▷◁, find that τ1[−1] = (σ, h1, C1), τ2[−1] =
(σ, h1, C2) for some C1, C2 ∈ Cmd such that C′ = C1 || C2. Then it must be that τ1env(σ, h2, C1) ▷◁
τ2env(σ, h2, C2) = τ .
For local steps, take τ = τ ′(σ1, h1,C′)loc(σ2, h2,C′′). From Lemma 6.6 and the well-formedness condition
mod(C1 || C2) = ∅, we have that σ1 = σ2. Upon analysis of the operational semantics, it’s clear the
relevant cases are:

σ, h,C1
loc−−→φ σ′, h′,C′

1

σ, h,C1 || C2
loc−−→φ σ′, h′,C′

1 || C2

(1)
σ, h,C2

loc−−→φ σ′, h′,C′
2

σ, h,C1 || C2
loc−−→φ σ′, h′,C1 || C′

2

(2)

σ, h,✓ || ✓ loc−−→φ σ, h,✓
(3)

I do cases (1) and (3) - case (2) is identical to (1). From the inductive hypothesis, find τ1, τ2 such that
τ ′(σ1, h1,C′) = τ1 ▷◁ τ2. From the definition of ▷◁, find that τ1[−1] = (σ1, h1, C1), τ2[−1] = (σ1, h1, C2)
for some C1, C2 ∈ Cmd such that C′ = C1 || C2. In the case τ is constructed using (1), see that
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τ1loc(σ2, h2, C
′
1) ∈ JC1Kφ, from the premise of (1) and τ1 ∈ JC1Kφ, and see that C′′ = C ′

1 || C2.
Clearly τ2env(σ2, h2, C2) ∈ JC2Kφ as τ2 ∈ JC2Kφ and the final step is justified by an env step in the
operational semantics (as σ1 = σ2). By definition of ▷◁, τ1loc(σ2, h2, C

′
1) ▷◁ τ2env(σ2, h2, C2) = τ , so

τ ∈ JC1Kφ ▷◁ JC2Kφ.
Finally, we consider τ = τ ′(σ, h,✓ || ✓)loc(σ, h,✓). From the inductive hypothesis, find τ1, τ2 as usual
such that τ ′(σ, h,✓ || ✓) = τ1 ▷◁ τ2 and observe from the definition of ▷◁ that τi[−1] = (_,_,✓) for
i = 1, 2, and conclude that τ ∈ JC1Kφ ▷◁ JC2Kφ from the second construct of the definition of ▷◁ lifted to
sets.

Lemma (6.8 Safety of parallel traces). For τ1, τ2 ∈ Trace, v ∈ AVal′, σl ∈ LStore, S1, S2 ∈ P(SState),
p1h, p2h ∈ V iewA such that τ1 ▷◁ τ2 is well-defined and (τ1 ▷◁ τ2)[0] = (h,_,_),

if
(
τ1 |=S1 σl, (p1h, p1a, v), S1 and τ2 |=S2 σl, (p2h, p2a, v), S2 and

h ∈ Jp1h ∗ p2h ∗ p1a(v) ∗ p2a(v) ∗ TrueAKλ

)
then τ1 ▷◁ τ2 |=S σl, (p1h ∗ p2h, p1a ∗ p2a, v), S

where
S = { (q1h ∗ q2h, p1a ∗ p2a, v′) | (q1h, p1a, v′) ∈ S1 ∧ (q2h, p2a, v

′) ∈ S2 }

and p1a = p2a = λx.EmpA, and I also write p1a ∗ p2a to denote λx. p1a(x) ∗ p2a(x).

Proof. Take τ1, τ2 ∈ Trace, v ∈ AVal′, σl ∈ LStore, S1, S2 ∈ P(SState), p1h, p2h ∈ V iewA, p1h, p2h ∈
V iewA arbitrary, assume τ1 ▷◁ τ2 is well-defined, let it be τ and its first heap h, and assume

τ1 |=S1 σl, (p1h, p1a, v), S1 (C.3)

τ2 |=S2 σl, (p2h, p2a, v), S2 (C.4)

h ∈ Jp1h ∗ p2h ∗ p1a(v) ∗ p2a(v) ∗ TrueAKλ (C.5)

First consider the case τ = (σ, h, C). From the definition of ▷◁, find that τ1 = (σ, h, C1) and τ2 = (σ, h, C2)
where C = C1 || C2. From Term, conclude that τ |=S σl, (p1h ∗ p2h, p1a ∗ p2a, v), {(p1h ∗ p2h, p1a ∗
p2a, v)}. Equations C.3, C.4 must also be by an application of Term and thus S1 = {(p1h, p1a, v)},
S2 = {(p2h, p2a, v)}, giving the correct relation on S = {(p1h ∗ p2h, p1a ∗ p2a, v)}.

Next we examine separately the case the first step in τ is an environment step versus a local step.
For environment steps, assume τ = τ1 ▷◁ τ2 = (σ, h, C)env(σ, h′, C)τ ′ and therefore from the definition
of ▷◁ find that τ1 = (σ, h, C1)env(σ, h′, C1)τ

′
1 and τ2 = (σ, h, C2)env(σ, h′, C2)τ

′
2, C = C1 || C2 and

τ ′ = τ ′1 ▷◁ τ ′2. We split on whether v ∈ AVal or v ∈ AVal× AVal.
If v ∈ AVal, from C.3 and C.4 we have

∀v′ ∈ AVal. E(v′) =⇒ (σ, h′, C1)τ
′
1 |=S1 σl, (p1h, p1a, v

′), S1v′ (C.6)

∀v′ ∈ AVal. F (v′) =⇒ (σ, h′, C2)τ
′
2 |=S2 σl, (p2h, p2a, v

′), S2v′ (C.7)

where

E(v′) ≜ ∃p1e, p1′e. h ∈ Jp1h ∗ p1a(v) ∗ p1eKλ ∧ (h, h′) |=λ,A p1a(v) ∗ p1e _ p1a(v
′) ∗ p1′e

F (v′) ≜ ∃p2e, p2′e. h ∈ Jp2h ∗ p2a(v) ∗ p2eKλ ∧ (h, h′) |=λ,A p2a(v) ∗ p2e _ p2a(v
′) ∗ p2′e

Let

G(v′) ≜ ∃pe, p′e. h ∈ Jp1h ∗ p2h ∗ p1a(v) ∗ p2a(v) ∗ peKλ∧
(h, h′) |=λ,A p1a ∗ p2a(v) ∗ pe _ p1a(v

′) ∗ p2a(v′) ∗ p′e

Take v′ ∈ AVal arbitrary and assume G(v′). See that G(v′) =⇒ E(v′)∧F (v′) by in the first case taking
p1e = pe ∗ p2h ∗ p2a(v) and p1′e = pe ∗ p2h ∗ p2a(v′) and in the second p2e = pe ∗ p1h ∗ p1a(v) and p2′e =
pe ∗p1h ∗p1a(v′) - it is clear this yields the first conjunct of E(v′) and F (v′). As pia(v′) = EmpA ∈ V iewA
and pih ∈ V iewA, Lemma 4.5 gives the second conjunct of E(v′) and F (v′).
Therefore, from Equations C.6 and C.7, (σ, h′, C1)τ

′
1 |=S1 σl, (p1h, p1a, v

′), S1v′ and (σ, h′, C2)τ
′
2 |=S2

σl, (p2h, p2a, v
′), S2v′ . From the inductive hypothesis, conclude that

∀v′ ∈ AVal. G(v′) =⇒ ∃S′
v′ . (σ, h, C)τ ′ |=S σl, (p1h ∗ p2h, p1a ∗ p2a, v′), Sv′
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such that

∀v′ ∈ AVal. Sv′ = { (q1h ∗ q2h, p1a ∗ p2a, v) | (q1h, p1a, v) ∈ S1v′ ∧ (q2h, p2a, v) ∈ S2v′ } (C.8)

By application of Env, τ = τ1 ▷◁ τ2 |=S σl, (p1h ∗ p2h, p1a ∗ p2a, v), S where S =
⋃

∀v′∈X. G(v′) Sv′ .
Therefore, we have that

S ⊆ { (q1h ∗ q2h, p1a ∗ p2a, v) | (q1h, p1a, v) ∈ S1 ∧ (q2h, p2a, v) ∈ S2 } (C.9)

In order to check the other direction it is sufficient to check that E(v′) ∧ F (v′) =⇒ G(v′).
From E(v′) ∧ F (v′), i.e. find p1e, p1

′
e, p2e, p2

′
e such that

h ∈ Jp1h ∗ p1a(v) ∗ p1eKλ ∧ (h, h′) |=λ,A p1a(v) ∗ p1e _ p1a(v
′) ∗ p1′e

h ∈ Jp2h ∗ p2a(v) ∗ p2eKλ ∧ (h, h′) |=λ,A p2a(v) ∗ p2e _ p2a(v
′) ∗ p2′e

From C.5, we can find some pe such that

h ∈ Jp1h ∗ p1a(v) ∗ p2h ∗ p2a(v) ∗ peKλ

Therefore deduce that
p1e = p2h ∗ p2a(v) ∗ pe(= p2h ∗ pe)

p2e = p1h ∗ p1a(v) ∗ pe(= p1h ∗ pe)

with the second equality from p1a(v) = p2a(v) = EmpA. We need to show that

∃p′e. (h, h′) |=λ,A p1a(v) ∗ p2a(v) ∗ pe _ p1a(v
′) ∗ p2a(v′) ∗ p′e (C.10)

Given p1a(v) = p2a(v) = p1a(v
′) = p2a(v

′) = EmpA, it suffices to show ∃p′e. (h, h′) |=λ,A pe _ p′e, given
that from E(v′), F (v′) and our equations on the sets of worlds

(h, h′) |=λ,A p2h ∗ pe _ p1′e (C.11)

(h, h′) |=λ,A p1h ∗ pe _ p2′e (C.12)

Take f ∈ V iewA arbitrary such that h ∈ Jpe ∗ fKλ. From Equation C.5, f = p1h ∗ p2h. As p1h, p2h ∈
V iewA, from Equations C.11, C.12 deduce h′ ∈ Jp1′e ∗ p1hKλ and h′ ∈ Jp2′e ∗ p2hKλ. From the definition of
reification and world composition, we are free to separate p1′e = p′e ∗ p2h and p2′e = p′e ∗ p1h for some p′e,
precisely because from C.5 we know that p1h ∗ p2h is well-defined, and thus they are separable and have
no overlap. This p′e is precisely such which satisfies Equation C.10. From here, we are free to deduce that
Equation C.9 is an equality and we have the result.

In the case v ∈ AVal× AVal, it must have been from C.3 and C.4 that

if ∃p1e, p1′e. h ∈ Jp1h∗p1eKλ∧(h, h′) |=λ,A p1e _ p1′e then (σ, h′,C)τ ′1 |=S1 σl, (p1h, p1a, v), S1 else S1 = ∅
(C.13)

if ∃p2e, p2′e. h ∈ Jp2h∗p2eKλ∧(h, h′) |=λ,A p2e _ p2′e then (σ, h′,C)τ ′2 |=S2 σl, (p2h, p2a, v), S2 else S2 = ∅
(C.14)

We use these to prove

if ∃pe, p′e. h ∈ Jp1h∗p2h∗peKλ∧(h, h′) |=λ,A pe _ p′e then (σ, h′,C)τ |=S σl, (p1h∗p2h, p1a∗p2a, v), S2 else S2 = ∅
(C.15)

In particular, assume ∃pe, p′e. h ∈ Jp1h∗p2h∗peKλ∧(h, h′) |=λ,A pe _ p′e. Then as this implies the premises
of Equations C.13, C.14, find (σ, h′,C)τ ′1 |=S1 σl, (p1h, p1a, v), S1 and (σ, h′,C)τ ′2 |=S2 σl, (p2h, p2a, v), S2.
From the inductive hypothesis then, (σ, h′, C)τ ′ |=S σl, (p1h ∗ p2h, p1a ∗ p2a, v), S, where

S ⊆ { (q1h ∗ q2h, p1a ∗ p2a, v) | (q1h, p1a, v) ∈ S1 ∧ (q2h, p2a, v) ∈ S2 }

Now assume ¬(∃pe, p′e. h ∈ Jp1h ∗ p2h ∗ peKλ ∧ (h, h′) |=λ,A pe _ p′e). We need to check that this implies
S1 = ∅ ∨ S2 = ∅. from Equations C.13, C.14. This amounts to proving

(∃p1e, p1′e. h ∈ Jp1h ∗ p1eKλ ∧ (h, h′) |=λ,A p1e _ p1′e)∧
(∃p2e, p2′e. h ∈ Jp2h ∗ p2eKλ ∧ (h, h′) |=λ,A p2e _ p2′e) =⇒

(∃pe, p′e. h ∈ Jp1h ∗ p2h ∗ peKλ ∧ (h, h′) |=λ,A pe _ p′e)
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Given that p1a(v) = p2a(v) = p1a(v
′) = p2a(v

′) = EmpA this is exactly the statement E(v′) ∧ F (v′) =⇒
G(v′) which we proved in the previous case.

Consider the case that the first step of τ is a local step, that is, τ = (σ, h, C)loc(σ, h′, C ′)τ ′. We
know already from the definition of ▷◁ that the store may not change, and that as τ = τ1 ▷◁ τ2, either
this corresponds to a local step of τ1 or a local step of τ2. WLOG we consider the following scenario:
τ1 = (σ, h, C1)loc(σ, h′, C ′

1)τ
′
1, τ2 = (σ, h, C2)env(σ, h′, C2)τ

′
2 and therefore the following relations hold:

C = C1 || C2 and C ′ = C ′
1 || C2. Equation C.3 is either from an application of Stutter or LinPt - we

do the Stutter case, the LinPt case is completely analagous. Then,

(σ, h′, C ′
1)τ

′
1 |=S1 σl, (p1

′
h, p1a, v), S1 (C.16)

(h, h′) |=λ,A p1h ∗ p1a(v) _ p1′h ∗ p1a(v) (C.17)
C′

1 = ✓ =⇒ v ∈ AVal× AVal ∧ p1′h = WJQ1(v)Kσl◦σ
A (C.18)

and from hypothesis C.4 in the case v ∈ AVal Env gives,

E(v′) ≜ ∃pe, p′e. h ∈ Jp2h ∗ p2a(v) ∗ peKλ ∧ (h, h′) |=λ,A p2a(v) ∗ pe _ p2a(v
′) ∗ p′e

∀v′ ∈ AVal. E(v′) =⇒ (σ, h′, C2)τ
′
2 |=S2 σl, (p2h, p2a, v

′), Sv′ (C.19)

S1 =
⋃

v′∈AVal. E(v′)

Sv′

We aim to prove:

(σ, h′, C ′
1 || C2)τ

′ |=S σl, (p1
′
h ∗ p2h, p1a ∗ p2a, v), S (C.20)

S = { (q1h ∗ q2h, p1a ∗ p2a, v) | (q1h, p1a, v) ∈ S1 ∧ (q2h, p2a, v) ∈ S2 } (C.21)
(h, h′) |=λ,A p1h ∗ p2h ∗ p1a(v) ∗ p2a(v)_ p1′h ∗ p2h ∗ p1a(v) ∗ p2a(v) (C.22)
C ′

1 || C2 = ✓ =⇒ v ∈ AVal× AVal ∧ p1′h ∗ p2h = WJQ1 ∗Q2Kσl◦σ
A (C.23)

Clearly C ′
1 || C2 ̸= ✓ so premise C.23 is immediate. As p2a(v) = EmpA ∈ V iewA and p1h ∈ V iewA,

we can directly conclude that Equation C.17 implies C.22. It remains to show Equations C.20 and C.21.
Given C.5, we know that ∃pe. h ∈ Jp2h ∗ p2a(v) ∗ peK and furthermore that pe = p1h ∗ p1a(v). Equation
C.17 implies that h′ ∈ Jp1′h ∗ p2h ∗ p1a(v) ∗ p2a(v)Kλ (as p2h, p2a(v) ∈ V iewA). Thus E(v) holds and
by Equation C.19 find Sv such that (σ, h′, C2)τ

′
2 |=S2 σl, (p2h, p2a, v), Sv. From this, Equation C.16 and

the inductive hypothesis deduce Equations C.20 and C.22 hold - the equality of C.22 is given from the
necessity of matching the AVal’s.

In the case v ∈ AVal× AVal, Equation C.4 gives

if ∃pe, p′e. h ∈ Jp2h ∗ peKλ ∧ (h, h′) |=λ,A pe _ p′e then (σ, h′, C2)τ
′
2 |=S2 σl, (p2h, p2a, v), S2 else S2 = ∅

(C.24)

and again we aim to prove premises C.20, C.21, C.22 and C.23. As before, C.23 is immediate and Equa-
tion C.17 implies C.22. Equation C.5 allows us to take pe = p1h ∗ p1a(v) ∗ p2a(v) and C.23 implies that
for p′e = p1h ∗p1a(v)∗p2a(v) then h ∈ Jp2h ∗peKλ∧ (h, h′) |=λ,A pe _ p′e holds and thus by Equation C.24
(σ, h′, C2)τ

′
2 |=S2 σl, (p2h, p2a, v), S2. Find by the inductive hypothesis that Equations C.20 and C.21 hold.

Finally, Equations C.20, C.22 and C.23 give us the necessary premises to apply Stutter and conclude
that τ |=S σl, (p1h ∗ p2h, p1a ∗ p2a, v), S with S as in Equation C.21, for any v ∈ AVal′.

Lemma (6.9 Trace safety is closed under appending safe local steps). Let S ∈ Spec, f : SState →
V iewA, g : SState → AVal and τ(σ1, h1,C1) loc (σ2, h2,C2) ∈ Trace. The following hold:

1. if τ(σ1, h1,C1) |=S σl, (ph, pa, v), S and
∀(p′h, pa, v′) ∈ S. (h1, h2) |=λ,A p′h ∗ pa(v′) _ f(p′h, pa, v

′) ∗ pa(v′) and
(if C2 = ✓ then f(p′h, pa, v

′) = WJQh(v
′)Kσl◦σ2

A and v′ ∈ AVal× AVal)

then τ(σ1, h1,C1)loc(σ2, h2,C2) |=S σl, (ph, pa, v), { (f(p′h, pa, v
′), pa, v

′) | (p′h, pa, v′) ∈ S }

2. if τ(σ1, h1,C1) |=S σl, (ph, pa, v), S and
∀(p′h, pa, v′) ∈ S. (h1, h2) |=λ,A p′h ∗ pa(v′) _ f(p′h, pa, v

′) ∗WJQa(v, g(p
′
h, pa, v

′))Kσl

A and
(if C2 = ✓ then f(p′h, pa, v

′) = WJQh(v
′)Kσl◦σ2

A )

then τ(σ1, h1,C1)loc(σ2, h2,C2) |=S σl, (ph, pa, v), { (f(p′h, pa, v
′), pa, g(p

′
h, pa, v

′)) | (p′h, pa, v′) ∈ S }
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Proof. Many parts of this proof echo closely the proof of Lemma 6.2. When proceeding by induction on
the structure of the trace safety judgement I do explicitly here only the Term, Stutter and Env cases.
Take S, τ(σ1, h1,C1)loc(σ2, h2,C2) ∈ Trace, f : SState → V iewA arbitrary and assume that
τ(σ1, h1,C1) |=S σl, (ph, pa, v), S and that ∀(p′h, pa, v′) ∈ S. (h1, h2) |=λ,A p′h ∗ pa(v

′) _ f(p′h, pa, v
′) ∗

pa(v
′)∧C2 = ✓ =⇒ f(p′h, pa, v

′) = WJQh(v
′)Kσl◦σ2

A ∧v′ ∈ AVal×AVal. We aim to show τ(σ1, h1,C1)loc(σ2, h2,C2) |=S
σl, (ph, pa, v), { (f(p′h, pa, v

′), pa, v
′) | (p′h, pa, v′) ∈ S } by induction on the structure of the trace safety

judgement.

• Case: Term
Assume that τ(σ1, h1,C1) |=S σl, (ph, pa, v), S by an application of Term, i.e. we actually have
(σ1, h1,C1) |=S σl, (ph, pa, v), { (ph, pa, v) }. From the second assumption, if we let f(ph, pa, v) = p′h,
find by Term that (σ2, h2,C2) |=S σl, (p

′
h, pa, v), { (p′h, pa, v) } then (h1, h2) |=λ,A ph ∗ pa(v

′) _
p′h ∗ pa(v

′) ∧ C2 = ✓ =⇒ p′h = WJQh(v
′)Kσl◦σ2

A ∧ v′ ∈ AVal × AVal and thus by Stutter that
(σ1, h1,C1)loc(σ2, h2,C2) |=S σl, (ph, pa, v), {(p′h, pa, v)}.

• Case: Stutter
This is an immediate application of the inductive hypothesis. Assume that τ(σ1, h1,C1) |=S
σl, (ph, pa, v), S by an application of Stutter, that is, (σ0, h0,C0)locτ ′(σ1, h1,C1) |=S σl, (ph, pa, v), S.
Therefore, there is some p′h such that τ ′(σ1, h1,C1) |=S σl, (p

′
h, pa, v), S. An application of the in-

ductive hypothesis yields

τ ′(σ1, h1,C1)loc(σ2, h2,C2) |=S σl, (p
′
h, pa, v), { (f(p′h, pa, v

′), pa, v
′) | (p′h, pa, v′) ∈ S }

and then reapplying Stutter concludes

τ(σ1, h1,C1)loc(σ2, h2,C2) |=S σl, (ph, pa, v), { (f(p′h, pa, v
′), pa, v

′) | (p′h, pa, v′) ∈ S }

• Case: Env
This is also an immediate application of the inductive hypothesis. Assume that τ(σ1, h1,C1) |=S
σl, (ph, pa, v), S by an application of Env, that is, (σ0, h0,C0)envτ ′(σ1, h1,C1) |=S σl, (ph, pa, v), S.
The premises of Env give us that v ∈ AVal,

∀v′ ∈ X. E(v′) =⇒ τ ′(σ1, h1,C1) |=S σl, (ph, pa, v
′), Sv′ (C.25)

and the necessary relation between S and the Sv′s. We need to verify that

∀v′ ∈X. E(v′) =⇒
τ ′(σ1, h1,C1)loc(σ2, h2,C2) |=S σl, (ph, pa, v

′), { (f(p′h, pa, v
′), pa, v

′) | (p′h, pa, v′) ∈ Sv′ }

Take v′ ∈ X arbitrary and assume E(v′). From the premise, find Sv′ such that τ ′(σ1, h1,C1) |=S
σl, (ph, pa, v

′), Sv′ . Apply the inductive hypothesis to find that τ ′(σ1, h1,C1)loc(σ2, h2,C2) |=S
σl, (ph, pa, v

′), { (f(p′h, pa, v
′), pa, v

′) | (p′h, pa, v′) ∈ Sv′ } and we are done. Reapplying the Env rule
again and observing that our S is the union of each { (f(p′h, pa, v

′), pa, v
′) | (p′h, pa, v′) ∈ Sv′ }, we

get our result.

The second conjunct proceeds identically to the first.

Lemma (6.10 Safe terminated threads satisfy postcondition). Let τ(σn, hn,Cn) ∈ Trace, C ∈ Cmd, S ∈
Spec, φ, σl ∈ LStore, v ∈ X and S ∈ P(SState). The following holds:

if τ(σn, hn,Cn) ∈ JCKφ and Cn = ✓ and τ(σn, hn,Cn) |=S σl, (ph, pa, v), S

then ∀(p′h, pa, v′) ∈ S. p′h = WJQh(v
′)Kσn◦σl

A and v′ ∈ AVal× AVal

Proof. Take τ,C,S, φ, σl, v arbitrary and proceed by induction on the length of τ . As traces of the form
(σ, h,✓) ̸∈ JCKφ, we begin with the base case of τ only having one local step: τ ∈ JCKφ and begin with
τ = (σ0, h0,C)loc(σ1, h1,✓) Assume τ |=S σl, (ph, pa, v), S. Clearly this must be an application of LinPt
followed by Term if v ∈ AVal and Stutter then Term if v ∈ AVal × AVal, thus S is a singleton state
(qh, pa, ⟨v, v′⟩) such that qh = WJQ(h)(v, v′)Kσ1◦σl

A . If τ = (σ0, h0,C)loc(σ1, h1,✓)τ ′ where τ ′ consists
only of environment steps, the assumption must be applications of LinPt followed by a sequence of Env’
followed by Term, by definition of the trace safety judgemenet, and Env’ does not modify S.
In the inductive case we have τ = (σ0, h0,C0)env(σ0, h0,C0)τ

′ and the result holds for τ ′ then examination

75



of the premises of Env if v ∈ AVal (or Env’ if v ∈ AVal× AVal) gives the correct result.
So let’s inductively consider (σ0, h0,C0)loc(σ1, h1,C1)τ

′ where the result holds for τ ′. From the τ |=S
σl, (ph, pa, v), S assumption, this initial step must be safe due to an application of either Stutter or
LinPt. But in fact these steps cannot modify any S, so the inductive hypothesis immediately gives us the
result.

Lemma C.1. For h0, h1 ∈ Heap, ph ∈ V iewA, v ∈ X,

if (h0, h1) |=λ,A ph ∗ p′a(v) _ p′h ∗ p′a(v) then (h0, h1) |=λ+1,A ph ∗ pa(v) _ p′h ∗ pa(v)

Proof. Take h0, h1 ∈ Heap, ph ∈ V iewA, v ∈ X, f ∈ V iewA and assume h0 ∈ Jph ∗ pa(v) ∗ fKλ+1. Find
wh ∈ ph, wa ∈ pa(v), wf ∈ f such that h0 ∈ ⌊wh • wa • wf⌋λ+1. See that for wh = (_, ρh,_,_), wa =
(_, ρa,_,_), wf = (_, ρf ,_,_), from the definition of world composition it must be that ρh = ρa = ρf ,
and let this be ρ going forward. If closedλ+1

λ (ρ) = {r, r1, ..., rn} (note that the definition of pa(v) requires
r ∈ closedλ+1

λ (ρ)), then let ti ∈ RId, ai ∈ AVal be such that ρ(ri) = (ti, λ, ai) (and pa(v) dictates that
ρ(r) = (t, λ, v)). The definition of reification dictates that ∃wr ∈ ItJr, λ, vK, wi ∈ ItiJri, λ, aiK such that
h0 ∈ ⌊wh • wa • wf • wr • w1 • ... • wn⌋λ. From the definition of p′a(v), find that wa • wr ∈ p′a(v), and
conclude that h0 ∈ Jph ∗ p′a(v) ∗ f ∗�1≤i≤n ItiJri, λ, aiKKλ. As region interpretations are required to be
stable, we can now apply our original hypothesis to find that

h1 ∈ Jp′h ∗ p′a(v) ∗ f ∗ �
1≤i≤n

ItiJri, λ, aiKKλ

Returning back to the definition of reification finds ∃ w′
h ∈ p′h, w

′
a ∈ p′a(v), wf ∈ f, wi ∈ ItiJri, λ, aiK

such that h1 ∈ ⌊w′
h • w′

a • wf • w1 • ... • wn⌋λ, and from the definition of p′a(v) find some wa ∈
WJPa(v) ∗ ⌈G⌉r ∗ v ∈ XKσl

A and wr ∈ ItJr, λ, vK such that wa • wr = w′
a. Conclude that

h1 ∈ ⌊w′
h • wa • wr • wf • w1 • ... • wn⌋λ

Similarly to above, the shared regions of each world in the reification are represented by the same ρ′.
The definition of frame-preserving updates is designed to only permit modifications to ρ in such a way
which is consistent with the logical ghost state held (in general, this can be seen by taking the frame
f to be the closure of each region with a lower level, WJtλr (x)K

∅
A under the rely relation and reasoning

about the changes to ρ permitted). By applying the stability requirements of region interpretations, we
find that wi ∈ ItiJri, λ, a′iK, where ρ′(ri) = (ti, λ, a′i). As p′a does not specify a region r, we can use the
upwards-closed property to augment ρ′(r) with r 7→ [t, λ, v]. Finally, applying reification to this to go
back up a level now that our region interpretations are consistent with the logical representation in the
worlds finds that

h1 ∈ Jp′h ∗ pa(v) ∗ fKλ

Lemma C.2. For h0, h1 ∈ Heap, ph ∈ V iewA, σl ∈ LStore, v ∈ X,

if (h0, h1) |=λ,A ph ∗ p′a(v) _ p′h ∗ q′a(x, y) then (h0, h1) |=λ+1,A ph ∗ pa(v) _ p′h ∗ qa(x, y)

where

qa = λx, y. WJ∃z. Qa(x, y, z) ⋆ tλr (z) ⋆ R(x, z)Kσl

A

q′a = λx, y. WJ∃z. Qa(x, y, z) ⋆ I(tλr (z)) ⋆ R(x, z)Kσl

A

Proof. Proceeds identically to the proof of Lemma C.1.

Lemma C.3. For h0, h1 ∈ Heap, ph ∈ V iewA, v ∈ X, v′ ∈ AVal,

if (∃pe, p′e. h0 ∈ Jph ∗ pa(v) ∗ peKλ+1 and (h0, h1) |=λ+1,A pa(v) ∗ pe _ pa(v
′) ∗ p′e)

then (∃pf , p′f . h0 ∈ Jph ∗ p′a(v) ∗ pf Kλ and (h0, h1) |=λ,A p′a(v) ∗ pf _ p′a(v
′) ∗ p′f )

Proof. Take h0, h1 ∈ Heap, ph ∈ V iewA, v ∈ X, v′ ∈ AVal arbitrary and find some pe, p
′
e such that

h0 ∈ Jph ∗ pa(v) ∗ peKλ+1 (C.26)
(h0, h1) |=λ+1,A pa(v) ∗ pe _ pa(v

′) ∗ p′e (C.27)
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We aim to prove the following:

h0 ∈ Jph ∗ p′a(v) ∗ pf Kλ (C.28)
(h0, h1) |=λ,A p′a(v) ∗ pf _ p′a(v

′) ∗ p′f (C.29)

for the following definition of pf , p′f :

pf =

{
we • w1 • ... • wn

∣∣∣ we = (_, ρe,_,_) ∈ pe, closedλ+1
λ (ρe) = {r1, ..., rn}

ρe(ri) = (ti, λ, ai) ∧ wi ∈ ItiJri, λ, aiK

}
p′f =

{
we • w1 • ... • wn

∣∣∣ we = (_, ρe,_,_) ∈ p′e, closedλ+1
λ (ρe) = {r1, ..., rn}

ρe(ri) = (ti, λ, ai) ∧ wi ∈ ItiJri, λ, aiK

}
From Equation C.26, find wh ∈ ph, wa ∈ pa(v), we ∈ pe such that h0 ∈ ⌊wh • wa • we⌋λ+1 and they all
share a common ρ. Let closedλ+1

λ (ρ) = {r, r1, ..., rn} and ρ(ri) = (ti, λ, ai), ρ(r) = (t, λ, v). From the
definition of reification, h0 ∈ ⌊wh •wa •wr •we •w1 • ...•wn⌋λ for some wr ∈ ItJr, λ, vK, wi ∈ ItiJri, λ, aiK.
we •w1 • ... •wn ∈ f (let this be wf ), so h0 ∈ ⌊wh • (wa •wr) •wf⌋λ and conclude h0 ∈ Jph ∗ p′a(v) ∗ pf Kλ
- exactly Equation C.28 and as wa • wr ∈ p′a(v).
Let’s take g ∈ V iewA and assume h0 ∈ Jp′a(v) ∗ pf ∗ gKλ, that is, find some w′

a ∈ p′a(v), w
′
f ∈ pf , w

′
g ∈ g

such that h0 ∈ ⌊w′
a • w′

f • w′
g⌋λ. From the definitions of pa and p′a, it is clear we should be able to find

some w′′
a = (ha, ρ

′′
a, γa, χa) ∈ WJPa(v) ⋆ ⌈G⌉r ⋆ v ∈ XKσl

A , w′
r ∈ ItJr, λ, vK such that w′

a = w′′
a • w′

r. The
upwards-closed nature of worlds implies ∃wa = (ha, ρa, γa, χa) ∈ pa such that ρa = ρ′′a[r 7→ (t, λ, v)], and
similarly for wi, wg, wr, such that

h0 ∈ ⌊wa • we • wr • w1 • ... • wn • wg⌋λ

Reification tells us that
h0 ∈ ⌊wa • we • wg⌋λ+1

and then application of the hypothesis that

h1 ∈ Jpa(v′) ∗ p′e ∗ gKλ+1

It remains to show h1 ∈ Jp′a(v′) ∗ p′f ∗ gKλ. Find wa ∈ pa(v
′), we ∈ p′e, wg ∈ g, wi ∈ ItiJri, λ, aiK, wr ∈

ItJr, λ, v′K such that h1 ∈ ⌊wa •we •wg •wr •w1 • ... •wn⌋λ and that wa = (_, rho,_,_) •wr ∈ p′a(v
′),

where r ̸∈ dom(ρ). Furthermore, we • w1 • ... • wn ∈ p′f . Conclude h1 ∈ Jp′a(v′) ∗ p′f ∗ gKλ+1.

Lemma C.4. For h0, h1 ∈ Heap, ph ∈ V iewA,

if (∃pe, p′e. h0 ∈ Jph ∗ peKλ+1 and (h0, h1) |=λ+1,A pe _ p′e)

then (∃pf , p′f . h0 ∈ Jph ∗ pf Kλ and (h0, h1) |=λ,A pf _ p′f )

Proof. Take h0, h1 ∈ Heap, ph ∈ V iewA arbitrary and find some pe, p
′
e such that

h0 ∈ Jph ∗ peKλ+1 (C.30)
(h0, h1) |=λ+1,A pe _ p′e (C.31)

Given the definition of pf , p′f below, we aim to prove Equations C.32 and C.33.

pf =

{
we • w1 • ... • wn

∣∣∣ we = (_, ρe,_,_) ∈ pe, closedλ+1
λ (ρe) = {r1, ..., rn}

ρe(ri) = (ti, λ, ai) ∧ wi ∈ ItiJri, λ, aiK

}
p′f =

{
we • w1 • ... • wn

∣∣∣ we = (_, ρe,_,_) ∈ p′e, closedλ+1
λ (ρe) = {r1, ..., rn}

ρe(ri) = (ti, λ, ai) ∧ wi ∈ ItiJri, λ, aiK

}
h0 ∈ Jph ∗ pf Kλ (C.32)
(h0, h1) |=λ,A pf _ p′f (C.33)

Find wh ∈ ph, we ∈ pe such that h0 ∈ ⌊wh •we⌋λ+1 from Equation C.30, and for wh = (_, ρh,_,_), we =
(_, ρe,_,_), see that ρh = ρe. Let closedλ+1

λ (ρ) = {r1, ..., rn} and ρ(ri) = (ti, λ, ai). From the definition
of reification it is clear that there are some wi ∈ ItiJri, λ, aiK such that h0 ∈ ⌊wh • we • w1 • ... • wn⌋λ,
and that we • w1 • ... • wn ∈ pf so h0 ∈ Jph ∗ pf Kλ - exactly Equation C.32.
So let’s take g ∈ V iewA and assume h0 ∈ Jpf ∗ gKλ, i.e. find some wf = (_, ρf ,_,_) ∈ pf , wg =
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(_, ρg,_,_) ∈ g such that h0 ∈ ⌊wf • wg⌋λ and ρf = ρg - let this be ρ. Let closedλ+1
λ (ρ) = {r1, ..., rn}

and ρ(ri) = (ti, λ, ai). The construction of pf is such that ∃we = (_, ρe,_,_) ∈ pe, wi ∈ ItiJri, λ, aiK
such that wf = we • w1 • ... • wn, ρe = ρ.
We have h0 ∈ ⌊we •w1 • ...•wn •wg⌋λ, and from the definition of ρ therefore h0 ∈ ⌊we •wg⌋λ+1. Conclude
h0 ∈ Jpe ∗gKλ+1, from assumption C.31 that h1 ∈ Jp′e ∗gKλ+1 and find some w′

e = (_, ρ′e,_,_) ∈ p′e, w
′
g =

(_, ρ′g,_,_) ∈ g such that h1 ∈ ⌊w′
e •w′

g⌋λ+1 and ρ′e = ρ′g - let this be ρ′. For closedλ+1
λ (ρ′) = {r1, ..., rn}

and ρ′(ri) = (ti, λ, a′i), from the definition of reification it is immediate that ∃w′
i ∈ ItiJri, λ, a′iK such that

h1 ∈ ⌊w′
e • w′

g • w′
1 • ... • w′

n⌋λ. See that w′
e • w′

1 • ... • w′
n ∈ pf to conclude that h1 ∈ Jp′f ∗ gKλ.

Lemma C.5. For τ ∈ Trace, σl ∈ LStore, v ∈ X, ph ∈ V iewA,

if τ |=S′ σl, (ph, p
′
a, v), S

′ then τ |=S σl, (ph, pa, v), S

where S ⊆ S′.

Proof. Once again, we prove this by induction on the trace safety judgement. Take τ ∈ Trace, σl ∈
LStore, v ∈ X, ph ∈ V iewA arbitrary and assume τ |=S′ σl, (ph, p

′
a, v), S

′.

• Case: Term Immediate from the definition of Term.

• Case: Stutter Then (σ0, h0,C0)loc(σ1, h1,C1)τ
′ |=S′ σl, (ph, p

′
a, v), S

′ and from the premises we
have

(σ1, h1,C1)τ
′ |=S′ σl, (p

′
h, p

′
a, v), S

′ (C.34)
(h0, h1) |=λ,A ph ∗ p′a(v)_ p′h ∗ p′a(v) (C.35)
C1 = ✓ =⇒ v ∈ AVal× AVal ∧ p′h = WJQh(v)Kσl◦σ1

A (C.36)

Right away the inductive hypothesis tells us that (σ1, h1,C1)τ
′ |=S σl, (p

′
h, pa, v), S for S ⊆ S′.

Given the Hoare postcondition of S and S′ coincide, Equation C.36 will be immediately applicable.
It remains to show that

(h0, h1) |=λ+1,A ph ∗ pa(v) _ p′h ∗ pa(v) (C.37)

This is given by application of Lemma C.1 to Equation C.35.
So we have checked the necessary premises for Stutter, and may conclude that

(σ0, h0,C0)loc(σ1, h1,C1)τ
′ |=S σl, (ph, pa, v), S

• Case: LinPt Then (σ0, h0,C0)loc(σ1, h1,C1)τ
′ |=S′ σl, (ph, p

′
a, v), S

′. Let

qa = λx, y. WJ∃z. Qa(x, y, z) ⋆ tλr (z) ⋆ R(x, z)Kσl

A

q′a = λx, y. WJ∃z. Qa(x, y, z) ⋆ I(tλr (z)) ⋆ R(x, z)Kσl

A

and from the premises we have

(σ1, h1,C1)τ
′ |=S′ σl, (p

′
h, p

′
a, ⟨v, v′⟩), S′ (C.38)

(h0, h1) |=λ,A ph ∗ p′a(v) _ p′h ∗ q′a(v, v′) (C.39)
C1 = ✓ =⇒ p′h = WJQh(v, v

′)Kσl◦σ1

A (C.40)

The inductive hypothesis and Equation C.38 finds that (σ1, h1,C1)τ
′ |=S σl, (p

′
h, pa, ⟨v, v′⟩), S, where

S ⊆ S′. The two specifications share a postcondition, so Equation C.40 is immediately usable. It
remains to check

(h0, h1) |=λ+1,A ph ∗ pa(v) _ p′h ∗ qa(v, v′) (C.41)

This is exactly given by Lemma C.2 and Equation C.39. Conclude by application of LinPt that
τ |=S σl, (p

′
h, pa, v), S.

• Case: Env Then (σ0, h0,C0)env(σ0, h1,C0)τ
′ |=S′ σl, (ph, p

′
a, v), S

′ and from the premises we have

v ∈ AVal

E(v′) ≜ ∃pe, p′e. h0 ∈ Jph ∗ p′a(v) ∗ peKλ ∧ (h0, h1) |=λ,A p′a(v) ∗ pe _ p′a(v
′) ∗ p′e

∀v′ ∈ X. E(v′) =⇒ (σ1, h1,C1)τ
′ |=S′ σl, (ph, p

′
a, v

′), S′ (C.42)
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Let

F (v′) ≜ ∃pe, p′e. h0 ∈ Jph ∗ pa(v) ∗ peKλ+1 ∧ (h0, h1) |=λ+1,A p′a(v) ∗ pe _ pa(v
′) ∗ p′e

Take v′ ∈ X arbitrary and assume F (v′). Lemma C.3 tells us E(v′) holds, so from Equation
C.42 find that (σ1, h1,C1)τ

′ |=S′ σl, (ph, p
′
a, v

′), S′. The inductive hypothesis says (σ1, h1,C1)τ
′ |=S

σl, (ph, pa, v
′), S, where S ⊆ S′ and so finally application of Env yields τ |=S σl, (ph, pa, v), S, where

S ⊂ S ⊆ S′.

• Case: Env’ Then (σ0, h0,C0)env(σ0, h1,C0)τ
′ |=S′ σl, (ph, p

′
a, v), S

′ and from the premises we have

if ∃pe, p′e. h0 ∈ Jph ∗ peKλ ∧ (h0, h1) |=λ,A pe _ p′e

then (σ1, h1,C1)τ
′ |=S′ σl, (ph, p

′
a, v), S

′ else S′ = ∅ (C.43)
v ∈ AVal× AVal (C.44)

Assume
∃pe, p′e. h0 ∈ Jph ∗ peKλ+1 ∧ (h0, h1) |=λ+1,A pe _ p′e (C.45)

Then Equation C.45 and Lemma C.4 immediately gives ∃pe, p′e. h0 ∈ Jph ∗ peKλ ∧ (h0, h1) |=λ,A
pe _ p′e, so from C.43, we find that (σ1, h1,C1)τ

′ |=S′ σl, (ph, p
′
a, v), S

′. Immediately from the
inductive hyopthesis we find (σ1, h1,C1)τ

′ |=S σl, (ph, pa, v), S for S ⊆ S′, so τ |=S σl, (ph, pa, v), S.
If Equation C.45 does not hold, then τ |=S σl, (ph, pa, v), ∅ holds and clearly ∅ ⊆ S′, both regardless
of the truth of the condition of C.43.

• Case: Env Immediate from the definition of Env .
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Appendix D

Soundness

D.1 Primitives

I do the assign case in more detail, and then provide only the key steps going forward.

Theorem D.1 (Soundness of assign). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of assign

then |=Φ C : S.

Proof. Assume that ⊢Φ C : S by an application of Assign, i.e. C = x := E and
S =

A

x ∈ X. ⟨ x = v | emp ⟩ · ∃y. ⟨ x = E[v/x] | emp ⟩λ,A. Take φ ∈ FSpec and assume that |= φ : Φ.
We aim to show that JCKφ ⊆ JSK. For (σ, h,C) ∈ JCK, we find that ∀σl, v, as we can always apply Term,
(σ, h,C) is safe and so (σ, h,C) ∈ JSK. From Lemma 6.1, we know that for traces of more than just a
single configuration, it is sufficient to check the result for traces beginning with a local step. So let’s take
an arbitrary τ ∈ JCKφ (so τ = (σ0, h0,C)τ ′), with the stipulation that that first step is a local step. We
first aim to show that (σ0, h0,C)loc(σ1, h1,✓) ∈ JSK, and then as there are no further local steps possible,
any τ ∈ JCKφ beginning with a local step in fact consists solely of this step followed by environment steps.
From Lemma 6.2 we find that it is sufficient to check only the τ = (σ0, h0,C)loc(σ1, h1,✓) ∈ JSK case
and all other τ follows.
To show that τ ∈ JSK, so take σl ∈ LStore, v ∈ X arbitrary and assume that h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ,
where ph, pa are as in the definition of JSK. Upon examination of the operational semantics, it’s clear that
the only possibility for a local step here is (σ0, h0,C)

loc−−→φ (σ1, h1,✓), where h0 = h1 and σ1 = σ0[x 7→
JEKσ0 ].An application of LinPt and then Term would suffice to prove that (σ0, h0,C)loc(σ1, h1,C) |=S
σl, (ph, pa, v), {(qh, pa, ⟨v, v⟩)}, where qh = WJQh(v, v)Kσ2◦σl

A , which then allows us to conclude that
(σ0, h0,C)loc(σ1, h1,✓) ∈ JSK.
From Term, we can trivially obtain that (σ1, h1,✓) |=S σl, (qh, pa, ⟨v, v⟩), {(qh, pa, ⟨v, v⟩)}. Also v ∈ AVal
and ✓ = ✓ =⇒ qh = WJQh(v, v)Kσ2◦σl

A hold by assumption, so it remains to check

(h0, h1) |=λ,A ph ∗ pa(v) _ qh ∗WJQa(v, v)Kσl

A (D.1)

Take f ∈ V iewA arbitrary and assume that h0 ∈ Jph ∗ pa(v) ∗ fKλ. In this particular case, ph =
WJx = vKσ0◦σl

A and pa(v) = EmpA. h0 in this particular set implies nonemptiness, which further implies
nonemptiness of ph. Therefore conclude σ0(x) = σl(v) and ph = EmpA also. So we actually have here
that h0 ∈ JfKλ. As h0 = h1, h1 ∈ JfKλ. As before, WJQa(v, v)Kσl

A = EmpA, so it remains to check
that qh = WJQh(v, v)Kσ1◦σl

A ⊆ EmpA and is nonempty. σ1(x) is defined to be JEKσ0 . As σ0(x) = σl(v),
σ1(x) = JE[v/x]σl◦σ1K, and so conclude that qh = EmpA so h1 ∈ Jqh ∗ WJQa(v, v)Kσl

A ∗ fKλ and therefore
D.1.
All the premises of LinPt holds, so we find (σ0, h0,C)loc(σ1, h1,C) |=S σl, (ph, pa, v), {(qh, pa, ⟨v, v⟩)} and
finally that (σ0, h0,C)loc(σ1, h1,✓) ∈ JSK.

Theorem D.2 (Soundness of mutate). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of mutate

then |=Φ C : S.
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Proof.

C = [E1] := E2

S =

A

n ∈ Z. ⟨ fv(E1) = v⃗ ⋆ fv(E2) = w⃗ | E1[v⃗/fv(E1)] 7→ n ⟩ ·
∃y. ⟨ fv(E1) = v⃗ ⋆ fv(E2) = w⃗ | E1[v⃗/fv(E1)] 7→ E2[w⃗/fv(E2)] ⟩λ,A

Consider (σ0, h0,C)loc(σ1, h1,✓) ∈ JCKφ, take σl, v arbitrary and assume that h0 ∈ Jph ∗pa(v)∗TrueAKλ,
where ph, pa are as in the definition of JSK. In particular, as this implies nonemptiness of the seman-
tics, we find that σ0(fv(E1)) = σl(v⃗), and h(JEKσ0

) = v, and so from the operational semantics con-
clude that σ0 = σ1 and h1 = h0[JE1Kσ0

7→ JE2Kσ0
]. Furthermore, from Term we find (σ1, h1,✓) |=S

σl, (qh, pa, ⟨v, v⟩), { (qh, pa, ⟨v, v⟩) }. We aim to apply LinPt to show that (σ0, h0,C)loc(σ1, h1,✓) is safe.
It’s clear that v ∈ AVal. We aim to show

(h0, h1) |=λ,A ph ∗ pa(v) _ qh ∗WJQa(v, v)Kσl

A (D.2)

where qh = WJQh(v, v)Kσ1◦σl

A . Take f ∈ V iewA and assume h0 ∈ Jph ∗ pa(v) ∗ fKλ. From previous
discussion, it’s clear that ph = EmpA, so in fact h0 ∈ Jpa(v) ∗ fKλ, that is to say, ∃h, h′. h ∈ Jpa(v)Kλ,
h′ ∈ JfKλ and h0 = h • h′. According to the world semantics, h = [JE1[v⃗/fv(E1)]Kσ0◦σl

7→ JvKσl
].

Given that h1 = h0[JE1Kσ0
7→ JE2Kσ0

], we may conclude that h1 = [JE1Kσ0
7→ JE2Kσ0

] • h′, and thus
h1 ∈ JWJQa(v, v)Kσl

A ∗ fKλ. Furthermore, as Ph = Qh and σ0 = σ1, qh = ph = EmpA and h1 ∈
Jqh ∗WJQa(v, v)Kσl

A ∗ fKλ and we have verified D.2.Given the definition of qh, we meet all the premises to
apply LinPt and obtain (σ0, h0,C)loc(σ1, h1, S) |=S σl, (ph, pa, v), { (qh, pa, ⟨v, v⟩) }, so
(σ0, h0,C)loc(σ1, h1, S) ∈ JSK and we are done.

Theorem D.3 (Soundness of cas). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of cas

then |=Φ C : S.

Proof.

C = x := CAS(E1, E2, E3)

S =

A

n ∈ Z.
〈
x = x ⋆
w⃗ = w⃗

∣∣∣ E′1 7→ n
〉

x := CAS(E1, E2, E3) ∃y.
〈

x = y ⋆
w⃗ = w⃗

∣∣∣ (n = E′2∧y = 1 ⋆ E′1 7→ E′3)∨
(n ̸= E′2 ∧ y = 0 ⋆ E′1 7→ n)

〉
λ,A

where w⃗ = fv(E1) ∪ fv(E2) ∪ fv(E3) \ {x}, E′1 = E1[w⃗/w⃗, x/x], E′2 = E2[w⃗/w⃗, x/x] and E′3 = E3[w⃗/w⃗, x/x].
Assume ⊢Φ C : S by application of CAS, and consider some

τ = (σ0, h0, x := CAS(E1, E2, E3))loc(σ1, h1,✓) ∈ JCKφ

Take σl, v arbitrary and assume h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ, where

ph = WJx = x ⋆ w⃗ = w⃗Kσ0◦σl

A

pa = λn. WJE′1 7→ n ⋆ n ∈ XKσl

A

Observe the world semantics implies that JE1Kσ0
∈ dom(h0). We check two cases corresponding to the

applicable rules from the operational semantics.
If h0(JE1Kσ0) ̸= JE2Kσ0 , then τ = (σ0, h0, x := CAS(E1, E2, E3))loc(σ1, h1,✓), where σ1 = σ0[x 7→ 0] and
h0 = h1. Let qh = WJx = 0 ⋆ w⃗ = w⃗Kσ1◦σl

A . By Term,

(σ1, h1,✓) |=S σl, (qh, pa, ⟨v, 0⟩), {(qh, pa, ⟨v, 0⟩)}

I aim to show

(h0, h1) |=λ,A ph ∗ pa(v)_ qh ∗WJ(v = E′2 ⋆ 0 = 1 ⋆ E′1 7→ E′3) ∨ (v ̸= E′2 ⋆ 0 = 0 ⋆ E′1 7→ v)Kσl

A

Take f ∈ V iewA arbitrary and assume h0 ∈ Jph ∗pa(v)∗fKλ. From the definition of world semantics, find
that some wa ∈ pa(v), wf ∈ f such that h0 ∈ ⌊wa • wf⌋λ, σ0(⃗w) = σl(w⃗) and σ0(x) = σl(x). Therefore,
from the operational semantics, we find σ0(⃗w) = σl(w⃗) and σ0(x) = 0 = σ1(v), so qh = EmpA and for
some wh ∈ qh, h0 ∈ ⌊wh • wa • wf⌋λ. It remains to show wa ∈ qa, where

qa = WJ(v = E′2 ∧ y = 1 ⋆ E′1 7→ E′3) ∨ (v ̸= E′2 ∧ y = 0 ⋆ E′1 7→ v)Kσl

A
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Well, pa(v) tells us that h0(JE1Kσ0) = v, and the initial assumption that h0(JE2Kσ0) ̸= v, so given that
WJv ̸= E′2 ⋆ 0 = 0Kσl

A is nonempty,

WJE′1 7→ vKσl

A = WJv ̸= E′2 ⋆ 0 = 0 ⋆ E′1 7→ vKσl

A ⊆ qa

and wa ∈ WJE′1 7→ vKσl

A , so h0 ∈ Jqh ∗ qa ∗ fKλ. Conclude by application of LinPt that

(σ0, h0, x := CAS(E1, E2, E3))loc(σ1, h1,✓) |=S σl(ph, pa, v), {(qh, pa, ⟨v, 0⟩)}

If h0(JE1Kσ0) ̸= JE2Kσ0 , then from the operational semantics, it must be that

τ = (σ0, h0, x := CAS(E1, E2, E3))loc(σ1, h1,✓)

where σ1 = σ0[x 7→ 1], h1 = h0[JE1Kσ0
7→ JE3Kσ0

]. Again, let qh = WJx = 1 ⋆ w⃗ = w⃗Kσ1◦σl

A , and then by
Term, (σ1, h1,✓) |=S σl, (qh, pa, ⟨v, 1⟩), {(qh, pa, ⟨v, 1⟩)}. We aim to check

(h0, h1) |=λ,A ph ∗ pa(v) _ qh ∗WJ(v = E′2 ⋆ 1 = 1 ⋆ E′1 7→ E′3) ∨ (v ̸= E′2 ⋆ 1 = 0 ⋆ E′1 7→ v)Kσl

A

Take f ∈ V iewA, assume h0 ∈ Jph ∗ pa(v) ∗ fKλ, and therefore find such wh ∈ ph, wa ∈ pa(v), wf ∈ f
such that h0 ∈ ⌊wh • wa • wf⌋λ. The implied nonemptiness of ph tells us that σ0(x) = σl(x) and
σ0(⃗w) = σl(w⃗), and therefore that σ0(x) = 1 and σ1(⃗w) = σl(w⃗). So qh = EmpA, and furthermore wh ∈ qh.
The definition of pa tells us that wa = (ha,_,_,_) is such that ha = [JE1Kσ0

7→ v], and the premise
of the operational semantics that JE2Kσ0

= v and therefore the definition of h1 makes it clear that for
w′

a = (h′
a,_,_,_) such that h′

a = [JE1Kσ0
7→ JE3Kσ0

], h1 ∈ ⌊wh • w′
a • wf⌋λ (as the disjointness of the

heaps in world composition implies the change between h0 and h1 can’t affect the heaps of wh or wf ).
Let qa = WJ(v = E′2 ⋆ 1 = 1 ⋆ E′1 7→ E′3) ∨ (v ̸= E′2 ⋆ 1 = 0 ⋆ E′1 7→ v)Kσl

A . Then

WJv = E′2 ⋆ 1 = 1 ⋆ E′1 7→ E′3K
σl

A ⊆ WJ(v = E′2 ⋆ 1 = 1 ⋆ E′1 7→ E′3) ∨ (v ̸= E′2 ⋆ 1 = 0 ⋆ E′1 7→ v)Kσl

A

Obviously w′
a ∈ WJE′1 7→ E′3K

σl

A . We know that v = JE2Kσ0
, and with the replacements of the logical

variables, it remains the case that WJv = E′2 ⋆ 1 = 1Kσl

A = EmpA, so w′
a ∈ WJv = E′2 ⋆ 1 = 1 ⋆ E′1 7→ E′3K

σl

A .
Conclude that h1 ∈ Jqh ∗ qa ∗ fKλ, so by LinPt,

(σ0, h0, x := CAS(E1, E2, E3))loc(σ1, h1,✓) |=S σl(ph, pa, v), {(qh, pa, ⟨v, 1⟩)}

and conclude in both cases that ∃S. τ |=S σl, (ph, pa, v), S.

Theorem D.4 (Soundness of fas). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of fas

then |=Φ C : S.

Proof.

C = x := FAS(E1, E2)

S =

A

n ∈ Z.
〈
x = x ⋆
w⃗ = w⃗

∣∣∣ E1[w⃗/w⃗, x/x] 7→ n
〉
x := FAS(E1, E2)〈

x = n ⋆
w⃗ = w⃗

∣∣∣ E1[w⃗/w⃗, x/x] 7→ E2[w⃗/w⃗, x/x]
〉
λ,A

where w⃗ = fv(E1) ∪ fv(E2) \ {x}.
Consider τ ∈ JCKφ, where the first step is a local step, take σl, v arbitrary and assume

h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ

where

ph = WJx = x ⋆ w⃗ = w⃗Kσ0◦σl

A

pa = λn. WJE1[w⃗/w⃗, x/x] 7→ n ⋆ n ∈ XKσl

A

From the definition of world semantics, it must be that σ0(⃗w) = σl(w⃗) and σ0(x) = σl(x), so h0(JE1K) = v.
Therefore, the operational semantics tells us that τ = (σ0, h0,C0)loc(σ0, h0,✓), σ1 = σ0[x 7→ h(JE1Kσ0

)]
and h1 = h0[JE1Kσ0 7→ JE2Kσ0 ]. Let qh = WJx = n ⋆ w⃗ = w⃗Kσ1◦σl

A . Term tells us that

(σ0, h0,✓) |=S σl, (qh, pa, ⟨v, v⟩), {(qh, pa, ⟨v, v⟩)}

82



We aim to prove

(h0, h1) |=λ,A ph ∗ pa(v) _ qh ∗WJE1[w⃗/w⃗, x/x] 7→ E2[w⃗/w⃗, x/x]Kσl

A

Take f ∈ V iewA and assume h0 ∈ Jph ∗ pa(v) ∗ fKλ, i.e. find some wh ∈ ph, wa ∈ pa(v), wf ∈ f
such that h0 ∈ ⌊wh • wa • wf⌋λ. In particular, the nonemptiness of the world semantics imply that
σ0(⃗w) = σl(w⃗) and σ0(x) = σl(x), and so σ1(⃗w) = σl(w⃗) and σ1(x) = v. From wa, we find that
h0(JE1Kσ0◦σl

) = v, so h1(JE1Kσ0◦σl
) = JE2Kσ0◦σl

. From all this we can conclude wh ∈ qh and find some
w′

a ∈ WJE1[w⃗/w⃗, x/x] 7→ E2[w⃗/w⃗, x/x]Kσl

A which differs only from wa in the update of the heap component.
Thus h1 ∈ ⌊wh • wa • wf⌋λ by considering the disjointness requirements on heap components, and so

h1 ∈ Jqh ∗WJE1[w⃗/w⃗, x/x] 7→ E2[w⃗/w⃗, x/x]Kσl

A ∗ fKλ

Conclude by an application of LinPt that τ |=S σl, (ph, pa, v), {(qh, pa, ⟨v, v⟩)}

Theorem D.5 (Soundness of dealloc). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of dealloc

then |=Φ C : S.

Proof. Assume ⊢Φ C : S by an application of Dealloc, that is,

S =

A

x ∈ AVal. ⟨ ∃z. E 7→ z | emp ⟩ · ∃y. ⟨ emp | emp⟩λ,A

Consider τ = (σ0, h0,C)locC1 ∈ JCKφ. Take σl, v arbitrary and assume h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ,
where ph = WJ∃z. E 7→ zKσ0◦σl

A and pa = λx. EmpA. The definition of world semantics of ph tells us that
JEKσ0

∈ dom(h0) and therefore from the operational semantics find that τ = (σ0, h0,C)loc(σ1, h1,✓),
where σ0 = σ1 and h1 = h0[JEKσ0

7→ ⊥]. Let qh = qa = EmpA, then clearly by Term, (σ1, h1,✓) |=S
σl, (qh, pa, ⟨v, v⟩), {(qh, pa, ⟨v, v⟩)}. I aim to prove

(h0, h1) |=λ,A ph ∗ pa(v) =⇒ qh ∗ qa
qh = WJempKσ1◦σl

A

The second is true by definition. Take f ∈ V iewA arbitrary and assume h0 ∈ Jph ∗ pa(v) ∗ fKλ.
From the definition of reification, find ∃wh ∈ ph, wf = (hf ,_,_,_) ∈ f such that h0 ∈ ⌊wh • wf⌋λ
(as pa(v) = EmpA). Furthmore, from the definition of ph, find that ∃z. wh = ([JEKσ0 7→ z], ρ, γ, χ),
and (⊥, ρ, γ, χ) ∈ EmpA, and that from world composition, JEKσ0

̸∈ dom(hf ). Therefore, as h1 =
h0[JEKσ0 7→ ⊥], h1 ∈ ⌊(⊥, ρ, γ, χ) • wf⌋λ, and conclude h1 ∈ Jqh ∗ qa ∗ fKλ. This proves precisely the
first equation. So we have verified the premises of LinPt, and conclude that (σ0, h0,C)loc(σ1, h1,✓) |=S
σl, (ph, pa, v), {(qh, qa, ⟨v, v⟩)}.

D.2 Hoare
Theorem D.6 (Soundness of if). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of if

then |=Φ C : S.

Proof.

C = if (B) C1 else C2

S =

A

x ∈ AVal. ⟨ P | emp ⟩ · ∃y. ⟨ Q | emp⟩λ,A

Assume ⊢Φ C : S. Then for

S1 =

A

x ∈ AVal. ⟨ P ⋆ B | emp ⟩ · ∃y. ⟨ Q | emp⟩λ,A
S2 =

A

x ∈ AVal. ⟨ P ⋆ ¬B | emp ⟩ · ∃y. ⟨ Q | emp⟩λ,A

we have ⊢Φ C1 : S1 and ⊢Φ C2 : S2. By the inductive hypothesis we have

|=Φ C1 : S1 (D.3)
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|=Φ C2 : S2 (D.4)

We need to prove |=Φ C : S, so take φ arbitrary and assume that |= φ : Φ. Take τ ∈ JCKφ arbitrary,
σl ∈ LStore, v ∈ AVal, and assume h0 ∈ Jph∗pa(v)∗TrueAKλ. As usual, if τ is a single state, an application
of Term gives the necessary safety result. For any other τ , τ ∈ JCφK gives fv(B) ⊆ dom(σ0) and so the
applicable first operational semantics steps are

JBKσ

(σ, h, if (B) C1 else C2)
loc−−→φ (σ, h,C1)

(1)
¬JBKσ

(σ, h, if (B) C1 else C2)
loc−−→φ (σ, h,C2)

(2)

Otherwise, τ = (σ0, h0,C)loc(σ1, h1,C1)τ
′, where σ0 = σ1, h0 = h1, (σ1, h1,C1)τ

′ ∈ JC1K′. If τ ∈ Trace
by rule (1), then the premise of (1) and assumption on h0, h1 ∈ JWJP ⋆ BKσ1◦σl

A ∗ pa(v) ∗ TrueAKλ, thus
the inductive hypothesis finds some S such that (σ1, h1,C1)τ

′ |=S1 σl, (WJP ⋆ BKσ1◦σl

A , pa, v), S As S1
and S agree on all but the precondition, find also that (σ1, h1,C1)τ

′ |=S σl, (qh, pa, v), S, where qh =
WJP ⋆ BKσ1◦σl

A . Therefore I need to check

(h0, h1) |=λ,A ph ∗ pa(v)_ qh ∗ pa(v) (D.5)

Take f ∈ V iewA arbitrary and assume h0 ∈ Jph∗pa(v)∗fKλ. As the atomic part of the condition is empty,
pa(v) = EmpA, so in fact ∃h, h′. h0 = h•h′, h ∈ JphKλ and h′ ∈ JfKλ. Given the premise of the operational
semantic rule, it must be that JBKσ0 is true. Therefore WJBKσ0◦σl

A = EmpA and h ∈ Jph ∗ WJBKσ0◦σl

A Kλ =
Jp′hKλ. As h0 = h1, find that h1 = h • h′ ∈ Jp′h ∗ pa(v) ∗ fKλ and thus D.5 holds. We know C1 ̸= ✓, so by
Stutter, (σ0, h0,C)loc(σ1, h1,C1)τ

′ |=S σl, (ph, pa, v), S and is in JSK. The case for the second operational
semantic rule is completely analagous.

Theorem D.7 (Soundness of while). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following holds:

if ⊢Φ C : S by application of while

then |=Φ C : S.

Proof.

C = while (B) C′

S =

A

x ∈ AVal. ⟨ P | emp ⟩ · ∃y. ⟨ P ⋆ ¬B | emp ⟩λ,A

Assume ⊢Φ C : S. Then for

S′ =

A

x ∈ AVal. ⟨ P ⋆ B | emp ⟩ · ∃y. ⟨ P | emp ⟩λ,A

we have ⊢Φ C′ : S′ and by the inductive hypothesis we have

|=Φ C′ : S′

We need to prove |=Φ C : S, so take φ arbitrary and assume that |= φ : Φ. Take τ ∈ JCKφ arbitrary,
σl ∈ LStore, v ∈ AVal, and assume h0 ∈ Jph ∗ pa(v) ∗TrueAKλ. I have the following recurrence relation for
τ

(¬JBKσ0
∧ τ = (σ0, h0,C)loc(σ0, h0,✓)) ∨
JBKσ0

∧ τ = (σ0, h0,C)loc(σ0, h0,C′ ; C)τ ′ ∧ (σ0, h0,C′ ; C)τ ′ ∈ JC′Kφ; JCKφ

from the operational semantics and Lemma 6.3. So we proceed by induction on how many times τ is
decomposable by the second case. If none, it must be that the first case applies, and thus ¬JBKσ0

∧ τ =
(σ0, h0,C)loc(σ0, h0,✓). We can use Term to deduce that (σ0, h0,✓) |=S σl, (qh, pa, v), {(qh, pa, v)}, where
qh = WJP ⋆ ¬BKσ0⋆σ0

A . An application of LinPt will give us τ |=S σl, (ph, pa, v), {(qh, pa, v)} so we check
the rest of the premises:
(h0, h0) |=λ,A ph ∗ pa(v) _ qh ∗ EmpA is given by pa(v) = EmpA and WJP Kσ0⋆σ0

A = WJP ⋆ ¬BKσ0⋆σ0

A , as
¬JBKσ0

=⇒ WJ¬BKσ0⋆σl

A = EmpA. We end in ✓ so we must check qh is the postcondition but this is true
by construction, we conclude with τ ∈ JSK.

In the second case, τ = (σ0, h0,C)loc(σ0, h0,C′ ; C)τ ′ ∧ (σ0, h0,C′ ; C)τ ′ ∈ JC′Kφ; JCKφ. We have
from our inductive hypothesis and from Lemma 6.5 that

∃S. (σ0, h0,C′ ; C)τ ′ |=S′′ σl, (p
′
h, pa, v), S
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where p′h = WJP ⋆ BKσ0◦σl

A and

S′′ ≜

A

x ∈ AVal. ⟨ P ⋆ B | emp ⟩ · ∃y. ⟨ P ⋆ ¬B | emp ⟩λ,A

It remains therefore to deduce that for the same S

(σ0, h0,C′ ; C)τ ′ |=S σl, (p
′
h, pa, v), S

by a trivial induction on the trace safety judgement (S′′ and S agree on all components except the
Hoare precondition which does not occur in the trace safety judgement, so all premises of each rule
are immediately transferable). To apply Stutter, clearly C′ ; C ̸= ✓, so it remains to check that
(h0, h0) |=λ,A ph ∗pa(v) _ p′h ∗pa(v), but in fact as by assumption JBKσ0 , we find that WJBKσ0◦σl

A = EmpA
and therefore ph = p′h. So Stutter tells us τ |=S σl, (ph, pa, v), S and finally τ ∈ JSK.

D.3 Logical

Theorem D.8 (Soundness of atomic-weakening). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The
following holds:

if ⊢Φ C : S by application of atomic weakening

then |=Φ C : S.

Proof. Assume ⊢Φ C : S by an application of Atomic Weakening, that is, for

S =

A

x ∈ X.⟨ Ph ⋆ P | Pa(x) ⟩ C ∃y.⟨ Qh(x, y) ⋆ Q(x, y) | Qa(x, y) ⟩λ,A
S′ =

A

x ∈ X.⟨ Ph | Pa(x) ⋆ P ⟩ C ∃y.⟨ Qh(x, y) | Qa(x, y) ⋆ Q(x, y) ⟩λ,A

from the premises of the rule we have ⊢Φ C : S′, A |= Ph ⋆ P stable and ∀x, y, A |= Q(x, y) stable.

Lemma D.1.
∀h0, h1 ∈ Heap, τ ∈ Trace, p′h ∈ V iewA, σl ∈ LStore, v ∈ AVal′, S. τ |=S′ σl, (p

′
h, p

′
a, v), S

′ =⇒ τ |=S
σl, (ph, pa, v), S where

pa = λx.

{
WJPa(x) ⋆ x ∈ XKσl

A x ∈ AVal

EmpA otherwise

p′a = λx.

{
WJPa(x) ⋆ P ⋆ x ∈ XKσl

A x ∈ AVal

EmpA otherwise

ph =

{
p′h ∗WJP Kσl

A v ∈ AVal

p′h ∗WJQ(v)Kσl

A otherwise

S ⊆

{
(qh, pa, v

′)
∣∣∣ (q′h, p′a, v′) ∈ S′ ∧ qh =

{
q′h ∗WJP Kσl

A v′ ∈ AVal

q′h ∗WJQ(v′)Kσl

A otherwise

}

Proof. Take ∀h0, h1 ∈ Heap, τ ∈ Trace, p′h ∈ V iewA, σl ∈ LStore, v ∈ AVal′, S arbitrary and assume
τ |=S′ σl, (p

′
h, p

′
a, v), S

′. Proceed by induction on the trace safety judgement.

• Case: Term If τ |=S′ σl, (p
′
h, p

′
a, v), S

′ is by an application of Term then it must be that τ =
(σ, h,C), and S′ = {(p′h, p′a, v)}. Let

ph =

{
p′h ∗WJP Kσl

A v ∈ AVal

p′h ∗WJQ(v)Kσl

A otherwise

By application of Term, τ |=S σl, (ph, pa, v), {(ph, pa, v)} which satisfies the necessary properties.

• Case: Stutter If τ |=S′ σl, (p
′
h, p

′
a, v), S

′ is by an application of Stutter then it must be that τ =
(σ0, h0,C0)loc(σ1, h1,C1)τ

′, (σ1, h1,C1)τ
′ |=S′ σl, (q

′
h, p

′
a, v), S

′, (h0, h1) |=λ,A p′h∗p′a(v)_ q′h∗p′a(v)
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and C1 = ✓ =⇒ q′h = WJQh(v)Kσ1◦σl

A ∧ v ∈ AVal × AVal. The inductive hypothesis tells us that
∃S. (σ1, h1,C1)τ

′ |=S′ σl, (qh, p
′
a, v), S, the necessary relation between S′ and S holds, and

qh =

{
q′h ∗WJP Kσl

A v ∈ AVal

q′h ∗WJQ(v)Kσl

A otherwise

We aim to prove that for

ph =

{
p′h ∗WJP Kσl

A v ∈ AVal

p′h ∗WJQ(v)Kσl

A otherwise

(h0, h1) |=λ,A ph∗pa(v)_ qh∗pa(v) and C1 = ✓ =⇒ qh = WJQh(v) ⋆ Q(v)Kσ1◦σl

A ∧v ∈ AVal×AVal.
In the second case, if C1 = ✓ then from the premises of Stutter we have q′h = WJQh(v)Kσ1◦σl

A ∧ v ∈
AVal× AVal. Thus qh = q′h ∗WJQ(v)Kσl

A = WJQh(v) ⋆ Q(v)Kσl

A ∧ v ∈ AVal× AVal holds.
Take f ∈ V iewA and assume h0 ∈ Jph ∗ pa(v) ∗ fKλ, i.e. find some wh ∈ ph, wa ∈ pa(v), wf ∈ f such
that h0 ∈ ⌊wh • wa • wf⌋λ. If v ∈ AVal, then we can find some w′

h ∈ p′h, wp ∈ WJP Kσl

A such that
wh = w′

h • wp and as wa • wp ∈ p′a(v), conclude that h0 ∈ Jp′h ∗ p′a(v) ∗ fKλ. From the premise of
Stutter, find that h1 ∈ Jq′h ∗ p′a(v) ∗ fKλ. From the assumption on qh and q′h, similar rearrangement
finds that h1 ∈ Jqh ∗ pa(v) ∗ fKλ.
If v ∈ AVal × AVal, then find some w′

h ∈ p′h, wq ∈ WJQ(x, y)Kσl

A such that wh = w′
h • wq and

h0 ∈ Jp′h ∗ p′a(v) ∗WJQ(v)Kσl

A ∗ fKλ (as p′a(v) = EmpA = pa(v)). As Q(v) is stable, from the premise
on Stutter find that h1 ∈ Jq′h∗p′a(v)∗WJQ(v)Kσl

A ∗fKλ and similar rearrangement from the definitions
of qh and q′h, pa(v) and p′a(v) gives h1 ∈ Jqh ∗ pa(v) ∗ fKλ.
So we have checked everything we need to apply Stutter to τ and conclude that τ |=S σl, (ph, pa, v), S.

• Case: LinPt If τ |=S′ σl, (p
′
h, p

′
a, v), S

′ is by an application of LinPt then it must be that
τ = (σ0, h0,C0)loc(σ1, h1,C1)τ

′, (σ1, h1,C1)τ
′ |=S′ σl, (q

′
h, p

′
a, ⟨v, v′⟩), S′, (h0, h1) |=λ,A p′h ∗p′a(v) _

q′h ∗WJQa(v, v
′) ⋆ Q(v, v′)Kσl

A , v ∈ AVal and C1 = ✓ =⇒ q′h = WJQh(v, v
′)Kσ1◦σl

A .
The inductive hypothesis tells us that ∃S. (σ1, h1,C1)τ

′ |=S′ σl, (qh, p
′
a, ⟨v, v′⟩), S, the necessary rela-

tion between S′ and S holds, and qh = q′h∗WJQ(v, v′)Kσl

A . We aim to prove that for ph = p′h∗WJP Kσl

A ,
(h0, h1) |=λ,A ph ∗pa(v) _ qh ∗WJQa(v, v

′)Kσl

A and C1 = ✓ =⇒ qh = WJQh(v, v
′) ⋆ Q(v, v′)Kσ1◦σl

A .
In the second case, if C1 = ✓ then from the premises of Stutter we have q′h = WJQh(v, v

′)Kσ1◦σl

A .
Thus qh = q′h ∗WJQ(v)Kσl

A = WJQh(v, v
′) ⋆ Q(v, v′)Kσl

A holds.
Take f ∈ V iewA and assume h0 ∈ Jph ∗ pa(v) ∗ fKλ, i.e. find some wh ∈ ph, wa ∈ pa(v), wf ∈ f
such that h0 ∈ ⌊wh • wa • wf⌋λ. We can find some w′

h ∈ p′h, wp ∈ WJP Kσl

A such that wh = w′
h • wp

and as wa •wp ∈ p′a(v), conclude that h0 ∈ Jp′h ∗ p′a(v) ∗ fKλ. From the premise of LinPt, find that
h1 ∈ Jq′h∗WJQa(v, v

′) ⋆ Q(v, v′)Kσl

A ∗fKλ. From the assumption on qh and q′h, similar rearrangement
finds that h1 ∈ Jqh ∗WJQa(v, v

′)Kσl

A ∗ fKλ.
So we have checked everything we need to apply LinPt to τ and conclude that τ |=S σl, (ph, pa, v), S.

• Case: Env If τ |=S′ σl, (p
′
h, p

′
a, v), S

′ is by an application of Env’, then τ = (σ, h0,C)env(σ, h1,C)τ ′,
v ∈ AVal and

∀v′ ∈ X. E(v′) =⇒ (σ, h1,C)τ ′ |=S′ σl, (p
′
h, p

′
a, v

′), S′
v′ (D.6)

, where E(v′) = ∃pe, p′e. h0 ∈ Jp′h ∗ p′a(v) ∗ peKλ ∧ (h0, h1) |=λ,A p′a(v) ∗ pe _ p′a(v
′) ∗ p′e, and

S′ =
⋃

v′∈X. E(v′) S
′
v′ .

Let ph = p′h ∗WJP Kσl

A , take v′ ∈ X arbitrary and find pe, p
′
e such that

h0 ∈ Jph ∗ pa(v) ∗ peKλ ∧ (h0, h1) |=λ,A pa(v) ∗ pe _ pa(v
′) ∗ p′e (D.7)

I aim to show this implies E(v′) for the same pe, p
′
e. Find wh ∈ ph, wa ∈ pa(v), we ∈ pe such that

h0 ∈ ⌊wh • wa • we⌋λ, and furthermore from the definition of ph, find some w′
h ∈ p′h, wp ∈ WJP Kσl

A
such that wh = w′

h •wp. Then conclude that wa •wp ∈ p′a(v), and therefore h0 ∈ Jp′h ∗ p′a(v) ∗ peKλ.
To show the second conjunct, take f ∈ V iewA arbitrary and assume h0 ∈ Jp′a(v) ∗ pe ∗ fKλ. Then
∃w′

a ∈ p′a(v), we ∈ pe, wf ∈ f such that h0 ∈ ⌊w′
a •we •wf⌋λ, and from the definition of p′a it’s clear

that w′
a can be further subdivided into some wa ∈ pa(v) and wp ∈ WJP Kσl

A such that h0 ∈ Jpa(v) ∗
WJP Kσl

A ∗pe ∗fKλ. As P is A-stable, from the assumption, find that h1 ∈ Jpa(v′)∗WJP Kσl

A ∗pe ∗fKλ
and similar reasoning about worlds allows us to conclude that h1 ∈ Jp′a(v′) ∗ pe ∗ fKλ. So we have
shown our assumption implies E(v′).
Therefore, for all v′ ∈ X such that D.7 holds, E(v′) also holds, so from the premise of Env it

86



must be that (σ, h1,C)τ ′ |=S′ σl, (p
′
h, p

′
a, v

′), S′
v′ and finally from the inductive hypothesis that

(σ, h1,C)τ ′ |=S σl, (ph, p
′
a, v

′), Sv′ for appropriate ph and Sv′ . Conclude that τ |=S σl, (ph, pa, v), S,
S ⊆

⋃
v′∈X. E(v′) Sv′ and we have the result.

• Case: Env’ If τ |=S′ σl, (p
′
h, p

′
a, v), S

′ is by an application of Env’, then τ = (σ, h0,C)env(σ, h1,C)τ ′,
v ∈ AVal × AVal, and if ∃pe, p′e. h0 ∈ Jp′h ∗ peK ∧ (h0, h1) |=λ,A pe _ p′e then (σ, h1,C)τ ′ |=S′

σl, (p
′
h, p

′
a, v), S

′, else S′ = ∅. As v ∈ AVal × AVal, let ph = p′h ∗ WJQ(v)Kσl

A . Let’s assume
∃pe, p′e. h0 ∈ Jph ∗ peK ∧ (h0, h1) |=λ,A pe _ p′e. Then clearly h0 ∈ Jp′h ∗ WJQ(v)Kσl

A ∗ peKλ, so
by taking pe = pe ∗WJQ(v)Kσl

A find that h0 ∈ Jp′h ∗ peKλ. Similarly, by taking p′e = p′e ∗WJQ(v)Kσl

A ,
and f ∈ V iewA, h0 ∈ Jpe ∗ fKλ =⇒ h0 ∈ Jpe ∗ WJQ(v)Kσl

A ∗ fKλ by definition, and from the
stability of Q(v) and assumption find h1 ∈ Jp′e ∗ WJQ(v)Kσl

A ∗ fKλ and finally again the defini-
tion of p′e yields h1 ∈ Jp′e ∗ fKλ. Therefore from the premise of Env’ and the inductive hypoth-
esis, find (σ, h1,C)τ ′ |=S σl, (ph, pa, v), S, for S satisfying the right relation to S′, so by Env’
τ |=S σl, (ph, pa, v), S. Furthermore, if the initial assumption doesn’t hold, then we can freely
conclude τ |=S σl, (ph, pa, v), ∅.

• Case: Env If τ |=S′ σl, (p
′
h, p

′
a, v), S

′ is by an application of Env , then it must be the case that
τ = (σ, h,C)env τ ′, S′ = ∅, and therefore τ |=S σl, (ph, pa, v), ∅ for

ph =

{
p′h ∗WJP Kσl

A v ∈ AVal

p′h ∗WJQ(v)Kσl

A otherwise

holds by Env and satisfies our requirements.

From the inductive hypothesis, we find that |=Φ C : S′, i.e. JCKφ ⊆ JS′K, so it suffices to prove
that JS′K ⊆ JSK. Indeed, take τ ∈ JS′K, σl ∈ LStore, v ∈ X arbitrary and assume that h0 ∈ Jph ∗
pa(v) ∗ TrueAKλ, where ph = WJPh ⋆ P Kσ0◦σl

A , pa = λx. WJPa(x) ⋆ x ∈ XKσl

A , p′h = WJPhKσ0◦σl

A and
p′a = λx. WJPa(x) ⋆ P ⋆ x ∈ XKσl

A . From the well-formedness of the premise, find that pv(P ) = ∅, so
p′a(v) is well-defined, and the definitions of world semantics imply that h0 ∈ Jp′h ∗ p′a(v) ∗ TrueAKλ. As
τ ∈ JS′K, find ∃S′. τ |=S′ σl, (p

′
h, p

′
a, v), S

′. Lemma D.1 tells us ∃p′′h, S. τ |=S σl, (p
′′
h, pa, v), S where

ph ∗ pa(v) = p′h ∗ p′a(v) - conclude that ph = p′′h and finally that τ ∈ JSK.

D.4 Atomic
Theorem D.9 (Soundness of open region). Let Φ ∈ FSpec,C ∈ Cmd and S ∈ Spec. The following
holds:

if ⊢Φ C : S by application of open region

then |=Φ C : S.

Proof. Assume ⊢Φ C : S by an application of Open Region. Then for

S =

A

x ∈ X.⟨ Ph | Pa(x) ⋆ tλr (x) ⋆ ⌈G(x)⌉r ⟩ C ∃y.⟨ Qh(x, y) | ∃z. Qa(x, y, z) ⋆ tλr (z) ⋆ R(x, z) ⟩λ+1,A

S′ =

A

x ∈ X.⟨ Ph | Pa(x) ⋆ I(tλr (x)) ⋆ ⌈G(x)⌉r ⟩ C ∃y.⟨ Qh(x, y) | ∃z. Qa(x, y, z) ⋆ I(tλr (z)) ⋆ R(x, z) ⟩λ,A

From the premises of open region,

r ∈ dom(A) =⇒ R = id (D.8)
∀x ∈ X. (x, z) ∈ {(x, z)|x ∈ X ∧R(x, z) ∧ (x, z) ∈ Tt(G(x))∗} (D.9)
⊢Φ C : S′ (D.10)

Henceforth, let

pa = λx.

{
WJPa(x) ⋆ tλr (x) ⋆ ⌈G(x)⌉r ⋆ x ∈ XKσl

A x ∈ AVal

EmpA otherwise

p′a = λx.

{
WJPa(x) ⋆ I(tλr (x)) ⋆ ⌈G(x)⌉r ⋆ x ∈ XKσl

A x ∈ AVal

EmpA otherwise
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From the inductive hypothesis, we have |=Φ C : S′ so it suffices to prove JS′K ⊆ JSK. Let

ph = WJPhKσ0◦σl

A

pa = λx. WJPa(x) ⋆ tλr (x) ⋆ ⌈G(x)⌉r ⋆ x ∈ XKσl

A

p′a = λx. WJPa(x) ⋆ I(tλr (x)) ⋆ ⌈G(x)⌉r ⋆ x ∈ XKσl

A

Take some (σ0, h0,C)τ ∈ JS′K, σl ∈ LStore, v ∈ X arbitrary and assume h0 ∈ Jph ∗ pa(v) ∗ TrueAKλ+1.
Find some wh ∈ ph, wa ∈ pa(v), wf such that h0 ∈ ⌊wh • wa • wf⌋λ+1. From world composition, it must
be that wh = (_, ρ,_,_), wa = (_, ρ,_,_), wf = (_, ρ,_,_) for some ρ such that ρ(r) = (t, λ, v). It is
clear from the definition of reification that for closedλ+1

λ (ρ) = {r, r1, ..., rn} and ρ(ri) = (ti, λ, ai), there
exists some wi ∈ ItiJri, λ, aiK and wi ∈ ItJr, λ, vK such that h0 ∈ ⌊wh • wa • wf • wr • w1 • ... • wn⌋λ.
wa•wr ∈ p′a(v) so h0 ∈ Jph∗p′a(v)∗TrueAK. Therefore from τ ∈ JS′K conclude ∃S′. τ |=S′ σl, (ph, p

′
a, v), S

′.
Lemma C.5 tells us that ∃S. τ |=S σl, (ph, pa, v), S so τ ∈ JSK.
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