
MENG INDIVIDUAL PROJECT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Memo-GNN: Memory-Aware Graph
Neural Networks for 4D Brain

Connectivity Forecasting

Author:
Scarlet Xiao

Supervisor:
Dr. Islem Rekik

Second Marker:
Dr. Pedro Mediano

June 17, 2024



Abstract

The connection patterns of brain neural circuits form a complex and dynamic net-
work. By observing the alteration of these networks over time, we can detect brain
disorders. Recent studies have demonstrated the potential to predict the evolution
of brain circuits from a single observation using graph neural networks. This capa-
bility allows for the early-stage diagnosis of brain diseases, helping to prevent them
from progressing into more severe conditions such as Alzheimer’s disease. How-
ever, none of the existing research has explored the potential of generating brain
connectomes that are cognitively aligned to the real ones. To address this gap in lit-
erature we introduce our memory-aware graph neural network model-MemoGNN.
Our main contributions consist of (i) Developing and implementing the first GNN
model that is capable of forecasting 4D brain connectivity that is memory aware.
(ii) Assessing the MemoGNN’s performance on two distinct memory capacity tasks:
the regular memory capacity task defined in the literature, and the newly introduced
language-infused memory capacity task. (iii) Benchmarking MemoGNN on various
GNN models and datasets. Our results demonstrate that MemoGNN models outper-
form others in generating brain connectivities that closely align with actual memory
functions. Although the MemoGNN model trained with the regular memory capac-
ity task did not improve the generated graph’s MAE, it exhibited fewer topological
errors compared to its non-memory-aware counterparts. Conversely, the MemoGNN
model trained with the language-infused memory capacity task surpassed the base-
line model’s MAE.



Acknowledgments

First, I would like to extend my gratitude to my supervisor, Dr. Islem Rekik, for her
deep insights in the area of graph neural networks. She has taught me many lessons
across the board, from research skills to work ethics. Our weekly meetings were
really helpful as they kept me on track and guided me through the complexities of
my research. I also wish to thank my second marker, Dr. Pedro Mediano, for his
helpful feedback and suggestions. Next, I would like to thank my personal tutor, Dr.
Maria Valera Espina, for her regular check-ins throughout my four years at Impe-
rial. Finally, I am very grateful to my family, friends, and partner for their support
throughout this project and my journey at Imperial. It has been a rollercoaster ride,
and I wouldn’t have been here without each one of you.

ii



Table of Contents

Publications

Some of the work in this report has been submitted for publication in the following
venue:

• Authors: Scarlet Xiao and Islem Rekik

• Title: Memo-GNN: Memory-Aware Graph Neural Networks for 4D Brain Connec-
tivity Forecasting

• Venue: The MICCAI 2024 Workshop

iii



Contents

1 Introduction 2
1.1 Objectives & Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Memory Capacity of Two Groups . . . . . . . . . . . . . . . . 4
1.3.2 Memory Capacity and Network Topologies . . . . . . . . . . . 6

2 Background 12
2.1 Brain Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Neural Networks for Sequential Data . . . . . . . . . . . . . . . . . . 12

2.2.1 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Reservoir Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Echo State Networks . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Machine Learning on Graphs . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . 17

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Brain graph evolution prediction . . . . . . . . . . . . . . . . 21
2.5.2 Biological Reservoir Computing . . . . . . . . . . . . . . . . . 22

3 Methodologies 24
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Biologically Instantiated Reservoir . . . . . . . . . . . . . . . . . . . 24
3.3 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results and Evaluation 30
4.1 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Graph Neural Network Models . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Chebyshev Graph Convolutional Recurrent Network . . . . . 36
4.3.2 Topology Adaptive Graph Convolutional Network . . . . . . . 37
4.3.3 Recurrent Brain Graph Mapper . . . . . . . . . . . . . . . . . 37
4.3.4 Identity Mapper . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



CONTENTS CONTENTS

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Regular Memory Capacity Task . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Language-Infused Memory Task . . . . . . . . . . . . . . . . . . . . . 45
4.6.1 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusions and Future Work 49
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Additional Results 56

1



Chapter 1

Introduction

Graph-based models offer a more effective way of understanding the brain’s com-
plexities. This is particularly the case when detecting brain disorders where the
traditional image-based approaches may fall short in capturing the complex inter-
actions and dysconnectivity [1]. A detailed mapping of the connections across the
different regions of the brain can be created by converting Magnetic resonance imag-
ing (MRI) scans into graphs [2]. Such brain graphs are invaluable for predicting
changes in brain structure and function. This is an important area of research, as the
early-stage diagnosis and treatment of conditions like mild cognitive impairment is
required to prevent it from developing into more severe conditions like Alzheimer’s
disease [3].

Studies have employed Graph Neural Networks (GNNs) to solve this problem. Nebli
et al. [4] developed EvoGraphNet, a model comprising a series of graph-generative
adversarial networks (gGANs), each predicting the subsequent time point’s brain
graph. It utilises a generator and a discriminator, with the generator creating syn-
thetic samples of the next time point and the discriminator differentiating between
real and generated data. However, although EvoGraphNet is effective at predicting
brain connectomes, it requires a considerable amount of computational resources.
To improve computational efficiency, Tekin et al. [5] introduced the Recurrent Brain
Graph Mapper (RBGM), which uses a series of recurrent graph neural networks for
predicting brain graphs at various time points. This approach significantly reduced
the training time compared to EvoGraphNet but with some performance trade-offs.
Further expanding the scope, Demirbilek et al. [6] proposed the Recurrent Multi-
graph Integrator Network (ReMI-Net*), which focuses on multigraph populations
and employs a recurrent graph convolution approach for predicting Connectome-
Based Templates. Lastly, Gürler et al. [7] proposed the 4D-FED-GNN+ model to
address the data scarcity issue in longitudinal datasets. This approach combines
GNNs with federated learning to enhance data availability across different hospitals.
While these models have made significant advancements in brain graph prediction,
they have not yet explored the generation of brain graphs that closely resemble the
cognitive function performance of actual connectomes.

2



Chapter 1. Introduction 1.1. OBJECTIVES & CONTRIBUTIONS

Reservoir Computing (RC) has been used as a tool to integrate biological aspects into
networks. By mapping the brain graph structure onto the reservoir, we can create a
biologically instantiated neural network [8]. This model can be trained to perform
various neuroscience tasks, which can then be used to assess the impact of neuro-
logical diseases based on performance [9]. Previous studies have evaluated memory
tasks across different primate species using this RC paradigm [10]. Further work has
been done to develop a toolbox that can explore the effects of network subdivisions
on cognitive functions. This is done by configuring input and output nodes in RC
to represent the different brain systems [11]. Building on these insights, our work
aims to investigate the effects of integrating biological neural networks with GNNs
for 4D brain connectivity forecasting, an area that has not yet been explored in the
literature.

1.1 Objectives & Contributions

1. Developing and implementing the first GNN model that is capable of fore-
casting 4D brain connectivity that is memory aware.

We present MemoGNN: Memory-aware graph neural network, a novel model
for 4D brain connectivity forecasting that produces memory-aware brain graphs.
By co-training a GNN with a biological reservoir network, MemoGNN gener-
ates brain graphs that better reflect actual cognitive memory functions. Our
loss function minimises the difference in memory capacity between predicted
and actual brain connectomes, enhancing the model’s fidelity in capturing the
brain’s intricate dynamics.

2. Assessing the MemoGNN’s performance on two distinct memory capacity
tasks: the regular memory capacity task defined in the literature, and the
newly introduced language-infused memory capacity task.

In the memory capacity task introduced by Jaeger [12], the training signals
received by the reservoir are randomly chosen values from a uniform distribu-
tion within the range [-0.5, 0.5]. We propose a new language-infused memory
capacity task, where the values used are derived from word embeddings of
texts. This approach aims to more closely align with the way the human brain
processes and stores information, potentially enhancing the reservoir’s capa-
bility to simulate memory capacity and thus, improve the MemoGNN’s ability
to predict brain activity patterns more accurately.

3. Conducting extensive experiments on MemoGNN using various base GNN
models and datasets.

To validate the MemoGNN model, we applied it to different types of graph
neural networks: Chebyshev Graph Convolutional Gated Recurrent and Long
Short-Term Unit [13], Topology Adaptive Graph Convolutional Networks [14],
and the Recurrent Brain Graph Mapper [5]. We evaluated performance using
mean absolute error (MAE) and various network topology measures on the

3



1.2. ETHICAL CONSIDERATIONS Chapter 1. Introduction

OASIS-2 and simulated datasets. Our evaluation indicates that the MemoGNN
trained with the regular memory capacity task exhibited fewer errors in certain
topological aspects compared to non-memory-aware counterparts. This finding
aligns with our preliminary experiment, which showed a strong correlation
between the regular memory capacity and some network topologies. However,
it did not achieve a lower MAE than the baseline models. On the other hand,
MemoGNN trained with the language-infused memory capacity task achieved a
lower MAE than the baseline models, demonstrating that the language-infused
task could be more biologically representative.

1.2 Ethical Considerations

Ethical handling of personal data is important in this project. While the datasets
used are publicly available and include MRI scans with assumed participant consent,
we ensured that all additional participant data does not allow for the identification
of the individual, providing full anonymity. The citations of the datasets are done to
allow for the reproducibility of the project’s methodology.

Other than the usage of personal data, the development and use of automated pre-
diction tools like our project’s models come with significant ethical considerations.
Given the sensitive nature of medical applications, where inaccuracies could have
detrimental effects on patients, it’s crucial to recognise that our models are exper-
imental. The direct application of the model in clinical treatment without compre-
hensive validation and regulatory compliance is not recommended.

Furthermore, the environmental impact of machine learning is acknowledged. The
usage of GPU to train models for a long period requires high computational and en-
ergy demands. This aspect should be taken into consideration during the execution
of the project as it contributes to climate change.

1.3 Preliminary Experiments

This section details some preliminary experiments we conducted to explore the na-
ture of the regular memory capacity. The concept and mathematical formulation
of memory capacity are explained in Section 3.2.

1.3.1 Memory Capacity of Two Groups

In this experiment, we compared the memory capacity of two distinct subject groups
to determine if there is a significant difference between their average memory ca-
pacities. The following hypotheses were tested:

• (H0) The average memory capacity of the two populations is not significantly
different.

4



Chapter 1. Introduction 1.3. PRELIMINARY EXPERIMENTS

• (H1) The average memory capacity of the two populations is significantly dif-
ferent.

Evaluation Dataset

We used the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC)
dataset [15] for this experiment. This dataset includes 340 individuals, divided
equally into 170 neurotypical controls and 170 individuals with Attention-Deficit/
Hyperactivity Disorder (ADHD), aged between 8 and 12 years. Each participant un-
derwent magnetic resonance imaging (MRI) to acquire resting-state fMRI (rs-fMRI)
time series data. Prior to analysis, brain graphs were constructed for each scan us-
ing the method described in Section 2.1, and the Harvard Oxford parcellation was
employed to identify 112 regions of interest.

Experimental Set-Up

We used the ESNRegressor from the echoes library as our Echo State Network (ESN)
for this experiment. The concepts of ESN are explained in Section 2.3.1. We chose to
use this library as it allows us to instantiate the Wres of the network, works well with
numpy, and is computationally efficient. To determine the memory capacity of each
biologically instantiated network, we used 4000 time steps for training and 1000
time steps for testing.

Hyperparameter tuning was performed using grid search to find the optimal values
to achieve the best memory capacity for the ESN model. They were then fixed across
all networks. The hyperparameters explored were: spectral radius of the reservoir
connectivity matrix p = {0.8, 0.9, 1.0}, input scaling e = {10−2, 10−3, 10−4, 10−5, 10−6,
10−7, 10−8}, and leakage rate α = {0.6, 0.8, 1.0}. The optimal combination of hyper-
parameters we found is as follows: spectral radius = 0.9, input scaling = 10−8, and
leakage rate = 1.0.

After fixing the hyperparameters, we calculated the memory capacity for each bio-
logically instantiated network. This is done by changing the Wres to each subject’s
connectivity matrix from the dataset, using the same training data to train the net-
work and the testing data for the computation of memory capacity.

Results and Analysis

The average of the memory capacity across the two populations as well as the stan-
dard deviation is calculated. We then plotted a distribution graph shown in Figure
1.1 which displays the memory capacities distribution of the two groups. Lastly, we
carried out a t-test on the results and got a p-value of 0.003. Therefore, we can reject
H0 and accept H1. This implies that there is a statistically significant difference in
the average memory capacities between the two groups. Observation can be made
from the figure that the memory capacity of individuals with ADHD is lower than
that of neurotypical controls.

5



1.3. PRELIMINARY EXPERIMENTS Chapter 1. Introduction

Figure 1.1: Violin plots comparing the memory capacity between the ADHD and Control
groups.

The significant difference in memory capacity observed can be attributed to the vari-
ations in brain network connectivity characteristic of ADHD. This demonstrates that
the biologically instantiated reservoir could potentially capture individual cognitive
differences.

1.3.2 Memory Capacity and Network Topologies

We explore the correlation between memory capacity and various network topolo-
gies in this experiment.

Evaluation Dataset

The evaluation dataset contains network graphs with topological traits across the
spectrum. This is such that we can thoroughly study the relationship between the
different network topologies and the memory capacity.

This dataset includes real brain graphs from the OASIS-2 dataset, which will be
covered in Section 4.2. We incorporated all the brain graphs from each subject
across multiple time points.

To extend the dataset, two techniques were used - rewiring, and edge deletion to
generate disrupted brain graphs. A visualisation of these disrupted graphs is shown
in Figure 1.2.

To introduce noise by rewiring the graph, we perform random edge weight swaps for
a set amount of times. The more swaps carried out, the more disrupted the network
is. For each brain graph in the OASIS-2 dataset, we disrupt graphs by rewiring 100,
200, and 300 edges and we add these graphs to the datasets.

6



Chapter 1. Introduction 1.3. PRELIMINARY EXPERIMENTS

Figure 1.2: Visualisation of brain graphs with rewiring and edge deletion disruptions. The
top row shows the effects of rewiring random edges with varying numbers of swaps,
while the bottom row illustrates the impact of removing random edges to achieve dif-
ferent densities. Each subplot includes the memory capacity value and the respective
disruption parameter (number of swaps or density).

To adjust the density of the graph G by removing edges, we first calculate the maxi-
mum possible number of edges in a complete graph with N nodes:

Emax =
N(N − 1)

2

Next, determine the target number of edges Et needed to achieve the desired density
d:

Et = d · Emax = d · N(N − 1)

2

Compare the current number of edges Ec in G with the target number Et. If Ec

exceeds Et, randomly select and remove edges until the number of edges matches
Et. For each original brain graph, we created disrupted graphs by removing random
edges to achieve densities d = {0.98, 0.79, 0.60, 0.41, 0.22, 0.1} and added them
to the dataset.

Additionally, the dataset includes a variety of synthetically generated graphs using
multiple well-established models, such as Erdős-Rényi, Barabási-Albert, and mod-
ular networks. A visualisation of networks generated with different models and
parameters is shown in Figure 1.3.

7



1.3. PRELIMINARY EXPERIMENTS Chapter 1. Introduction

Figure 1.3: Examples of synthetically generated network graphs using different models and
parameters. (a) Erdős-Rényi networks with varying probabilities p for edge creation. (b)
Barabási-Albert networks with different m values. (c) Modular networks with varying
intra-community and inter-community connection probabilities. Each subplot includes
the memory capacity value and the respective model parameter.

In an Erdős-Rényi (ER) graph G(n, p), n nodes are connected by edges, with each
pair of nodes having an independent probability p of being connected. We generated
300 ER graphs for each p = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

In a Barabási-Albert (BA) graph, nodes are added sequentially, and each new node is
connected to m existing nodes with a probability proportional to the number of links
that the existing nodes already have, a process known as preferential attachment.
We generated 200 BA graphs for m values ranging from 1 to 15.

In modular networks, there are distinct communities where nodes within the same
community are more likely to be connected than nodes in different communities. We
divided the total number of nodes, N , into C communities, each containing N

C
nodes.

Within each community, edges are created with a high probability pintra, and between

8



Chapter 1. Introduction 1.3. PRELIMINARY EXPERIMENTS

Figure 1.4: Distribution of various network topologies across the evaluation dataset. The
histograms illustrate the range and frequency of values for node strength, participa-
tion coefficient, diversity, betweenness centrality, eigenvector centrality, global efficiency,
modularity, density, clustering coefficient, and spectral radius.

communities with a low probability pinter. We generated 150 modular networks with
varying pintra = {0.1, 0.3, 0.5, 0.7, 0.9} and pinter = {0.01, 0.0325, 0.055, 0.0775, 0.1}.

Experimental Setup

The experimental setup explores the predictive relationship between network topolo-
gies and memory capacity. Initially, a suite of topology measurements is computed
for each network graph in the dataset. These include node strength, participation
coefficient, diversity coefficient, betweenness centrality, eigenvector centrality, den-
sity, clustering coefficient, and spectral radius. Figure 1.4 displays the distribution
of network topologies in the evaluation datasets. Networkx and bctpy libraries are
used to generate the graphs and compute the topologies.

Next, we compute the memory capacity of all the networks. We used the same set
of training and testing data, as well as hyperparameters as the first experiment for
the reservoir. Now that the network topologies and memory capacity are calculated,
a supervised learning model which aims to predict memory capacity based on the
network characteristics is set up. Linear Regression model from sklearn was used to
carry out this task.

9



1.3. PRELIMINARY EXPERIMENTS Chapter 1. Introduction

Figure 1.5: Correlation matrix illustrating the relationships between various network
topologies and memory capacity. This visualisation helps identify which topological fea-
tures are most strongly associated with memory capacity, providing insights into the
structural properties that influence cognitive function.

Results and Analysis

The results are analysed to assess the predictive capability of the supervised learning
models in estimating memory capacity based on network topologies. The primary
performance metric for this evaluation is the coefficient of determination (R²). The
high R² value obtained in this study (R² = 0.8937) demonstrates that the network
topology measurements can effectively predict memory capacity, suggesting a strong
correlation between memory capacity and these network characteristics. To support
this conclusion, we further present a correlation heat map and the topological dis-
tribution of the dataset. The heat map illustrates the relationships between various
network measurements and memory capacity. It shows that there are significant
correlations between them. In particular, measurements such as participation co-
efficient, diversity coefficient, and density show stronger correlations with memory
capacity. Out of all of them, density has the highest correlation of -0.82. The bar
chart in Figure 1 provides a clearer comparison of the correlation values. Overall,
these findings allow us to gain insights into the impact of generating memory-aware
brain connectomes on network topologies.

10



Chapter 1. Introduction 1.3. PRELIMINARY EXPERIMENTS

Figure 1.6: Bar chart displaying the correlation coefficients between various network topol-
ogy metrics and memory capacity. This visualisation highlights the strength and direction
of the relationship between each network metric and memory capacity.

11



Chapter 2

Background

2.1 Brain Graph Construction

In neuroimaging, Magnetic Resonance Imaging (MRI) scans can be converted into
graph structures, using adjacency matrices for representation [16]. This process
begins by defining nodes as Regions of Interest (ROIs) based on a chosen parcellation
method [17]. The approach to constructing a graph from MRI data varies with the
type of MRI:

• Functional MRI (fMRI): fMRI measures changes in blood flow, particularly the
blood-oxygen-level dependent (BOLD) signal, which correlates with neural ac-
tivity. When brain regions become active, they consume more oxygen, leading
to increased blood flow and higher levels of oxygenated haemoglobin [18]. For
each ROI, the average BOLD signal over time is calculated to represent neural
activity within that region. A functional connectivity matrix is then created by
computing correlations or other statistical measures between these time-series
data from the ROIs. This process is shown in Figure 2.1.

• Structural MRI: This type of MRI provides detailed visualisations of brain tis-
sues, including grey matter, white matter, and cerebrospinal fluid, capturing
the physical shape, and size of these structures [19]. Structural connectivity
can be analysed through direct diffusion-based anatomical connections (us-
ing techniques like diffusion tensor imaging) or through indirect, morphology-
based statistical interdependencies across different populations [20].

2.2 Neural Networks for Sequential Data

2.2.1 Recurrent Neural Network

Neural Networks are machine learning methods that aim to learn the underlying
patterns in data. Their structure is inspired by the human brain, where they are
made up of neurons interconnected with each other. Each neuron contains these

12



Chapter 2. Background 2.2. NEURAL NETWORKS FOR SEQUENTIAL DATA

Figure 2.1: Flowchart for the conversion of R-fMRI to a brain graph representation
taken from [17]

three main components:

1. Features (x): These are the data points fed into each neuron.

2. Parameters (w, b): These are learnable and adjusted during training to improve
performance.

3. Activation Function (g): This function introduces non-linearity, allowing the
neurons to handle the complex patterns in the data.

Mathematically, a single neuron’s operation can be described by the formula: ŷ =
g(
∑m

i=0 xiwi + b), where ŷ represents the neuron’s output. This formula is used in
feedforward neural networks, where each input is viewed independently, meaning it
cannot retain past information.

To address this limitation, Recurrent Neural Networks (RNNs) incorporate a looping
structure in their design [21], illustrated in Figure 2.2. This architecture endows
RNNs with a memory-like capability by including dependency between the input
data. This means that RNNs can be used to process time series data. Specifically,
RNNs maintain a state ht, updated based on the previous time step’s state ht−1 and

13



2.2. NEURAL NETWORKS FOR SEQUENTIAL DATA Chapter 2. Background

Figure 2.2: Comparison of a feedforward neural network to a recurrent neural network
with the looping structure

the current time step’s input xt. This calculation is mathematically expressed as
ht = gh(Whht−1 +Wxxt + bh). The computed hidden state is then used to determine
the output ŷ (via ŷ = gy(Wyht+ by)), with all weights being shared across time steps.

To update the weights to minimise the difference between the predicted data and
the actual data, most RNNs use backpropagation through time (BPTT). Unlike the
standard backpropagation used in feedforward networks, in BPTT, the error is prop-
agated back through each time step, and shared weights are updated based on the
accumulated gradients from the entire sequence. However, this method can trigger
the vanishing gradient problem, where the continuous multiplication of the hidden
state weight matrix across time steps leads to gradients that either explode or signif-
icantly diminish [22]. Another effect of this repeated multiplication is that updating
a single parameter in the network requires significant computational effort [23],
leading to an extended period of training time.

Researchers have employed two main strategies to address the vanishing gradient
problem. First, they have tried to employ much more advanced learning algorithms
beyond simple stochastic gradient descent. One such technique is gradient clipping,
which sets a threshold value for gradients. When a gradient exceeds this threshold,
it is scaled down to prevent it from becoming too large or too small. This approach
helps stabilise training by preventing exploding gradients, thereby indirectly ad-
dressing the vanishing gradient issue. Second, researchers have implemented more
sophisticated activation functions. Instead of the traditional affine transformation
followed by a simple element-wise nonlinearity, they use gating units. These units
include the Long Short-Term Memory (LSTM) unit and the Gated Recurrent Unit
(GRU), both of which incorporate mechanisms to better manage long-term depen-
dencies and mitigate the vanishing gradient problem.

14



Chapter 2. Background 2.2. NEURAL NETWORKS FOR SEQUENTIAL DATA

2.2.2 Long Short-Term Memory

The Long Short-Term Memory (LSTM) network [24] is a specialised form of Re-
current Neural Network (RNN) designed to handle long-term dependencies in se-
quential data, effectively addressing the vanishing gradient problem. An LSTM unit
consists of a cell state, an input gate, a forget gate, and an output gate. These
components interact to regulate the flow of information through the unit.

• Forget Gate: The forget gate determines which part of the cell state to forget.
It is defined as:

ft = σ(Wf · [ht−1, xt] + bf )

• Input Gate: The input gate controls how much of the new information is stored
in the cell state. It has two parts:

– Input Gate Activation:

it = σ(Wi · [ht−1, xt] + bi)

– Candidate Cell State:

C̃t = tanh(WC · [ht−1, xt] + bC)

• Cell State Update: The cell state is updated by combining the old state, par-
tially forgotten by the forget gate, and the new candidate values, modulated
by the input gate:

Ct = ft · Ct−1 + it · C̃t

• Output Gate: The output gate determines the next hidden state, which is used
for both the current output and the next time step’s input:

– Output Gate Activation:

ot = σ(Wo · [ht−1, xt] + bo)

– Hidden State:
ht = ot · tanh(Ct)

In these equations, σ represents the sigmoid function, and tanh represents the hy-
perbolic tangent function. The variables W and b are the weight matrices and biases,
respectively. The subscripts f , i, C, and o refer to the forget gate, input gate, can-
didate cell state, and output gate, respectively. ht−1 is the previous hidden state, xt

is the current input, and Ct−1 and Ct are the previous and current cell states. The
output yt can be produced by a one layer neural network similar to the simple RNN
case: ŷ = gy(Wyht + by).

15



2.3. RESERVOIR COMPUTING Chapter 2. Background

2.2.3 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [25] is designed to maintain and utilise long-term
dependencies in sequential data with a simpler architecture than Long Short-Term
Memory (LSTM) networks. A GRU unit consists of an update gate and a reset gate,
which regulate the flow of information.

• Update Gate: The update gate determines how much of the past information
needs to be passed along to the future. It is defined as:

zt = σ(Wz · [ht−1, xt] + bz)

• Reset Gate: The reset gate decides how much of the past information to forget.
It is defined as:

rt = σ(Wr · [ht−1, xt] + br)

• Candidate Hidden State: The candidate hidden state, which represents new
information to be added to the unit, is calculated as:

h̃t = tanh(Wh · [rt · ht−1, xt] + bh)

• Hidden State Update: The final hidden state is a combination of the previous
hidden state and the candidate hidden state, modulated by the update gate:

ht = (1− zt) · ht−1 + zt · h̃t

2.3 Reservoir Computing

2.3.1 Echo State Networks

Echo State Networks (ESN) [26] is a new approach that modifies the RNN archi-
tecture to address its shortcomings [27], it comes under the reservoir computing
umbrella. It consists of the input, reservoir, and readout layers [8]. The input layer
receives a signal and passes it to the reservoir. The reservoir is an RNN with fixed
untrained weights that can map the input into a higher-dimensional space. This
step is crucial as it transforms the complex, non-linearly separable data into a more
manageable, linearly separable form. The readout layer is a straightforward linear
model that transforms the reservoir states into the target signal. This layer is typi-
cally trained using basic methods like linear regression. By focusing on training just
the readout layer, RC avoids the issues usually encountered with gradient descent in
standard RNN training [27].

Mathematically, the input vector x(t) ∈ RNx is processed through an input matrix
Win ∈ RNr×Nx, where Nr and Nx denote the reservoir size and input size, respec-
tively. An input scaling factor can be applied to calibrate the magnitude of the input

16



Chapter 2. Background 2.4. MACHINE LEARNING ON GRAPHS

signals in relation to the reservoir’s internal dynamics. The reservoir’s state is up-
dated as per the following equations:

h′(t) = f(Winxt +Wrh(t− 1) + b) (2.1)

h(t) = αh′(t) + (1− α)Wrh(t− 1) (2.2)

where Wr ∈ RNr×Nr represents the connectivity matrix between reservoir neurons,
b ∈ RNr is the bias vector, f is the activation function and α is the leak rate. The
leak rate α governs the extent to which the neuron’s new state permeates into its
state at each time step. A higher leak rate, approaching 1, implies a more aggressive
state update based on new inputs, enhancing the network’s responsiveness to recent
inputs but potentially diminishing its long-term information retention capacity. Ad-
ditionally, the spectral radius is used to scale the weights Wr, influencing the balance
between the network’s memory and stability.

The output readout vector y(t) ∈ RNy is calculated as follows:

y(t) = Wouth(t) (2.3)

As mentioned before, training is confined to the readout weights Wout, which can be
efficiently determined using rapid linear regression models. Assuming the internal
states and desired outputs are stored in matrices X and Y , the readout weights Wout

are computed by solving a least squares problem:

||WoutX − Y ||22 (2.4)

2.4 Machine Learning on Graphs

2.4.1 Graphs

A graph G is defined as an ordered pair G=(V, E) consisting of a set V of vertices
(or nodes) and a set E of edges. Each edge is a pair (x, y) where x and y are
vertices. An edge represents a connection or relation between the vertices it connects
with attributes like weights or directions. Graphs can also be represented using an
adjacency matrix, in which the matrix elements indicate whether there is an edge
between the pairs of vertices in the graph. An example of this is shown in Figure
2.3, where a directed unweighted graph’s adjacency matrix would be asymmetric.

Graph structures are widely used to model complex relationships across various do-
mains, including areas like text and image analysis. This utility has inspired the
creation of machine learning architectures that capitalise on the unique properties
of graphs. In our research, we specifically focus on leveraging these graph-based
machine learning architectures to work with the brain graph data.

2.4.2 Graph Neural Networks

Graph Neural Networks (GNNs) are specialised neural networks designed to process
structured data represented as graphs. In GNNs, both nodes and edges have as-
sociated feature vectors/learned embeddings that contain specific information used

17



2.4. MACHINE LEARNING ON GRAPHS Chapter 2. Background

Figure 2.3: A directed unweighted graph and its asymmetric adjacency matrix

for learning purposes. The objective of a GNN is to learn a mapping function that
transforms these input feature vectors into output feature vectors.

GNNs can solve various tasks and they are categorised into three levels:

• Node-level predictions focus on forecasting specific node attributes or clas-
sifications. An example is predicting the changes in the state or attributes of
individual nodes in the brain graph (like changes in the activity or function of
specific brain regions).

• Edge-level predictions aim to determine the existence of a link between two
nodes, like predicting the formation or dissolution of connections (edges) be-
tween different regions or nodes (neurons, neuron clusters, or functional ar-
eas) in the brain.

• Graph-level predictions involves classifying an entire graph or predicting its
overall attributes, such as classifying the brain graph into different categories
(e.g., healthy vs. diseased).

When constructing a typical GNN model, different types of computational blocks are
combined based on the task at hand. There are three main types [28]:

1. Propagation Block: This block facilitates the transfer of information between
nodes, enabling the aggregation of data that reflects both the features and the
topology of the graph. Propagation typically involves convolution operators
to gather neighbouring information. This is somewhat similar to convolutional
layers in Convolutional Neural Networks (CNNs), where a kernel or filter slides
across an image to create a feature map (Figure 2.4). However, the convolu-
tional operations differ between GNNs and CNNs.

2. Sampling Block: In scenarios involving large graphs, sampling blocks become

18



Chapter 2. Background 2.4. MACHINE LEARNING ON GRAPHS

Figure 2.4: Convolution operation in CNN vs in GNN

essential. They enable efficient propagation across these extensive networks
and are often used in conjunction with the propagation module.

3. Pooling Block: When it’s necessary to derive representations for higher-level
subgraphs or entire graphs, pooling modules come into play. They are crucial
for extracting comprehensive information from nodes.

In particular, for the propagation block, the convolutional operators have been cate-
gorised into two domains, spatial and spectral.

Spectral Methods

Spectral Methods rely on the principles of graph spectral theory [29]. The basis of
this approach is the graph Laplacian L, which is defined as L = D − A ∈ Rn×n.
Here, n is the number of vertices in the graph, A represents the adjacency matrix
of the graph, and D is the degree matrix, a diagonal matrix where Dii indicates the
degree of node i. The central part of spectral methods is the eigen-decomposition
of the graph Laplacian, expressed as L = UΛUT , where U ∈ Rn×n is the matrix
of eigenvectors and Λ ∈ Rn×n is the diagonal matrix containing eigenvalues. In
graph-based data, defining a meaningful translation operator in the vertex domain
presents challenges; hence, the convolution operation ∗G is performed in the Fourier
domain. A graph signal x ∈ Rn×dx is filtered using a non-parametric kernel defined
by gθ(Λ) = diag(θ), where θ ∈ Rn represents the vector of Fourier coefficients. The
convolution is expressed as:

y = gθ ∗G x = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)U
Tx ∈ Rn×dx , (2.5)

However, non-parametric filters have two main limitations: first, their global scope
conflicts with the local nature of traditional convolution, which should ideally fo-
cus only on neighbouring nodes; second, evaluating the formula is computationally
expensive due to the multiplication of U , especially for large graphs, resulting in a

19



2.5. RELATED WORK Chapter 2. Background

learning complexity of O(n). These challenges are mitigated by using a polynomial
filter [30], where gθ is parameterised as a truncated series expansion of Chebyshev
polynomials Tk, up to order K − 1:

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̃), (2.6)

Here, θ ∈ RK are the Chebyshev coefficients, and the scaled Laplacian is Λ̃ =
2Λ/λmax − In. The graph filtering operation is:

y = gθ ∗G x =
K−1∑
k=0

θkTk(L̃)x, (2.7)

with L̃ = 2L/λmax − In. This method addresses the first limitation by focusing on
nodes within K hops from the central node, thus ensuring a local scope. The sec-
ond limitation is resolved by the recurrence relation for the Chebyshev polynomials,
Tk(x) = 2xTk−1(x) − Tk−2(x), which allows for efficient computation linear to the
number of edges.

Spatial Methods

On the other hand, spatial Methods carry out the operations in the spatial domain.
These methods focus on aggregating features from the immediate neighbours of each
node [31]. The aggregation process for a node v is mathematically formulated as:

h(k+1)
v = AGGREGATE(k)({h(k)

u : u ∈ N(v)}) (2.8)

where h
(k)
v represents the feature vector of node v at the k-th layer, and N(v) denotes

the set of neighbours of v. Post-aggregation, a transformation is applied, typically in
the form of:

h(k+1)
v = σ(W (k) · h(k+1)

v ) (2.9)

with W (k) being a layer-specific learnable weight matrix and σ a non-linear activation
function. This approach is quite similar to a message-passing scheme where nodes
exchange and update features based on their local neighbourhoods. The advantage
of spatial methods is their computational efficiency, especially when dealing with
varying graph structures. However, they may require careful design to be able to
capture the global graph properties well.

2.5 Related Work

This section first reviews the state-of-the-art models that aim to predict brain graph
evolution using GNNs. It then examines research in the area of biological reservoir
computing. This review highlights key advancements, methodologies, and findings,
and identifies any current limitations and future research directions in these fields.

20



Chapter 2. Background 2.5. RELATED WORK

2.5.1 Brain graph evolution prediction

Nebli et al. [4] introduced EvoGraphNet, which is composed of a sequential chain
of graph-generative adversarial networks (gGANs), with each link in the chain ded-
icated to the prediction of the brain graph of the subsequent time point. Central
to the architecture of EvoGraphNet is the generative adversarial network (GAN),
consisting of two primary components: a generator, denoted as G, and a discrimi-
nator, D. The generator, functioning as an autoencoder, given a brain graph of the
current time point, is designed to fabricate synthetic samples representative of the
following time point. Concurrently, the discriminator refines its ability to discern
between the genuine, ground-truth data and the fabricated data produced by the
generator. The training paradigm of this network allows for a dual advancement.
The generator progressively enhances its capacity to create more precise and con-
vincing samples, while the discriminator simultaneously improves its proficiency in
differentiating between the actual data and the generated samples. EvoGraphNet
demonstrates notable success in this domain, achieving an average MAE of 0.05495
at t1 and 0.08048 at t2. However, the model’s complexity and the sequential nature
of its generator-discriminator stacks demand substantial computational resources
and extended training durations.

Addressing the computational efficiency challenge, Tekin et al. [5] proposed the
Recurrent Brain Graph Mapper (RBGM). This model comprises a series of mappers,
each corresponding to a distinct time point. Each mapper employs a graph neural
network that executes recurrent dynamic edge-filtered convolution, where the hid-
den state is propagated through all the mappers, and the output node embeddings
are transformed into a predicted brain graph. The model also leverages the teacher-
forcing method during training to enhance the quality of the generated brain graph.
RBGM has shown improved performance over EvoGraphNet in terms of mean MAE
at t1 on the same dataset, but trailing slightly behind EvoGraphNet at t2. On the
other hand, RBGM achieves a 46% reduction in training time for t2, such, RBGM is
able to match the performance whilst reducing the training time drastically. How-
ever, both EvoGraphNet and RBGM are limited to predictions on single-modal data.

Expanding the scope to multigraph populations, Demirbilek et al. [6] focused on
forecasting and integrating longitudinal multigraph datasets by learning time-dependent
Connectome-Based Templates (CBTs). Their model, Recurrent Multigraph Integra-
tor Network (ReMI-Net*), implements a recurrent graph convolution approach, us-
ing the message-passing paradigm. This technique embeds dependencies at both the
node neighbourhood and temporal levels into a unified node embedding matrix, rep-
resenting consecutive time points for an individual subject. Subsequently, a trans-
formation layer is applied to these embeddings to predict the CBT. This approach
parallels RBGM but extends to multigraph scenarios, incorporating normalisation
operations across views to account for scale variations in view-specific features.

Targeting the sample size scarcity issue in longitudinal datasets for brain connec-
tomes, Gürler et al. [7] developed a federated learning framework, 4D-FED-GNN+,
that allows the training of GNN models across multiple hospitals without the need

21



2.5. RELATED WORK Chapter 2. Background

for centralised data storage. The training process involves iteratively updating local
models at each hospital and aggregating the updates on a central server to refine a
global model.

Collectively, these studies have addressed diverse challenges in predicting brain
graph evolution. However, a notable gap in the existing literature is the integra-
tion of biological traits into the predictive models. Consequently, the focus of this
project will be to explore this uncharted territory by combining biological reservoir
computing with one of these existing methodologies, potentially opening new av-
enues in brain graph evolution prediction.

2.5.2 Biological Reservoir Computing

The biological feasibility of RC has been extensively researched for its ability to repli-
cate the brain’s handling of temporal data [8]. A notable early RC model aimed to
decipher brain mechanisms governing eye movements in varying scenarios [32].
This model centres on the prefrontal cortex, which is involved in complex cogni-
tive tasks (such as decision-making, problem-solving, and social behaviour) and its
connection to the striatum. The prefrontal cortex neurons formed a fixed network
(reservoir), with adaptable connections to the striatum (readout). This aided in un-
derstanding visual perception and eye movement coordination. Subsequent research
expanded this model’s applications to include learning patterns in sequential inputs
[33], integrating it with language processing models for grammar learning [34] and
learning algorithm enhancement [35].

Advancements in imaging have enabled detailed mapping of human brain circuits.
This allows the traditional RC models to be enhanced biologically by incorporating
structured connectivity based on actual brain networks, thus, allowing us to ex-
plore the brain’s computational capabilities. Damicelli et al. [10] integrated real
brain connectomes into Echo State Networks (ESNs), creating BioESNs through the
bio2art framework, which maps and scales up real connectomes for use in recurrent
ANNs. The study evaluated the performance of connectomes from different primate
species: humans, macaques, and marmosets. Various surrogate network conditions
were also created to compare with the empirical connectome-based BioESNs, in-
cluding different random wiring configurations and connection densities. The study
employed two types of memory tasks: the Memory Capacity Task and the Memory
Sequence Recall Task. It found that BioESNs with real connectome-based reservoirs
performed comparably to classical ESNs with random connectivity, provided there
was enough randomness in the connections. Additionally, the study demonstrated
that larger reservoirs with heterogeneous connectivity patterns could overcome the
memory performance limitations inherent to the underlying connectivity. Despite
these advancements, the study has several limitations. It focused only on memory
tasks framed as regression problems. Thus, future research should include classi-
fication tasks and more ecologically realistic tasks. Additionally, considering entire
connectomes as single networks limits the exploration of network subdivisions cor-
responding to different brain systems.

22



Chapter 2. Background 2.5. RELATED WORK

Suárez et al. [36] also conducted experiments on biologically instantiated reservoirs
using human connectomes. The study investigated the effects of the reservoir in
stable (spectral radius of connectomes < 1), critical (spectral radius of connectomes
= 1), and chaotic (spectral radius of connectomes > 1) states. The findings reveal
that memory capacity is optimal at the edge of chaos, where the network exhibits
critical dynamics. Moreover, the study identifies that network structure significantly
influences memory capacity, with moderate to high correlations observed. At criti-
cality, memory capacity relies more on global network dynamics than on topological
features. Whereas in stable and chaotic regimes, the topology plays a greater role.
Later, Suárez et al. [11] presented the development of the conn2res toolbox, an
open-source Python framework designed to implement biological neural networks
as artificial neural networks for performing cognitive tasks. The toolbox allows the
selection of input and readout nodes, so researchers can configure the arbitrary net-
work architectures with different types of local dynamics. For example, by setting
the input nodes from the visual system and output nodes from the somatomotor sys-
tem. This flexibility allows researchers to explore the effects of network subdivisions
on cognitive functions.

23



Chapter 3

Methodologies

This section outlines the key steps of our MemoGNN for predicting brain graph evo-
lution from a single time point.

3.1 Overview

In the longitudinal brain graph population dataset, we have a set of longitudinal
tensors {T t

0 , . . . , T t
ns
}nt
t=1 with each tensor {T t}nt

t=1 representing a subject. During
preprocessing, all brain connectivity matrices are set as the weight matrices of an
echo state network to create biologically instantiated reservoirs. We subsequently
train the reservoirs to remember the lagged version of the Xtrain input signal, Ytrain,
and then measure their memory capacity based on performance on Xtest. This pro-
cess yields the memory capacity for all brain connectivity matrices in the dataset.
Our proposed model includes an arbitrary graph neural network g that processes
a brain connectivity matrix T t

s to predict the brain connectivity matrix T t+1
s . We

then create a biologically instantiated reservoir and measure the memory capacity
using the same methodology as in the preprocessing stage. We compare the mem-
ory capacity of the predicted brain graph m̂t+1

s with that of the actual brain graph
mt+1

s , obtained during preprocessing. The mean absolute error (MAE) between the
two memory capacities serves as one component of the loss function, along with
the MAE between the predicted and actual brain graphs. The overall model flow is
shown in Figure 3.1, and the main mathematical notations used are detailed in Ta-
ble 3.1. In the next sections, we dive into the mathematical formulation behind the
main component of our model, the biologically instantiated reservoir, as well as the
loss function we introduced for minimising the cognitive closeness of the produced
brain graphs.

3.2 Biologically Instantiated Reservoir

The main component of our model consists of the biologically instantiated reser-
voir. We implemented the Echo State Network (ESN) introduced in Section 2.3.1

24



Chapter 3. Methodologies 3.2. BIOLOGICALLY INSTANTIATED RESERVOIR

Notation Definition

nr Total number of nodes (regions of interests) in the network
ns Total number of subjects in the dataset
nt Total number of time points in the dataset
T t
s Brain connectivity matrix of subject s at time point t ∈ Rnr×nr

T̂ t
s Predicted brain connectivity matrix of subject s at time point t ∈ Rnr×nr

mt
s Memory capacity of the brain connectivity matrix of subject s at time point t

m̂t
s Memory capacity of predicted brain connectivity matrix of subject s at time point t

nx The number of features in the input signal
nres The number of neurons in the reservoir of a neural network
no The number of features in the output signal
ts The number of time steps in the input/output signal
xt Input signal to the reservoir, at time step t ∈ Rnx

Win Input weight matrix, dimension ∈ Rnres×nx

Wres Reservoir weight matrix ∈ Rnres×nres

ht State vector at time step t ∈ Rnres

tanh Hyperbolic tangent activation function
[; ] Concatenation of two vectors
S Combined states matrix ∈ Rts×(nres+nx)

T Target output matrix ∈ Rts×no

S+ Pseudoinverse of S ∈ R(nres+nx)×ts

Wout Output weight matrix, dimension ∈ Rno×(nres+nx)

st Combined states vector at time step t ∈ Rnres+nx

yt Actual output at time step t ∈ Rno

ŷt Predicted output at time step t ∈ Rno

λ1 Adjustable coefficient for the l1 loss
λ2 Adjustable coefficient for the memory capacity loss
Ll1 MAE between the actual and predicted brain graphs
Lmem MAE of the memory capacity between the actual brain graph and the predicted brain graph
Ltotal Overall loss computed for the training sample s

Table 3.1: Major parameters used in MemoGNN. We use capital letters X to denote
matrices, bold lower case letters x to denote vectors and lower case letters x to denote
scalar values

25



3.2. BIOLOGICALLY INSTANTIATED RESERVOIR Chapter 3. Methodologies

Figure 3.1: MemoGNN Architecture a. Dataset consisting of longitudinal brain graph
tensors, each representing a subject’s brain connectivity at different time points. b.
Preprocessing where brain connectivity matrices are set as the weight matrices of an
echo state network to create biologically instantiated reservoirs. These reservoirs are
trained to remember lagged versions of input signals and evaluated on the test signals,
yielding memory capacities for all brain graphs. c. GNN model predicts the next time
point’s brain graph from the current graph. d. Biologically instantiated reservoir
created using the predicted graph, and its memory capacity is measured similarly. e.
Loss functions include the mean absolute error (MAE) between the memory capacities
of the predicted and actual brain graphs, and the MAE between the predicted and actual
brain graphs themselves.

from scratch, tailoring it to our application by setting reservoir weights to match
the predicted brain graph. The implementation includes several key components, as
described below.

State Update

The state update equation is given by:

ht = tanh(Winxt +Wresht−1)

Since this is a biologically instantiated reservoir, we set Wres to a brain connectivity
matrix T t

s . Hence the equation becomes:

ht = tanh(Winxt + T t
s ht−1)

26



Chapter 3. Methodologies 3.2. BIOLOGICALLY INSTANTIATED RESERVOIR

This step transforms the complex, non-linearly separable data into a more manage-
able, linearly separable form.

Forward Pass

In the forward pass, the state update function is used to compute the hidden states
over time. Then the combined states, which incorporate both the hidden states and
the original input, are then returned:

st = [ht;xt]

where [; ] denotes concatenation. Combining the hidden states with the raw input
allows the model to leverage both the transformed features from the reservoir and
the original input features. This provides a richer and more comprehensive feature
representation. On top of that, this balances the memory of past states captured by
the reservoir with the influence of the current input.

Training Output Weights

The output weights Wout are trained using the pseudoinverse method:

Wout = (S+T)⊤

We chose the pseudoinverse to solve for Wout in the readout layer over gradient
decent training as it is much more computationally efficient and provides a more
accurate prediction. This is because it calculates a direct solution to the problem,
whereas in gradient descent, iterative updates and hyperparameter tuning need to
be carried out. The memory capacity for each subject s and each time point t is
calculated during training, therefore this process has to be as efficient as possible.

Prediction

The prediction equation is:
ŷt = Woutst

gives us the predicted signal from the biologically instantiated reservoir, which can
then be used to calculate its memory capacity.

Memory Capacity Task

In this task, the reservoir’s goal is to learn and predict delayed versions of the input
signal. We define two memory capacity tasks, the one introduced by Jaegar [12],
which we termed the regular memory capacity task, and the language-infused mem-
ory capacity task, which we have introduced. The difference between them lies in
how the signal X is generated.

27



3.2. BIOLOGICALLY INSTANTIATED RESERVOIR Chapter 3. Methodologies

Figure 3.2: A biologically instantiated reservoir performing the regular memory capacity
task with max time lag set to 2

In the regular memory capacity task, each value of X termed xt is chosen randomly
from a uniform distribution between -0.5 and 0.5 and is passed through an input
neuron. Formally, we can write:

xt ∼ Uniform(−0.5, 0.5)

In the language-infused memory capacity task, xt is the word embedding of a to-
ken, chosen from a text corpus. We obtain this word embedding using the Word2vec
algorithm.

For each delay time τ , there’s an output Yτ that predicts the input X at the time
t − τ . Then, the reservoir tries to generate an output sequence Ŷτ which aims to
approximate the delayed input sequence Yτ . The predicted output at time step t can
be expressed as:

ŷτ (t) ≈ xt−τ

The overall performance which is termed the Memory Capacity, is calculated by
summing up the squared Pearson correlation coefficient (ρ) across all outputs (from
no lag to the maximum lag set), reflecting the reservoir’s ability to remember and

28



Chapter 3. Methodologies 3.3. LOSS FUNCTION

predict the input at different time lags. The Pearson correlation coefficient ρ between
the true output yτ and the predicted output ŷτ for a given delay τ is defined as:

ρ(yτ , ŷτ ) =

∑
t(yτ (t)− ȳτ )(ŷτ (t)− ¯̂yτ )√∑

t(yτ (t)− ȳτ )2
∑

t(ŷτ (t)− ¯̂yτ )2

where ȳτ and ¯̂yτ are the mean values of the true and predicted outputs, respectively.
The Memory Capacity (MC) can then be expressed as:

MemoryCapacity =
∑
τ

ρ2(yτ , ŷτ ) (3.1)

This formula indicates that Memory Capacity is the sum of the squared Pearson
correlation coefficients over all considered time lags. A visual representation of the
regular memory capacity task is shown in Figure 4.1.

3.3 Loss function

We decided to use the L1 loss as part of the loss function. Given the current time
point t and the predicted brain graph at time point t + 1 for subject s as T̂ t+1

s , we
define the L1 loss as follows:

LL1(T̂ t+1
s , T t+1

s ) = ∥T̂ t+1
s − T t+1

s ∥1

We chose the L1 loss because it is resilient against outliers, which makes it suitable
for brain graphs that are sparse and on top of that, exhibit high variability. We also
implemented the memory capacity loss by using Formula 3.1, which measures the
brain graph’s ability to retain and utilise past information to make accurate fore-
casts. During the preprocessing stage, we obtained the memory capacity mt+1

s for
the actual brain graph. Thus while training, we only need to compute the memory
capacity m̂t+1

s for the predicted brain graph. We then calculate the absolute differ-
ence between the two:

Lmem(T̂ t+1
s , T t+1

s ) =
∣∣m̂t+1

s −mt+1
s

∣∣
We chose to implement this loss to ensure that the predicted brain graphs not only
match the ground-truth graphs in terms of connectivity values but also in their func-
tional memory capacity. This will allow for maintaining the cognitive closeness of the
brain network across different time points, resulting in more biologically plausible
predictions.

Overall, the total loss function Ltotal would be as follows:

Ltotal(s) =
s∑

i=1

(λ1L1(T̂ t+1
s , T t+1

s ) + λ2Lmem(T̂ t+1
s , T t+1

s ))

where λ1 and λ2 are hyperparameters that need to be tuned to adjust to the two
losses.

29



Chapter 4

Results and Evaluation

In this chapter, we present our experimental results, evaluating the performance of
various graph neural network models in their ability to forecast 4D brain connectiv-
ity. Our analysis compares the baseline models with their reservoir-enhanced coun-
terparts (MemoGNNs), on two types of memory capacity tasks. We begin by out-
lining the evaluation measures and their mathematical definitions. We then present
the two datasets used during the evaluation. Lastly, we discuss the results obtained
for the two memory tasks and provide further analysis to explain the underlying
patterns.

4.1 Evaluation Measures

In this section, we discuss the evaluation measures used in our analysis, clarifying
the mathematical definitions and their significance in the context of our study.

MAE

We will use the Mean Absolute Error (MAE) as a measurement for comparison be-
tween the predicted brain graph matrix (Ŷ ) and the actual brain graph matrix (Y ).
The MAE is defined mathematically as:

MAE =
1

mn

m∑
i=1

n∑
j=1

|Yij − Ŷij|

This metric will be applied across all time points. Subsequently, these results will
be compared with those obtained from the baseline models to evaluate whether our
model demonstrates a reduction in MAE.

MAE of memory capacity

We propose to compare the memory capacity of the predicted brain graph matrix (Ŷ )
when used as the state of the reservoir, against that of the actual brain graph matrix

30



Chapter 4. Results and Evaluation 4.1. EVALUATION MEASURES

(Y ). The similarity of the memory capacity would show us the cognitive closeness
of the brain graphs. We define the absolute difference in memory capacities as:

Diff = |MC(Y )−MC(Ŷ )|

Node strength

The node strength [37] is the sum of the weights of all edges connected to a node in
a weighted graph. It measures the importance of node i in a graph. Mathematically,
the node strength si of a node i is defined as:

si =
∑

j∈N(i)

wij

where:

• N(i) is the set of neighbours of node i.

• wij is the weight of the edge between nodes i and j.

We calculate the average node strength for each graph to allow for an easy com-
parison between the predicted and actual graphs. This comparison is achieved by
computing the absolute difference between the average node strengths of the two
graphs.

Participation coefficient

The participation coefficient [38] measures how evenly a node’s connections are
distributed among different communities within the graph. It indicates the extent
to which a node participates in multiple communities, with Pi = 0 meaning that the
node is fully restricted to its own community. The closer Pi is to 1, the more evenly
the node’s connections are spread across different communities, indicating a higher
level of participation in multiple communities.

Mathematically, the participation coefficient Pi of a node i is defined as:

Pi = 1−
NC∑
c=1

(
ki,c
ki

)2

where:

• NC is the number of communities.

• ki,c is the number of links from node i to nodes in community c.

• ki is the total degree of node i.

31



4.1. EVALUATION MEASURES Chapter 4. Results and Evaluation

Diversity coefficient

The Shannon entropy-based diversity coefficient [39] Hi measures the diversity of a
node’s connections in a graph. It reflects how a node’s connections are distributed
across communities. A high entropy value indicates that connections are evenly
spread across multiple communities, signifying high diversity. A low entropy value
indicates that connections are concentrated within a few communities, signifying
low diversity.

Mathematically, the Shannon entropy-based diversity coefficient Hi of a node i is
defined as:

Hi = −
NC∑
c=1

pi,c log pi,c

where:

• NC is the number of communities.

• pi,c =
ki,c
ki

is the proportion of links from node i to nodes in community c.

• ki,c is the number of links from node i to nodes in community c.

• ki is the total degree of node i.

Betweenness centrality

Betweenness centrality [40] measures a node’s importance in a graph based on the
number of shortest paths that pass through it. It quantifies the role of a node as a
bridge or connector within the graph, highlighting nodes that significantly influence
the flow of information or resources. A node with high betweenness centrality has
considerable control over communication between other nodes in the graph.

The betweenness centrality CB(v) of a node v is defined as:

CB(v) =
∑
s ̸=v ̸=t

σst(v)

σst

where:

• σst is the total number of shortest paths from node s to node t.

• σst(v) is the number of those shortest paths that pass through node v.

• The summation is over all pairs of nodes s and t in the network, excluding
node v.

Eigenvector centrality

Eigenvector centrality [41] measures a node’s influence within a graph. It extends
the concept of degree centrality by considering not only the number of a node’s
direct connections (its degree) but also the importance of the nodes to which it is

32



Chapter 4. Results and Evaluation 4.1. EVALUATION MEASURES

connected. A node with high eigenvector centrality is connected to other nodes that
themselves have high centrality.

The eigenvector centrality CE(v) of node v can be defined as:

CE(v) =
1

λ

∑
u∈N(v)

AuvCE(u)

where:

• λ is the largest eigenvalue of the adjacency matrix A.

• N(v) is the set of neighbours of node v.

• Auv is the element of the adjacency matrix A corresponding to the edge be-
tween nodes u and v.

Local efficiency

Local efficiency [42] measures how well information is exchanged within the imme-
diate neighbourhood of a node in a graph. It quantifies the robustness of the graph to
the failure of individual nodes by evaluating the efficiency of communication among
a node’s neighbours when the node itself is removed. High local efficiency indicates
that the neighbours of a node are well connected, even in the absence of the node,
which suggests that the graph has a resilient local structure.

The local efficiency Eloc(i) of a node i is defined as the efficiency of the subgraph Gi

induced by the neighbours of i. It can be expressed as:

Eloc(i) =
1

ki(ki − 1)

∑
j,h∈N(i)

1

djh

where:

• ki is the degree of node i, i.e., the number of neighbours of node i.

• N(i) is the set of neighbours of node i.

• djh is the shortest path distance between nodes j and h in the subgraph Gi.

Global efficiency

Global efficiency [42] is a measure of how efficiently information is exchanged across
the entire graph. It quantifies the ease of communication between all pairs of nodes,
considering the shortest paths connecting them. High global efficiency indicates that
the graph allows for quick information transfer between nodes, reflecting an overall
well-connected and integrated structure.

The global efficiency Eglob of a graph is defined as the average efficiency of the
shortest paths between all pairs of nodes. It can be expressed as:

Eglob =
1

N(N − 1)

∑
i ̸=j

1

dij

33



4.1. EVALUATION MEASURES Chapter 4. Results and Evaluation

where:

• Eglob is the global efficiency of the network.

• N is the total number of nodes in the network.

• dij is the shortest path distance between nodes i and j.

Modularity

Modularity [43] quantifies the strength of a graph’s division into communities. It
evaluates how well the graph is partitioned into subgroups, ensuring nodes within
the same group are more densely connected to each other than to nodes in different
groups. High modularity values indicate a strong community structure, with many
connections within modules and relatively few between them. The modularity Q of
a graph partition is defined as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where:

• m is the total number of edges in the network.

• Aij is the adjacency matrix, where Aij = 1 if there is an edge between nodes i
and j, and Aij = 0 otherwise.

• ki and kj are the degrees of nodes i and j, respectively.

• δ(ci, cj) is the Kronecker delta function, which is 1 if nodes i and j are in the
same community (i.e., ci = cj) and 0 otherwise.

Density

Density is used to quantify the proportion of possible connections that are actual
connections within the graph. It reflects how closely knit or interconnected the
graph is. In an undirected graph, density is calculated by comparing the number of
edges present to the total number of possible edges. A higher density indicates a
more interconnected graph, where many nodes are directly connected to each other.

The density D of an undirected graph is defined as:

D =
2m

N(N − 1)

where:

• m is the total number of edges in the network.

• N is the total number of nodes in the network.

• N(N−1)
2

is the total number of possible edges in an undirected graph with N
nodes.

34



Chapter 4. Results and Evaluation 4.2. EVALUATION DATASETS

Clustering Coefficient

The clustering coefficient [44] measures how close a node’s neighbours are to form
a complete graph (i.e., how interconnected a node’s neighbours are). In the context
of an entire graph, transitivity is a classical version of the clustering coefficient. It
measures the overall tendency of nodes to cluster together. Specifically, transitivity
is the ratio of the number of triangles (three nodes all connected to each other) to
the number of triplets (two edges that share a common node) in the network. This
measure provides insight into how likely nodes in the network are to cluster or form
tightly-knit groups.

For an undirected weighted graph, the transitivity (global clustering coefficient) is
defined as:

C =
3× number of triangles

number of triplets

In terms of the adjacency matrix A, where Aij represents the weight of the edge
between nodes i and j, the equation can be more formally written as:

C =

∑
i,j,k(AijAjkAki)

1/3∑
i ki(ki − 1)

where:

• Aij is the weight of the edge between nodes i and j.

• ki is the degree of node i, i.e., the number of edges connected to node i.

• The numerator counts the number of triangles in the graph, considering the
weights of the edges.

• The denominator is the number of triplets (three nodes connected by two
edges) in the graph.

4.2 Evaluation Datasets

To assess the performance of our model, we will use the OASIS-2 longitudinal dataset
[45]. The processed dataset encompasses a cohort of 114 individuals, ranging in age
from 60 to 96 years. Each participant underwent magnetic resonance imaging (MRI)
during two or more visits, with a minimum interval of one year between each ses-
sion, adding up to a total of 373 imaging sessions. The dataset includes 3 to 4
individual T1-weighted MRI scans per subject, all acquired in single scan sessions.
Before analysis, brain graphs will need to be constructed for each scan, as outlined in
Section 2.1, which will facilitate subsequent analyses and model evaluations. Upon
visualising the data, we discovered an anomalous brain connectome with a max-
imum value of 165.648. To ensure the integrity and quality of our dataset, we
removed this anomalous data point. After excluding the anomaly, we are left with a
dataset of 113 individuals.

35



4.3. GRAPH NEURAL NETWORK MODELS Chapter 4. Results and Evaluation

Figure 4.1: The data distribution of all the connectomes in the two different evaluation
datasets

We also generated a simulated dataset from the OASIS-2 dataset to further evaluate
our model’s performance. This process involves calculating the mean connectivity
values and the correlation matrices of the dataset and creating samples from a mul-
tivariate normal distribution based on these predefined statistics. Each sample is
anti-vectorised to convert into an adjacency matrix. It involves reconstructing the
upper triangular part of the matrix from a vector and mirrors it to form a symmet-
ric 35x35 matrix. To simulate temporal changes, the matrix is perturbed by adding
time-specific noise derived from a tanh function, combined with real-time difference
data, ensuring that later time points show greater divergence from the baseline.
Overall, we generated 200 samples, each having 3 time points.

4.3 Graph Neural Network Models

In our experiments, we utilised various models to evaluate the behaviour of memory-
aware brain graphs. Below, we provide a brief overview of each model, without
delving deeply into the mathematical theory. Interested readers are encouraged to
consult the referenced papers for more detailed information.

4.3.1 Chebyshev Graph Convolutional Recurrent Network

Seo et al. introduced the Chebyshev Graph Convolutional Recurrent Network (CGCRN)
[13], which leverages a spectral graph convolution approach. The theory behind
Chebyshev graph convolution is discussed in detail in Section 2.4.2. By employ-
ing the graph filtering function ∗G from Equation 2.7 along with the recurrent units
discussed in Section 2.2.1, it is possible to create a hybrid model that effectively
combines both methodologies.

The CGCRN model integrates these techniques by first applying graph convolutions
to the input data at each time step to capture spatial dependencies. The output of
the graph convolutional layer is then fed into a recurrent unit to capture temporal
dependencies. This integration allows the model to learn complex spatiotemporal

36



Chapter 4. Results and Evaluation 4.3. GRAPH NEURAL NETWORK MODELS

patterns in the data, enhancing its ability to predict and understand dynamic systems
with graph-structured data.

4.3.2 Topology Adaptive Graph Convolutional Network

The Topology Adaptive Graph Convolutional Network (TAGCN) [14] leverages a
spectral graph convolution approach with a notable difference from typical spectral
graph convolution: it employs filters that dynamically adapt to the topology of the
graph. This dynamic adaptability means that the convolutional filters adjust based
on the specific structure and connectivity of the graph at each layer, allowing for
more flexible and precise learning of graph features. TAGCN utilises polynomial filter
approximations, similar to those used in Chebyshev Graph Convolution, to perform
graph convolutions efficiently. This approach enables the model to capture both
local and global structural information within the graph. The adaptability of TAGCN
makes it particularly effective for complex graph structures where the relationships
between nodes can change dynamically over time, such as predicting the evolution
of brain graph connectivity.

4.3.3 Recurrent Brain Graph Mapper

The Recurrent Brain Graph Mapper (RBGM) [5], different from all other models,
uses a spatial graph convolutional approach. Details on spatial graph convolution
are discussed in Section 2.4.2. Specifically, RBGM utilises edge-conditioned filters in
its graph convolutional layers, which dynamically adapt to the graph’s topology. This
dynamic adaptation allows the model to efficiently capture intricate and evolving
patterns of brain connectivity.

RBGM enhances these edge-conditioned filters by integrating recurrent neural net-
work (RNN) elements, creating what is termed a graph recurrent filter. Unlike tradi-
tional edge-conditioned filters, the graph recurrent filter processes past information
by leveraging the hidden state matrix from the previous time point as a memory.
This enables the filter to generate messages between nodes (brain regions) that in-
corporate historical connectivity patterns, thereby improving the model’s ability to
predict future brain states.

4.3.4 Identity Mapper

We also implemented an identity model as a baseline for all of our models. In this
approach, the predicted brain connectome at the next time point t + 1 is simply the
input brain connectome at time point t. By using the identity model, we establish
a reference point to evaluate the effectiveness of our predictive models. If a model
cannot outperform this simple baseline, it indicates that the model may not be cap-
turing meaningful temporal dynamics in the brain connectome data.

37



4.4. EXPERIMENTAL SETUP Chapter 4. Results and Evaluation

4.4 Experimental Setup

To evaluate our models, we used the following hardware and software configura-
tions. The system features a 3.70 GHz Intel Xeon E5-1630 v3 processor, 62 GB of
dual-channel DDR4 memory, and an NVIDIA TITAN Xp graphics card with 12 GB of
GDDR5X video memory. It operates on Ubuntu 22.04.4 LTS and is equipped with
NVIDIA driver version 535.171.04 and CUDA toolkit version 10.2.89. Our imple-
mentation utilised the PyTorch (version 1.9.1) library, Torch Geometric Temporal
(version 0.54.0), and Torch Geometric (version 2.0.0) libraries. We also used the
NetworkX and Brain Connectome Toolbox (bctpy) library to help us evaluate the
topology of the generated brain graph.

We set up nine different models for our experiments. This set includes the baseline
models: CGCRN with GRU unit (termed GConvGRU), CGCRN with LSTM (termed
GConvLSTM), TAGCN (termed TAGConv), as well as RBGM. It also features the base-
line models integrated with a biologically instantiated reservoir (MemoGNNs), and
an identity model. For each model, we hand-tuned individual hyperparameters ac-
cording to the datasets and model characteristics. The final hyperparameter settings
are presented in Table 4.1.

Hyperparameters
OASIS-2 Dataset Simulated Dataset

GConvGRU GConvLSTM TAGConv RBGM GConvGRU GConvLSTM TAGConv RBGM

# of layers 2 2 2 1 3 3 3 1
Output channels 30, 35 30, 35 30, 35 1225, 35 140, 280, 35 140, 280, 35 140, 280, 35 1225, 35
Dropouts 0.5 0.5 0.5 - 0.3, 0.5 0.3, 0.5 0.3, 0.5 -
Activation functions relu, relu relu, relu elu, relu relu relu, relu, relu relu, relu, relu elu, elu, relu relu
λ1 1 1 1 1 1 1 1 1
λ2 0.00005 0.001 0.001 0.0001 0.0001 0.001 0.001 0.0005
Optimiser Adam Adam Adam Adam Adam Adam Adam Adam
Learning rate 0.001 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.001
# of epochs 20 30 20 20 20 20 15 20
# of folds 3 3 3 3 5 5 5 5

Table 4.1: Hyperparameters of different models based on the different datasets. The
hyperparameter setting is the same for the baseline models and MemoGNN models,
where λ2 only applies to MemoGNN models.

4.5 Regular Memory Capacity Task

In this experiment, we evaluated all of the models using the regular memory capac-
ity task as described in Section 3.2, where each value xt is randomly chosen from
a uniform distribution between -0.5 and 0.5. Using this method, we generated a
training set consisting of 1000 time steps and a testing set consisting of 500 time
steps, with a time lag of 35. After configuring the models with the hyperparameters
specified in Table 4.1, we ran K-Fold cross-validation (80% training 20% testing) to
evaluate the impact of MemoGNN on the baseline model’s MAE, MAE of memory
capacity, time costs, and memory costs. Subsequently, we assessed the errors across
various network topologies.

38



Chapter 4. Results and Evaluation 4.5. REGULAR MEMORY CAPACITY TASK

4.5.1 Evaluation Results

First, we analyse the evaluation measures based on the values used in the loss func-
tions. The results for the OASIS-2 dataset are presented in Table 4.2, while the
results for the simulated dataset are displayed in Table 4.3. Additionally, graphical
representations of the errors across folds are shown in Figure 4.2 for the OASIS-2
dataset and Figure 4.3 for the simulated dataset.

Mean Absolute Error (MAE)

Across both datasets, the baseline models generally exhibit lower MAE compared
to their reservoir-enhanced counterparts. For the OASIS-2 dataset, as illustrated in
Figure 4.2, only the TAGConv MemoGNN model outperformed the baseline model. A
similar trend is observed in the simulated dataset, as seen in Figure 4.3, where only
the RBGM MemoGNN model surpassed the baseline model. This indicates that the
addition of reservoirs does not significantly improve the MAE in general contexts.

MAE of Memory Capacity

The introduction of reservoirs notably improves the MAE of Memory Capacity for all
models across both datasets. From Table 4.2, it is clear that for the OASIS-2 dataset,
the RBGM MemoGNN model achieved the best MAE of Memory Capacity perfor-
mance, with scores of 0.2902 for t1 and 0.3703 for t2. A similar trend is observed
in the simulated dataset, where the RBGM MemoGNN model again performed the
best in terms of MAE of Memory Capacity, achieving 0.2460 for t1 and 0.6274 for t2.
This improvement in memory capacity metrics is consistent across all model types,
highlighting the efficacy of reservoirs in enhancing memory retention capabilities.
However, for both datasets and across all models, only the RBGM MemoGNN model
managed to outperform the identity model’s memory capacity at t1, suggesting that
there is still room for improvement.

We also analyse the resource utilisation of baseline models compared to MemoGNN
models. The results for the OASIS-2 dataset are presented in Table 4.2, while the
results for the simulated dataset are displayed in Table 4.3.

Time Cost

Reservoir-enhanced models consistently exhibit higher time costs compared to their
baseline counterparts. On the OASIS-2 dataset, the TAGConv MemoGNN model re-
quired the most time, with 16.90 minutes per fold. A similar trend is observed on the
simulated dataset, where the TAGConv MemoGNN model required 109.62 minutes
per fold. For both datasets, we observe an average of around four times increase
in time costs with the addition of reservoirs. This increase in computational time
is a general characteristic of reservoir-enhanced models, reflecting the additional
processing required.

39



4.5. REGULAR MEMORY CAPACITY TASK Chapter 4. Results and Evaluation

Models MAE MAE of Memory Capacity Time Cost
(minutes per

fold)

Memory Cost
(MB)

t1 t2 t1 t2

GConvGRU 0.0390 ±
3.43e-3

0.0435 ±
3.76e-3

0.5570 ±
2.32e-2

0.5817 ±
3.70e-2

2.99 ±
5.17e-2

3316.91 ±
8.67e-1

GConvGRU +
Reservoir

0.0431 ±
3.37e-3

0.0470 ±
3.61e-3

0.4083 ±
1.21e-1

0.4785 ±
1.14e-1

10.80 ±
9.35e-2

3325.62 ±
2.18

GConvLSTM 0.0470 ±
3.91e-3

0.0513 ±
4.42e-3

0.5887 ±
1.67e-1

0.7168 ±
1.21e-1

4.20 ±
4.45e-2

2598.42 ±
4.35

GConvLSTM
+ Reservoir

0.0487 ±
2.03e-3

0.0528 ±
2.13e-3

0.5427 ±
1.11e-1

0.6820 ±
2.79e-2

16.81 ±
1.25e-0

2601.19 ±
5.87

TAGConv 0.0400 ±
3.14e-3

0.0444 ±
2.48e-3

0.7914 ±
8.32e-2

0.9983 ±
1.45e-1

3.28 ±
4.87e-2

2120.49 ±
2.32

TAGConv +
Reservoir

0.0395 ±
2.86e-3

0.0437 ±
2.10e-3

0.7129 ±
8.01e-2

0.8078 ±
5.42e-2

16.90 ±
2.35e-2

2120.49 ±
67.96

RBGM 0.0443 ±
4.19e-3

0.0520 ±
4.64e-3

0.3789 ±
3.11e-2

0.3959 ±
1.18e-1

3.59 ±
2.32e-2

2646.20 ±
5.45

RBGM +
Reservoir

0.0442 ±
4.23e-3

0.0545 ±
5.66e-3

0.2902 ±
2.39e-2

0.3703 ±
2.49e-2

13.12 ±
1.32e-2

2700.56 ±
10.09

Identity 0.0397 ±
6.20e-3

0.0472 ±
6.38e-3

0.2956 ±
3.11e-2

0.2725 ±
6.19e-2

- -

Table 4.2: Comparison of models with and without reservoir on the OASIS-2 dataset.

Models MAE MAE of Memory Capacity Time Cost
(minutes per

fold)

Memory Cost
(MB)

t1 t2 t1 t2

GConvGRU 0.0322 ±
1.10e-3

0.0335 ±
6.07e-4

0.9942 ±
7.97e-2

1.0809 ±
2.36e-2

7.70 ±
3.80e-2

2741.70 ±
15.72

GConvGRU +
Reservoir

0.0329 ±
1.05e-3

0.0342 ±
4.57e-4

0.7091 ±
8.60e-2

1.0050 ±
4.90e-2

29.17 ±
2.06e-1

2725.43 ±
3.95

GConvLSTM 0.0338 ±
1.48e-3

0.0350 ±
1.08e-3

1.0225 ±
5.32e-2

1.1278 ±
2.86e-2

6.20 ±
4.08e-2

2092.54 ±
64.04

GConvLSTM
+ Reservoir

0.0357 ±
1.91e-3

0.0371 ±
1.56e-3

0.8571 ±
1.26e-1

1.0260 ±
4.76e-2

32.99 ±
1.25e-0

2654.06 ±
1.91

TAGConv 0.03227 ±
1.09e-3

0.0335 ±
6.07e-4

0.9942 ±
7.97e-2

1.0809 ±
2.36e-2

17.52 ±
6.85e-2

2092.24 ±
35.19

TAGConv +
Reservoir

0.0336 ±
1.06e-3

0.0345 ±
6.49e-4

0.6049 ±
8.51e-2

0.9896 ±
7.20e-2

109.62 ±
3.95e-2

1998.17 ±
1.95

RBGM 0.0358 ±
8.75e-4

0.0375 ±
1.58e-3

0.5410 ±
1.01e-1

0.8663 ±
8.93e-2

5.59 ±
1.50e-2

2588.91 ±
3.149

RBGM +
Reservoir

0.0356 ±
7.89e-4

0.0373 ±
1.35e-3

0.2460 ±
3.97e-2

0.6274 ±
8.41e-2

30.48 ±
3.44e-1

2621.08 ± 0

Identity 0.0396 ±
1.22e-3

0.0398 ±
1.34e-3

0.2268 ±
3.14e-2

0.2418 ±
2.94e-2

- -

Table 4.3: Comparison of models with and without reservoir on the simulated dataset.

40



Chapter 4. Results and Evaluation 4.5. REGULAR MEMORY CAPACITY TASK

Figure 4.2: Bar chart comparison between baseline and MemoGNNs of the MAE and
the MAE of memory capacity across folds on the OASIS-2 dataset

41



4.5. REGULAR MEMORY CAPACITY TASK Chapter 4. Results and Evaluation

Figure 4.3: Bar chart comparison between baseline and MemoGNNs of the MAE and
the MAE of memory capacity across folds on the simulated dataset

42



Chapter 4. Results and Evaluation 4.5. REGULAR MEMORY CAPACITY TASK

Memory Cost

Memory costs for models with reservoirs are generally higher, though the increase
varies across datasets and models. On the OASIS-2 dataset, all MemoGNN mod-
els exhibited a higher memory cost. The results of the simulated dataset are more
varied, with the GConvGRU MemoGNN and TAGConv MemoGNN models showing
lower memory costs compared to other MemoGNN models. The increase in memory
usage is more pronounced in some models, such as GConvLSTM and RBGM, where
the reservoir-enhanced versions exhibit a substantial increase in memory cost.

Lastly, the topological closeness to the actual brain graph was analysed by categoris-
ing the topologies into three types. First, node-wise network topology includes met-
rics like node strength, participation coefficient, diversity coefficient, betweenness
centrality, and eigenvector centrality. These metrics help us understand the roles
and influence of individual nodes within the network. Second, efficiency-wise net-
work topology includes global and local efficiency, reflecting how efficiently informa-
tion is exchanged across the network, both overall and within local neighbourhoods.
Lastly, global-level network topology comprises modularity, density, and clustering,
providing a broad overview of the network’s structure, such as the degree of modular
organisation, overall connectivity, and local interconnectedness. These topological
analyses comprehensively understand how closely the models replicate the brain’s
neural network structure. The results tables can be found in the appendix for both
datasets.

Node-wise Network Topology

For node-wise network topology, we calculated the average values to enable com-
parison between the predicted and actual brain graphs. As shown in Table A.1, there
isn’t a general trend of MemoGNN improving across all these metrics for the OASIS-
2 dataset. However, in the simulated dataset (Table A.4), MemoGNN models exhibit
lower MAE in terms of participation coefficient and diversity coefficient across all
models.

Efficiency-wise Network Topology

For efficiency-wise network topology, as observed in Table A.2, there is no consistent
trend of improvement with MemoGNN models in the OASIS-2 dataset. In contrast,
the simulated dataset (Table A.5) shows that MemoGNN models have a lower MAE
in terms of both local and global efficiency across all models.

Global-level Network Topology

For global-level network topology, Table A.3 shows that, in the OASIS-2 dataset, the
addition of reservoirs in MemoGNNs generally results in improved MAE for density
compared to baseline models. However, there is no specific trend for modularity
and clustering. In the simulated dataset (Table A.6), density and clustering metrics

43



4.5. REGULAR MEMORY CAPACITY TASK Chapter 4. Results and Evaluation

have both improved with the addition of reservoirs in MemoGNN models across all
models.

4.5.2 Discussion

Overall, the results indicate that while reservoirs do not significantly enhance the
general MAE performance, they substantially improve the memory capacity of the
models. The RBGM MemoGNN models’ superior performance in specific contexts
suggests that certain GNN architectures initially generate brain graphs that are more
biologically representative due to their inherent design and structure. This biologi-
cal representativeness may lead to more accurate memory retention and processing.
The inconsistent improvements in general MAE suggest that the reservoirs might in-
troduce additional complexity, which could lead to overfitting or inefficient learning
in certain scenarios. This complexity may arise from the increased number of pa-
rameters and interactions within the network, which might not always align with
the underlying data patterns.

The resource utilisation analysis reveals that while reservoir-enhanced models im-
prove memory capacity metrics, they incur significant costs in terms of both time
and memory resources. The higher time costs are primarily due to the added com-
putational complexity introduced by the reservoir layers. These layers involve extra
processing steps to calculate each biologically instantiated reservoir’s memory ca-
pacity, inherently requiring more computation per epoch and leading to increased
training times. Similarly, the elevated memory costs are attributed to the additional
parameters and storage necessary for the reservoirs.

In terms of the network topologies, the findings suggest that MemoGNN models
have the potential to enhance certain aspects of them, which was theorised in our
preliminary experiment as the topologies have a strong correlation to the regular
memory capacity. However, while MemoGNN models demonstrate improvements
in specific topological metrics for the simulated dataset, these improvements are
not consistently observed in the OASIS-2 dataset. The only consistent improvement
across both datasets is the MAE of density.

One potential reason for the consistent improvement in the MAE of density with
MemoGNN across both datasets might be the memory capacity’s strong correlation
with this metric. This was shown in the preliminary experiment in Figure 1.6 that the
density has the strongest correlation to the memory capacity. Thus, the models might
find manipulating the graph’s density an easier shortcut due to its direct impact on
memory capacity.

The discrepancy across the datasets could be due to the inherent differences between
the real-world OASIS-2 dataset and the controlled simulated dataset. To understand
this discrepancy further, we analysed the data distributions of various network topol-
ogy metrics from both datasets. We measured the network topologies across subjects
and time points for each dataset. The box plots for each network topology, shown
in Figure A.1, provide a visual comparison of the distributions between the two

44



Chapter 4. Results and Evaluation 4.6. LANGUAGE-INFUSED MEMORY TASK

datasets.

A key factor explaining the performance difference is the spectral radius (largest ab-
solute value of a matrix’s eigenvalues) of the two datasets. In the real OASIS dataset,
the MemoGNN model only achieved better performance in the MAE of density. This
limited improvement could be due to the distribution of the spectral radius, which
in the OASIS dataset shows greater variability and values further from 1. According
to the study by Suarez et al. [36], optimal performance in neuromorphic networks,
especially in tasks requiring high memory capacity, is achieved when the spectral ra-
dius is closer to 1. The variability in the spectral radius in the OASIS dataset suggests
a less stable and optimal dynamical regime, reducing the effectiveness of the Mem-
oGNN’s memory capacity improvements in closely replicating the brain’s topological
features.

In contrast, the simulated dataset displayed a more centralised spectral radius dis-
tribution closer to 1, aligning more closely with the conditions described for optimal
memory capacity. This more centralised spectral radius could have enhanced the
MemoGNN’s ability to replicate various topological features effectively. The simu-
lated dataset’s superior performance in participation coefficient, diversity coefficient,
local efficiency, global efficiency, density, and clustering metrics underscores this
point. While the simulated dataset exhibits greater variability in diversity and partic-
ipation coefficients, its more centralised spectral radius allows for a better alignment
with the neural network topologies, resulting in improved MAE in these metrics.

Further analysis was conducted on the local efficiency, global efficiency, modularity
and density distribution of the two datasets, where the MemoGNN models consis-
tently improved in the simulated dataset. All of these measurements have a more
centralised and less variable distribution in the simulated data, which could have
allowed for a more consistent and predictable network structure, thus supporting
the models’ ability to achieve lower MAE in these metrics.

4.6 Language-Infused Memory Task

In this experiment, we evaluated the models using the language-infused memory
capacity task. This is different from the regular memory capacity task as it generates
input signals from vectors representing words in a text and obtains output signals as
lagged versions of these inputs. We convert words into word embeddings to capture
the semantic meaning in a continuous vector space. For word selection, we used
the Gutenberg corpus, a collection of classic English literature texts that is available
through the NLTK library. This corpus includes works by various authors, providing
a diverse set of textual data. We trained a Word2Vec model on this corpus to obtain
word embeddings, setting the vector size to one dimension as the reservoir training
is already computationally expensive.

Similar to the first experiment, we generated a training set with 1000 time steps and
a testing set with 500 time steps, applying a time lag of 35. We selected the GCon-
vGRU model, the most time-efficient GNN model as shown in the first experiment, as

45



4.6. LANGUAGE-INFUSED MEMORY TASK Chapter 4. Results and Evaluation

our baseline. This model was tested on both evaluation datasets and trained under
a similar hyperparameter setting as described in Table 4.1. Except, in the case of
the λ2, which directly impacts the dynamics of the memory capacity loss. We tuned
it carefully, setting λ2 = 0.00008 for the OASIS-2 dataset and λ2 = 0.00005 for the
simulated dataset.

4.6.1 Evaluation Results

To begin with, we examine the evaluation measurements derived from the values
used in the loss functions. Figure 4.4 provides a graphical representation of the
errors across folds for the OASIS-2 and simulated datasets and Table 4.4 lists the
average values obtained across folds with their standard deviation.

Mean Absolute Error (MAE)

Across both datasets, we observe that in the language-infused memory capacity task,
the reservoir-enhanced MemoGNN consistently displays a lower MAE compared to
the baseline GConvGRU model. While the OASIS-2 dataset shows less clear out-
performance, the average across folds indicates that the MemoGNN trained with
the language-infused memory capacity task still surpasses the baseline model. In
the simulated dataset, the reservoir-enhanced MemoGNN outperformed the base-
line across all folds. This result contrasts the results we obtained when training the
MemoGNN models on the regular memory task.

Models Dataset MAE (T1) MAE (T2) MAE of Mem Cap (T1) MAE of Mem Cap (T2)

GConvGRU OASIS-2 0.0430 ± 3.43e-3 0.0468 ± 3.42e-4 0.7149 ± 1.59e-1 0.6769 ± 1.68e-1
GConvGRU + Reservoir OASIS-2 0.0426 ± 3.98e-3 0.0464 ± 3.90e-4 0.5619 ± 8.68e-2 0.61698 ± 1.56e-1
GConvGRU Simulated 0.0323 ± 1.09e-3 0.0335 ± 6.10e-4 0.9297 ± 8.76e-2 1.0041 ± 2.16e-1
GConvGRU + Reservoir Simulated 0.0321 ± 1.14e-3 0.0333 ± 5.40e-4 0.7326 ± 5.48e-2 0.8003 ± 1.54e-1

Table 4.4: Comparison of MAE and MAE of Memory Capacity for GConvGRU and GCon-
vGRU with Reservoir (MemoGNN) on OASIS-2 and Simulated Datasets. The value for the
model that performs the best is highlighted for the different datasets.

MAE of Memory Capacity

By using the MemoGNN models, we have improved the MAE of Memory Capacity
across both datasets. From Figure 4.4, it is clear that across all folds and for both
datasets, the MemoGNN model consistently achieves a better MAE of Memory Ca-
pacity performance, for both time points 1 and 2. This is in common with our results
in the regular memory capacity task.

MAE of Network Topologies

In addition, we also analysed the network topology performances. Aside from a
slight but not significant improvement in node strength for the MemoGNN across
both datasets for both time points, no other consistent patterns were observed. In

46



Chapter 4. Results and Evaluation 4.6. LANGUAGE-INFUSED MEMORY TASK

Figure 4.4: Comparison of MAE and MAE of memory capacity across folds for the
language-infused memory capacity task. The graphs compare the performance of with
and without reservoirs in predicting T1 and T2 across different folds for the OASIS-2
and simulated datasets.

particular, for the OASIS dataset, we saw an increase in the performance of node
strength, betweenness centrality, global efficiency, and clustering with the Mem-
oGNN architecture at both time points. The comparison plot of the performance
across folds for the OASIS dataset is shown in Figure A.2. For the simulated dataset,
across both time points, there was an increase in the performance of node strength,
diversity coefficient, eigenvector centrality, modularity, and density with the Mem-
oGNN architecture. The comparison plot of the performance across folds for the
simulated dataset is found in Figure A.3.

4.6.2 Discussion

We have shown in our results that, a MemoGNN model, trained with the language-
infused task, can outperform the baseline model in producing more accurate brain
graphs, as well as a closer cognitive functionality to the real brain connectomes. One
of the reasons could be that the word embeddings as inputs are more aligned with
the way the human brain processes and stores information, compared to the ran-
domly generated inputs. Another reason could be that the λ2 is more well-chosen
compared to the first experiment, allowing us to balance the L1 and the memory ca-
pacity loss better. Thus, in the future, a more rigorous selection of hyperparameters
should be carried out. However, due to the huge amount of training time required,
it is not feasible under the scope of this project.

Furthermore, unlike the regular memory capacity task, which showed a significant
reduction in the error of the density of the generated graphs for both datasets, the
network topology improvements in the language-infused memory task were not con-

47



4.6. LANGUAGE-INFUSED MEMORY TASK Chapter 4. Results and Evaluation

sistent across datasets. This inconsistency might be due to the language-infused
memory capacity task having less impact on network topology. In contrast, the reg-
ular memory capacity task demonstrated a high correlation between several net-
work topologies and memory capacity, as observed in our preliminary experiment
in Section 1.3.2. The language-infused memory capacity might have revealed new
insights about network topology in terms of biological representativeness compared
to existing network measurements, thereby allowing us to improve the MAE of the
generated graphs. It would be interesting to further explore the nature of language-
infused memory by conducting similar experiments as those in Section 1.3.2, along
with additional experiments that could help us understand its impact on network
topology and biological representativeness.

48



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In conclusion, this research introduces MemoGNN, the first memory-aware graph
neural network model designed to forecast 4D brain connectivity. By addressing
the gap in the literature, our work focuses on generating brain connectomes that
are cognitively aligned with actual brain networks. We evaluated the performance
of MemoGNN using two distinct memory capacity tasks: the regular memory capac-
ity task and a newly proposed language-infused memory capacity task. Experimental
results from various datasets, including the OASIS-2 and simulated datasets, demon-
strate MemoGNN’s effectiveness in predicting brain connectivities that closely align
with actual cognitive functions.

Our findings show that MemoGNN is capable of significantly improving the MAE
of memory capacity, indicating its proficiency in capturing and replicating the cog-
nitive functionalities of brain graphs. In the regular memory capacity task, while
the MAE of the generated graphs did not improve beyond the baseline, there was
an enhancement in network topology measurements, particularly in density. This
improvement is likely due to the strong correlation between density and regular
memory capacity, shown in our preliminary experiments. On the other hand, Mem-
oGNN models trained with the language-infused memory capacity task exhibited a
notable reduction in MAE across both datasets. This suggests that language-based
inputs might provide a more biologically representative method for predicting brain
activity patterns, offering new insights into brain graphs beyond existing network
topology measures.

Despite these promising results, integrating biologically instantiated reservoirs re-
sults in increased computational and memory costs. This means that further optimi-
sation of the MemoGNN model should be carried out to enhance its feasibility for
practical applications. Future research should focus on fine-tuning hyperparameters,
exploring alternative cognitive functionality tasks, and expanding MemoGNN to the
usage of hypergraphs.

49



5.2. FUTURE WORKS Chapter 5. Conclusions and Future Work

5.2 Future Works

While this study has demonstrated the potential of memory-aware GNNs in predict-
ing brain graph evolution and improving the closeness of memory capacity to real
brain graphs, several avenues remain for further exploration and improvement.

Improving the training time of MemoGNN The memory capacity loss function can
significantly increase training time, impacting performance. Thus, thorough hyper-
parameter tuning could not be carried out. For future work, we propose leveraging
the high correlation between network topology metrics and the regular memory ca-
pacity. By training a differentiable model to predict memory capacity based on these
network metrics, we can generate a synthetic memory capacity that approximates
the true value but is computationally cheaper. Maybe with this new model and
shorter training time, we would be able to fine-tune our model better to produce
improved results.

Exploration of different cognitive functions and the impact of subdivisions of
the brain The main focus of this study was on memory capacity. Thus, future re-
search could explore other cognitive functions, such as attention or decision-making.
Also, the impact of different subdivisions of the brain on cognitive task performance
can be explored using the reservoir. Perhaps the integration of these approaches
with the GNN will allow for deeper insights into brain connectivity.

Extension to hypergraphs using multiview brain connectomes Our research can
be extended by exploring biologically inspired reservoir computing that incorpo-
rates high-order relationships, namely hyperconnectomes. Standard graph models,
despite their effectiveness, often oversimplify the brain’s network by limiting connec-
tions to one-to-one relationships, with each edge linking only two nodes. While this
method is more straightforward, it may not fully encompass the brain’s extensive
multi-region interactions, thus restricting the depth of the model’s learning capabili-
ties. By including hyperconnectomes, perhaps a more holistic depiction of the brain’s
network can be achieved.

50



Bibliography

[1] Martijn P. van den Heuvel and Olaf Sporns. A cross-disorder connectome
landscape of brain dysconnectivity. Nature Reviews Neuroscience, 20:435–
446, 07 2019. ISSN 1471-0048. doi: 10.1038/s41583-019-0177-6. URL
https://doi.org/10.1038/s41583-019-0177-6. pages 2

[2] Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Graph neural net-
works in network neuroscience, 2022. pages 2

[3] A Jon Stoessl. Neuroimaging in the early diagnosis of neurodegenerative dis-
ease. Translational Neurodegeneration, 1(1), 01 2012. ISSN 2047-9158. doi:
10.1186/2047-9158-1-5. URL http://dx.doi.org/10.1186/2047-9158-1-5.
pages 2

[4] Ahmed Nebli, Ugur Ali Kaplan, and Islem Rekik. Deep evographnet architec-
ture for time-dependent brain graph data synthesis from a single timepoint,
2020. pages 2, 21

[5] Alpay Tekin, Ahmed Nebli, and Islem Rekik. Recurrent brain graph mapper for
predicting time-dependent brain graph evaluation trajectory, 2021. pages 2, 3,
21, 37

[6] Oytun Demirbilek and Islem Rekik. Predicting the evolution trajectory of
population-driven connectional brain templates using recurrent multigraph
neural networks. Medical Image Analysis, 83:102649, 2023. ISSN 1361-
8415. doi: https://doi.org/10.1016/j.media.2022.102649. URL https://www.

sciencedirect.com/science/article/pii/S1361841522002778. pages 2, 21

[7] Zeynep Gürler and Islem Rekik. Federated brain graph evolution predic-
tion using decentralized connectivity datasets with temporally-varying acqui-
sitions. IEEE Trans. Medical Imaging, 42(7):2022–2031, 2023. URL http:

//dblp.uni-trier.de/db/journals/tmi/tmi42.html#GurlerR23. pages 2,
21

[8] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki
Kanazawa, Seiji Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose.
Recent advances in physical reservoir computing: A review. Neural Networks,
115:100–123, 2019. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2019.03.005. URL https://www.sciencedirect.com/science/article/pii/

S0893608019300784. pages 3, 16, 22

51

https://doi.org/10.1038/s41583-019-0177-6
http://dx.doi.org/10.1186/2047-9158-1-5
https://www.sciencedirect.com/science/article/pii/S1361841522002778
https://www.sciencedirect.com/science/article/pii/S1361841522002778
http://dblp.uni-trier.de/db/journals/tmi/tmi42.html##GurlerR23
http://dblp.uni-trier.de/db/journals/tmi/tmi42.html##GurlerR23
https://www.sciencedirect.com/science/article/pii/S0893608019300784
https://www.sciencedirect.com/science/article/pii/S0893608019300784


BIBLIOGRAPHY BIBLIOGRAPHY

[9] Manuel Molano-Mazon, Joao Barbosa, Jordi Pastor-Ciurana, Marta Fradera,
Ru-Yuan Zhang, Jérémy Forest, Jorge Lerida, Li Ji-An, Christopher Cueva,
Jaime Rocha, Devika Narain, and Guangyu Yang. Neurogym: An open
resource for developing and sharing neuroscience tasks. 02 2022. doi:
10.31234/osf.io/aqc9n. pages 3

[10] Fabrizio Damicelli, Claus C. Hilgetag, and Alexandros Goulas. Brain connec-
tivity meets reservoir computing. bioRxiv, 2021. doi: 10.1101/2021.01.22.
427750. URL https://www.biorxiv.org/content/early/2021/01/23/2021.

01.22.427750. pages 3, 22

[11] Laura E. Suárez, Agoston Mihalik, Filip Milisav, Kenji Marshall, Mingze Li, Pe-
tra E. Vértes, Guillaume Lajoie, and Bratislav Misic. conn2res: A toolbox for
connectome-based reservoir computing. bioRxiv, 2023. doi: 10.1101/2023.
05.31.543092. URL https://www.biorxiv.org/content/early/2023/06/04/

2023.05.31.543092. pages 3, 23

[12] Herbert Jaeger. Short term memory in echo state networks. 01 2002. pages 3,
27

[13] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
Structured sequence modeling with graph convolutional recurrent networks,
2016. pages 3, 36

[14] Jian Du, Shanghang Zhang, Guanhang Wu, Jose M. F. Moura, and Soummya
Kar. Topology adaptive graph convolutional networks, 2018. pages 3, 37

[15] Markus D. Schirmer, Archana Venkataraman, Islem Rekik, Minjeong Kim,
Stewart H. Mostofsky, Mary Beth Nebel, Keri Rosch, Karen Seymour, Deana
Crocetti, Hassna Irzan, Michael Hütel, Sebastien Ourselin, Neil Marlow, An-
drew Melbourne, Egor Levchenko, Shuo Zhou, Mwiza Kunda, Haiping Lu,
Nicha C. Dvornek, Juntang Zhuang, Gideon Pinto, Sandip Samal, Jennings
Zhang, Jorge L. Bernal-Rusiel, Rudolph Pienaar, and Ai Wern Chung. Neu-
ropsychiatric disease classification using functional connectomics - results
of the connectomics in neuroimaging transfer learning challenge. Medi-
cal Image Analysis, 70:101972, 2021. ISSN 1361-8415. doi: https://doi.
org/10.1016/j.media.2021.101972. URL https://www.sciencedirect.com/

science/article/pii/S1361841521000189. pages 5

[16] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature Reviews Neuroscience, 10
(3):186–198, 02 2009. ISSN 1471-0048. doi: 10.1038/nrn2575. URL http:

//dx.doi.org/10.1038/nrn2575. pages 12

[17] Jinhui Wang, Xi-Nian Zuo, and Yong He. Graph-based network analysis of
resting-state functional mri. Frontiers in systems neuroscience, 4:16, 06 2010.
doi: 10.3389/fnsys.2010.00016. pages 12, 13

52

https://www.biorxiv.org/content/early/2021/01/23/2021.01.22.427750
https://www.biorxiv.org/content/early/2021/01/23/2021.01.22.427750
https://www.biorxiv.org/content/early/2023/06/04/2023.05.31.543092
https://www.biorxiv.org/content/early/2023/06/04/2023.05.31.543092
https://www.sciencedirect.com/science/article/pii/S1361841521000189
https://www.sciencedirect.com/science/article/pii/S1361841521000189
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1038/nrn2575


BIBLIOGRAPHY BIBLIOGRAPHY

[18] Gary H. Glover. Overview of functional magnetic resonance imaging. Neuro-
surgery Clinics of North America, 22(2):133–139, 04 2011. ISSN 1042-3680.
doi: 10.1016/j.nec.2010.11.001. URL http://dx.doi.org/10.1016/j.nec.

2010.11.001. pages 12

[19] M. Anatürk, N. Demnitz, K.P. Ebmeier, and C.E. Sexton. A systematic review
and meta-analysis of structural magnetic resonance imaging studies investi-
gating cognitive and social activity levels in older adults. Neuroscience and
Biobehavioral Reviews, 93:71–84, 10 2018. ISSN 0149-7634. doi: 10.1016/
j.neubiorev.2018.06.012. URL http://dx.doi.org/10.1016/j.neubiorev.

2018.06.012. pages 12

[20] Chun-Yi Zac Lo, Yong He, and Ching-Po Lin. Graph theoretical analysis of
human brain structural networks. Reviews in the Neurosciences, 22(5):551–563,
2011. doi: doi:10.1515/RNS.2011.039. URL https://doi.org/10.1515/RNS.

2011.039. pages 12

[21] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network. Physica D: Nonlinear Phenomena, 404:
132306, 2020. ISSN 0167-2789. doi: https://doi.org/10.1016/j.physd.
2019.132306. URL https://www.sciencedirect.com/science/article/

pii/S0167278919305974. pages 13

[22] Timothy P Lillicrap and Adam Santoro. Backpropagation through time
and the brain. Current Opinion in Neurobiology, 55:82–89, 2019. ISSN
0959-4388. doi: https://doi.org/10.1016/j.conb.2019.01.011. URL https:

//www.sciencedirect.com/science/article/pii/S0959438818302009. Ma-
chine Learning, Big Data, and Neuroscience. pages 14

[23] Herbert Jaeger. Tutorial on training recurrent neural networks, covering bppt,
rtrl, ekf and the echo state network approach. GMD-Forschungszentrum Infor-
mationstechnik, 2002., 5, 01 2002. pages 14

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997. pages 15

[25] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation, 2014.
pages 16

[26] Herbert Jaeger. Short term memory in echo state networks. 01 2002. pages 16

[27] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches
to recurrent neural network training. Computer Science Review, 3(3):
127–149, 2009. ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.
2009.03.005. URL https://www.sciencedirect.com/science/article/pii/

S1574013709000173. pages 16

53

http://dx.doi.org/10.1016/j.nec.2010.11.001
http://dx.doi.org/10.1016/j.nec.2010.11.001
http://dx.doi.org/10.1016/j.neubiorev.2018.06.012
http://dx.doi.org/10.1016/j.neubiorev.2018.06.012
https://doi.org/10.1515/RNS.2011.039
https://doi.org/10.1515/RNS.2011.039
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0167278919305974
https://www.sciencedirect.com/science/article/pii/S0959438818302009
https://www.sciencedirect.com/science/article/pii/S0959438818302009
https://www.sciencedirect.com/science/article/pii/S1574013709000173
https://www.sciencedirect.com/science/article/pii/S1574013709000173


BIBLIOGRAPHY BIBLIOGRAPHY

[28] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks:
A review of methods and applications. AI Open, 1:57–81, 2020. ISSN 2666-
6510. doi: https://doi.org/10.1016/j.aiopen.2021.01.001. URL https://www.

sciencedirect.com/science/article/pii/S2666651021000012. pages 18

[29] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks, 2016. URL https://arxiv.org/abs/1609.02907.
pages 19

[30] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering, 2017. pages
20

[31] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convo-
lutional networks: a comprehensive review. Computational Social Networks,
6(1), 09 2019. ISSN 2197-4314. doi: 10.1186/s40649-019-0069-y. URL
http://dx.doi.org/10.1186/s40649-019-0069-y. pages 20

[32] Peter F. Dominey. Complex sensory-motor sequence learning based on recur-
rent state representation and reinforcement learning. Biological Cybernetics,
73(3):265–274, 08 1995. ISSN 1432-0770. doi: 10.1007/bf00201428. URL
http://dx.doi.org/10.1007/BF00201428. pages 22

[33] Peter Ford Dominey and Franck Ramus. Neural network processing of natural
language: I. sensitivity to serial, temporal and abstract structure of language
in the infant. Language and Cognitive Processes, 15(1):87–127, 02 2000. ISSN
1464-0732. doi: 10.1080/016909600386129. URL http://dx.doi.org/10.

1080/016909600386129. pages 22

[34] Peter F. Dominey and Toshio Inui. Cortico-striatal function in sentence com-
prehension: Insights from neurophysiology and modeling. Cortex, 45(8):
1012–1018, 09 2009. ISSN 0010-9452. doi: 10.1016/j.cortex.2009.03.007.
URL http://dx.doi.org/10.1016/j.cortex.2009.03.007. pages 22

[35] Xavier Hinaut and Peter Ford Dominey. Real-time parallel processing of gram-
matical structure in the fronto-striatal system: A recurrent network simula-
tion study using reservoir computing. PLOS ONE, 8(2):1–18, 02 2013. doi:
10.1371/journal.pone.0052946. URL https://doi.org/10.1371/journal.

pone.0052946. pages 22

[36] Laura E. Suárez, Blake A. Richards, Guillaume Lajoie, and Bratislav Misic.
Learning function from structure in neuromorphic networks. bioRxiv, 2020.
doi: 10.1101/2020.11.10.350876. URL https://www.biorxiv.org/content/

early/2020/11/11/2020.11.10.350876. pages 23, 45

[37] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The architec-
ture of complex weighted networks. Proceedings of the National Academy of
Sciences of the United States of America, 2004. pages 31

54

https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://arxiv.org/abs/1609.02907
http://dx.doi.org/10.1186/s40649-019-0069-y
http://dx.doi.org/10.1007/BF00201428
http://dx.doi.org/10.1080/016909600386129
http://dx.doi.org/10.1080/016909600386129
http://dx.doi.org/10.1016/j.cortex.2009.03.007
https://doi.org/10.1371/journal.pone.0052946
https://doi.org/10.1371/journal.pone.0052946
https://www.biorxiv.org/content/early/2020/11/11/2020.11.10.350876
https://www.biorxiv.org/content/early/2020/11/11/2020.11.10.350876


BIBLIOGRAPHY

[38] Roger Guimerà and Lúıs A. Nunes Amaral. Functional cartography of com-
plex metabolic networks. Nature, 433(7028):895–900, 2005. doi: 10.1038/
nature03288. URL https://doi.org/10.1038/nature03288. pages 31

[39] Mikail Rubinov and Olaf Sporns. Weight-conserving characterization
of complex functional brain networks. NeuroImage, 56(4):2068–2079,
2011. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.
2011.03.069. URL https://www.sciencedirect.com/science/article/pii/

S105381191100348X. pages 32

[40] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Math-
ematical Sociology, 25(2):163 – 177, 2001. doi: 10.1080/0022250X.2001.
9990249. pages 32

[41] Mark Newman. Networks: An Introduction. Oxford University Press, 03
2010. ISBN 9780199206650. doi: 10.1093/acprof:oso/9780199206650.
001.0001. URL https://doi.org/10.1093/acprof:oso/9780199206650.001.

0001. pages 32

[42] Vito Latora and Massimo Marchiori. Efficient behavior of small-world net-
works. Phys. Rev. Lett., 87:198701, Oct 2001. doi: 10.1103/PhysRevLett.87.
198701. URL https://link.aps.org/doi/10.1103/PhysRevLett.87.198701.
pages 33

[43] E. A. Leicht and M. E. J. Newman. Community structure in directed net-
works. Phys. Rev. Lett., 100:118703, Mar 2008. doi: 10.1103/PhysRevLett.
100.118703. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.

118703. pages 34

[44] Mikail Rubinov and Olaf Sporns. Complex network measures of brain
connectivity: Uses and interpretations. NeuroImage, 52(3):1059–1069,
2010. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.
2009.10.003. URL https://www.sciencedirect.com/science/article/pii/

S105381190901074X. Computational Models of the Brain. pages 35

[45] D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and R. L. Buckner.
Open access series of imaging studies: longitudinal MRI data in nondemented
and demented older adults. J Cogn Neurosci, 22(12):2677–2684, Dec 2010.
pages 35

55

https://doi.org/10.1038/nature03288
https://www.sciencedirect.com/science/article/pii/S105381191100348X
https://www.sciencedirect.com/science/article/pii/S105381191100348X
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://link.aps.org/doi/10.1103/PhysRevLett.87.198701
https://link.aps.org/doi/10.1103/PhysRevLett.100.118703
https://link.aps.org/doi/10.1103/PhysRevLett.100.118703
https://www.sciencedirect.com/science/article/pii/S105381190901074X
https://www.sciencedirect.com/science/article/pii/S105381190901074X


Appendix A

Additional Results

Models MAE of Node Strength MAE of Participation Coef MAE of Diversity Coef MAE of Betweenness C MAE of Eigenvector C

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

GConvGRU 0.4525 ±
1.81e-1

0.7425 ±
2.28e-1

0.0070 ±
1.15e-3

0.0073 ±
1.15e-3

0.0352 ±
2.07e-3

0.0347 ±
4.16e-3

72.00 ±
1.60

76.70 ±
1.77

0.0025 ±
5.21e-4

0.0032 ±
2.83e-4

GConvGRU
+ Reservoir

0.5774 ±
1.92e-1

0.6781 ±
2.56e-1

0.0057 ±
2.14e-3

0.0064 ±
7.92e-4

0.0237 ±
8.25e-3

0.0256 ±
5.73e-3

77.40 ±
1.72

82.40 ±
2.90

0.0031 ±
5.69e-4

0.0043 ±
5.14e-4

GConvLSTM 0.7571 ±
1.80e-1

0.9738 ±
2.72e-1

0.0035 ±
1.57e-3

0.0039 ±
5.13e-4

0.0140 ±
7.35e-3

0.0139 ±
7.82e-3

78.24 ±
2.44

83.20 ±
3.22

0.0033 ±
7.55e-4

0.0051 ±
4.31e-4

GConvLSTM
+ Reservoir

0.8518 ±
8.04e-2

1.0367 ±
2.08e-1

0.0025 ±
1.06e-3

0.0030 ±
4.53e-4

0.0104 ±
2.22e-3

0.0097 ±
3.16e-3

77.86 ±
1.69

83.37 ±
3.59

0.0032 ±
6.61e-4

0.0049 ±
4.60e-4

TAGConv 0.4298 ±
1.22e-1

0.6094 ±
1.85e-1

0.0076 ±
1.57e-2

0.0091 ±
1.29e-3

0.0380 ±
8.37e-3

0.0435 ±
1.00e-2

75.56 ±
2.43

81.25 ±
4.89

0.0032 ±
6.64e-4

0.0051 ±
5.75e-4

TAGConv +
Reservoir

0.4068 ±
9.60e-2

0.5294 ±
1.18e-1

0.0079 ±
2.44e-4

0.0096 ±
1.69e-3

0.0405 ±
2.17e-3

0.0463 ±
6.45e-3

74.94 ±
2.58

80.79 ±
3.22

0.0034 ±
4.97e-4

0.0053 ±
4.01e-4

RBGM 0.5720 ±
1.56e-1

1.0142 ±
3.41e-1

0.0036 ±
6.00e-4

0.0078 ±
5.05e-3

0.0158 ±
2.80e-3

0.0355 ±
2.56e-2

59.22 ±
1.43

55.02 ±
2.73

0.0040 ±
1.87e-4

0.0046 ±
4.81e-4

RBGM +
Reservoir

0.5968 ±
1.31e-1

1.1558 ±
4.41e-1

0.0030 ±
7.68e-4

0.0075 ±
3.61e-3

0.0119 ±
2.37e-3

0.0374 ±
2.22e-2

59.37 ±
1.77

55.77 ±
5.69e-1

0.0041 ±
4.37e-4

0.0044 ±
4.24e-4

Table A.1: Comparison on node-wise network topology on OASIS-2 dataset

56



Chapter A. Additional Results

Models MAE of Global Efficiency MAE of Local Efficiency

t1 t2 t1 t2

GConvGRU 0.0413 ± 9.73e-3 0.0581 ± 1.64e-2 0.0105 ± 3.43e-3 0.0151 ± 5.54e-3

GConvGRU
+ Reservoir

0.0515 ± 8.85e-3 0.0664 ± 1.40e-2 0.0116 ± 3.33e-3 0.0149 ± 4.73e-3

GConvLSTM 0.0587 ± 7.21e-3 0.0741 ± 1.58e-2 0.0120 ± 2.12e-3 0.0168 ± 4.70e-3

GConvLSTM
+ Reservoir

0.0622 ± 1.03e-2 0.0767 ± 1.31e-2 0.0132 ± 1.74e-3 0.0175 ± 4.38e-3

TAGConv 0.0414 ± 1.12e-2 0.0572 ± 1.65e-2 0.0101 ± 1.57e-3 0.0143 ± 2.10e-3

TAGConv +
Reservoir

0.0399 ± 1.21e-2 0.0553 ± 1.06e-2 0.0096 ± 1.60e-
3

0.0128 ± 1.54e-3

RBGM 0.0399 ± 1.21e-2 0.0644 ± 1.17e-2 0.0134 ± 2.56e-3 0.0245 ± 9.57e-3

RBGM +
Reservoir

0.0444 ± 1.37e-2 0.0704 ± 1.59e-2 0.0132 ± 2.34e-3 0.0228 ± 5.79e-3

Table A.2: Comparison of efficiency-wise network topology on OASIS-2 dataset

Models MAE of Modularity MAE of Density MAE of Clustering

t1 t2 t1 t2 t1 t2

GConvGRU 0.0040 ±
5.60e-4

0.0030 ±
3.71e-4

0.0548 ±
1.08e-3

0.0533 ±
1.81e-3

0.0098 ±
2.27e-3

0.0129 ±
4.20e-3

GConvGRU +
Reservoir

0.0028 ±
2.74e-4

0.0035 ±
3.71e-4

0.0491 ±
1.52e-3

0.0491 ±
1.55e-3

0.0111 ±
3.38e-3

0.0141 ±
5.12e-3

GConvLSTM 0.0031 ±
3.52e-4

0.0033 ±
9.82e-4

0.0288 ±
1.87e-2

0.0323 ±
2.01e-2

0.0132 ±
3.81e-3

0.0174 ±
5.68e-3

GConvLSTM +
Reservoir

0.0034 ±
6.77e-4

0.0035 ±
7.61e-4

0.0252 ±
4.01e-3

0.0299 ±
7.22e-3

0.0153 ±
1.35e-3

0.0187 ±
3.89e-3

TAGConv 0.0033 ±
9.65e-4

0.0033 ±
6.62e-4

0.0617 ±
7.26e-3

0.0622 ±
7.65e-3

0.0098 ±
1.05e-3

0.0137 ±
2.60e-3

TAGConv +
Reservoir

0.0032 ±
1.10e-4

0.0039 ±
9.97e-4

0.0600 ±
5.53e-3

0.0601 ±
6.69e-3

0.0097 ±
1.49e-3

0.0126 ±
8.36e-4

RBGM 0.0094 ±
1.51e-3

0.0064 ±
1.39e-3

0.0509 ±
9.65e-3

0.0391 ±
1.30e-2

0.0131 ±
2.59e-3

0.0236 ±
7.78e-3

RBGM + Reser-
voir

0.0089 ±
3.77e-4

0.0074 ±
1.25e-3

0.0471 ±
8.42e-3

0.0336 ±
7.06e-3

0.0145 ±
5.19e-3

0.0274 ±
1.42e-2

Table A.3: Comparison of global-level network topology on OASIS-2 dataset

57



Chapter A. Additional Results

Models MAE of Node Strength MAE of Participation Coef MAE of Diversity Coef MAE of Betweenness C MAE of Eigenvector C

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

GConvGRU 0.2819 ±
2.78e-2

0.3622 ±
4.79e-2

0.2112 ±
1.61e-2

0.2268 ±
3.78e-3

0.1412 ±
1.14e-2

0.1485 ±
1.35e-3

253.34 ±
12.22

264.48 ±
7.50

0.0034 ±
3.40e-4

0.0045 ±
3.80e-4

GConvGRU
+ Reservoir

0.3527 ±
3.77e-2

0.4360 ±
3.50e-2

0.2106 ±
1.60e-2

0.2264 ±
3.92e-3

0.1315 ±
2.29e-4

0.1458 ±
2.09e-3

252.20 ±
12.12

264.52 ±
7.55

0.0039 ±
2.96e-4

0.0046 ±
3.21e-4

GConvLSTM 0.3105 ±
5.00e-2

0.3884 ±
5.42e-2

0.2103 ±
1.66e-2

0.2261 ±
4.03e-3

0.1349 ±
1.65e-2

0.1437 ±
6.11e-3

255.18 ±
11.35

267.94 ±
7.50

0.0037 ±
4.79e-4

0.0049 ±
5.40e-4

GConvLSTM
+ Reservoir

0.4635 ±
7.30e-2

0.5457 ±
6.53e-2

0.2097 ±
1.59e-2

0.2261 ±
5.04e-3

0.1301 ±
1.40e-2

0.1419 ±
1.01e-2

254.53 ±
11.89

268.18 ±
7.04

0.0039 ±
6.38e-4

0.0050 ±
9.45e-4

TAGConv 0.2897 ±
3.20e-2

0.3020 ±
3.79e-2

0.2114 ±
1.60e-2

0.2289 ±
3.75e-3

0.1419 ±
1.15e-2

0.1588 ±
3.72e-3

251.73 ±
12.97

267.06 ±
7.71

0.0036 ±
2.90e-4

0.0052 ±
1.76e-4

TAGConv +
Reservoir

0.3463 ±
3.89e-2

0.3681 ±
3.59e-2

0.2108 ±
1.59e-2

0.2283 ±
3.75e-3

0.1385 ±
1.12e-2

0.1549 ±
2.15e-2

248.63 ±
11.92

264.69 ±
8.23

0.0038 ±
1.94e-4

0.0053 ±
1.48e-4

RBGM 0.3357 ±
2.21e-2

0.4456 ±
7.52e-2

0.2102 ±
1.61e-2

0.2271 ±
4.01e-3

0.1330 ±
1.13e-2

0.1457 ±
4.51e-3

241.01 ±
11.35

255.19 ±
10.31

0.0042 ±
2.37e-4

0.0051 ±
2.15e-4

RBGM +
Reservoir

0.3533 ±
2.27e-2

0.4770 ±
1.11e-1

0.2101 ±
1.59e-2

0.2268 ±
4.01e-3

0.1320 ±
1.03e-2

0.1439 ±
4.25e-3

238.05 ±
12.54

250.32 ±
6.49

0.0043 ±
2.72e-4

0.0049 ±
3.90e-4

Table A.4: Comparison on node-wise network topology on simulated dataset

Models MAE of Global Efficiency MAE of Local Efficiency

t1 t2 t1 t2

GConvGRU 0.1004 ± 1.86e-3 0.0960 ± 9.43e-4 0.0696 ± 2.22e-3 0.0728 ± 1.64e-2

GConvGRU
+ Reservoir

0.0965 ± 1.83e-3 0.0926 ± 1.43e-3 0.0669 ± 2.01e-3 0.0703 ± 1.69e-2

GConvLSTM 0.0984 ± 3.46e-3 0.0937 ± 4.06e-3 0.0698 ± 1.57e-3 0.0733 ± 1.72e-2

GConvLSTM
+ Reservoir

0.0890 ± 5.04e-3 0.0836 ± 5.16e-3 0.0649 ± 2.39e-3 0.0689 ± 1.78e-2

TAGConv 0.0984 ± 3.17e-3 0.0946 ± 2.45e-3 0.0702 ± 2.30e-3 0.0774 ± 1.90e-2

TAGConv +
Reservoir

0.0951 ± 2.80e-3 0.0907 ± 2.44e-3 0.0671 ± 1.92e-3 0.0737 ± 1.72e-2

RBGM 0.0989 ± 2.53e-3 0.0942 ± 3.04e-3 0.0719 ± 2.46e-3 0.0764 ± 1.78e-2

RBGM +
Reservoir

0.0968 ± 1.74e-2 0.0898 ± 2.75e-3 0.0698 ± 1.93e-3 0.0720 ± 1.52e-2

Table A.5: Comparison of efficiency-wise network topology on simulated dataset

58



Chapter A. Additional Results

Models MAE of Modularity MAE of Density MAE of Clustering

t1 t2 t1 t2 t1 t2

GConvGRU 0.0036 ±
1.05e-3

0.0023 ±
8.41e-4

0.0477 ±
3.42e-3

0.0442 ±
1.59e-3

0.0106 ±
1.14e-3

0.0094 ±
7.00e-4

GConvGRU +
Reservoir

0.0031 ±
2.29e-4

0.0015 ±
2.30e-4

0.0119 ±
5.71e-3

0.0164 ±
1.43e-2

0.0088 ±
9.73e-4

0.0084 ±
1.14e-3

GConvLSTM 0.0034 ±
8.91e-4

0.0032 ±
9.94e-4

0.0471 ±
3.08e-3

0.0469 ±
2.48e-3

0.0102 ±
1.62e-3

0.0094 ±
8.96e-4

GConvLSTM +
Reservoir

0.0030 ±
1.60e-3

0.0027 ±
1.63e-3

0.0394 ±
4.45e-3

0.0404 ±
4.75e-3

0.0083 ±
8.44e-4

0.0084 ±
1.22e-3

TAGConv 0.0039 ±
9.90e-4

0.0030 ±
1.19e-3

0.0505 ±
2.79e-3

0.0541 ±
2.27e-3

0.0113 ±
1.93e-3

0.0126 ±
1.69e-3

TAGConv +
Reservoir

0.0053 ±
9.71e-4

0.0040 ±
2.06e-3

0.0478 ±
2.66e-3

0.0499 ±
2.73e-3

0.0097 ±
1.43e-3

0.0099 ±
3.26e-4

RBGM 0.0076 ±
2.15e-3

0.0041 ±
1.14e-3

0.0460 ±
2.98e-3

0.0422 ±
4.07e-3

0.0123 ±
1.17e-3

0.0146 ±
9.66e-4

RBGM + Reser-
voir

0.0081 ±
3.13e-3

0.0041 ±
7.38e-4

0.0439 ±
1.43e-3

0.0381 ±
2.85e-3

0.0119 ±
9.60e-4

0.0127 ±
1.17e-3

Table A.6: Comparison of global-level network topology on simulated dataset

59



Chapter A. Additional Results

Figure A.1: Comparison of various topological distributions of the two datasets, original
and simulated.

60



Chapter A. Additional Results

Figure A.2: Comparison of various topological measurements across folds for the
language-infused memory capacity task. The graphs compare the performance of with
and without reservoirs in predicting T1 and T2 across different folds for the OASIS-2
dataset.

61



Chapter A. Additional Results

Figure A.3: Comparison of various topological measurements across folds for the
language-infused memory capacity task. The graphs compare the performance of with
and without reservoirs in predicting T1 and T2 across different folds for the simulated
dataset.

62


	1 Introduction
	1.1 Objectives & Contributions
	1.2 Ethical Considerations
	1.3 Preliminary Experiments
	1.3.1 Memory Capacity of Two Groups
	1.3.2 Memory Capacity and Network Topologies


	2 Background
	2.1 Brain Graph Construction
	2.2 Neural Networks for Sequential Data
	2.2.1 Recurrent Neural Network
	2.2.2 Long Short-Term Memory
	2.2.3 Gated Recurrent Unit

	2.3 Reservoir Computing
	2.3.1 Echo State Networks

	2.4 Machine Learning on Graphs
	2.4.1 Graphs
	2.4.2 Graph Neural Networks

	2.5 Related Work
	2.5.1 Brain graph evolution prediction
	2.5.2 Biological Reservoir Computing


	3 Methodologies
	3.1 Overview
	3.2 Biologically Instantiated Reservoir
	3.3 Loss function

	4 Results and Evaluation
	4.1 Evaluation Measures
	4.2 Evaluation Datasets
	4.3 Graph Neural Network Models
	4.3.1 Chebyshev Graph Convolutional Recurrent Network
	4.3.2 Topology Adaptive Graph Convolutional Network
	4.3.3 Recurrent Brain Graph Mapper
	4.3.4 Identity Mapper

	4.4 Experimental Setup
	4.5 Regular Memory Capacity Task
	4.5.1 Evaluation Results
	4.5.2 Discussion

	4.6 Language-Infused Memory Task
	4.6.1 Evaluation Results
	4.6.2 Discussion


	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Works

	A Additional Results

