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Abstract

Reduced density matrices are central to studies of quantum systems. Due to the size of the
Hamiltonian scaling exponentially as system size increases, it is often infeasible to obtain the exact
density matrices of systems of interest. Belief propagation algorithms are one of the candidates
for obtaining approximate solutions. They have produced good approximation in probabilistic
graphical models, which is the classical analogue of quantum systems. In this project, we work
through the derivation of a quantum belief propagation algorithm by taking the steps from the
derivation of classical algorithm. The derivation is made under fewer assumptions than some
in literature, resulting in a more general algorithm. We implement the resulting algorithms as
software modules for 1D systems and 2D lattice-like systems. We then study the performance
of the algorithm including computation time, correctness, convergence, and scalability. The 1D
version of the algorithm demonstrated outstanding performance. The 2D version demonstrated
good performance for systems at high temperatures but required more care regarding numerical
problems at lower temperatures.
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Chapter 1

Introduction

1.1 Motivation

Reduced density operators are powerful tools for describing subsystems of a composite quantum
system. For example, such an operator can describe the state of one particular qubit in a system of
many qubits [14]. Knowing the reduced density operator is useful for many analyses of quantum
systems, such as studying observable quantities in entangled multi-body systems [2], determine the
energy in electronic systems [17], and even computing the quantum Fisher information of an entire
many-body system [3].

Therefore, computing the reduced density operator is an important task in quantum many-body
physics. The exact computation is generally intractable because the size of the problem grows
exponentially as the number of particles grows. However, for practical problems, there is a lot of
research in developing efficient algorithms that can be implemented on a classical computer [4, 8].

One of the widely studied approximation methods to study quantum systems is Quantum Monte
Carlo (QMC) [21]. QMC uses the Lie-Trotter formula eA+B ≈ (e

A
n e

B
n )n [24] to break the density

matrix up into a product, where resolutions of identity can be applied to convert most of the
computation into scalar values [21]. Then, the Monte Carlo simulation can be applied to generate
approximation to these values. This approach has been studied on some systems and produced
good results [11].

However, QMC has several shortcomings. First, by introducing the resolution of identity, we need
to compute the sum of product based on the original algorithm. This effectively creates another
dimension to the problem, which makes it more difficult and negatively impacts scaling. Second,
the Trotter error from the Lie-Trotter formula increases with the size of the system [5]. This also
makes it hard to scale to larger systems. T a very the approximation in the formula converges to
the exact value as n→∞ [28], which means that, depending on the nature of A and B, we might
need a very large n for the approximation to be good enough. Forth, when applied to fermionic
systems, QMC has the “sign problem”, where negative weights appear in the simulation, causing
exponential growth in error [25], which is undesirable. Finally, QMC inherits all the shortcomings
of regular Monte Carlo methods, such as being dependant on having sufficient knowledge or data
about the system to form a good model with good results [6].

Therefore, researchers have explored different ways to study quantum systems, such as vari-
ational algorithms. They started with density matrix renormalisation group (DMRG), which
decomposes the space of a quantum system into small subsystems and build from these systems
using matrix renormlisation [15, 26]. There are also attempts to draw on the similarity of quantum
systems and classical probability models to build a quantum belief propagation algorithm [10]. This
will be the topic of this project.

In the classical setting, there is an analogue of the problem of finding the reduced density
operator given the overall density operator of the system. It is computing marginal distributions
on a graphical model given the joint probability distribution of the entire model [10]. Quantum
systems become more and more similar to classical systems as temperature approaches 0, where
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1.2. Overview Chapter 1. Introduction

higher energy states become less significant.

This classical problem in itself is a very interesting one, as such graphical models are used for
many practical applications such as classical statistical physics [22], image processing [13] and
mechanism design in strategic settings [12].

Given an exponential family of probability distributions, we can reformulate the problem by
relating the marginal distribution to the optimum of some value of interest. This effectively converts
the marginalisation problem into an optimisation problem using a variational method. The belief
propagation sum-product algorithm provides an efficient way to compute the exact marginal
distribution on tree-like graphs via this method. Although the algorithm is not exact for graphs with
cycles, it provides a very useful approximation [27].

Similarly, variational methods can be applied to the computation of reduced density operators,
which leads to a quantum version of the belief propagation algorithm [18]. The main additional
consideration from a mathematical point of view in the quantum version is dealing with the
non-commutativity of the operators.

With the increased interest in applying machine learning in quantum technology, some research
on quantum belief propagation algorithms has been done regarding the simulation of quantum
computations in tensor networks [1, 23].

Despite the increased interest and the fact that the existence of many classical belief propagation
software packages, there are no quantum belief propagation software available, which indicates a
gap between the research tools of classical statistians and quantum physics.

This project aims to bridge the gap between classical belief propagation and quantum belief
propagation. It will be focusing on the quantum belief propagation algorithm in the context of study-
ing thermal states in many-body quantum systems. We will derive a quantum belief propagation
algorithm by closely following the steps for the derivation of a classical belief propagation algorithm
described in [27]. Then, we will build and evaluate a software package which is implemented
based on the algorithm. We then use it to benchmark the quantum belief propagation algorithm
against other algorithms in simulations of many-body quantum systems at finite temperature in the
literature.

1.2 Overview

As background material, this project studies in detail the necessary components that are required to
build the classical belief propagation algorithm as described in [27].

This starts from the definitions of graphical models. We show how a probabilistic graphical
model can be represented as exponential families in terms of both canonical parameters and mean
parameters. We introduce the log-partition function for the exponential family and its conjugate
dual function. We show that the log-partition function is convex to build a variational optimisation
problem. By establishing the connection between the conjugate dual and the Shannon entropy of the
model, we can base the optimisation problem on the entropy. At this point, the optimisation problem
is still difficult to solve, so we introduce relaxations to the problem by using the Bethe entropy
approximation and dropping global consistency requirements for local consistency requirements.
With these relaxations applied, we obtain a relatively straightforward Lagrangian for the problem.
Differentiating the Lagrangian and applying some algebraic manipulation gives the classical belief
propagation algorithm.

Additionally, the background material also covers some results used to develop the belief
propagation algorithm, including cliques on a graph and the sum product algorithm, as well as
some basic concepts useful for the quantum case, including von Neumann entropy and thermal
equilibrium state representation.

With this background knowledge, we repeat the same steps on the quantum thermal equilibrium
state representation, where the overall density matrix can also be interpreted as an exponential
family. With assumption of short range interactions commonly used in studies of quantum systems,
the systems can be interpreted as graphs, where edges correspond to particles that interact with
each other. We identify the basis matrices corresponding to sufficient statistics in the classical case,
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1.2. Overview Chapter 1. Introduction

and define canonical parameters and mean parameters in their regard. Again, we showed the
convexity of the log-partition function, which was much more involved than the classical case due
to the non-commutativity of the matrices. We use the von Neumann entropy instead of the Shannon
entropy to develop a connection with the conjugate dual function for the variational problem.

In order to get a straightforward Lagrangian, we use the ideas from the classical case to
relax the variational problem. We start from the strong subadditivity theorem for von Neumann
entropy and proceed to develop an entropy approximation that closely resembles the Bethe entropy
approximation, albeit with less theoretical guarantee. We also drop global consistency conditions
for local consistency conditions, which result in matrix Lagrangian multipliers.

This differs from the algorithms in literature where stronger requirements are made on the
system in question, in that they need to be bi-factor networks [10]. The aim of our algorithm is to
work on more general quantum systems using heuristics learned from the classical case.

With the Lagrangian, we start by restricting to the case where particles from a chain, which
gives the 1D version of the algorithm. This is equivalant to the 1D algorithm described in [18], with
a “Markov shield” of 2 and without looping. An algebraic interpretation was given for the ends of
the chain.

This was then implemented in software, with options to specify the parameters of the Hamilto-
nian of the model and the belief propagator to run the algorithm and extract the beliefs.

The software was then used to benchmarking against exact solution and known results from
Variational QMC. The benchmarking was more comprehensive than those presented in literature
since it also covered computation time and convergence, in addition to the correctness of the results.

Our algorithm achieved very good performance in terms of running time compared to the exact
solution. It also offers a very good approximation of the reduced density matrices, hence also other
quantities of interest. It scales very well, giving state-of-the-art results for 100 particles.

Then, a general quantum belief propagation algorithm was developed based on the Lagrangian.
The main difference between this and the classical algorithm is the directions of messages plays an
explicit role in matrix representation, since reduced density matrices, like the overall density matrix,
have an explicit ordering of the particles.

Instead of the general algorithm, a particular algorithm working on 2D lattices was implemented
in software. This was chosen because the lattice model was a common model studied in literature,
and had a straightforward implementation using rows and columns that deals very well with the
directional nature of the algorithm. Again, there are options to specify the parameters of the
Hamiltonian of the model and the belief propagator to run the algorithm and extract the beliefs.

We then studied 2D lattices using both the 1D version of the algorithm and the 2D version. For
the 1D version, we used a snake-shaped approximation that treats all the particles as if they were
on a chain. The 2D version achieved much better performance than the 1D version on a 3× 3 lattice.
Although the 2D algorithm performed well at low temperatures and in small systems, its scalability
was not as good as it suffered from numerical stability issues. Since the algorithm required inverses
of message matrices to be computed, numerical issues arose when the messages are close to singular.
Regularisation methods were applied to some degree of success.
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Chapter 2

Background

2.1 Graphical Model and Belief Propagation

2.1.1 Markov Random Field

The probablility distribution of random variables (X1...Xn) can be represented in a graphical
model G = (V,E) where each vertex represents a random variable, and each edge represents the
dependence between two variables.

Figure 2.1 is an illustration of a simple graphic model with 6 random variables X1...X6, repre-
sented by vertices V1 to V6. Since this graph is undirected, it is known as an undirected graphical
model, also known as a Markov random field or Gibbs distribution [27].

Graphical models can be very useful for analysing conditional independence. Let Ua, Ub and Uc

be disjoint subsets of V , and Xa, Xb and Xc represent their respective joint probability. Suppose
that when Ub is removed from V , there are no edges connecting Ua and Uc, then Xa and Xc are
conditionally independent on Xb. [9].

For example, in Figure 2.1, the dependence between vertices {V1, V4} and vertex V6 is mediated
through vertices V2 and V5, so if X2 and X5 are known, then (X1, X4) and X6 are independent.

p(x1, x4, x6|x2, x5) = p(x1, x4|x2, x5)p(x6|x2, x5) (2.1)

Figure 2.1: Example of an undirected graphical model for probablility distribution.

2.1.2 Cliques

Given a graph G = (V,E), a clique C is defined as a subset of V , such that ∀s, t ∈ C, (s, t) ∈ E. By
this definition, any set of a single vertex or any set of a pair of adjacent vertices is a clique. A clique
that is not a subset of any other clique is a maximal clique.

The conditional independence in the Markov random field gives us a convenient way to factorise
the probablility distribution according to cliques. Given the set of all cliques C, the probablility
distribution factorises as
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2.1. Graphical Model and Belief Propagation Chapter 2. Background

p(x1, ..., xn) =
1

Z

∏
C∈C

ψC(xC) (2.2)

where Z is a normalising factor [27]. The function ψC is called a compatibility function. For each
C, ψC : ⊗s∈CXs → R+ is a function from the space of the random vector containing the elements
of C to the positive real numbers.

Equation 2.2 in fact also holds for other choices of C, since the compatibility functions of a
non-mamixal clique can be absorbed into a larger clique that it is a subset of. Therefore, we can
choose C to be the set of all maximal cliques, or the set of all maximal cliques and some non-mamixal
cliques.

Referring back to Figure 2.1, we can identify C1 = {V1, V2, V4, V5}, C2 = {V2, V5, V6}, and
C3 = {V2, V3} as the maximal cliques of the graph. Selecting these as the target set of cliques, we
can obtain the factorisation using the conditional dependence as follows:

p(x1...x6) = p(x1, x4, x5, x6|x2)p(x3|x2)p(x2)
= p(x1, x4|x2, x5)p(x6|x2, x5)p(x5|x2)p(x3|x2)p(x2)

(2.3)

Letting

ψC1
(xC1

) = p(x1, x4|x2, x5) (2.4)

ψC2
(xC2

) = p(x6|x2, x5)p(x5|x2) (2.5)

ψC3
(xC3

) = p(x3|x2)p(x2) (2.6)

and Z = 1, we obtain a suitable set of compatibility functions for the set of maximal cliques.

This method of factorisation by conditioning on the nodes shared between cliques can be used
to find a factorisation in the form of Equation 2.2 for probability distributions in general.

2.1.3 Sum-Product Algorithm

Consider a tree-structured graph with vertices V and edges E. Since there are no cycles, the cliques
in the graph only consists of the vertices and edges. Hence, the probablility distribution associated
with such a graphic model can be factorised over all cliques as

p(x) =
1

Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E

ψs,t(xs, xt) (2.7)

We are interested in the marginal distribution µ(xs) =
∑

{x′|x′
s=xs} p(x

′) for a particular node
s ∈ V .

Let N(s) denote the neighbours of s,

N(s) = {t ∈ V |(s, t) ∈ E} (2.8)

For each t ∈ N(s), let Tt denote the subtree (Vt, Et), where Vt consists of the vertices that can
be connected to t without going throught s, and Et consists of the edges connecting vertices in Vt.

Let xVt
denote the random vector associated to the subtree Tt, then

p(xVt
) ∝

∏
u∈V

ψu(xu)
∏

(u,v)∈E

ψu,v(xu, xv) (2.9)

Now defining the message from t ∈ N(s) to s

M∗
ts(xs) :=

∑
x′
Vt

ψst(xs, x
′
t)p(x

′
Vt
) (2.10)

we have
µ(xs) = κψs(xs)

∏
t∈N(u)

M∗
ts(xs) (2.11)

where κ is a normalising constant.
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2.2. Exponential Families and Examples Chapter 2. Background

Proof. Since κ is a normalising constant, we only need to show µ(xs) ∝ ψs(xs)
∏

t∈N(u)M
∗
ts(xs).

Now,

ψs(xs)
∏

t∈N(u)

M∗
ts(xs)

=ψs(xs)
∏

t∈N(u)

∑
x′
Vt

ψst(xs, x
′
t)p(x

′
Vt
)


∝ψs(xs)

∏
t∈N(u)

∑
x′
Vt

ψst(xs, x
′
t)
∏
u∈Vt

ψu(x
′
u)

∏
(u,v)∈Et

ψu,v(x
′
u, x

′
v)


=ψs(xs)

∑
x′
V \s

 ∏
u∈V \{s}

ψu(x
′
u)

∏
(u,v)∈E

ψu,v(x
′
u, x

′
v)


=

∑
{x′|x′

s=xs}

∏
u∈V

ψu(x
′
u)

∏
(u,v)∈E

ψu,v(x
′
u, x

′
v)


=

∑
{x′|x′

s=xs}

p(x′)

=µ(xs)

(2.12)

proves the statement, where we have used the property(∑
a∈A

f(a)

)(∑
b∈B

g(b)

)
=

∑
(a,b)∈A×B

f(a)g(b) (2.13)

iteratively to simplify the product of sums.

This provides us with a way to compute the marginal distribution for any particular random
variable in a tree-structured graph. The sum-product algorithm is based on this idea but sends
messages between all adjacent nodes simultaneously. Let Mts(xs) denote the message sent from t
to s ∈ N(t), it is defined as

Mts(xs)← κ
∑
x′
t

ψst(xs, x
′
t)ψt(x

′
t)

∏
u∈N(t)\{s}

Mut(x
′
t)

 (2.14)

where κ is a normalisation term [27].

At each step, each node gathers all the messages it has received in the product term, which is
analogous to the px′

Vt
term in the complete message M∗

ts. It can be shown [16] that after a finite
number of iterations on trees, the messages converge to the fixed point {M∗

ts,M
∗
st|(s, t) ∈ E}, as

defined in Equation 2.10.

Although the sum-product algorithm is only exact for belief propagation on trees, it can still
be quite useful in approximate inference on graphs with cycles. In order to see how it adapts
to the general graphic model, we can reframe the problem of marginalisation to a problem of
optimisation using variational methods. In order to see how variational methods can be applied, we
view graphical models as exponential families.

2.2 Exponential Families and Examples

2.2.1 Exponential Families

Consider the random variables X = (X1...Xn) ∈ Xm and sufficient statistics ϕ1(x)...ϕd(x) for the
random variables, which are Xm → R. Let ϕ(x) = (ϕ1(x)...ϕd(x)), then ϕ is a mapping from the

10
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random variables to the d-dimensional vector representation of sufficient statistics. Let θ ∈ Rd be
the associated vector of canonical parameters. The log-partition function is defined as

A(θ) = log

[∫
Xm

exp⟨θ, ϕ(x)⟩ν(dx)
]

(2.15)

where ⟨, ⟩ represents the Euclidean inner product, and ν is the underlying measure [27]. In the
case of continuous variables, this is the Lebesgue measure for regular integration. In the case of
discrete variables, this is the counting measure, so the integral is just the sum of the possible values
as follows

A(θ) = log

[∑
Xm

exp⟨θ, ϕ(x)⟩

]
(2.16)

The set of canonical parameters of interest is defined as

Ω = {θ ∈ Rd|A(θ) < +∞} (2.17)

Given θ ∈ Ω, the exponential family associated with ϕ is the set of functions for each θ value,

pθ(x) = exp(⟨θ, ϕ(x)⟩ −A(θ)) (2.18)

We shall illustrate how some common distributions can be considered as exponential families
via examples.

2.2.2 Bernoulli Distribution

Consider a Bernoulli distribution X ∼ B(p), where p is the probablility that x = 1. A sufficient
statistic for this distribution is simply the outcome x, and its corresponding canonical parameter
can be denoted θ. The measure is the counting measure over X = {0, 1}. Hence,

A(θ) = log

(∑
x∈X

exp(θx)

)
= log (exp(θ) + 1)

(2.19)

Since A(θ) is finite for all real θ values, the set of interest is Ω = R. This gives the exponential
family of

pθ(x) = exp (θx− log(exp(θ) + 1))

=
exp(θx)

exp(θ) + 1

(2.20)

for x ∈ X . Regarding the original parameter p, we have p = exp(θ)
exp(θ)+1 . It can be verified that this

satisfies p ∈ (0, 1). If we include the limits for θ → ±∞, then we can also get p = 0 or p = 1.

2.2.3 Ising Model

This example is taken from [27].

The Ising Model is a common model used in statistical physics. It is a graphical model on
G = (V,E), where the random variable xs at each s ∈ V is a Bernoulli distribution. Each pair of
random variables xs and xt can only interact if (s, t) ∈ E. In this case, the set of sufficient statistics
is the union of {xs|s ∈ V } and {xs, xt|(s, t) ∈ E}. This leads to an exponential family of probability
distributions

pθ(x) = exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt −A(θ)

 (2.21)

11
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where

A(θ) = log

 ∑
x∈{0,1}m

exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

 (2.22)

where m = |V |, since the measure in this model is the counting model involving {0, 1} for each of
the random variables in the graph.

The Ising Model has many generalisations, including for example, the model where triples of
vertices can interact, and the model where each vertex represents a random variable that can take
one of k values, where k ∈ N and k > 2.

2.2.4 Gaussian Distribution

Consider a Gaussian Distribution X ∼ N (µ, σ2). A sufficient statistic ϕ(x) = (x, x2), since the
original parameters correspond to the first 2 moments of the distribution. The canonical parameters
can be denoted as θ = (θ1, θ2). The measure is the Lebesgue measure over X = R. For the
exponential family to be normalised properly, we introduce a modulating factor h(x) = 1√

2π
. Hence,

A(θ) = log

(∫ ∞

−∞

1√
2π

exp(θ1x+ θ2x
2)dx

)
= log

((
1

−2θ2

) 1
2

exp

(
θ21
4θ2

))

= − θ21
4θ2
− 1

2
log(−2θ2)

(2.23)

Since the logarithm is only defined for θ2 < 0, the set of interest Ω = {(θ1, θ2) ∈ R2|θ2 < 0}.
This gives the exponential family of

pθ(x) = h(x)exp(⟨θ, ϕ(x)⟩ −A(θ))

=
1√
2π

exp

(
θ1x+ θ2x

2 +
θ21
4θ2

+
1

2
log(−2θ2)

)
=

√
−θ2
π

exp

(
θ1x+ θ2x

2 +
θ21
4θ2

) (2.24)

Comparing this to the standard equation for Gaussian distribution

pµ,σ2(x) =
1

σ
√
2π

exp

(
(x− µ)2

σ2

)
(2.25)

we see the correspondence θ1 = µ
σ2 and θ2 = − 1

2σ2 . Also, the requirement that θ2 < 0 corresponds
to the requirement that σ2 > 0.

2.2.5 Gaussian Markov Random Field

This example is taken from [27].

The Gaussian Markov random field is a Markov random field that represents a multivariate
Gaussian distribution. Each vertex represents a single Gaussian random variable and random
variables only interact if they are joined by an edge. The set of sufficient statistics is the union of
{xs, x2s|s ∈ V } and {xs, xt|(s, t) ∈ E}, where the x2s term correspond to variances of each variable
and the xsxt terms correspond to covariances between terms that are adjacent to each other. For
uniformity, we can consider the matrix xxT , which corresponds to the overall covariance.

This leads to the definition of θ, a vector of size m = |V |, corresponding to x, and a symmetric
matrix Θ ∈ Rm×m corresponding to xxT , requiring that Θst = 0 for (s, t) not connected by an edge.
This leads to the exponential family of

pθ(x) = exp

(
⟨θ, x⟩+ 1

2
Tr
(
ΘxxT

)
−A(θ,Θ)

)
(2.26)

12



2.3. Convexity and Mean Parameter Space Chapter 2. Background

where

Tr
(
ΘxxT

)
=

m∑
i=1

m∑
j=1

Θijxixj (2.27)

indeed captures all the quadratic terms of the sufficient statistics. For the integral underlying the
function A to be finite, we require additionally that Θ ≺ 0.

2.3 Convexity and Mean Parameter Space

2.3.1 Convexity

The following are some definitions related to convexity from [19].

A convex set is a set S ⊆ Rd such that ∀x, y ∈ S and 0 ≤ α ≤ 1, αx+ (1− α)y ∈ S. If a convex
set contains two points, then it also contains all the points that lie between them on a line segment.

Given elements x1, ...xk in a set S, a convex combination is a linear combination of the elements∑k
i=1 αixi, where

∑k
i=1 αi = 1 and αi ≥ 0 for all i.

A convex hull of a set S, conv(S), is the smallest set that contains all its convex combinations.
This is a convex set by construction.

2.3.2 Mean Parameterisation and Examples

Mean parameters offer an alternative way of describing a probablility distribution from canonical
parameters described earlier in Section 2.2.1.

Consider again the random variables X = (X1...Xn) ∈ Xm and sufficient statistics ϕ1(x)...ϕd(x)
for the random variables, which are Xm → R. Let p(x) be any valid probability distribution for X.
For each 1 ≤ i ≤ d, the mean parameter µi associated with a sufficient statistic ϕi(x) is defined as

µi = Ep[ϕi(x)] =

∫
X
ϕi(x)p(x)ν(dx) (2.28)

where ν is again the underlying measure.

Let µ = (µ1...µd), a vector of mean parameters corresponding to each of the sufficient statistics,
then the set of valid µ values as p varies is defined as

M := {µ|∃p s.t. µi = Ep[ϕi(x)] ∀i ∈ {1...d}} (2.29)

We known thatM must be a convex set, since for any µ1, µ2 ∈ M with corresponding valid
probability distribution pµ1 , pµ2 , the combination λpµ1 + (1 − λ)pµ2 is also a valid probability
distribution for 0 ≤ λ ≤ 1, so λµ1 + (1− λ)µ2 is also a member ofM. [27]

We shall illustrate the mean parameters using the same examples for exponential families. These
examples are taken from [27], and correspond to Section 2.2.3 and Section 2.2.5.

Gaussian Markov Random Field

Consider a Gaussian Markove random field as described in Section 2.2.5. Since the sufficient
statistics are x and xxT , the mean parameters here are µ = E[X] ∈ Rm and Σ = E[XXT ] ∈ Rm×m,
where m is the number of vertices. The covariance of such a distribution is Σ− µµT , which needs
to be positive semi-definite, leading to the constraint that Σ− µµT ⪰ 0.

Ising Model

Consider an Ising Model as described in Section 2.2.3. The sufficient statistics are {xs|s ∈ V } ∪
{xsxt|(s, t) ∈ E}, the elements of which can be represented by the vector ϕ(x) ∈ R|V |+|E|. The

13
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mean parameters are
µs = E[Xs] = P[Xs = 1] for s ∈ V (2.30)

µst = E[XsXt] = P[Xs = 1 ∧Xt = 1] for (s, t) ∈ E (2.31)

Hence, the setM is the convex hull of {ϕ(x)|x ∈ {0, 1}m}, where m = |V |.

2.3.3 Convexity of the Log-partition Function

In this section, we demonstrate the convexity of the log-partition function as defined in Equation
2.1 by investigating the positive semi-definiteness of its Hessian ∇2A.

The first derivative of A with respect to one of the canonical paramters is

∂A

∂θi
(θ) =

∂

∂θi

[
log

(∫
Xm

exp(⟨θ, ϕ(x)⟩)ν(dx)
)]

=

∫
Xm

∂
∂θi

exp(⟨θ, ϕ(x)⟩)ν(dx)∫
Xm exp(⟨θ, ϕ(x)⟩)ν(dx)

=

∫
Xm

ϕi(x)
exp(⟨θ, ϕ(x)⟩)∫

Xm exp(⟨θ, ϕ(u)⟩)ν(du)
ν(dx)

=

∫
Xm

ϕi(x)pθ(x)ν(dx)

= Eθ[ϕi(X)]

(2.32)

where we have differentiated through the integral, which is valid as can be shown using the
dominated convergence theorem [27]. The gradient ∇A(θ) can be considered as a mapping to the
mean parameters.

Hence, the second derivative is

∂2A

∂θi∂θj
(θ) =

∂2A

∂θi∂θj

[
log

(∫
Xm

exp(⟨θ, ϕ(x)⟩)ν(dx)
)]

=
∂

∂θi

[∫
Xm

∂
∂θj

exp(⟨θ, ϕ(x)⟩)ν(dx)∫
Xm exp(⟨θ, ϕ(x)⟩)ν(dx)

]

=

∫
Xm

∂2

∂θi∂θj
exp(⟨θ, ϕ(x)⟩)ν(dx)∫

Xm exp(⟨θ, ϕ(x)⟩)ν(dx)

−
∫
Xm

∂
∂θi

exp(⟨θ, ϕ(x)⟩)ν(dx)∫
Xm exp(⟨θ, ϕ(x)⟩)ν(dx)

∫
Xm

∂
∂θi

exp(⟨θ, ϕ(x)⟩)ν(dx)∫
Xm exp(⟨θ, ϕ(x)⟩)ν(dx)

= Eθ[ϕi(X)ϕj(X)]− Eθ[ϕi(X)]Eθ[ϕj(X)]

= cov[ϕi(X), ϕj(X)]

(2.33)

Therefore, the full Hessian matrix∇2A(θ) is the covariance matrix of ϕ(x), which is by definition
positive semi-definite on the open set Ω, which means the function A is convex [27].

2.3.4 Conjugate Dual Function

The conjugate dual function of a given log-partition function A(θ) is defined as

A∗(µ) := sup
θ∈Ω

[⟨µ, θ⟩ −A(θ)] (2.34)

The conjugate dual functions satisfies some properties that enable us to convert the estimation
problem for marginal probabilities to a variational optimisation problem [27].

Property A:

14
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For µ ∈ M◦, let θ(µ) be the unique vector of canonical parameters that satisfy the relation
Eθ(µ)[ϕ(X)] = ∇A(θ(µ)) = µ, then

A∗(µ) =

{
−H(pθ(µ)) µ ∈M◦

+∞ µ ̸∈ M
(2.35)

For boundary points µ ∈M\M◦, A∗(µ) is the limit of any sequence {µn} ⊂ M◦ that converges
to µ.

Property B:

The log-partition function can be represented using the conjugate dual as

A(θ) = sup
µ∈M

[⟨θ, µ⟩ −A∗(µ)] (2.36)

Property C:

For all θ ∈ Ω, the supremum in Equation 2.36 is attained uniquely at the vector µ ∈ M◦ that
satisfies Eθ(ϕ(X)) = µ.

An important observation is that property B provides a way to find A(θ) by optimising over the
µ values, and property A guarantees that any µ ̸∈ M cannot be the optimal solution. This means
we only need to optimise overM instead of Rd. The fact that A∗(µ) is related to the entropy of the
probablility distribution gives us a way to approach such an optimisation via the entropy.

We will illustrate the properties with an example taken from [27].

Bernoulli Distribution

Consider a scalar random variable following X ∼ B(p) taking values from {0, 1}. Taking ϕ(x) = x
as the sufficient statistic, we known from section 2.2.2 that A(θ) = log(1 + exp(θ)) and Ω = R. We
also know that the mean parameter µ ∈M = [0, 1].

We have
A∗(µ) = sup

θ∈R
[θµ− log(1 + exp(θ))] (2.37)

Differentiating with respect to θ gives µ− exp(θ)
1+exp(θ) . Setting this to 0, we obtain that θ = log( µ

1−µ ).
For µ ∈ (0, 1) =M◦, we have

A∗(µ) =µlog

[
µ

1− µ

]
− log

[
1 +

µ

1 + µ

]
=µlog(µ)− (1− µ)log(1− µ)

(2.38)

It can also be verified that for µ ̸∈ [0, 1] = M, the objective function in Equation 2.37 is
unbounded, so A∗(µ) = +∞, and that for boundary points µ = 0 and µ = 1, A∗(µ) = 0 from limits.

2.4 Variational Belief Propagation

This section is adapted from the description of the Bethe Variational Problem in [27], with some
added details, new examples and a particular focus on Bernoulli random variables, since they are
analogous to qubits in question in the quantum setting.

2.4.1 Model Setup

Bethe approximation can be applied to an undirected graphical model of Bernoulli random variables
on a graph G = (V,E) with compatibility functions involving at most pairs. This is called a pairwise
Markov random field.
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We will focus the discussion on a network of Bernoulli random variables.

In Section 2.2.2, we used the sufficient statistics xs for s ∈ V and xsxt for (s, t) ∈ E. In order
to build a more direct relationship with the marginal distributions at each vertex, we shall use a
different set of sufficient statistics here.

For each xs ∈ V , let Is;i(xs) represent the indicator function of xs. That is, Is;0(xs) = 1 if
x = 0 and 0 otherwise, and Is;1(xs) = 1 if x = 1 and 0 otherwise. Similarly, for each (s, t) ∈ E, let
Ist;ij(xs, xt) be the indicator function for xs = i and xt = j. We observe that this set of sufficient
statistics is overcomplete, as in the sufficient statistics are not uniquely identifiable.

The corresponding exponential family can be described as

pθ(x) ∝ exp

∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)

 (2.39)

where we have defined the functions

θ(xs) :=
∑

i∈{0,1}

θs;iIs;i(xs) for s ∈ V (2.40)

θs(xs, xt) :=
∑

i,j∈{0,1}

θst;ijIst;ij(xs, xt) for (s, t) ∈ E (2.41)

The mean parameters corresponding to the indicator functions are

µs;i = E[Is;i(xs)] = P(Xs = i) for s ∈ V (2.42)

µst;ij = E[Ist;ij(xs, xt)] = P(Xs = i ∧Xt = j) for (s, t) ∈ E (2.43)

These are the marginal probability that a vertex or an edge takes a specific value. Hence, we can
define the functions

µs(xs) :=
∑

i∈{0,1}

µs;iIs;i(xs) for s ∈ V (2.44)

µs(xs, xt) :=
∑

i,j∈{0,1}

µst;ijIst;ij(xs, xt) for (s, t) ∈ E (2.45)

which are exactly the marginal distributions for single vertices and pairs of vertices connected by an
edge.

This corresponds to a marginal polytope, namely

M(G) = {µ ∈ Rd|∃p s. t. the marginals are µs(xs) and µst(xs, xt)} (2.46)

2.4.2 Outer Bound to the Marginal Polytope

We know that the marginal polytope M(G) can be written as the convex hull of a finite number of
vectors corresponding to the sufficient statistics for each possible x. This grows exponentially as the
number vertices in the graph grows. Hence, obtaining the exact constraints on M(G) is difficult in
general. By only considering a subset of constraints, we can obtain an outer bound on M(G) that is
easier to work with.

Consider a function τ over the graph such that τs(xs) and τst(xs, xt) are the marginals over
vertices and edges. For these to be valid marginals, we need τs to satisfy the normalisation condition∑

xs

τs(xs) = 1 ∀s ∈ V (2.47)

and τst to satisfy the marginalisation condition∑
x′
s

τst(x
′
s, xt) = τt(xt) and

∑
x′
t

τst(xs, x
′
t) = τs(xs) ∀(s, t) ∈ E (2.48)
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These constraints define the set of locally consistent marginal distributions

L(G) = {τ ≥ 0|the normalisation and marginalisation conditions hold for τ} (2.49)

We notice that L(G) is a lot easier to compute compare to M(G), since the number of constraints
grows linearly as the number of vertices and edges grow.

Clearly, M(G) ⊆ L(G), since any globally realisable distribution must satistfy the local normali-
sation and marginalisation constraints.

When the graph G is a tree, we have in fact that M(G) = L(G). Given any τ ∈ L(G), we can
construct

pτ (x) :=
∏
s∈V

τs(xs)
∏
s∈V

τst(xs, xt)

τs(xs)τt(xt)
(2.50)

using the junction tree theorem in [27]. When G has cycles, however, we have M(G) ⊂ L(G).

To provide a simple example, consider a fully connected graph G = (V,E) with vertices
V = {a, b, c}, and edges E = {(a, b), (a, c), (b, c)}. Let

τs(xs) =
(
1
2

1
2

)
∀s ∈ V (2.51)

τab(xa, xb) = τac(xa, xc) =

(
1
2 0
0 1

2

)
(2.52)

τbc(xb, xc) =

(
0 1

2
1
2 0

)
(2.53)

then we can verify that all the local consistency constraints are held. However, we notice that a
probability distribution with the given τ is impossible over this graph, since Equation 2.52 specifies
xa = xb = xc while Equation 2.53 specifies xb ̸= xc. Hence, this particular τ ∈ L(G) is not a
member ofM(G).

2.4.3 Bethe Entropy Approximation

In general, the negative entropy A∗(µ) does not have a closed form expression in terms of µ.
However, an exception to this is a tree-structured Markov random field.

Again by the junction tree theorem in [27], for a tree-structured graph, the probability distribu-
tion decomposes as follows

pµ(x) :=
∏
s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)
(2.54)

Hence, the entropy H(pµ) can be obtained directly.

H(pµ) = Eµ[−log(pµ(X))]

= −
∑
x∈X

pµ(x)log(pµ(x))

= −
∑
s∈V

∑
xs∈Xs

µs(xs)log(µs(xs))−
∑

(s,t)∈E

∑
(xs,xt)∈Xs×Xt

µs(xs, xt)log

(
µst(xs, xt)

µs(xs)µt(xt)

)
=
∑
s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst)

(2.55)

where Hs denotes the entropy at each vertex, and Ist denotes the mutual information at each edge
according to µ.

This value is exactly equal to A∗(µ). For graphs with cycles, we may assume it is a valid
approximation. Hence, the Bethe entropy approximation for a test function τ is defined as

−A∗
Bethe(τ) ≈ HBethe(τ) :=

∑
s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst) (2.56)
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This value can be calculated for any τ ∈ L(G).

Inexactness of Bethe Approximation

We use an example here to demonstrate the inexactness of the Bethe approximation.

Consider a fully connected graph G = (V,E) with 3 vertices and 3 edges. Let

µs(xs) =
(
1
4

3
4

)
∀s ∈ V (2.57)

µst(xs, xt) =

(
1
4 0
0 3

4

)
∀(s, t) ∈ E (2.58)

then we can verify that this specifies a valid probability distribution over the whole graph which
places probability mass 1

4 on the outcome (0, 0, 0), and 3
4 on the outcome (1, 1, 1). Let a =

1
4 log(4) +

3
4 log

(
4
3

)
, then, the entropy Hs(µs) = h for all s ∈ V , and Ist(µst) = h for all (s, t) ∈ E.

Also, the entropy of the overall distribution pµ is also h.

Using the Bethe approximation, we calculate the Bethe entropy to be HBethe(pµ) = 3Hs(µs)−
3Ist(µst) = 3a− 3a = 0. Clearly, this is not equal to H(pµ). In fact, the entropy of the distribution
should not be 0 unless an outcome has probability mass 1.

2.4.4 Bethe Variation Problem

Recall that according to the original formulation, the variational problem for finding A(θ) is

max
µ∈M(G)

[⟨θ, µ⟩+A∗(µ)] (2.59)

With the outer bound L(G) over the marginal polytopeM(G), and the approximation A∗
Bethe(τ)

for A∗(τ), we have the Bethe variational problem [27]

max
τ∈L(G)

⟨θ, τ⟩+∑
s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst)

 (2.60)

It turns out that the sum-product algorithm from before is an algorithm that solves this problem.

We first formulate a Lagrangian corresponding to this problem. The normalisation constraint for
each s ∈ V can be expressed as

Css(τ) := 1−
∑
xs

τs(xs) = 0 (2.61)

The marginalisation constraint for each direction t→ s on each edge, and each xs value for the s
vertex can be expressed as

Cts(xs; τ) := τs(xs)−
∑
xt

τst(xs, xt) = 0 (2.62)

Let λss and λts(xs) be the corresponding Lagrange multipliers, then the Lagrangian of the
problem is as follows

L(τ, λ; θ) =⟨θ, τ⟩+
∑
s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst) +
∑
s∈V

λssCss(τ)

+
∑

(s,t)∈E

[∑
xs

λts(xs)Cts(xs; τ) +
∑
xt

λts(xt)Cts(xt; τ)

] (2.63)
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2.4.5 Sum-Product Algorithm for Bethe Variation Problem

Given the Lagrangian in Equation 2.63, taking the derivative with respect λ and setting it to 0 gives
the normalisation and marginalisation constraints given in Equations 2.61 and 2.62.

Now we shall take the derivative of the Lagrangian with respect to τ . First, consider a given s
and given xs, then

∂

∂τs(xs)
L(τ, λ; θ) = ∂

∂τs(xs)

(
θs(xs)τs(xs)− τs(xs)log(τs(xs))

− λssτs(xs) +
∑

t∈N(s)

λts(xs) (τs(xs))

)
=θs(xs)− log(τs(xs))− 1

− λss +
∑

t∈N(s)

λts(xs)

(2.64)

∂

∂τst(xs, xt)
L(τ, λ; θ) = ∂

∂τst(xs, xt)

(
θs,t(xs, xt)τst(xs, xt)

− τst(xs, xt)log
(
τst(xs, xt)

τ̃s(xs)τ̃t(xt)

)
− λts(xs)τst(xs, xt)− λst(xt)τst(xs, xt)

)
=θs,t(xs, xt)

− log

(
τst(xs, xt)

τ̃s(xs)τ̃t(xt)

)
− 1

− λts(xs)− λst(xt)

(2.65)

where τ̃s(xs) :=
∑

xt
τst(xs, xt).

Setting these to 0 gives some relations involving τs and τst terms. There are some descrepancies
between the differentiation result here and the results given in [27], but since they only differ by
constants, the descrepancies can be resolved by redefining some normalisation constant λ.

The given results are easier to work with, and they are as follows

log(τs(xs)) = λss + θs(xs) +
∑

t∈N(s)

λts(xx) (2.66)

log

(
τst(xs, xt)

τ̃s(xs)τ̃t(xt)

)
= θst(xs, xt)− λts(xs)− λst(xt) (2.67)

where τ̃s(xs) :=
∑

xt
τst(xs, xt). Since the marginalisation constraint holds at the solution to the

Lagrangian, we have τ̃s(xs) = τs(xs). Hence

log(τst(xs, xt) = θst(xs, xt)− λts(xs)− λst(xt) + log(τs(xs)) + log(τt(xt)) (2.68)

We can substitute Equation 2.66 into this to obtain

log(τst(xs, xt)) = λss + λtt + θst(xs, xt) + θs(xs) + θt(xt) +
∑

u∈N(s)\{t}

λus(xs) +
∑

u∈N(t)\{s}

λut(xt)

(2.69)

Defining Mts(xs) = exp(λts(xs)) for each direction t → s on each edge, then we can rewrite
Equations 2.66 and 2.69 as

τs(xs) = κsexp(θs(xs))
∏

t∈N(s)

Mts(xs) (2.70)
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τst(xs, xt) = κstexp(θst(xs, xt) + θs(xs) + θt(xt))
∏

u∈N(s)\{t}

Mus(xs)
∏

u∈N(t)\{s}

Mut(xt) (2.71)

where κs and κst are related to λss and λtt terms in the original equations. The appropriate values
are chosen such that the normalisation and marginalisation constraints are satisfied.

Consider the marginalisation constraint
∑

xt
τst(xs, xt) = τs(xs). If we substitute Equations

2.70 and 2.71 into this constraint, we get

∑
xt

κstexp(θst(xs, xt) + θs(xs) + θt(xt))
∏

u∈N(s)\{t}

Mus(xs)
∏

u∈N(t)\{s}

Mut(xt)


=κstexp(θs(xs))

 ∏
u∈N(s)\{t}

Mus(xs)

∑
xt

exp(θst(xs, xt) + θt(xt))
∏

u∈N(t)\{s}

Mut(xt)


=κsexp(θs(xs))

∏
t∈N(s)

Mts(xs)

(2.72)

Cancelling out the terms that are present on both sides of this equation, we get

Mts(xs) ∝
∑
xt

exp(θst(xs, xt) + θt(xt))
∏

u∈N(t)\{s}

Mut(xt)

 (2.73)

This is the same sum-product algorithm as discussed before. Hence, by construction, we
know any fixed point M∗ would specify a pair (τ∗, λ∗) that satisfy the stationary conditions in the
Lagrangian.

2.5 Quantum Information

The following are some definitions related to the reduced density operator from [14].

2.5.1 Density Operator

Suppose the possible states for a quantum state to be in is |ψi⟩, where i is an index, and suppose
that the probability that it is in state |ψi⟩ is pi. Then, the density operator is defined as

ρ :=
∑
i

pi|ψi⟩⟨ψi| (2.74)

The diagonal values of ρ represents the probability that the system is in each corresponding
state, which means we require the normalisation Tr(ρ) = 1.

2.5.2 Reduced Density Operator

Consider two quantum systems A and B, which is described overall by density operator ρAB , then
the reduced density operator over A is defined as

ρA := TrB(ρ
AB) (2.75)

where the partial trace TrB is defined by

TrB(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) = |a1⟩⟨a2|Tr(|b1⟩⟨b2|) (2.76)

For example, suppose the basis states are |0⟩ and |1⟩, and the matrix over A and B is MAB , then
the partial trace can be computed as

TrA(MAB) = (⟨0| ⊗ 1)MAB(|0⟩ ⊗ 1) + (⟨1| ⊗ 1)MAB(|1⟩ ⊗ 1) (2.77)
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2.5.3 Von Neumann Entropy

Similary to Shannon Entropy for discrete probability distributions, where

H(X) = E[p(x)log(p(x))] (2.78)

the Von Neumann entropy is defined for quantum states, where the entropy of the state ρ is

S(ρ) = −Tr(ρlog(ρ)) (2.79)

Suppose λx are the eigenvalues of ρ, then

S(ρ) = −
∑
x

λxlog(λx) (2.80)

2.5.4 Thermal Equilibrium State

The thermal equilibrium state [7] will be the starting point of the quantum belief propagation
algorithm in this project. It is defined as

ρ =
exp(−βH)

Z
(2.81)

where H is the Hamiltonian, β = 1
kBT and Z = Tr(exp[−βH]) is the normalising factor.

We notice that this formulation is very similar to the formulation in exponential families.
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Chapter 3

Ethical Issues

3.1 Misuse

As is the case in any studies related to cutting-edge technology, there are people and organisations
that are interested in using the technology for purposes that are harmful to the general public.

Studying the reduced density matrix does not have any direct dangers of misuse, but the wide
array of fields that can benefit from the studies have practical applications with significant impacts.
While the vast majority of such applications are beneficial, they can be misused in harmful ways.

3.2 Environmental Impact

During the benchmarking process of the project, I will be running resource-heavy computations,
which may contribute to negative environmental impact.
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Chapter 4

Derivation

4.1 Thermal Equilibrium State as Exponential Family

Recall that at thermal equilibrium, the density matrix ρ of a system is

ρ =
exp(−βH)

Z
(4.1)

where Z = Tr(exp(−βH)).

It is helpful to reinterpret this equation as an exponential family in the form of

ρ = exp

(∑
k

θkϕk −A(θ)

)
(4.2)

similar to Equation 2.18 which describes the classical probability model, where ϕk are a series of
"sufficient statistics", and θk are the canonical parameters associated with these statistics.

4.1.1 Single Qubit

First, we consider a system with only 1 qubit, where the Hamiltonian H is a 2× 2 Hermitian matrix.
The space of 2× 2 Hermitian matrices is spanned by the identity matrix and the Pauli matrices [14],
which are

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(4.3)

We will denote the identity matrix as σ0 = 1 for notational uniformity. Then, the matrices
(σx, σy, σz, σ0) make a suitable set of sufficient statistics. As H can be expanded in the basis written
as

H = aσx + bσy + cσz + dσ0 (4.4)

we can rewrite exp(−βH) as

exp(−βH) = exp(θxσx + θyσy + θzσz + θ0σ0) (4.5)

where θx = −βa, θy = −βb, θz = −βc, and θ0 = −βd. Hence, Z becomes

Z = Tr(exp(−βH)) = Tr[exp(θxσx + θyσy + θzσz + θ0σ0)] (4.6)

Due to the commutativity of the identity matrix with all other matrices, we can write

exp(−βH) = eθ0exp(θxσx + θyσy + θzσz) (4.7)

and
Z = Tr(exp(−βH)) = eθ0Tr[exp(θxσx + θyσy + θzσz)] (4.8)
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which means the θ0 contribution disappears due to the normalisation factor in

ρ =
exp(−βH)

Z
=

exp(θxσx + θyσy + θzσz)

Tr[exp(θxσx + θyσy + θzσz)]
(4.9)

Hence, we can drop the identity matrix and only use the Pauli matrices {σx, σy, σz} as the sufficient
statistics.

Now we can write

ρ = exp

(∑
k∈P

θkσk −A(θ)

)
(4.10)

where P = {x, y, z} and

A(θ) = log

(
Tr

(
exp

(∑
k∈P

θkσk

)))
(4.11)

4.1.2 Many Qubits

Consider a system with n qubits, then the Hamiltonian

H = H1 ⊗H2 ⊗ ...⊗Hn (4.12)

where Hi is the Hamiltonian of the i-th qubit.

We denote σ(k1,k2,...,kn) = σk1
⊗σk2

⊗ ...⊗σkn
, the tensor products of n Pauli or identity matrices,

which has dimensions 2n × 2n. We also denote P∗ = {x, y, z, 0}. Then {σk|k ∈ P∗n} forms a basis
of an n-qubit system due to the properties of the tensor product.

Clearly, the 2n × 2n identity matrix is in this basis. However, similar to the single qubit case, its
contribution will disappear due to the normalisation factor. Therefore, we designate the sufficient
statistics as the basis of the Hamiltonian excluding the identity matrix. For notational simplicity, we
can define Pn as P∗n\{0}. The identity matrix corresponds to the removed element 0 = (0, 0, ..., 0)
where every component is 0.

Then we can write

ρ = exp

(∑
k∈Pn

θkσk −A(θ)

)
(4.13)

where

A(θ) = log

(
Tr

(
exp

(∑
k∈Pn

θkσk

)))
(4.14)

This covers the single qubit case as well by recognising P1 = P.

These are very similar to the Equation 2.18 and 2.15, which are the classical exponential family
and log-partition function. Notably, the sum in the log partition function is replaced with the trace
of the matrix. Since the diagonal values of the probability matrix represent the probability of the
qubits being in different states, this makes sense as the trace is the sum of the diagonal values.

4.2 Mean Parameter and the Conjugate Dual

4.2.1 Mean Parameter

In Section 2.3.3 in the classical case, we established that differentiating the log-partition function
leads to the mean parameters of the exponential family.
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We can differentiate Equation 4.14 to get

∂

∂θj
A(θ) = log

(
Tr

(
exp

(∑
k∈Pn

θkσk

)))

=
Tr
(

∂
∂θj

exp
(∑

k∈Pn
θkσk

))
Tr
(
exp
(∑

k∈Pn
θkσk

))
=

1

Z
Tr

(
∂

∂θj
exp

(∑
k∈Pn

θkσk

)) (4.15)

In order to find out the derivative

∂

∂θj
exp

(∑
k∈Pn

θkσk

)
(4.16)

we quote the following formula from [29]

∂

∂λ
e−βH = −

∫ β

0

e−(β−u)H ∂H

∂λ
e−uHdu (4.17)

This can be adapted to our derivative by denoting H ′ =
∑

k∈Pn
θkσk, noting that this is not the

Hamiltonian H, but rather −βH, then

∂

∂θj
exp(H ′) =

∫ 1

0

e(1−u)H′
σje

uH′
du (4.18)

so

∂

∂θj
A(θ) =

1

Z
Tr

(∫ 1

0

e(1−u)H′
σje

uH′
du

)
=

1

Z

∫ 1

0

Tr
(
e(1−u)H′

σje
uH′
)
du

=
1

Z

∫ 1

0

Tr
(
euH

′
e(1−u)H′

σj

)
du

=
1

Z
Tr

(
exp

[∑
k∈Pn

θkσk

]
σj

)

= Tr

(
exp
[∑

k∈Pn
θkσk

]
Z

σj

)
= Tr(ρσj)

(4.19)

where we have used the cyclic property of trace to rearrange the integrand inside the trace.

This is indeed the expectation value of the operator corresponding to the matrix σj , since

Tr(ρσj) = Tr

(∑
i

pi|ψi⟩⟨ψi|σj

)
=
∑
n

∑
i

⟨n|pi|ψi⟩⟨ψi|σj |n⟩ =
∑
i

pi⟨ψi|σj |ψi⟩ = ⟨σj⟩ (4.20)

For each k, we can now define the mean parameter µk = Tr(ρσk).

4.3 Convexity

For a variational algorithm to work, we need to verify the convexity of the log-partition fuction
A(θ). This can be done via verifying that the Hessian ∇2A is positive semi-definite.
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We now compute second derivative of A(θ)

∂

∂θi

∂

∂θj
A(θ) =

∂

∂θi

Tr
(

∂
∂θj

exp
(∑

k∈Pn
θkσk

))
Tr
(
exp
(∑

k∈Pn
θkσk

))


=
1

Z
Tr

(
∂

∂θi

∂

∂θj
exp

(∑
k∈Pn

θkσk

))

− 1

Z2
Tr

(
∂

∂θi
exp

(∑
k∈Pn

θkσk

))
Tr

(
∂

∂θj
exp

(∑
k∈Pn

θkσk

))
(4.21)

Here, the second term is simply −Tr(ρσi)Tr(ρσj) using the previous result from the first derivative
in Equation 4.19. Again, letting H ′ =

∑
k∈Pn

θkσk, the first term becomes

1

Z
Tr

(
∂

∂θi

∫ 1

0

e(1−u)H′
σje

uH′
du

)
=

1

Z

∂

∂θi

∫ 1

0

Tr
(
σje

uH′
e(1−u)H′

)
du

=
1

Z

∂

∂θi

∫ 1

0

Tr
(
σje

H′
)
du

=
1

Z

∂

∂θi
Tr
(
σje

H′
)

=
1

Z
Tr

(∫ 1

0

σje
(1−u)H′

σie
uH′

du

)
(4.22)

where we have used the cyclic property and the formula for differentiating matrix exponential again.
So

∂

∂θi

∂

∂θj
A(θ) =

1

Z
Tr

(∫ 1

0

σje
(1−u)H′

σie
uH′

du

)
− Tr(ρσi)Tr(ρσj) (4.23)

Since the integral is symmetric, this means that ∇2A is real and symmetric. Now to show that it
is positive semi-definite, we need to show that for any v ∈ RN , where N is the cardinality of Pn,
vT (∇2A)v ≥ 0, or equivalently ∑

ij

vivj
∂

∂θi

∂

∂θj
A(θ) ≥ 0 (4.24)

We have ∑
ij

vivj
∂

∂θi

∂

∂θj
A(θ)

=
∑
ij

vivj

[
1

Z
Tr

(∫ 1

0

σje
(1−u)H′

σie
uH′

du

)
− Tr(ρσi)Tr(ρσj)

]

=
∑
ij

1

Z
Tr

(∫ 1

0

vjσje
(1−u)H′

viσie
uH′

du

)
−
∑
ij

1

Z2
Tr(eH

′
viσi)Tr(e

H′
vjσj)

(4.25)

From here we notice the terms
∑

k vkσk are similar in construction to H ′ =
∑

k θkσk, so we can
denote them as H ′(v) =

∑
k vkσk, and the original H ′ as H ′(θ) to increase clarity. Then, the above

equation can be written as

1

Z
Tr

(∫ 1

0

H ′(v)e(1−u)H′(θ)H ′(v)euH
′(θ)du

)
− 1

Z2
Tr(eH

′(θ)H ′(v))2
(4.26)
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Let |m⟩ denote the eigenbasis of H ′(θ) with eigenvalues Em. Then, let rm = eEm

Z , fm =
⟨m|H ′(v)|m⟩. We can calculate

Tr
(
H ′(v)e(1−u)H′(θ)H ′(v)eH

′(θ)
)

=
∑
n

⟨n|H ′(v)e(1−u)H′(θ)H ′(v)euH
′(θ)|n⟩

=
∑
m,n

⟨n|H ′(v)e(1−u)H′(θ)|m⟩⟨m|H ′(v)euH
′(θ)|n⟩

=
∑
m,n

eEmeu(En−Em)⟨n|H ′(v)|m⟩⟨m|H ′(v)|n⟩

=
∑
m,n

eEmeu(En−Em)|⟨n|H ′(v)|m⟩|2

(4.27)

and

Tr
(
eH

′(θ)H ′(v)
)

=
∑
m

⟨m|eH
′(θ)H ′(v)|m⟩

=
∑
m

eEm⟨m|H ′(v)|m⟩

(4.28)

Then, Equation 4.26 can be rewritten as

∑
m,n

rm|⟨n|H ′(v)|m⟩|2
∫ 1

0

eu(En−Em)du−

(∑
m

rmfm

)2

(4.29)

Since
∫ 1

0
eu(En−Em)du ≥ 0, ∑

m,n

rm|⟨n|H ′(v)|m⟩|2
∫ 1

0

eu(En−Em)du

≥
∑
m

rm|⟨m|H ′(v)|m⟩|2
∫ 1

0

eu(Em−Em)du

=
∑
m

rmf
2
m

(4.30)

So continuing from Equation 4.29

∑
m,n

rm|⟨n|H ′(v)|m⟩|2
∫ 1

0

eu(En−Em)du−

(∑
m

rmfm

)2

≥
∑
m

rm|⟨m|H ′(v)|m⟩|2
∫ 1

0

eu(Em−Em)du−

(∑
m

rmfm

)2

=
∑
m

rmf
2
m −

(∑
m

rmfm

)2

≥ 0

(4.31)

since this is equivalent to the variance of a random variable.

This shows that the sum is indeed positive hence A(θ) is indeed convex.

4.4 Conjugate Dual and von Neumann Entropy

Given the fact that A(θ) is convex and the mean parameters defined as µk = Tr(ρσk), now we can
define the conjugate dual of the log partition function similar to Equation 2.34 in the classical case.

A∗(µ) = sup
θ

{∑
k∈Pn

θkµk −A(θ)

}
(4.32)
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Due to the property of the conjugate dual as discussed in Equation 2.36, this implies

A(θ) = sup
µ

{∑
k∈Pn

θkµk −A∗(µ)

}
(4.33)

In the classical graphical model, we discovered that conjugate dual function is equal to the
negative Shannon entropy. In this case, it is equivalent to the negative von Neumann Entropy.

Proof. Suppose θ = θ(µ) satisfies the optimisation condition in Equation 4.32. Then, we can
construct the density matrix ρ as ρ = ρ(θ) = exp

(∑
k∈Pn

θkσk −A(θ)
)
. Then the negative von

Neumann entropy of ρ is

−S(ρ) = Tr(ρlog(ρ))

= Tr

(
ρ

(∑
k∈Pn

θkσk −A(θ)

))

= Tr

(
ρ

(∑
k∈Pn

θkσk

))
−A(θ)

=
∑
k∈Pn

θkTr(ρσk)−A(θ)

=
∑
k∈Pn

θkµk −A(θ)

= A∗(µ)

(4.34)

Inserting this into Equation 4.33, we get

A(θ) = sup
µ

{∑
k∈Pn

θkµk + S(ρ)

}
(4.35)

4.5 Approximation Methods

4.5.1 Setup

Obtaining and processing information about overall quantum systems becomes difficult as the
size of H and ρ grows exponentially. Like the classical belief propagation on graphical models,
quantum belief propagation relies on solving a relaxed problem to get an approximate solution of
the information about the systems. Also like the classical case, we can work with approximating the
entropy and relaxing the global consistency conditions on the density matrix to local consistency
conditions.

For this approximation to work well, the interactions should be short-ranged [18]. For the
purpose of this particular project, we focus on systems involving only interactions between particles
that are next to each other, e.g. on a chain or lattice. This can be compared to the pair-wise Markov
random field in the context of classical probability.

What this means for the optimisation problem is that all θk values involving more than 2 particles
will be 0. We can define a new set P′

n ⊂ Pn, which includes elements that have either 1 non-zero
entry, or 2 entries at positions corresponding to 2 particles that have interactions with each other.
Then we can state the problem as

A(θ) = sup
µ

∑
k∈P′

n

θkµk + S(ρ)

 (4.36)
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4.5.2 Entropy Approximation

The strong subadditivity theorem [14] for von Neumann entropy states that, for particles s1, s2,
and s3 in general,

S(s1, s2, s3) + S(s2) ≤ S(s1, s2) + S(s2, s3) (4.37)

The corresponding mutual information is defined [14] as

S(s1 : s2) = S(s1) + S(s2)− S(s1, s2) (4.38)

So the strong subadditivity theorem implies

S(s1, s2, s3) ≤ S(s1, s2) + S(s2, s3)− S(s2)
= S(s1) + S(s2)− S(s1 : s2) + S(s2) + S(s3)− S(s2 : s3)− S(s2)
= S(s1) + S(s2) + S(s3)− S(s1 : s2)− S(s2 : s3)

(4.39)

The intuitive way to think about it is consider these particles as connected in a chain like shown
in Figure 4.1. The particles correspond to the single-particle entropy and the edges correspond to
the pair-wise mutual information.

Figure 4.1: Diagram showing 3 particles connected in a chain.

Figure 4.2: Diagram showing 4 particles connected in a chain.

Suppose we add another particle s4 to the chain after s3, like shown in Figure 4.2, then we can
use the strong subadditivity theorem again

S(s1, s2, s3, s4) + S(s3) ≤ S(s1, s2, s3) + S(s3, s4) (4.40)

to show

S(s1, s2, s3, s4) ≤ S(s1) + S(s2) + S(s3) + S(s4)− S(s1 : s2)− S(s2 : s3)− S(s3 : s4) (4.41)

where again, the particles correspond to the single-particle entropy and the edges correspond to the
pair-wise mutual information.

Figure 4.3: Diagram showing 4 particles connected in a tree shape.

Suppose instead that we add a particle that is connected to s2 instead like Figure 4.3. Clearly,
Equation 4.40 still holds, but since s4 is no longer directly connected to s3, there is no longer a
direct match up between the figure and the approximation. Consequently, Equation 4.41 may not
offer a good approximation, i.e. the difference between both sides of the inequality might be large.
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Hence, we can apply the strong sub-additivity result differently in an attempt to get a better
approximation.

S(s1, s2, s3, s4) + S(s2) ≤ S(s1, s2, s3) + S(s2, s4) (4.42)

which works out to give

S(s1, s2, s3, s4) ≤ S(s1) + S(s2) + S(s3) + S(s4)− S(s1 : s2)− S(s2 : s3)− S(s2 : s4) (4.43)

which we expect to be a better approximation is s4 is directly connected to s2.

We can consider this system as a graph G = (V,E). Then V = {s1, s2, s3, s4}, and E =
{(s1, s2), (s2, s3), (s2, s4)}. Then the inequality can be rewritten as

S(s1, s2, s3, s4) ≤
∑
s∈V

S(s)−
∑

(s,t)∈E

S(s : t) (4.44)

In fact, given any general system represented by a tree-like graph G = (V,E), Let S(G) be the
entropy of the system, we have

S(G) ≤
∑
s∈V

S(s)−
∑

(s,t)∈E

S(s : t) (4.45)

Proof. This can be proven by induction. Suppose we have a system represented by G0 = (V0, E0),
which satisfies

S(G0) ≤
∑
s∈V0

S(s)−
∑

(s,t)∈E0

S(s : t) (4.46)

Consider adding another particle represented by a new vertex s′, which is connected to 1 particle in
the system represented by u ∈ V0. Let the resulting graph be G′ = (V ′, E′) where V ′ = V ∪ {s′}
and E′ = E ∪ {(u, s′)}. Then by strong sub-additivity

S(G′) + S(s′) ≤ S(G0) + S(u, s′) (4.47)

which works out to give
S(G′) ≤

∑
s∈V ′

S(s)−
∑

(s,t)∈E′

S(s : t) (4.48)

This means that starting from a chain of 3 particles, i.e. the base case shown in Equation 4.39,
we can iteratively add particles that interact with exactly 1 particle within the system, and all
resulting systems will be governed by the entropy approximation in Equation 4.48. In effect, this
includes all tree like structures.

This result is very similar to the Shannon entropy approximation in classical graphical algorithms.
In the classical case the relationship is strictly equal when there are only pair-wise interactions
represented by edges on the tree, and here we only have an upper bound provided by the inequality.
This is due to the non-commutativity of the matrices involved in the entropy calculation.

Now consider the scenario based on the chain in Figure 4.1, but we add another edge connecting
s4 and s1, which forms a loop. Clearly, the strong subadditivity still applies, hence Equation 4.41 still
holds for this system. However, this ignores the edge (s4, s1), which means setting up an algorithm
from this system with this inequality is difficult. So we can use

S(s1, s2, s3, s4) ≈ S(s1) + S(s2) + S(s3) + S(s4)− S(s1 : s2)− S(s2 : s3)− S(s3 : s4)− S(s4 : s1)
(4.49)

instead.

We can choose to deal with loops in the graphs in general like this, and apply equation 4.48 to
all graphs, except the inequality doesn’t necessarily hold anymore.

S(G′) ≈
∑
s∈V ′

S(s)−
∑

(s,t)∈E′

S(s : t) (4.50)
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Like the classical case, this is a heuristic based on the structure of the system and doesn’t have a
lower bound or a theoretical guarantee that the approximation will be good. However, as will be
shown later, this proves to be a useful heuristic in practice and provides some good results.

Recall in Equation 4.36, A(θ) depends on S(ρ). Since ρ is the overall density matrix of the
system represented by G = (V,E), S(G) and S(ρ) represent the same value. With the entropy
approximation, A(θ) becomes

A(θ) = sup
µ

∑
k∈P′

n

θkµk +
∑
s∈V

S(s)−
∑

(s,t)∈E

S(s : t)

 (4.51)

4.5.3 Local Consistency

In order to perform belief propagation, we need to add some constraints on the beliefs on the
reduced density matrices in the system, similarly to how we added constraints to the local probability
distributions in the classical graphical model. This guarantees that the reduced density matrices can
in fact be obtained from taking the partial trace of a global density matrices.

This is once again similar to the classical case, where global consistency conditions are difficult
to obtain, as explained in Section 2.4.2. Global consistency conditions for density matrices is also
difficult to obtain [18], so we will use local consistency conditions instead.

The most straight forward condition is normalisation. For each s ∈ V , let ρs = TrV \{s}(ρ), i.e.
tracing out all other vertices to get the reduced density matrix only for s. Then this matrix ρs needs
to satisfy all the properties for density matrices. In particular, its trace needs to be 1.

Tr(ρs) = 1 (4.52)

Since we are working with systems with pair-wise interactions, we also need to consider pair-
wise marginalisation conditions on the edges. For each (s, t) ∈ E, let ρs,t = TrV \{s,t}(ρ), i.e. tracing
out all vertices not belonging to the edge to get the reduced density matrix for s and t. Now, if we
trace out vertex t from ρs,t, we would expect it to be the reduced density matrix for s, and vice
versa.

Trt(ρs,t) = ρs (4.53)

Trs(ρs,t) = ρt (4.54)

4.6 Variational Formulation

4.6.1 Optimisation in terms of Density Matrices

We notice that the optimisation problem in Equation 4.51 is not expressed in terms of reduced
density matrices. Since the constraints are in terms of these matrices, and we want the beliefs to be
based on these matrices, we want to convert the optimisation problem to be based on them as well.

We can start with the 2nd term
∑

s∈V S(s). Clearly, since ρs is the reduced density matrix for
each s, S(ρs) represents the same quantity as S(s), so∑

s∈V

S(s) =
∑
s∈V

Tr(ρs log(ρs)) (4.55)

Now consider the 3rd term −
∑

(s,t)∈E S(s : t). This is the same as S(s, t)− S(s)− S(t). Again,
using the reduced density matrix of these corresponding subsystems, we get∑

(s,t)∈E

S(s : t) =
∑

(s,t)∈E

[Tr(ρs,t log(ρs,t))− Tr(ρ̃s log(ρ̃s))− Tr(ρ̃t log(ρ̃t))] (4.56)

where ρ̃s = Trt(ρs,t) and ρ̃t = Trs(ρs,t).
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For the first term ∑
k∈P′

n

θkµk =
∑
k∈P′

n

θkTr(ρσk) (4.57)

since all the k values correspond to single particles or interacting pairs, the σk must be corresponding
to one of the edges (s, t) ∈ E. If we trace out all the other particles (which σk doesn’t act on), we
get a 4× 4 matrix TrV \{s,t}(ρ) ∈ P2. We denote this matrix σ(s,t);k′ , then Tr(ρσk) = Tr

(
ρs,tσ(s,t);k′

)
.

This means we can rewrite the term as

∑
k∈P′

n

θkTr(ρσk) =
∑

(s,t)∈E

[ ∑
k′∈P2

θ(s,t);k′Tr(ρs,tσ(s,t);k′)

]

=
∑

(s,t)∈E

Tr

[(∑
k′∈P2

θ(s,t);k′σ(s,t);k′)

)
ρs,t

]

=
∑

(s,t)∈E

Tr
[
Ĥs,tρs,t

]
(4.58)

where we have defined Ĥs,t =
(∑

k′∈P2
θ(s,t);k′σ(s,t);k′)

)
, which can be interpreted as the part of the

−βH acting over (s, t), where H is the Hamiltonian.

Now we need to clarify what the θ(s,t);k′ values are. They come from the canonical parameters
θk. We notice that for each k that corresponds to a pair-wise interaction, there is a one-to-one
correspondence in the above working, i.e. θ(s,t);k′ = θk.

However, for each k that corresponds to a single particle, we need to be more careful. For
example, suppose vertex s has m neighbours, t1 to tm, and θks

corresponds to a single particle
action on s. Then θks

will appear in θ(s,t1);k′
s

through θ(s,tm);k′
s
, a total of m times. Thus, to avoid

double counting and preserve the equality, we assign all these values to 1
mθks .

4.6.2 Lagrangian of the Variational Problem

Using results from Equation 4.55, 4.56, and 4.58, we reformulate the optimisation problem as
finding the reduced density matrices that optimise∑

(s,t)∈E

Tr
(
Ĥs,tρs,t

)
+
∑
s∈V

Tr(ρslog(ρs))

+
∑

(s,t)∈E

[Tr(ρs,tlog(ρs,t))− Tr(ρ̃slog(ρ̃s))− Tr(ρ̃tlog(ρ̃t))]
(4.59)

For local consistency, we can introduce a Lagrangian multiplier for each vertex for normalisation,
and one for each edge for marginalisation.

For each vertex s ∈ V , we introduce λs to form the terms

λs(Tr(ρs)− 1) (4.60)

For each edge (s, t) ∈ E we introduce Λs(t) and Λ′
t(s) to form the terms

Λs(t)(Trt(ρs,t)− ρs) (4.61)

Λ′
t(s)(Trs(ρs,t)− ρt) (4.62)

We notices that Equations 4.61 and 4.62 are matrices rather than scalars. To turn them to scalars
to work with the rest of the Lagrangian, we take the traces of these matrices to get

Tr
[
Λs(t)(Trt(ρs,t)− ρs)

]
= Tr

[
(Λs(t) ⊗ 1)ρs,t

]
− Tr

[
Λs(t)ρs

]
(4.63)

Tr
[
Λ′
t(s)(Trs(ρs,t)− ρt)

]
= Tr

[
(1⊗ Λ′

t(s))ρs,t

]
− Tr

[
Λ′
t(s)ρt

]
(4.64)
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This then allows us to write the full Lagrangian as

L(ρ, λ,Λ,Λ′)

=
∑

(s,t)∈E

Tr
(
Ĥs,tρs,t

)
+
∑
s∈V

Tr(ρslog(ρs))

+
∑

(s,t)∈E

[Tr(ρs,tlog(ρs,t))− Tr(ρ̃slog(ρ̃s))− Tr(ρ̃tlog(ρ̃t))]

−
∑
s∈V

λs(Tr(ρs)− 1)

−
∑

(s,t)∈E

(
Tr
[
Λs(t) ⊗ 1)ρs,t

]
− Tr

[
Λs(t)ρs

])
−

∑
(s,t)∈E

(
+Tr

[
(1⊗ Λ′

t(s))ρs,t

]
− Tr

[
Λ′
t(s)ρt

])

(4.65)

4.7 Belief Propagation Algorithms

4.7.1 Chain - 1D

Up until now, we have worked with a general graphic system. With Equation 4.65, we are ready to
develop a belief propagation algorithm for a general graph of interactions. However, we will start
by going through a special case of a chain of particles for various reasons: it is the simplest case
and good for building intuitive understanding; it is a case where there are no loops, hence we can
expect good convergence; and it is studied by various papers in the literature [11, 18].

Consider a chain with n particles. We can label them from 1 to n, and there will only be edges
from i to i+ 1 for 1 ≤ i ≤ n− 1. We can also drop the target indicated in the brackets since each
vertex only has one neighbour on each direction on the chain. With this relabelling, we get the
chain version of Equation 4.65.

L(ρ, λ,Λ,Λ′) =

n−1∑
i=1

Tr
(
Ĥi,i+1ρi,i+1

)
+

n∑
i=1

Tr(ρilog(ρi))

+

n−1∑
i=1

[Tr(ρi,i+1log(ρi,i+1))− Tr(ρ̃ilog(ρ̃i))− Tr(ρ̃i+1log(ρ̃i+1))]

−
n∑

i=1

λi(Tr(ρi)− 1)

−
n−1∑
i=1

(Tr[(Λi ⊗ 1)ρi,i+1]− Tr[Λiρi])

−
n−1∑
i=1

(
Tr
[
(1⊗ Λ′

i+1)ρi,i+1

]
− Tr

[
Λ′
i+1ρi+1

])

(4.66)

We want to work out what the derivative with respect to ρj is for a particular j, so we collect all
the terms that are relevant to ρj . For now, we take j not to be 1 or n since those edge cases should
be treated differently.

The 2nd term makes the contribution of Tr(ρj log(ρj)). The 3rd term makes the contribution of
−2Tr(ρj log(ρj)), where there is a coefficient 2 because there’s contributions at i = j − 1 and i = j.
The 4th term contributes −λjTr(ρj). The 5th term contributes Tr(Λjρj) at i = j and the 6th term
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contributes Tr(Λ′
jρj) at i = j − 1. Overall, this is

−Tr(ρj log(ρj))− λjTr(ρj) + Tr(Λjρj) + Tr
(
Λ′
jρj
)

(4.67)

Differentiating with respect to ρj and setting the result to 0 gives

log(ρj) + λ′j − Λj − Λ′
j = 0 (4.68)

where λ′j = λj + 1.

This can be rearranged to
Λ′
j = log(ρj) + λ′j − Λj (4.69)

Λj = log(ρj) + λ′j − Λ′
j (4.70)

Now consider the case where j = 1. The 2nd term makes the contribution of Tr(ρ1 log(ρ1)).
The 3rd term makes the contribution of −Tr(ρ1 log(ρ1)), at i = j = 1. The 4th term contributes
−λ1Tr(ρ1). The 5th term contributes Tr(Λ1ρ1) from i = j = 1. In contrast to the regular case, there
is no contribution from the 6th term. Overall, this leads to the result

λ′1 − Λ1 = 0 (4.71)

Similarly, for j = n, the equivalent result is

λ′n − Λ′
n = 0 (4.72)

Then, we want to work out the derivative with respect to ρj,j+1 for a particular j, so we collect
all the terms that are relevant to ρj,j+1.

The 1st term makes the contribution Tr
(
Ĥj,j+1ρj,j+1

)
. The 3rd term contributes

Tr(ρj,j+1 log(ρj,j+1)). The 5th term contributes −Tr[(Λj ⊗ 1)ρj,j+1] and the 6th term contributes
−Tr

[
(1⊗ Λ′

j)ρj,j+1

]
. Overall, this is

Tr
(
Ĥj,j+1ρj,j+1

)
+Tr(ρj,j+1log(ρj,j+1))− Tr[(Λj ⊗ 1)ρj,j+1]− Tr

[
(1⊗ Λ′

j)ρj,j+1

]
(4.73)

Differentiating with respect to ρj,j+1 and setting the result to 0 gives

Ĥj,j+1 + log(ρj,j+1) + 1− (Λj ⊗ 1)− (1⊗ Λ′
j) = 0 (4.74)

This can be rearranged to

ρj,j+1 = exp
(
−Ĥj,j+1 − 1 + (Λj ⊗ 1) + (1⊗ Λ′

j)
)

(4.75)

We are ready to build a belief propagation algorithm based on Equations 4.69, 4.70 and 4.75.

Let
mj→j−1 = exp(Λ′

j) (4.76)

mj→j+1 = exp(Λj) (4.77)

then Equation 4.75 can be written as

ρj,j+1 ∝ exp(−Ĥj,j+1)⊙ (mj→j+1 ⊗ 1)⊙ (1⊗mj→j−1) (4.78)

noting that exp(Λj ⊗ 1) = exp(Λj) ⊗ e1 because the identity matrix commutes with Λj , and the
coefficient e can be absorbed into the proportionality. The case for (1⊗ Λ′

j) is similar.

Equations 4.69 and 4.70 can be written as

mj→j−1 ∝ Trj+1(ρj,j+1)⊙m−1
j→j+1 (4.79)

mj→j+1 ∝ Trj−1(ρj−1,j)⊙m−1
j→j−1 (4.80)
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where we have used ρj = Trj+1(ρj,j+1) and ρj = Trj−1(ρj−1,j) in each of these equations consistent
with the direction of the message, since the other part of the algorithm (Equation 4.78) results in
pairwise reduced density matrices.

Note that mn→n−1 and m1→2 would be needed in this algorithm, but clearly the above equations
don’t apply to these cases. Instead, we use the relevant Equations 4.71 and 4.72, and we notice that
Λ1 and Λ′

n do not in fact depend on any other messages or beliefs. This means that mn→n−1 and
m1→2 are always a scalar multiple of the identity matrix. This represents there being no updates
coming from outside the ends of the chain of particles.

Now, we can start by initialising the messages. A choice that works well in practices in initialising
all of them as identity matrices. A step in the algorithm then consists of (1) Using Expression 4.78
to compute the reduced density matrices for adjacent qubits; and (2) Using Expressions 4.79 and
4.80 to compute the next set of messages.

When the algorithm converges after a number of steps, we will have the beliefs for all the
reduced density matrices for adjacent qubits, from which we can then compute the single qubit
reduced density matrices by taking the partial trace.

This result is equivalent to the algorithm in [18] for a "Markov shield" of size 2.

We note that for a system with only Pauli Z matrices, there are no off-diagonal values in the
Hamiltonian H or the density matrix ρ, making the algorithm effectively equivalent to a classical
system on a chain.

4.7.2 General Case - 2D

In the classical graphical model, multiplication is commutative, so the edges can be treated as
directionless. However, for the problem set up of the quantum case in 2D, it helps to label each
qubit with a number, similar to the 1D case. This creates is a sense of direction when considering
the partial traces, which is particularly useful for implementation.

For example, consider a m × n lattice, it would be sensible to label the particles as shown in
Figure 4.4. With the numbering system, we can specify and ordering on the edges, requiring s < t
in (s, t) ∈ E. This also ensures that each edge is only counted once.

Figure 4.4: Diagram showing the numbering of particles in a lattice.
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We can now proceed with the general case using the same method as the chain case.

L(ρ, λ,Λ,Λ′)

=
∑

(s,t)∈E

Tr
(
Ĥs,tρs,t

)
+
∑
s∈V

Tr(ρslog(ρs))

+
∑

(s,t)∈E

[Tr(ρs,tlog(ρs,t))− Tr(ρ̃slog(ρ̃s))− Tr(ρ̃tlog(ρ̃t))]

−
∑
s∈V

λs(Tr(ρs)− 1)

−
∑

(s,t)∈E

(
Tr
[
Λs(t) ⊗ 1)ρs,t

]
− Tr

[
Λs(t)ρs

])
−

∑
(s,t)∈E

(
+Tr

[
(1⊗ Λ′

t(s))ρs,t

]
− Tr

[
Λ′
t(s)ρt

])

(4.81)

For an arbitrary u in V, we want to work out what the derivative with respect to ρu is, so we
collect all the terms that are relevant to ρu.

−νTr(ρulog(ρu))− λuTr(ρu) +
∑

{v∈N(u)|v<u}

Tr
[
Λ′
u(v)ρu

]
+

∑
{v∈N(u)|v>u}

Tr
[
Λu(v)ρu

]
(4.82)

where N(u) is the set of neighbours of u, and ν = |N(u)| − 1. The coefficient −ν comes from 1
times Tr(ρulog(ρu)) from the 2nd term and −|N(u)| times Tr(ρulog(ρu)) from the 3rd term, similar
to the 1D case.

Differentiating with respect to ρu and setting the result to 0 gives

νlog(ρu) + λ′u −
∑

{v∈N(u)|v<u}

Λ′
u(v) −

∑
{v∈N(u)|v>u}

Λu(v) = 0 (4.83)

where λ′u = λu + 1.

Taking a particular v ∈ N(u), the previous equation can be rearranged to

Λ′
u(v) = νlog(ρu) + λ′u −

∑
{v′∈N(u)\{v}|v′<u}

Λ′
u(v′) −

∑
{v′∈N(u)|v′>u}

Λu(v′) (4.84)

for v < u, and

Λu(v) = νlog(ρu) + λ′u −
∑

{v′∈N(u)|v′<u}

Λ′
u(v′) −

∑
{v′∈N(u)\{v}|v′>u}

Λu(v′) (4.85)

for v > u.

For an arbitrary (u, v) ∈ E, we want to work out what the derivative with respect to ρu,v is, so
we collect all the terms that are relevant to ρu,v.

Tr
(
Ĥu,vρu,v

)
+Tr(ρu,vlog(ρu,v))− Tr

[
(Λu(v) ⊗ 1)ρu,v

]
− Tr

[
(1⊗ Λ′

v(t))ρu,v

]
(4.86)

Differentiating with respect to ρu,v and setting the result to 0 gives

Ĥu,v + log(ρu,v) + 1− Λu(v) ⊗ 1− 1⊗ Λ′
v(u) = 0 (4.87)

This can be rearranged to

ρu,v = exp
[
−Ĥu,v − 1 + (Λu(v) ⊗ 1) + (1⊗ Λ′

v(u))
]

(4.88)

36



4.7. Belief Propagation Algorithms Chapter 4. Derivation

For each edge (s, t) ∈ E, let
ms→t = exp(Λs(t)) (4.89)

mt→s = exp(Λ′
t(s)) (4.90)

then Equation 4.88 can be written as

ρu,v ∝ exp
(
Ĥu,v

)
⊙ (mu→v ⊗ 1)⊙ (1⊗mv→u) (4.91)

noting that exp(Λs(t) ⊗ 1) = exp(Λs(t))⊗ e1 because the identity matrix commutes with Λs→t, and
the coefficient e can be absorbed into the proportionality. The case for (1⊗ Λt→s) is similar.

Equation 4.84 can be written as

mt→s = νρs ⊙
⊙

t′∈N(s)\t

m−1
t′→s (4.92)

However, like the 1D case, we need to decide which partial trace to take to get ρs since the other
step also gives reduced density matrices for pairs of particles. Like the 1D case, we choose the traces
of those matrices consistent with the direction of the message. This gives

mt→s =
⊙

t′∈N(s)\t

[
Trt′(ρs,t′)⊙m−1

t′→s

]
(4.93)

Similar to the 1D case, we can start by initialising the messages as identity matrices. A step in
the algorithm then consists of (1) Using Expression 4.92 to compute the reduced density matrices
for adjacent qubits; and (2) Using Expressions 4.93 and to compute the next set of messages. When
the algorithm converges after a number of steps, we will have the belief for all the reduced density
matrices for adjacent qubits, from which we can then compute the single qubit reduced density
matrices by taking the partial trace.

We note that the message computation differs from the ones presented in literature [18], since
it was derived under a more general assumption.
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Chapter 5

Implementation

5.1 Repository Link

https://gitlab.doc.ic.ac.uk/jz4120/qbp

5.2 Tools

The software implementation for this project was made using the Python programming language.
The library JAX was used to enable computation on the GPU. JAX offers its own implementation of
numerical computation tools such as jax.numpy and jax.scipy which were used for the software
implementation for this project, with almost identical syntax as that of the original libraries. JAX
also offers varies ways to help optimise the computation.

Graphs used to visualise results of the evaluation were made using the matplotlib.pyplot
library.

5.3 1D Implementation

This section describes the software implementation of the 1D chain belief propagation algorithm
from Section 4.7.1 in the Derivation. The 2 major components of this implementation is the classes
Hamiltonian and BeliefPropagator.

The class Hamiltonian is used to specify the Hamiltonian to be used for the algorithm. Its
constructor Hamiltonian(size, beta) takes an integer argument size for the size of the system,
i.e. how many particles are in the chain, and a float argument beta for the β value in exp(−βH).
The θ values in −βH =

∑
k∈Pn

θkσk are set via the member functions set_param_single and
set_param_double depending on how many particles the corresponding σk acts on.

The function set_param_single(index, pauli, value) takes the integer argument index of
the single particle on which a particular σk acts, and pauli, which represent the type of the Pauli
matrix (x, y, or z). It is a member of the Enum class Pauli, which represents the types of pauli
matrices. The function also takes a float argument value, which is the value corresponding to the
coefficient in models, such as −hx in the Ising model. Since in our algorithm the product −βH is
being processed as a unit, the assignment of θk = −β × value is made.

Similarly, the function set_param_double(index, pauli_0, pauli_1, value) takes the in-
teger argument index i, representing that a particular σk acts the pair of particles (i, i+ 1). The
Pauli arguments pauli_0 and pauli_1 specify the type of Pauli matrices regarding i and i + 1,
respectively. The float argument value, which is similarly the value corresponding to the coefficient
in models such as J in the Ising model. So the assignment of θk = −β × value is made.

Once the model is fully specified, the function compute_partial_hamiltonians computes the
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partial hamiltonians Ĥ as specified in Equation 4.58. Then, the function
get_partial_hamiltonian(index) can be used to get the partial Hamiltonian corresponding
particles at the integer argument index= i and i+ 1.

The class BeliefPropagator is the class that runs the belief propagation logic and stores the
messages and beliefs. Its constructor BeliefPropagator(hamiltonian) takes a Hamiltonian and
initialises the beliefs. It has a function step() which performs 1 step of the belief propagation
algorithm, i.e. computes the messages based on the beliefs, and then computes the new beliefs
based on the messages, as described in Section 4.7.1.

5.4 2D Implementation

This section describes the software implementation of the 2D belief propagation algorithm from Sec-
tion 4.7.2. In particular, it works on a rectangular lattice. Similar to the 1D case, The 2 major compo-
nents of this implementation is the classes LatticeHamiltonian and LatticeBeliefPropagator.

The class LatticeHamiltonian is used to specify the Hamiltonian to be used for the algorithm.
Its constructor LatticeHamiltonian(numrows, numcols, beta) takes integer arguments numrows
and numcols that specify the dimensions of the system, i.e. how many rows and columns are in the
rectangular lattice. The float argument beta is again the β value in exp(−βH).

For setting single particle parameters, the function set_param_single(rowindex, colindex,
pauli, value) works similarly to the 1D case, except it takes 2 integer arguments necessary for the
specification of the particle location. For setting pair-wise parameters, since the model is organised in
rows and columns in the rectangular lattice, we have functions set_param_double_row(rowindex,
edgeindex, pauli_0, pauli_1, value) and
set_param_double_row(rowindex, edgeindex, pauli_0, pauli_1, value) for the edges on
the rows and columns respectively. For example, calling set_param_double_row with rowindex= r
and edgeindex= e sets the coefficient of the Pauli matrix acting on the particle at (r, e) and (r, e+1).

Once the model is fully specified, the function compute_partial_hamiltonians computes the
partial hamiltonians Ĥ as specified in Equation 4.58. Then, the functions
get_partial_hamiltonian_row(rowindex, edgeindex)
get_partial_hamiltonian_col(colindex, edgeindex) can be used to get the partial Hamilto-
nian corresponding to the particles at the integer arguments index.

The class LatticeBeliefPropagator is the class that runs the belief propagation logic and stores
the messages and beliefs. Its constructor LatticeBeliefPropagator(lat_ham, reg_factor)
takes a LatticeHamiltonian and initialises the beliefs. It also has a function step(), which
performs 1 step of the general belief propagation algorithm, as described in 4.7.2. It also has a
float argument reg_factor, which is used for applying matrix regularisation to mitigate numerical
instabilty,instabilty, as will be explained later. This class also has a function mean_single_belief()
to get the beliefs on single particles, since the belief stored in the propagator is pair based.

5.5 Benchmarking Tools

Some relevant functions useful for benchmarking are in qbp.example. Although they do not form
part of the belief propagation algorithm, they are used extensively in the benchmarking process.

These include the rdm(rho, partial_dim, pos), which computes the reduced density matrix
of matrix rho with number of particles specified by partial_dim at position specified by pos. This
function implements the time and memory intensive exact diagonalisation method. They include
functions to compute transverse magnetisation, correlation, and spin-spin correlation to study the
property of the quantum system. The also include template functions to create, for example, a 3× 3
Hamiltonian function with the specified parameters.
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Chapter 6

Evaluation

6.1 1D Chain

6.1.1 Model

For the purpose of this evaluation, we choose the 1D Ising model to use for benchmarking the 1D
algorithm described in Section 5.3. This is done because it is a widely used model in research [27,
11]. According to [11], the model is

H = J
∑
⟨i,j⟩

σz
i σ

z
j + hz

N∑
i=1

σz
i − hx

N∑
i=1

σx
i (6.1)

where they have used slightly different notation to ours. In this notation, J , hz and hx are real
scalar coefficients. The Pauli matrices are represented in a way where σz

i indicates σz acting on
the ith particle without impacting other particles, and σz

i σ
z
j indicates σz acting on the ith and jth

particle without impacting other particles. The case for σx
i is similar.

What this means for the software implementation is, for example if J = 1, then we have to call
set_param_double(i, Pauli.Z, Pauli.Z, 1) for all the i values. If hx = 1 then we have to call
set_param_single(i, Pauli.X, -1) for all the i values, noting the negative sign in front of hx
in the equation.

A good choice of the scalar coefficients for the 1D model according to [11] is hx = 1.05, hz = 0.5
and J = 1. These values will be used in this section unless otherwise specified.

6.1.2 Correctness

We used the specified values for hx, hz and J for the 1D belief propagation algorithm, and compare
the results against the exact diagonalisation results. We find that the difference is very small, as
shown in Figure 6.1, this indicates great performance of the algorithm in terms of correctness.
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Figure 6.1: Error of Belief Propagation compared to the exact results. The values are mean matrix
norm of the beliefs on single particles. Ising Model with hx = 1.05, hz = 0.5 and J = 1

We also investigate the behaviour when J = 0, i.e. there are no pair-wise interactions at all. This
results in a much simpler system, and as expected, the algorithm achieves even better performance
in terms of correctness, as shown in Figure 6.2.

Figure 6.2: Error of Belief Propagation compared to the exact results. The values are mean matrix
norm of the beliefs on single particles. Ising Model with hx = 1.05, hz = 0.5 and J = 0

6.1.3 Convergence

We investigate the convergence of the algorithm by checking the error against the exact result after
each propagation step, using a system with n = 10 particles. We expected the algorithm to converge
after at most n steps, since that is the number of steps necessary to send information from one end
of the chain to the other. Figure 6.3 shows that the algorithm in fact converges much quicker, at
only 4 steps for n = 10.
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Figure 6.3: Error of Belief Propagation after each propagation step, compared to the exact results.
The values are mean matrix norm of the beliefs on single particles. 10-particle Ising Model with

β = 1, hx = 1.05, hz = 0.5 and J = 1

6.1.4 Time performance

Figure 6.4 shows the time it takes to run the algorithm for n steps for a system with n particles. As
expected, it resembles a quadratic graph, since the number of steps and number of messages passed
in each step both scales linearly with n, giving a quadratic overall relationship.

Figure 6.4: Computation time of Belief Propagation.

We can contrast this with the exact solution, which scales exponentially as the number of
particles n increases, shown in Figure 6.5. This shows that the belief propagation algorithm does
indeed fulfill its purpose of being applicable to much larger systems.
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Figure 6.5: Computation time of Belief Propagation compared to the exact diagonalisation.

6.1.5 Scaling

We would like to know how the algorithm scales for larger systems. However, exact diagonalisation
becomes infeasible as it takes exponentially more time and memory to compute the exact solution.
The paper [11] provides a great reference point as they study the transverse magnetisation and cor-
relation for different energy densities (obtained by different β values). Their results are summarised
by the following plots in Figure 6.6.

The transverse magnetisation Mx and correlation Cxx are defined as [11]

Mx =
1

n

∑
i

⟨σx
i ⟩ (6.2)

Cxx =
1

n

∑
i

⟨σx
i σ

x
i+1⟩ (6.3)

where the expectations are equivalent to the corresponding mean parameters. The energy density is
⟨H⟩
N , where we can compute ⟨H⟩ = Tr(ρH), which is difficult to compute directly but we can use

paritial hamiltonian Ĥ values as defined in the derivation compute it.

Figure 6.6: Results on transverse magnetisation Mx (left) and correlation Cxx for 100-particle Ising
Model with hx = 1.05, hz = 0.5 and J = 1 from paper by [11]

Our results using the 1D belief propagation method is shown in Figure 6.7 for transverse
magnetisation and Figure 6.8 for correlation.
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Figure 6.7: Results on transverse magnetisation Mx for 100-particle Ising Model with hx = 1.05,
hz = 0.5 and J = 1 obtained using 1D belief propagation

Figure 6.8: Results on correlation Cxx for 100-particle Ising Model with hx = 1.05, hz = 0.5 and
J = 1 obtained using 1D belief propagation

6.2 2D Lattice

6.2.1 Model

After verifying the outstanding performance of our belief propagation algorithm on 1D chains, we
now turn our attention to 2D lattices, which is more complicated and interesting, and where other
methods have had worse performance [11].

For the 2D lattice, we will use the same Ising model as described in Equation 6.1. However, as
opposed to the 1D case, here neighbouring particles include all directions on the lattice.

For example, in this case, suppose J = 1, then in the software implementation we need to call
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set_param_double_row(r, e, Pauli.Z, Pauli.Z, 1) for all the r and e values for the edges in
the row direction, and call set_param_double_col(c, e, Pauli.Z, Pauli.Z, 1) for all the c
and e values for the edges in the column direction.

A good choice of the scalar coefficients for the 2D model according to [11] is hx = 2.5, hz = 0
and J = −1. These values will be used in this section unless otherwise specified.

6.2.2 Snake Formation of 1D Algorithm

Before we proceed to evaluating the 2D algorithm based on the general algorithm in Section 5.4,
we will first demonstrate the need of such an algorithm by showing that the simpler 1D algorithm
in Section 5.3 is inadequate at studying 2D lattices.

The way to study a 2D lattice using a 1D algorithm is putting all the particles in the lattice on a
1D chain, and the most intuitive way is arranging them in a snake formation as shown in Figure 6.9.

Figure 6.9: Snake-shaped approximation of a 2D lattice into a 1D chain

Since this approach ignores many pair-wise interactions in the lattice, we expect it to give a
worse result than if the 1D algorithm had been applied to an actual chain. Figure 6.10 confirms by
comparing the error of use the 1D algorithm against an actual 9 particle 1D chain and a 3× 3 lattice
approximation using the snake formation. Clearly, as expected, the 1D algorithm is less suited for
studying a 2D lattice.

45



6.2. 2D Lattice Chapter 6. Evaluation

Figure 6.10: Error of Belief Propagation compared to the exact results for different values of β,
comparing the performance of the 1D algorithm on an 9 particle 1D chain and a snake formation of
a 3× 3 2D lattice. The values are mean matrix norm of the beliefs on single particles. Ising Model

with hx = 2.5, hz = 0 and J = −1.

Figure 6.11 shows how the 2D algorithm does better than the snake formation. Note that this
figure only includes β values of up to 1. This is due to a numerical problem for larger β values
which will be explored later.

Figure 6.11: Error of Belief Propagation compared to the exact results for different values of β,
comparing the performance of the 1D snake formation and the 2D algorithm. The values are mean
matrix norm of the beliefs on single particles. 3× 3 Ising Model with hx = 2.5, hz = 0 and J = −1.

6.2.3 Convergence

We have already demonstrated that the 2D algorithm gives good results regarding correctness in the
previous comparison with the snake formation. Now we want to see how the algorithm converges.
Figure 6.12 shows that similar to the 1D case, the algorithm converges rather quickly, in only 3
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steps for the 3× 3 system.

Figure 6.12: Error of Belief Propagation after each propagation step, compared to the exact results.
The values are mean matrix norm of the beliefs on single particles. 3× 3 Ising Model with β = 1,

hx = 2.5, hz = 0 and J = −1.

6.2.4 Numerical Instability

Figure 6.14 shows the mean matrix norm difference between the belief propagation result and the
exact result for different β values up to 7 for a 2× 2 lattice. The error fluctuates for different betas,
however, it generally remains low. However, past a threshold just above β > 7, the error blows up,
and then the results from the belief propagation becomes NaN, as shown in Figure 6.13.

Figure 6.15 and 6.16 show that a similar problem happens with larger systems.

We investigated the messages in the belief propagation and found that the problem comes from
some of the messages being too close to a singular matrix, i.e. one of their eigenvalues is too close
to 0.
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Figure 6.13: Error of Belief Propagation compared to the exact results for different values of β.
The values are mean matrix norm of the beliefs on single particles. 2× 2 Ising Model with hx = 2.5,

hz = 0 and J = −1.

Figure 6.14: Error of Belief Propagation compared to the exact results for different values of β up
to 7. The values are mean matrix norm of the beliefs on single particles. 2× 2 Ising Model with
hx = 2.5, hz = 0 and J = −1. 10-particle Ising Model with β = 1, hx = 1.05, hz = 0.5 and J = 1

6.2.5 2D Algorithm with Message Regularisation

In order to mitigate the problem of having to invert a matrix that is almost singular, we apply
regularisation in the form of adding some value to its diagonal, inspired by ridge regularisation
used in machine learning algorithms [20]. This inevitably leads to bias in the algorithm. However,
we will see that in practice the reduction in numerical errors is worth the additional bias.

Let r be the regularisation factor, and the diagonal values of the message m be d1 and d2, then
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Figure 6.15: Error of Belief Propagation compared to the exact results for different values of β up
to 1. The values are mean matrix norm of the beliefs on single particles. 3× 3 Ising Model with

hx = 2.5, hz = 0 and J = −1.

the adjusted message is

m+ r

(
d−1
1 0
0 d−1

2

)
(6.4)

This adjustment is only made if the condition number of the message is large, as matrices with small
condition numbers do not suffer from this numerical problem.

Initial exploration shows that this type of regularisation indeed works in mitigating the numerical
instability reducing the error, as evidenced in Figure 6.17. We observe there is a sharp increase in
error at around β = 0.75. This is where the threshold of regularisation is passed and messages start
to be adjusted. Also, for β < 1, the error is larger than the algorithm without regularisation. This is
expected due to the introduced bias. The errors here are significantly larger, hence they are difficult
to work with. We now look to reduce the introduced bias in the form of r while still containing the
numerical instability.
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Figure 6.16: Error of Belief Propagation compared to the exact results for different values of β.
The values are mean matrix norm of the beliefs on single particles. 3× 3 Ising Model with hx = 2.5,

hz = 0 and J = −1.

Figure 6.17: Error of Belief Propagation with Regularisation compared to the exact results for
different values of β. The values are mean matrix norm of the beliefs on single particles. 3× 3 Ising

Model with hx = 2.5, hz = 0 and J = −1. Regularisation factor 0.1.
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Figure 6.18: Error of Belief Propagation for different values of regularisation factor. The values are
mean matrix norm of the beliefs on single particles. 3× 3 Ising Model with β = 2, hx = 2.5, hz = 0

and J = −1.

Therefore, we performed a search for the optimal value for the regularisation factor, shown in
Figure 6.18. It indicates that r = 0.01 is the optimal value among those searched. Hence, we repeat
the algorithm on the 3 × 3 system with the optimal regularisation factor. The result is shown in
Figure 6.19. These errors are more in line with the errors for small β without regularisation.

Figure 6.19: Error of Belief Propagation with Regularisation compared to the exact results for
different values of β. The values are mean matrix norm of the beliefs on single particles. 3× 3 Ising

Model with hx = 2.5, hz = 0 and J = −1. Regularisation factor 0.01.

6.2.6 Scalability

We test the 2D belief propagation algorithm with message regularisation on larger systems. Since
there is no exact result to compare against, we inspect the statistics such as transverse magnetisation
and spin-spin correlation, used in [11].
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The reference paper [11] does not give results for 4× 4 systems. However, by comparing Figure
6.20 and 6.21 with their 10 × 10 results, we believe the algorithm gives good results for 4 × 4
systems.

The transverse magnetisation Mx is the same as in the 1D case, and the spin-spin correlation
Czz is defined as [11]

Cxx =
1

n

∑
⟨i,j⟩

⟨σz
i σ

z
j ⟩ (6.5)

where the expectations are equivalent to the corresponding mean parameters. The elements of ⟨i, j⟩
are particle indices that share an edge. The energy density is also the same as in the 1D case.

Figure 6.20: Results on transverse magnetisation Mx for 4× 4 Ising Model with hx = 2.5, hz = 0
and J = −1. Regularisation factor 0.01.

Figure 6.21: Results on correlation Czz for 4× 4 Ising Model with hx = 2.5, hz = 0 and J = −1.
Regularisation factor 0.01.

Unfortunately, the scalability is limited. For larger systems such as the 7 × 7 one shown in
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Figure 6.22, the result is less well-behaved. For 10× 10 systems, the numerical problems are more
prominent, where the results are still NaN for large values of β even with message regularisation.
After attempting several different regularisation factors with poor results, we believe that more
sophisticated regularisation methods need to be applied for better scalability.

Figure 6.22: Results on correlation Czz for 7× 7 Ising Model with hx = 2.5, hz = 0 and J = −1.
Regularisation factor 0.014.
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Chapter 7

Conclusion

7.1 Summary

In this project, we followed the steps of the derivation of the classical belief propagation algorithm
to derive a relatively general quantum belief propagation algorithm. This is because we observe
that the thermal equilibrium state representation can be readily interpreted as an exponential
family, and due to quantum interactions being short-ranged, they can be considered as graphical
models. After recognising the equivalent relaxations to the variational problems, namely the entropy
approximation and the local consistency constraints, we were able to follow the same method of
building a message passing system using derivatives of the Lagrangian of the variational problem.

The resulting 1D belief propagation algorithm is effectively equivalent to the algorithms pre-
sented in literature. The 2D version is simpler in terms of computation since it is less dependent on
the specific structure of the system.

We implemented the 1D algorithm and a particular version of the 2D algorithm that works
on rectangular lattices in Python using JAX. The core part of the implementation involves a class
to specify model parameters for the Hamiltonian of interest and a class to perform the belief
propagation method, i.e. computing the messages and the beliefs. Various useful functions for
benchmarking the belief propagation algorithm were also implemented.

In order to benchmark the implementations, scripts written in Python that run the implementa-
tions with various configurations were used to test key properties of the algorithms. We noticed
that the algorithm converges much quicker than anticipated in the cases studied.

We found the 1D algorithm to have outstanding performance, achieving very low error compared
to the exact solution while taking much less computation time. Where exact solutions are not
available, we verified against results in literature that the algorithm achieves state-of-the-art results
even in very large systems.

We found the 2D algorithm to achieve significantly better performance for 2D lattice models than
if we were to approximate it as a 1D chain and then run the 1D algorithm on it, which is expected.
The 2D algorithm achieves good results for small values of β in the cases studied. However, for large
values of β, we identified a numerical problem in the algorithm where the messages are sometimes
almost singular. We explored one way of mitigating the problem by regularising the messages if
their condition numbers are too large. This achieved good results for smaller systems but limited
success for larger systems.

7.2 Further Work

One area of further work possibility would be optimising the code by fully capitalising the paralleli-
sation on the GPU. The algorithm is very easy to parallelise, as the computation of each message or
belief is indenpendent from other messages or beliefs within the same step. One can also investigate
the parts of the algorithm that can utilise the just-in-time compilation provided by JAX.
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We have identified numerical challenges of the algorithm for large β values and provided ideas
on how they can be overcome. Large β values correspond low temperatures since they are inversely
proportional. More research could be done in a more detailed study of how the algorithm behaves as
β gets very large (very low temperature), and how the algorithm can be adapted to 0 temperature,
i.e. as β →∞. Then it would be natural to compare the results there to results of a classical system.

Another research direction is a more detailed study on how the belief propagation algorithm
behaves on models where Monte Carlo algorithms suffer from the “sign problem”, and compare the
performance of both types of algorithms.
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