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parsley-garnish: A linter for the parsley parser combinator library

Abstract
Parser combinators are domain-specific languages that allow users to write parsers in a high-level manner
strongly resembling their original grammar. However, as with any large framework, there are idiomatic ways to
write clean and maintainable code using these libraries. New users may not be aware of these design patterns or
struggle to apply them effectively in the correct contexts.

This project addresses these issues for the parsley parser combinator library in Scala, by developing an accompa-
nying linter named parsley-garnish. Unlike the majority of linters, which are designed to detect generic issues
in general-purpose languages, parsley-garnish is tailored to the specific idioms of parser combinators.

parsley-garnish is the first domain-specific linter for parser combinators. This project presents a set of lint
rules designed to improve the quality of parsley codebases, and to help users write idiomatic parsers using
established design patterns. Notably, parsley-garnish is able to automatically refactor left-recursive parsers
into a correct and idiomatic form that parsley would otherwise be unable to handle.

Finally, this project also demonstrates and implements the infrastructure required to write complex domain-
specific lint rules that transform parser representations in a high-level and declarative manner. This allows future
lint rules to be written with ease, and for parsley-garnish to be extended with more powerful automatic code
fixes in the future.
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Chapter 1
Introduction
Parser combinators [Hutton 1992] are an elegant approach for writing parsers in a manner that remains close to
their original grammar specification. parsley [Willis andWu 2018] is a parser combinator library implemented as
an embedded domain-specific language (edsl) [Hudak 1996] in Scala, with an api inspired by the parsec [Leijen
and Meijer 2001] family of libraries in Haskell. However, as with many libraries, there exists a learning curve to
utilising parsley and parser combinator libraries in an idiomatic manner.

While well-documented, the wealth of information to get started with parsley can be overwhelming for users,
particularly those new to parser combinators. Although parsley itself has a user-friendly api, parser combinators
in general have pitfalls that may be unexpected for new users. Even experienced users can unintentionally write
unidiomatic parsers: parsley has first-class support for a number of design patterns [Willis and Wu 2022] for
writing maintainable parsers, which users migrating from other parser combinator libraries may not be aware of.

This project aims to address these issues by developing a companion linting tool for parsley, called parsley-
garnish, that provides automated code hints and fixes to assist users in writing idiomatic and correct parsers. A
number of modern integrated development environments (ides) provide code hints to warn programmers about
problems in their source code, highlighting offending snippets and suggesting actions to improve suboptimal or
incorrect code [Kurbatova et al. 2021]. Many of these linters are designed to detect general issues for the host
language, rather than specifically for libraries. However, tools may also utilise domain-specific code analyses in
order to detect issues specific to a particular system or problem domain [Renggli et al. 2010; Gregor and Schupp
2006]. Well-designed linters can offer significant benefits to users:

• Linters can be particularly valuable for uncovering subtle issues that might be hard to diagnose and locate,
especially in large codebases. Automated fixes can save further effort by resolving issues with little or no
manual intervention.

• Linters are also beneficial for teaching best practices in context, offering relevant hints and improvements
precisely where sub-optimal code is detected.

For example, suppose a user wants to write a simple arithmetic expression parser in parsley, which evaluates
the parsed expression as a floating-point calculation. The parser will be based on the following ebnf grammar,
with standard arithmetic operator precedence and left-associativity:

⟨digit⟩ ::= ‘0’… ‘9’

⟨number⟩ ::= ⟨digit⟩+
⟨expr⟩ ::= ⟨expr⟩ ‘+’ ⟨term⟩ | ⟨expr⟩ ‘-’ ⟨term⟩ | ⟨term⟩
⟨term⟩ ::= ⟨term⟩ ‘*’ ⟨atom⟩ | ⟨term⟩ ‘/’ ⟨atom⟩ | ⟨atom⟩
⟨atom⟩ ::= ‘(’ ⟨expr⟩ ‘)’ | ⟨number⟩

By closely following the structure of the grammar, a naïve first attempt at writing the parser-evaluator in parsley
may resemble the following:

val number: Parsley[Float] = digit.foldLeft1(0)((n, d) => n * 10 + d.asDigit).map(_.toFloat)

lazy val expr: Parsley[Float] = (expr, char('+') ~> term).zipped(_ + _)
| (expr, char('-') ~> term).zipped(_ - _)
| term

lazy val term: Parsley[Float] = (term, char('*') ~> atom).zipped(_ * _)
| (term, char('/') ~> atom).zipped(_ / _)
| atom

lazy val atom: Parsley[Float] = char('(') ~> expr <~ char(')') | number

Although this parser compiles and looks correct at first glance, it suffers from a puzzling runtime behaviour.
Attempting to run the parser by executing expr.parse("1+2*3/4") results in a cryptic StackOverflowError
when compiled in Scala 2. Running the same code on Scala 3 shines some light on the issue: the compiler
reports an “infinite loop in function body” for expr and term. The user has stumbled upon the age-old problem
of left-recursion, which the grammar uses to encode the left-associative behaviour of the arithmetic operators.
Left-recursive grammars are problematic for recursive-descent parsers, which are the class of parsers that parsley

Rocco Jiang 1
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produces. A recursive-descent parser would see that the first thing to parse when attempting to parse expr is
expr itself, leading to an infinite cycle.

The caveat of left-recursion may not be immediately obvious to a novice user, and even less obvious is how to
resolve the issue in an idiomatic manner. This situation is exactly where a domain-specific linter like parsley-
garnish can be invaluable. A linter with knowledge of the parsley library could help users by providing relevant
suggestions at the precise location of the issue:

lazy val expr: Parsley[Float] = (expr, char('+') ~> term).zipped(_ + _)
// ^^^^^^^^^^^^^^^^^^^^
// Warning: This parser is left-recursive, which will cause an infinite loop when parsing.
// Suggestion: Refactor using chain combinators from the parsley.expr module,
// or with a precedence table from the parsley.expr.precedence module.

In addition to the correctness issue, the left-recursive parser example also suffers from a stylistic problem: overuse
of the char combinator leads to visual clutter, making the parser harder to read. In parsley, this can be addressed
by using implicit conversions to lift character literals directly to parsers – this feature may not be known to users
new to the library. Thus, a linter could also aid users in learning about parsley idioms and best practices:

lazy val atom: Parsley[Float] = char('(') ~> expr <~ char(')') | number
// ^^^^^^^^^ ^^^^^^^^^
// Info: Explicit usage of the 'char' combinator may not be necessary.
// Suggestion [auto-fix available]: Use implicit conversions:
// import parsley.syntax.character.charLift
// ─────┬──────────────────────────────────
// └── Bring implicit conversion into scope
//
// lazy val atom: Parsley[Float] = '(' ~> expr <~ ')' | number
// ─┬─ ─┬─
// Remove char combinators ────┴──────────────┘

The aim of parsley-garnish is to provide relevant linting rules, like the above, to guide users towards writing
improved parsley code. With useful hints and automatic fixes, our hypothetical user can be steered towards a
correct and idiomatic parser:

lazy val expr: Parsley[Float] = precedence('(' ~> expr <~ ')', number)(
Ops(InfixL)('*' as (_ * _), '/' as (_ / _)),
Ops(InfixL)('+' as (_ + _), '-' as (_ - _))

)

With this definition of expr, the parser is able to parse left-associative expressions without left-recursion, and the
syntactic noise of the char combinators has been removed. Executing expr.parse("1+2*3/4") now evaluates
to 2.5, as expected!

Contributions
This project introduces two major contributions in separate areas:

1. An auto-fix lint rule that detects and refactors left-recursive parsers to an idiomatic form that can be
handled correctly by parsley. This rule can handle all forms of left-recursion, although to varying degrees
of success. Although the most significant lint rule produced in this project is this left-recursion factoring
rule, parsley-garnish also implements a number of simpler rules that enforce idiomatic design patterns
in parsley code.

2. The motivation behind the infrastructure required to support complex lint rules such as the left-recursion
rule, and its implementation. At a high-level, these are two separate intermediate representations that
abstract away from the generic Scala abstract syntax tree (ast):

• A parser ast designed to mirror the ast of the parsley dsl, which allows code of parsers to be
manipulated and transformed in a high-level declarative manner. This is based on the insight that any
dsl and its accompanying linter are simply different semantic interpretations on the same underlying
structure: the former folds over its ast structure to evaluate its results, while the latter performs a
fold to emit lint diagnostics and pretty-print a transformed ast.
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• An expression ast based on the 𝜆-calculus, granting static expression asts the ability to be normalised
via 𝛽-reduction. This approach draws inspiration from staged metaprogramming frameworks for
manipulating asts.

Outline
Chapter 2 begins this report by outlining the key background material required to understand the project.
This includes an introduction to linters and how they are typically implemented; a discussion on writing linters
specifically for Scala; and an overview of parser combinators, their design patterns, and the parsley library.

From there, Chapter 3 dives into the first set of linting rules that parsley-garnish implements. These
relatively simple rules focus on enforcing idiomatic design patterns relating to implicit conversions in Scala, and
were largely inspired by common issues I have seen in my experiences as a teaching assistant for the second-year
undergraduate Wacc compilers project at Imperial.

Chapter 4 tackles a more ambitious rule to automatically refactor left-recursive parsers into a form that
parsley can handle. This chapter introduces the idea of utilising intermediate ast representations to perform
higher-level domain-specific transformations. It shows that a basic implementation is not sufficient to handle the
complexities of the problem, and motivates the need for a more sophisticated approach. Chapter 5 therefore
further develops and refines these ideas, drawing inspiration from metaprogramming techniques and parsley’s
own optimisation machinery.

These improvements allow the left-recursion transformation to be revisited and completed in Chapter 6,
which also explores more advanced rules that are unlocked by the new ast. Finally, Chapter 7 evaluates the
performance benchmarks and the effectiveness of the left-recursion factoring rule, and discusses the limitations
of the current implementation. The remainder of the report concludes with discussion of related work and future
directions for the project.
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Chapter 2
Background
This chapter covers the basic knowledge required to understand this project’s two main areas of focus:

• Linters and the types of issues that they detect (§2.1), and how the parsley-garnish linter can be
implemented as a Scala metaprogram that manipulates abstract syntax trees (§2.2).

• Parser combinators, their design patterns, and the parsley library (§2.3).

Basic familiarity with Scala is assumed, although the code examples will be comprehensible for those experienced
with a jvm language like Java or Kotlin. Some experience with functional programming concepts is also beneficial,
but not essential.

2.1 Linters
Linting is the process of analysing source code to identify and report issues related to coding style and potential
logical errors. The term originates from the lint program [Johnson 1978], which examined C source code
for bugs, as well as wasteful code patterns that may be legal but error-prone. The tool was also utilised to
enforce portability restrictions which aided users in writing portable code that could be compiled on multiple
platforms. Since the release of lint, many linting tools, known as linters, have been developed for a wide range
of programming languages.

Nowadays, many linters can be integrated into ides, where code analysis performed by the linter is run
incrementally in the background. Any violations found by the linter are displayed directly in the editor as
warnings or errors at the relevant locations in the source code. This brings early, real-time feedback to the
programmer, allowing them to address issues as they write code, with minimal interruption to their development
workflow. Linters can also be integrated as part of the code review process, or into continuous integration (ci)
pipelines to ensure that code adheres to a set of standards before being merged into the main codebase.

Although the traditional definition for linting is concerned only with detecting issues in code, modern linters
have broadened their scope significantly. In addition to detecting issues, many linters provide auto-fix capabilities
to correct issues by automatically rewriting the offending code snippets. This feature is often integrated into ides
as well: the popular Language Server Protocol for defining ide features enables these auto-fix features via code
actions [Gunasinghe and Marcus 2022]. When a section of code is highlighted by a linter warning, a user can
apply a code action to automatically fix the issue with a single click.

2.1.1 Categories of Lint Rules
Many linters are configurable with a set of rules, which specify the categories of issues that the linter should
detect. These rules can be enabled or disabled by users, allowing them to customise the linter to their needs.
Rules are usually grouped by purpose: some rules are concerned with simply improving code style, while others
are concerned with detecting suspicious code patterns indicative of potential bugs.

2.1.1.1 Style checks and code quality

Linters can suggest opportunities to improve code by utilising language features in a more idiomatic manner.
Snippets of code that violate these stylistic rules are not necessarily incorrect, but should be fixed as they may
be harder to read or maintain in the long term. Furthermore, many idiomatic practices exist to avoid common
pitfalls that could lead to unintended behaviour. By highlighting good practices, linters can help users avoid
these common mistakes that may cause bugs. For example, ESLint1, one of the most popular JavaScript linters,
warns against common JavaScript pitfalls such as using the regular equality operator == instead of its type-safe
alternative ===.

A well-designed linter can help programmers learn about useful language constructs by suggesting them
in the context of their code, aiding them in adhering to best practices and common style conventions. This
category of rules is therefore especially helpful as an educational tool for new users of a language, who may
be unaware of these idioms. For example, the Clippy2 linter for Rust [Li et al. 2023] categorises a collection of
rules as clippy::complexity rules to detect code that does something simple in a complex way and suggests a

1https://eslint.org/docs/latest/rules/
2https://doc.rust-lang.org/clippy/
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simpler alternative. Fig. 2.1 provides an example of a similar rule in Haskell, from the HLint3 linter. The rule
suggests to rewrite the function into an equivalent but more concise form via 𝜂-reduction, presented to the user
as a code action that can be applied automatically.

foo xs = map (+1) xs

(a) A Haskell function foo, which can be made more
concise using 𝜂-reduction.

Eta reduce
Found:
foo xs = map (+ 1) xs

Why not:
foo = map (+ 1)

hlint(refact:Eta reduce)

(b) The linter warning shown for foo.

Fig. 2.1: An example of a warning from the Haskell linter hlint, suggesting a fix that a user can choose to
automatically apply.

Domain-specific idioms A library or especially an edsl may require a particular style of usage that is different
from the host language [Hora et al. 2012]. The majority of linters are designed for general-purpose application
domains, so they are unlikely to detect issues specific to a more specialised domain. Therefore, linters may be
developed for specific libraries or dsls, with their own set of domain-specific rules. In this case, the accompanying
linter can benefit users and improve productivity in a similar manner to general-purpose linters: common misuses
can be detected and sometimes automatically fixed, and users can be directed to relevant documentation to
learn more about correct usage. For instance, the xUnit.net testing framework for C# is accompanied by the
xunit.analyzers4 package which provides linting rules to enforce best practices specific to xUnit.

2.1.1.2 Code smells and opportunities for refactoring

Code refactoring is a well-established practice in software development. In his influential book Refactoring:
Improving the Design of Existing Code [Fowler 2018], Fowler defines refactoring as “the process of changing a
software system in such a way that it does not alter the external behaviour of the code yet improves its internal
structure”. Refactoring may be employed to eliminate code smells, which are surface indications that could
indicate deeper problems in the system. Code smells are not necessarily problematic on their own, however,
they may lead to issues such as bugs or poor maintainability if left unchecked. They are conceptually similar to
the stylistic issues mentioned earlier, however they may encompass higher-level structural and design-based
problems that are not easily fixed by simple stylistic changes. Examples of code smells include duplicated code,
which can be hard to update without introducing bugs, and long methods, which can be difficult to understand
and maintain. Therefore, it is often productive to refactor code to eliminate code smells, even if the code is still
correct and functional.

Certain linting rules can aid this process by broadly identifying code smells and candidate areas for refactoring,
suggesting appropriate actions that the user can take. As an example, a linter may detect a fragment of code
that is repeated in multiple places: this is a code smell, as discussed previously. The linter may then suggest a
code action to automatically apply an Extract Method [Fowler 2018] refactoring to avoid code duplication: fig. 2.2
demonstrates how this automatic refactoring process can be performed in the IntelliJ IDEA5 ide.

2.1.1.3 Likely bugs or errors

In some cases, linters may be able to detect with relatively high confidence that a piece of code is likely to contain
a bug. Rules that detect more egregious issues like this are helpful for even experienced users to avoid common
pitfalls. For example, Clippy has clippy::correctness rules which identify code very likely to be incorrect or
useless, and clippy::suspicious rules for code that is very sus but could be a false positive. ESLint also includes
rules to warn against code patterns that are likely to cause runtime errors, such as re-assigning a const variable.

3https://hackage.haskell.org/package/hlint
4https://github.com/xunit/xunit.analyzers
5https://www.jetbrains.com/idea/
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1 object Main {
2 def main(args: Array[String]): Unit = {
3 val bankDetails = getBankDetails()
4 println(s"Account name: ${bankDetails.name}")
5 println(s"Account balance: ${bankDetails.balance}")
6 }
7 }

(a) A snippet of Scala code. A user may wish to extract the highlighted lines into a separate function.

(b) When a user selects the highlighted lines from fig. 2.2a in IntelliJ IDEA, choosing the Extract Method refactoring will open
this dialogue to preview changes before applying them.

1 object Main {
2 def main(args: Array[String]): Unit = {
3 val bankDetails = getBankDetails()
4 printBankDetails(bankDetails)
5 }
6

7 private def printBankDetails(details: BankDetails): Unit = {
8 println(s"Account name: ${details.name}")
9 println(s"Account balance: ${details.balance}")

10 }
11 }

(c) The result of applying the Extract Method refactoring using the chosen parameters in fig. 2.2b.

Fig. 2.2: An example of the Extract Method refactoring in IntelliJ IDEA.
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Again, linters may attempt to provide code fixes for these issues where possible. However, these issues are
usually more complex, which may limit the effectiveness or usefulness of auto-fixes: in the case of a suspicious
code pattern, the programmer’s intent may not be clear, causing the linter to suggest a fix that does not align
with the user’s expectations.

2.1.2 Implementing Linters

2.1.2.1 Static vs Dynamic Analysis

Static analysis analyses source code to extract information about its behaviour without executing the program
itself. This is in contrast to dynamic analysis, which is performed on programs as they run to observe their actual
runtime behaviour. Both techniques have their own advantages and disadvantages, and the choice between them
depends on the desired properties of a tool. Dynamic analysers are precise in that they only observe what a
program can actually do, but requires a whole system that can be executed. On the other hand, static analysers
can be more lightweight and can be applied to incomplete systems, since they do not require the program to
be run. However, the trade-off is that static analysis is generally more imprecise since it must approximate the
possible behaviours of the program.

Linters should be fast and lightweight, as it is desirable for them to provide feedback to the user in real-time
within the ide. Furthermore, it is desirable for them to be able to provide warnings on incomplete programs and
analyse even just fragments of code for suspicious code patterns. For these reasons, the vast majority of linters
are static analysis tools.

2.1.2.2 Metaprogramming

Linters that provide code fixes are metaprograms: they are programs that manipulate programs. Auto-fixes and
refactorings are performed as source-to-source transformations, which may be implemented as simple text-based
replacements or more robust rewrite rules that operate on the ast of the source code.

Analyses over asts are typically semantic-aware, respecting scoping rules and type information to provide
more accurate code fixes. This semantic information is often provided by the compiler – some linters opt to run
during compilation as a compiler plugin, while others run as a separate tool after compilation. Lint-on-compile
and lint-after-compile tools both have their own advantages and disadvantages, and the choice between them
depends on the use case [Sadowski et al. 2018].

2.2 Writing Linters for Scala
The goal of parsley-garnish is to provide linting and refactoring capabilities for the parsley parser combinator
library. Although parsley is its own domain-specific language, it is implemented as an edsl utilising Scala as its
host language. This is convenient for writing a linter for parsley, as it can be implemented using existing tools
available to statically analyse Scala code, rather than having to write all the tooling from scratch.

2.2.1 Choice of Tooling
There are a few options available for implementing a linter for Scala, ranging from low-level compiler apis
to higher-level metaprogramming frameworks. This section discusses and evaluates the choices available for
implementing parsley-garnish.

Scala compiler plugins The most powerful approach would be to implement parsley-garnish as a compiler
plugin [Pickering, Wu, and Németh 2019]. Using the low-level compiler api, it is possible to perform arbitrary
code transformations at any step of the compilation process. Compiler plugins therefore offer full freedom
to extend the Scala compiler with extra functionality, such as extra passes for code analysis and emitting lint
warnings as diagnostics or even compiler errors.

However, this approach has several drawbacks. Firstly, compiler plugins are tightly coupled with the compiler
itself, and therefore not portable across major compiler versions. For instance, plugins written for the Scala 3
compiler, known as Dotty, are completely incompatible with Scala 2 plugins [LAMP/EPFL 2022]. Additionally,
developing compiler plugins requires a deep understanding of arcane and poorly documented compiler internals.
Exposing the full compiler api permits unsafe operations that may violate undocumented invariants assumed
by the compiler, leading to exceptions during compilation or even malformed bytecode [Sherwany, Zaza, and
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Nystrom 2015]. The lack of higher-level abstractions also makes it difficult to implement even trivial tasks such
as renaming a field.

For these reasons, it would be preferable to explore other tools that may use compiler plugins themselves but
provide a higher-level interface for implementing code analysis and transformations.

Scalameta Scalameta6 is a metaprogramming framework for Scala that provides a unified interface for per-
forming common metaprogramming tasks. Many Scala tools are built with Scalameta, most notably the Metals7

(Scalameta Language Server) lsp server for Scala. It provides a high-level syntactic api for transforming and
pretty-printing Scala source code, as well as a semantic api providing access to semantic information such as type
inference and name resolution. Scalameta builds upon the earlier scala.reflect metaprogramming framework,
unifying runtime and compile-time metaprogramming under a single api. Previously under scala.reflect,
source code was parsed into lossy trees that discarded syntactic trivia such as comments and whitespace [Burmako
2017]. On the other hand, Scalameta trees are fully lossless and preserve all syntactic details: a crucial feature for
code transformations and refactorings that must preserve formatting details.

Scalameta’s semantic api is powered by SemanticDB, a compiler-agnostic data model for semantic information
in Scala programs. This allows Scalameta to extract semantic information via compiler plugins that emit data in
the SemanticDB format. Thus, Scalameta can work with any compiler that supports SemanticDB, rather than
being tied to a specific compiler implementation.

Since Scalameta provides a high-level interface for manipulating syntactic and semantic information, it is a
promising choice for this project. Being able to access semantic information is especially helpful for implementing
more complex code analyses. However, Scalameta’s primary focus is on providing a general metaprogramming
framework and therefore lacks api support specifically for implementing linting and refactoring rules. For
example, the Scalameta tree transformation utilities do not fully preserve formatting details when pretty-printed,
despite the underlying trees containing this information.

Scalafix Scalafix8 is a code linting and rewriting tool built on top of Scalameta. It provides a higher-level
api over Scalameta’s tree transformation capabilities, specifically designed for implementing fine-grained code
transformations that preserve the original formatting of the source file. Scalafix provides a framework for
implementing linting rules to emit diagnostic warnings, as well as rewrite rules to perform automated code
transformations [Geirsson 2017]. Since it is built on Scalameta, a major advantage of Scalafix is that it is also
compiler-agnostic and could be integrated into any ide if a plugin is developed for it.

Originally, Scalafix was designed to help automate the process of migrating code from Scala 2 to 3, which
involved many breaking changes to the language [Geirsson 2016]. However, Scalafix has since evolved into a
general-purpose tool for implementing generic code transformations and analyses. Scalafix rules can be either
syntactic or semantic depending on whether they require semantic information, such as type signatures, to
perform their analysis [Scala Center 2024]. Syntactic rules are faster to run, operating purely on the ast without
needing to invoke compilation, but are more limited in the analyses they can perform. Semantic rules, on the
other hand, are more complicated to run: they require augmenting the Scala compiler with the SemanticDB
compiler plugin to provide Scalafix with the required semantic information. They are also slower as a result,
since they require the source file to be compiled.

A drawback of Scalafix is that it is primarily a command-line tool, and currently does not provide an interactive
interface within any code editor. Ideally, users should be able to see inline diagnostics, as well as preview and
select auto-fixes interactively like in fig. 2.2. A Metals integration would be the most favourable outcome, as they
already share a Scalameta backend, and it would allow Scalafix to be integrated into any code editor supporting
the lsp protocol. However, at the time of writing, Scalafix only has basic integrations with Metals to run rules,
but no interactive in-editor integrations [Jaglin 2024]. This feature request is an open issue on GitHub9, but no
timeline has been provided for its implementation.

Nonetheless, Scalafix emerges as the most favourable choice for implementing parsley-garnish. It provides
high-level apis specifically for implementing linting and rewrite rules without necessitating extensive knowledge
of compiler internals. Scalafix is also being actively maintained, with good basic documentation and a growing
number of examples of usage in the wild.

6https://scalameta.org/
7https://scalameta.org/metals/
8https://scalacenter.github.io/scalafix/
9https://github.com/scalameta/metals-feature-requests/issues/230
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Other tools considered The main alternate contender to Scalafix is the IntelliJ Scala Plugin10. However, while
the plugin offers superior interactive usage within the IntelliJ IDEA ide, it is tied to the IntelliJ Scala compiler and
therefore not portable across other compilers. To maintain flexibility and not tie parsley-garnish to a particular
compiler or code editor, Scalafix is a preferable option. Furthermore, documentation is less clear on how to write
a Scala plugin for IntelliJ compared to the Scalafix documentation.

WartRemover11 is a linter implemented as a compiler plugin, with support for writing custom rules. However,
it only can emit diagnostics and does not support code fixes, making it unsuitable for parsley-garnish’s goals.

ScalaStyle12 is primarily a style checker which also supports custom rules. However, it is only able to perform
syntactic analyses and cannot access semantic information, restricting the types of analyses it can perform.

2.2.2 A Crash Course on Scalafix
This section briefly explains how Scalafix rules are written, providing the Scalafix-specific terminology needed to
understand the implementation details of parsley-garnish.

2.2.2.1 Rules

Scalafix rules are implemented as generic top-to-bottom traversals through the Scala ast, represented as a
Scalameta Tree data structure. This is achieved with a collection-like api, exposing these operations in the style
of standard Scala collection methods such as traverse and collect. During traversal, side effects are generated
using the Patch data structure, which represents either a lint diagnostic or a code rewrite. Rules are applied
file-by-file, and the patches generated by each rule are collected and applied by Scalafix as a batch rewrite after
all rules have finished running. Fig. 2.3 thus explains the basic structure of a simple syntactic rule.

class MakeValsLazy extends SyntacticRule("MakeValsLazy") {
override def fix(implicit doc: SyntacticDocument): Patch = {
// 'Tree.collect' performs a tree traversal, inspecting AST nodes via pattern matching
doc.tree.collect {

// Visit a 'val' definition node not already marked as 'lazy'
case v: Defn.Val if !v.mods.exists(_.is[Mod.Lazy]) =>

// A patch that adds the 'lazy' modifier to the left side of the visited node
Patch.addLeft(v, "lazy ")

}.asPatch
}

}

Fig. 2.3: A syntactic rule that makes all val definitions lazy.

2.2.2.2 Safer Patches Using Quasiquotes

A careful reader may notice from fig. 2.3 that the Patch rewrite method receives a raw string value, which seems
unsafe and could potentially lead to malformed code. Indeed, Scalafix provides no guarantees that the output of a
patch is a well-formed program, and it is the rule author’s responsibility to ensure so.

In the majority of cases, parsley-garnish represents intended rewrites as Scalameta Tree objects, and only
converts them to strings immediately before applying the patch. Fig. 2.4 shows how quasiquotes [Shabalin,
Burmako, and Odersky 2013] can be used as syntactic sugar to construct trees in a convenient manner:

• q"..." is the quasiquote’s string interpolation syntax to build a Term node, which is a subclass of Tree.

• ${...} is the splice or unquote operation to insert a term into the constructed tree. Ordinarily, spliced
values need to be an instance of a Tree, but simple values such as integers (in this case) can be automatically
lifted into the appropriate tree node.

• Tree.structure represents the resulting Tree data structure as a string, useful for debugging.

10https://github.com/JetBrains/intellij-scala
11https://www.wartremover.org/
12http://www.scalastyle.org/
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• Tree.syntax pretty-prints the tree back into its source code representation. This string representation is
suitable to be fed into a Patch.

Quasiquotes expand at compile-time into Tree constructors, so they do not preserve formatting details. This
turns out to be very convenient for pretty-printing purposes: often, spliced values may contain superfluous
parentheses, which are automatically removed (as seen in the final example within fig. 2.4).

val x = 1
val tree = q"$x + 2"

println(tree.structure)
// Term.ApplyInfix(
// Lit.Int(1),
// Term.Name("+"),
// Type.ArgClause(Nil),
// Term.ArgClause(List(Lit.Int(2)), None)
// )

println(tree.syntax) // => 1 + 2
println(q"($tree)".syntax) // => 1 + 2

Fig. 2.4: Using Scalameta quasiquotes to construct a tree.

By using quasiquotes instead of raw strings, the syntactic correctness of a rewrite is guaranteed. However, this
safety is not foolproof: quasiquotes are not guaranteed to be well-typed or well-scoped, so the rewritten program
still might not be able to compile. They are also not hygienic: generated code will not be able to avoid name
clashes with regular code [Burmako 2017]. The lack of hygiene can cause issues with variable capture, allowing a
variable to be unintentionally shadowed by a generated variable. Again, it is the rule author’s responsibility to
ensure that variable capture does not occur: §5.2 in part discusses how this is handled in parsley-garnish.

2.2.2.3 Semantic Information

Semantic rules are implemented in the same manner as fig. 2.3, but with the more powerful SemanticDocument
as an implicit parameter. This allows rule authors to query ast nodes for their associated symbols: textual
identifiers that represent definitions in the Scala program. Although symbols are not guaranteed to be unique
outside the document they are defined in [Scalameta 2023], within the context of Scalafix rule authoring, they
can be treated as unique since rules are applied per-file.

The following methods are the most important and commonly used for querying the semantic information
associated with a tree node:

• Tree.symbol retrieves the symbol associated with a node.

• Symbol.info queries a symbol for any possible SymbolInformation attached to it, such as metadata
including its type signature.

• Tree.synthetics reveals extra compiler-generated tree nodes not present in the original source code, such
as implicit conversions or inferred .apply methods.

Additionally, the SymbolMatcher trait provides a convenient way to create predicates that match specific symbols.
Fig. 2.5a demonstrates how symbol matching can be used to detect integer addition operations, emitting a
diagnostic warning when found. The intAdd symbol matcher only matches the + method on integers, so the rule
does not emit a diagnostic for addition operations on other types, as seen in fig. 2.5b.
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class IdentifyIntAddition extends SemanticRule("IdentifyIntAddition") {
val intAdd = SymbolMatcher.normalized("scala.Int.`+`")

override def fix(implicit doc: SemanticDocument): Patch = doc.tree.collect {
case Term.ApplyInfix(_, intAdd(node), _, _) =>

Patch.lint(IntAdditionLint(node))
}.asPatch

}

case class IntAdditionLint(tree: Tree) extends Diagnostic {
override def position: Position = tree.pos
override def severity: LintSeverity = LintSeverity.Info
override def message: String = "Found an addition operation on integers"

}

(a) A semantic rule that generates lint diagnostics only on integer addition operations.

object Main {
val stringAdd = "parsley" + "garnish"
val intAdd = 1 + 2
val floatAdd = 1.0 + 2.0

}

// Main.scala:3:18: info: [IdentifyIntAddition]:
// Found an addition operation on integers
// val intAdd = 1 + 2
// ^

(b) An example program showcasing the rule in fig. 2.5a.

Fig. 2.5: An example showing how semantic rules are semantic-aware on overloaded method names.

2.3 Parser Combinators
Parsing is the process of extracting structured information from a flat, unstructured representation of the data.
Parsers are programs that perform this process, using a specified grammar to determine the structure of the
data. They are utilised in a variety of applications such as compilers, interpreters, and processing of data storage
formats such as json and xml.

Traditionally, parsers have either been written by hand or by using parser generator frameworks such as
antlr [Parr 2013]. Hand-rolling a parser is a tedious process, requiring the programmer to manually implement
the parsing algorithm for the grammar. However, this approach is the most powerful and flexible and can provide
excellent performance. Alternatively, parser generators lift the burden of implementing the parsing algorithm,
instead requiring the programmer to specify the grammar in the format of a domain-specific language (dsl)
similar to a high-level grammar. The grammar is then compiled by the parser generator tool to produce a parser
in a target language. This approach is less flexible but can be more convenient and less error-prone.

Parser combinators [Hutton 1992], which stem from a functional programming background, are a middle
ground between the two approaches. They take the form of an embedded dsl written directly in a general-purpose
language, rather than the parser generator approach where the dsl is a separate language. With a parser generator,
the provided dsl is often limited in its expressiveness. This is not the case with parser combinators, as the full
power of the host language is available to the programmer. This approach also reduces overall boilerplate code:
the programmer does not need to convert between the ast produced by the parser generator and their own ast.
Instead, the results of parsers, known as their semantic actions, are incorporated as part of the parsers themselves.

A downside of parser combinators, however, is that they are unstandardised compared to parser generators.
Across different implementations, parser combinator apis can vary significantly, making it difficult to transfer
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knowledge between different libraries. Experienced users of parser combinators may approach a new library
with prior knowledge of general concepts but may have misconceptions about the specifics of the api which can
lead to confusion and frustration. This is a motivating reason for the development of parsley-garnish: to lower
the barrier of entry for new users of the parsley library.

2.3.1 The parsley Library
parsley [Willis and Wu 2018] is a parser combinator library for Scala that provides an api inspired by the
parsec [Leijen and Meijer 2001] style of parser combinators. This section expands upon the example parser from
the introduction to provide a further demonstration of parsley. As opposed to directly evaluating the results of
the parser, this parser will instead construct an ast representing the structure of arithmetic expression language.

⟨digit⟩ ::= ‘0’… ‘9’

⟨number⟩ ::= ⟨digit⟩+
⟨expr⟩ ::= ⟨expr⟩ ‘+’ ⟨term⟩ | ⟨expr⟩ ‘-’ ⟨term⟩ | ⟨term⟩
⟨term⟩ ::= ⟨term⟩ ‘*’ ⟨atom⟩ | ⟨term⟩ ‘/’ ⟨atom⟩ | ⟨atom⟩
⟨atom⟩ ::= ‘(’ ⟨expr⟩ ‘)’ | ⟨number⟩

(a) The grammar in ebnf.

enum Expr {
case Num(n: Int)
case Add(x: Expr, y: Expr)
case Sub(x: Expr, y: Expr)
case Mul(x: Expr, y: Expr)
case Div(x: Expr, y: Expr)

}

(b) The Scala ast to parse into.

Fig. 2.6: The grammar and ast for a simple arithmetic expression language.

Recall the ebnf grammar for the arithmetic expression language introduced in the introduction, shown again in
fig. 2.6a. The following parser will parse an expression into the ast represented by the Scala datatype in fig. 2.6b.
To demonstrate an alternate approach, this parser deals with left-recursion using the lower-level chain.left1
combinator, rather than the higher-level precedence table api:

import parsley.Parsley
import parsley.character.digit
import parsley.expr.chain
import parsley.syntax.character.charLift

val number: Parsley[Int] = digit.foldLeft1(0)((n, d) => n * 10 + d.asDigit)

lazy val expr: Parsley[Expr] = chain.left1(term)('+' as Add(_, _) | '-' as Sub(_, _))
lazy val term: Parsley[Expr] = chain.left1(atom)('*' as Mul(_, _) | '/' as Div(_, _))
lazy val atom: Parsley[Expr] = '(' ~> expr <~ ')' | number.map(Num(_))

// Example usage: this parser constructs an AST, rather than evaluating its input
expr.parse("1+2*3/4") // => Add(Num(1), Div(Mul(Num(2), Num(3)), Num(4)))

Notice that although the form of the parser retains high-level similarities to the grammar, it is more verbose
because it encodes semantic actions (i.e. constructing the resulting ast) directly in the parser.

• The digit combinator used in number is a parser that recognises a single digit character.

• The number parser uses the foldLeft1 combinator to parse one or more digits, folding them together to
form an integer.

• Left-associative parsing is idiomatically handled by the chain.left1 combinator. This preserves the
left-associative structure of the grammar, while avoiding left-recursion. Since the chain combinator makes
it explicit that it is parsing a left-associative binary operator, it can be argued that this is a clearer and
higher-level way of expressing the intent of the grammar rather than by left-recursion.
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• The '+' as Add(_, _) parser consumes a + character, discarding its result and replacing it with the
semantic action of constructing an Add node.

• The map combinator is used to transform the result of the number parser into a Num node, lifting its Int
result to an Expr.

• The ~> and <~ operators guide the direction of the parser, ensuring that the parentheses are consumed but
not included in the final Expr.

Design Patterns for Parser Combinators Willis and Wu [2022] describe several design patterns for writing
maintainable parsers using parser combinators in Scala. They identify common problems and anti-patterns in
parser design, and propose solutions in the form of design patterns. This provides a guideline for writing idiomatic
parsley code for practical parser design, enabling opportunities for the development of linting and refactoring
rules. These design patterns therefore form the basis for many linting rules implemented in parsley-garnish.

The example parser already utilises the Implicit Conversions design pattern, eliding the need to explicitly use the
char combinator to parse characters. This is achieved by bringing parsley.syntax.character.charLift into
scope, allowing Scala to automatically treat character literals as char parsers. It also uses the Chain Combinators
pattern to parse left-associative binary operators, rather than left-factoring the grammar to remove left-recursion
– this is seen as an anti-pattern that obfuscates the intent of the grammar.

Parsing Expression Grammars Formally, the semantics of parsley parsers are based on parsing expression
grammars (pegs) [Ford 2004]. They differ from traditional context-free grammars (cfgs) [Mascarenhas, Medeiros,
and Ierusalimschy 2014] in that the choice operator is ordered: 𝑒1/𝑒2 will try 𝑒2 only if 𝑒1 fails. In contrast, the
choice operator in a cfg is unbiased, which leads to the possibility of ambiguous grammars. The ordered choice
operator means that pegs cannot be ambiguous.
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Chapter 3
Idiomatic Implicits Usage
Implicit conversions are a powerful feature in Scala, allowing users to supply an argument of one type when
another is expected, to reduce boilerplate. When the Scala compiler encounters a type mismatch, it will search
for any implicit methods that are in scope to convert the argument to the expected type. For example, the Scala
standard library defines an implicit method to convert integers to wider Long values1. This allows any function
expecting a Long to be passed an Int instead, without needing to explicitly call toLong.

implicit def int2long(x: Int): Long = x.toLong

As noted by Willis and Wu [2022], implicit conversions are particularly useful for designing dsls. In the context
of parser combinators, they introduce the usage of implicit conversions to automatically lift string and character
literals into parsers in the Implicit Conversions design pattern. This eliminates the need to explicitly wrap these
elements in combinators, allowing parsers to resemble the structure of a bnf grammar more closely:

// Without implicit conversions
string("parsley") | string("garnish")
// With implicit conversions
"parsley" | "garnish"

The Implicit Lexer pattern is a further specialisation of this approach, hiding the boilerplate of whitespace
handling entirely within a lexer object. This design pattern allows whitespace handling to be encapsulated as
private combinators within the lexer object, which are then made available only through implicit conversions
automatically applied by the Scala compiler.

3.1 Ambiguous Implicit Conversions
Unfortunately, implicit conversions are a double-edged sword. By their very nature, they can obscure the flow of
the program, making it difficult to understand what code is doing and potentially hiding side effects or costly
operations. A downside particularly relevant to parsley is that implicit conversions often lead to confusing error
diagnostics when the compiler is unable to resolve them.

One common issue arises from ambiguous implicits when there are multiple implicit conversions in scope.
parsley has first-class support for both design patterns, defining separate implicit methods for each:

• Implicit Conversions: the parsley.syntax.character package includes implicit methods stringLift and
charLift to lift string and character literals into parsers, respectively.

• Implicit Lexer : the Lexer class exposes the implicitSymbol method to allow string and character literals
to parse as proper tokens.

The two implicit conversions cannot be used in conjunction: the Implicit Lexer pattern is a specialisation of
the former, so implicitSymbol is meant to be a replacement for stringLift. For novice users, this may not be
immediately apparent and it is easy to accidentally bring both sets of these implicits into scope. Anecdotally, this
issue has been encountered by a number of Wacc students at Imperial. Consider the following code snippet:

val p = 'g' ~> "arnish"
p.parse("garnish")
// [error] type mismatch;
// found : String("arnish")
// required: Parsley[?]
// Note that implicit conversions are not applicable because they are ambiguous:
// both method stringLift in object character of type (str: String): Parsley[String]
// and method implicitSymbol in class ImplicitSymbol of type (s: String): Parsley[Unit]
// are possible conversion functions from String("arnish") to Parsley[?]
// val p = 'g' ~> "arnish"
// ^^^^^^^^

1https://github.com/scala/scala/blob/v2.13.14/src/library/scala/Int.scala
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In this instance, the compiler provides a detailed error message indicating the ambiguity between two possible
implicit conversions. However, the compiler is not always able to report such issues clearly. For instance,
switching the position of the intended implicit conversion results in a less helpful message:

val p = "garnis" <~ 'h'
// [error] value <~ is not a member of String
// val p = "garnis" <~ 'h'
// ^^^^^^^^^^^

Syntactic or semantic rule? Ideally, this issue would be addressed by implementing a lint-on-compile rule,
which could annotate the compiler error message at the exact location of the issue. If this were implemented as a
compiler plugin, partial information available from the compiler stages before the error could potentially provide
enough detail to identify the exact clashing implicits. This approach would allow leveraging domain knowledge
to update the error message with more useful Parsley-specific diagnostics.

Incidentally, WartRemover has a related lint rule for implicit conversions2, although it only targets the
locations where implicit conversions are defined, not where they are applied. Despite this limitation, it serves as a
proof of concept demonstrating the feasibility of such an approach.

Unfortunately, Scalafix restricts usage to only syntactic rules on the bare ast or semantic rules that operate
fully post-compilation. Since the ambiguous implicit conversions will cause compilation failures, this lint must
be implemented as a syntactic rule. Consequently, the solution takes a different approach: examining a file’s
import clauses to deduce the presence of clashing implicits.

Example Fig. 3.1a extends the previous example to a full Scala source file following the Implicit Lexer pattern,
but where the user has erroneously additionally imported the stringLift implicit from the Implicit Conversions
pattern. This results in the Scala compiler throwing an error on line 6 due to ambiguous implicits. When run on
this file, parsley-garnish will report a warning similar to that shown in fig. 3.1b.

1 object parser {
2 import parsley.syntax.character.stringLift
3 import lexer.implicits._
4 val p = "garnis" <~ 'h'
5 }
6

7 import parsley.token.Lexer
8 object lexer {
9 import parsley.token.descriptions.LexicalDesc

10 private val lexer = new Lexer(LexicalDesc.plain)
11 val implicits = lexer.lexeme.symbol.implicits
12 }

(a) A minimal Parsley program which fails to compile due to ambiguous implicits in the parser object.

warning: [AmbiguousImplicitConversions] These imports may cause clashing implicit conversions:

* import parsley.syntax.character.stringLift at line 2

* import lexer.implicits._ at line 3

If this is the case, you may encounter confusing errors like 'method is not a member of String'.

To fix this, ensure that there is only one of these imports in scope.

(b) The warning message reported at line 3 by the Ambiguous Implicit Conversions lint rule.

Fig. 3.1: Example of the Ambiguous Implicit Conversions lint rule in action.

2http://www.wartremover.org/doc/warts.html#implicitconversion
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3.1.1 Implementation as a Syntactic Lint Rule
The rule uses the following heuristics to determine if an import clause brings an implicit into scope:

• An import of the form import parsley.syntax.character.x, where x is either a wildcard import or
specifically contains the importee stringLift, indicates the Implicit Conversions pattern on string values.

• The import path for the Implicit Lexer pattern is subject to how the user names their lexer object, so
determining this is more heuristic-based. The following cases are considered indicative of this pattern:

– An import containing the keyword lexer, as well as either implicit or implicits.

– An import clause that brings in an importee called implicitSymbol.

Unlike Java, Scala allows import clauses to appear anywhere in source files, not just at the top of the file. The
flexibility of Scala’s import system has two main repercussions:

1. Imports are visible only within the scope in which they are defined. For example, the members imported
by lines 2–3 in fig. 3.1a are only available in the parser object, and not visible within lexer.

2. Imports are resolved lexically in a top-down order within the source file, so members cannot be referenced
at any point before they were imported. In fig. 3.1a, the import on line 7 brings parsley’s Lexer into scope
at any scope after that line, but will not be visible before that point.

This behaviour presents extra challenges for this lint rule, as it must be aware of the exact scope of each import
to determine which implicits are in scope at any given point.

The lexically ordered management of scope can be respected by visiting all import clauses in the order they
appear in the source file. By treating the parent of an ast node as its enclosing scope, it is possible to use ancestor
information to determine the scoping relation between two nodes:

extension (tree: Tree) {
def isWithinScope(scope: Tree): Boolean =
tree.isEqual(scope) || tree.parent.exists(_.isWithinScope(scope))

}

Scoping rules can then be respected by using this information to determine which previously visited imports are
still in scope at any given point in the traversal. Thus, fig. 3.2 shows the core logic of the rule, implemented as a
tail-recursive visit over the list of imports: this allows the Scala compiler to optimise the recursion into an efficient
iterative loop. The getClashingImports method uses the heuristic rules described above to determine which

def visit(toVisit: List[Import], seen: List[Import], patch: Patch): Patch = toVisit match {
case curr :: remaining =>
val currentScope = curr.parent.get // Parent node represents import's scope
// Which imports are in scope at this point: lexical ordering is maintained
// by only considering imports that have been defined in the file so far
val alreadyInScope = seen.filter(currentScope.isWithinScope(_.parent.get))
val currentInScope = alreadyInScope :+ curr
val clashingImports = getClashingImports(currentInScope)
if (getClashingImports(alreadyInScope).isEmpty && clashingImports.nonEmpty) {

visit(remaining, currentInScope, patch +
Patch.lint(AmbiguousImplicitConversionsLint(curr, clashingImports)))

} else {
// Continue traversal, discarding imports that have fallen out of scope
visit(remaining, currentInScope, patch)

}
case Nil => patch

}

Fig. 3.2: Implementation of the core logic for the Ambiguous Implicit Conversions lint rule.
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implicits are brought into scope by an import. If an import brings in both types of implicits for the first time
within its enclosing scope, a patch is generated to report a diagnostic. The traversal then continues recursively,
updating its list of visited imports.

The overall entry point of the rule is thus defined as follows, where the import clauses are gathered in order
via a top-down traversal of the ast:

override def fix(implicit doc: SyntacticDocument): Patch = {
val orderedImports = doc.tree.collect { case i: Import => i }
visit(orderedImports, List.empty, Patch.empty)

}

3.2 Remove Explicit Usage of Implicit Conversions
parsley users who are new to Scala may not be aware that implicit conversions are automatically applied by
the Scala compiler. This misconception has been observed in the wild (i.e. Wacc students in the depths of the
Imperial computer labs), where users have treated parsley’s implicit methods as regular combinators that are
explicitly applied to values.

Example This mistake can be classified as a code smell – although it does not cause compilation errors, it
results in unnecessarily verbose parsers as seen in fig. 3.3a. Writing parsers like this is counterproductive, as
it negates the purpose of the Implicit Conversions patterns. Fig. 3.3b shows how the same parsers should be
idiomatically written, removing the explicit application of implicit conversion functions: as long as the implicits
are in scope, the Scala compiler will automatically apply them.

1 import parsley.syntax.character._
2 val p: Parsley[String] = stringLift("parsley")
3 // Using the implicit method's fully qualified name instead of the import
4 val q: Parsley[Char] = parsley.syntax.character.charLift('p')

(a) Example parsers which are unnecessarily verbose by explicitly applying implicit conversions.

1 import parsley.syntax.character._
2 val p: Parsley[String] = "parsley"
3 // Using the implicit method's fully qualified name instead of the import
4 import parsley.syntax.character.charLift
5 val q: Parsley[Char] = 'p'

(b) The same parsers, but with the explicit implicit conversions removed.

Fig. 3.3: Example of the No Explicit Implicit Conversions rewrite rule in action.

3.2.1 Implementation as a Semantic Rewrite Rule
Unlike the previous rule, this is a situation where a rewrite rule can be applied to automatically fix the issue.
Furthermore, since this issue arises on successfully compiled code, it can be implemented as a Scalafix semantic
rule. With access to the semantic api, the rule can resolve the origin symbol of a function name and determine if
it belongs to parsley’s set of implicit methods, even if the method is imported under a different name:

val implicitConv = SymbolMatcher.normalized(
"parsley.syntax.character.charLift",
"parsley.syntax.character.stringLift",
"parsley.token.symbol.ImplicitSymbol.implicitSymbol"

)
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override def fix(implicit doc: SemanticDocument) = doc.tree.collect {
// Match a function call with a single argument, using the symbol matcher 'implicitConv'
// The syntactic naming of the function is ignored,
// as the symbol matcher will pattern match based on its original symbolic name
case app @ Term.Apply(implicitConv(_), Term.ArgClause(List(liftedArg), _)) =>
// Replace the function call with just its argument
Patch.replaceTree(app, liftedArg.syntax)

}.asPatch

There is an uncommon edge case, though, where the implicit conversion is not fully brought into scope by
an import, but is instead accessed via a qualified name. The q parser in fig. 3.3a demonstrates this, where the
charLift implicit method is referenced directly by its fully qualified name. In this case, the implicit method has to
be imported to bring it into scope. This case can be detected by checking if the function call is on a Term.Select
node, representing a method call on a qualified name:

case qualifiedApp @ Term.Apply(
// Specific case where the 'implicitConv' matches on a qualified Term.Select node
qual @ implicitConv(_: Term.Select), Term.ArgClause(List(liftedArg), _)

) =>
// Original patch to remove the explicit function call
val removeExplicitCall = Patch.replaceTree(qualifiedApp, liftedArg.syntax)
// Extra patch to add the import clause for the implicit method
val importQualifiedName = addPatchAbove(qualifiedApp, s"import $qual")
// Combine the patches to apply both rewrites
removeExplicitCall + importQualifiedName

This places an import clause for the implicit method directly above the qualified method call, as shown in fig. 3.3b.
Placing the import next to the implicit conversion is a deliberate design choice: it localises the scope of the
implicit conversion to a smaller region, reducing the risk of causing clashing implicits in the global scope. An
even more foolproof method would be to wrap the entire section into its own scope, but this would introduce a
lot of syntactic noise, when the chances that such a scoping issue would arise is low.

Summary
This chapter introduced two rules to aid users with idiomatic usage of the Implicit Conversions family of design
patterns. It also serves as a lightweight demonstration of how to implement both syntactic and semantic rules in
Scalafix, and why each type of rule is appropriate for the respective issue at hand:

• Ambiguous Implicit Conversions (§3.1) is restricted to being a syntactic rule, since the nature of the issue
means that it must be caught before compilation. The rule issues lint diagnostics to warn users of the issue,
but cannot automatically fix it as it does not have enough information to resolve the ambiguity.

• No Explicit Implicit Conversions (§3.2) is a semantic rule as it can be run in a post-compiled state. By having
access to semantic information, the linter can be more confident in resolving symbols, rather than relying
on syntactic heuristics. The issue is also simpler in nature and is automatically solvable in the general case,
so the rule provides code rewrite capabilities.
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Chapter 4
Removing Left-Recursion
Left-recursive grammar rules are a common pattern to represent left-associativity. Take for example the following
definition of a left-associative addition operator:

⟨expr⟩ ::= ⟨expr⟩ ‘+’ ⟨term⟩ | ⟨term⟩

Since the first production of ⟨expr⟩ is itself, this rule is said to be left-recursive. This poses a problem for recursive-
descent parsers, such as those that parsley produces: it will try to parse ⟨expr⟩ by first trying to parse ⟨expr⟩,
and so on, resulting in an unproductive infinite loop.

Although it is possible to address the issue by transforming the grammar with algorithms such as Paull’s
algorithm [Moore 2000], in the context of parser combinators this is considered an anti-pattern by Willis and Wu
[2021]. They argue that this transformation obscures the original intent of the grammar, and exposes lower-level
implementation details when this can be abstracted behind a combinator. Instead, they propose that the idiomatic
method to handle left-recursion in parser combinators is to use the chain family of combinators [Fokker 1995].
These combinators embody the behaviour of right-associating left-recursive rules and correcting the result back
to a left-associative form.

Left-recursion often comes as a nasty surprise for novice users naïvely translating bnf grammars into parser
implementations – this issue is not unique to parser combinators, but also extends to many popular parser
generators that use recursive-descent. Thus, it would be beneficial to provide a linting rule for parsley that
can warn users when parsers are left-recursive. In fact, the next major release of parsley 5.0 will introduce a
detectDivergence combinator, which performs dynamic analysis to detect unproductive looping at runtime.
Therefore, parsley-garnish could complement this functionality with an auto-fix rule to refactor left-recursive
parsers to use parsley’s idiomatic chain combinators.

Running example The following left-recursive parser and its transformation into a non-left-recursive form
will be used as an example for this chapter:

lazy val example: Parsley[String] = (example, string("a")).zipped(_ + _) | string("b")

The example parser intends to express the following simple grammar expressed using left-recursion. The goal is
to refactor example so that it retains the intended semantics, but is transformed into a parser that parsley can
handle correctly.

⟨example⟩ ::= ⟨example⟩ ‘a’ | ‘b’

4.1 The Left-Recursion Factoring Transformation

parsley-garnish bases its left-recursion factoring transformation on the work of Baars and Swierstra [2004],
adapted to fit the peg semantics of parsley. At a high-level, the transformation involves “unfolding” each
non-terminal production into three parts:

• results: The semantic actions of the parser, if it can derive the empty string. Conceptually, this has type
Option[A] where A is the type of the result.

• nonLeftRec: The non-left-recursive part of the parser that does not derive the empty string. This will have
some type Parsley[A].

• leftRec: The left-recursive call, which in the general left-recursive case, corresponds to a repeated postfix
operator of type Parsley[A => A]. This is a function which requires the semantics of the left-recursive
non-terminal argument.

This transformation is applied in-order to each parser in the source file, replacing the original parser with its
factored form if it was left-recursive. An unfolded parser is recombined using chain.postfix: this combinator
encapsulates the general form of left-associative parsing, and most other iterative combinators can be derived
from it [Willis 2024].

def transform(
results: Option[A], nonLeftRec: Parsley[A], leftRec: Parsley[A => A]

): Parsley[A] = {
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val result: Parsley[A] = results match {
case None => empty
case Some(x) => pure(x)

}
// The type signature of postfix in Parsley:
// def postfix[A](p: Parsley[A])(op: => Parsley[A => A]): Parsley[A]
chain.postfix(nonLeftRec | results)(leftRec)

}

4.2 Necessary Infrastructure
The comparatively simple linting rules discussed in the previous chapter were implemented by directly inspecting
the generic Scala ast provided by Scalafix. However, even though parsley programs are written in Scala, it is
important to remember that parsley is a dsl borrowing Scala as a host language. Domain-specific transformations
like left-recursion factoring are therefore naturally defined as transformations on the parsley ast, at a higher
level of abstraction than the generic Scala ast. Thus, this section discusses the extra infrastructure used to
support the left-recursion factoring transformation:

• Firstly, §4.2.1 motivates the idea of using an intermediate ast representation for parsers, distinct from the
general-purpose Scala ast.

• Following this, §4.2.2 shows how the source Scala ast is converted into this intermediate representation.

• Finally, §4.2.3 discusses how the intermediate ast is converted back into Scala code so that it can be applied
as a Scalafix patch.

4.2.1 An Intermediate ast
The transformations described by Baars and Swierstra [2004] require an explicit representation of the grammar
and production rules so that they can be inspected and manipulated before generating code. They achieve this by
representing parsers as a deep-embedded datatype in the form of an intermediate ast, similarly to parsley.

Since parsley-garnish is a linter, by nature, it has access to an explicit grammar representation in the form
of the full scala.meta.Tree ast of the source program. However, this datatype represents general-purpose
abstract Scala syntax, rather than the abstract syntax of a specialised parser combinator dsl. This makes it not
well-suited for performing domain-specific operations over the ast.

Take for example the task of combining two ast nodes Term.Name("p") and Term.Name("q"), representing
named parsers p and q, with the combinator <*> (pronounced “ap”). This operation can be concisely expressed
with Scalameta quasiquotes, rather than manually writing out the full explicit ast:

q"p <*> q" ==
Term.ApplyInfix(
Term.Name("p"),
Term.Name("<*>"),
Type.ArgClause(Nil),
Term.ArgClause(List(Term.Name("q")), None)

)

However, the operation of inspecting the individual parsers p and q is not as straightforward. Although quasiquotes
can be used as extractor patterns in pattern matching, this usage is discouraged due to limitations in their design
that makes it easy to accidentally introduce match errors1. Thus, extracting the parsers necessitates a long-winded
pattern match like so:

val ap = SymbolMatcher.normalized("parsley.Parsley.`<*>`")
def deconstructAp(parser: Term) = parser match {

case Term.ApplyInfix(p, ap(_), _, Term.ArgClause(List(q), _)) => (p, q)
}

1https://scalameta.org/docs/trees/guide.html#with-quasiquotes-1
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This involves dealing with abstract general-purpose syntax constructs like Term.ApplyInfix, which are low-
level details irrelevant to the task of manipulating parsers. Although this is not an issue for simple one-off
transformations, for more specialised transformations like left-recursion factoring, it would be desirable to
abstract away from these low-level syntactic details. This motivates the need for an higher-level, intermediate
ast representation that is more specialised to the domain of parser combinators.

4.2.1.1 The Parser adt

parsley-garnish therefore takes a similar approach as Baars and Swierstra [2004] and parsley itself, building
an intermediate ast as a deep-embedded parser combinator tree. Fig. 4.1 shows how this is implemented as a
Parser algebraic data type (adt). All Parser types represent parsley combinators, with the sole exception of
NonTerminal to represent references to named parsers.

trait Parser
case class NonTerminal(ref: Symbol) extends Parser
case class Pure(x: Term) extends Parser
case object Empty extends Parser
case class <*>(p: Parser, q: Parser) extends Parser
case class <|>(p: Parser, q: Parser) extends Parser
case class Str(s: String) extends Parser
case class Chr(c: Char) extends Parser

Fig. 4.1: A subset of the Parser adt, representing the core combinators in parsley-garnish.

Deconstructing parsers Scala allows users to define symbolic class names (as evidenced by the definitions of
<*> and <|> in fig. 4.1), and provides syntactic sugar to pattern match on these constructors using infix notation.
This results in a very natural and readable pattern matching syntax:

def deconstructAp(parser: Parser) = parser match { case p <*> q => (p, q) }

Constructing parsers Defining infix operators as extension methods on the Parser trait provides a similar
syntactic sugar for constructing parsers:

extension (p: Parser) {
def <*>(q: Parser) = <*>(p, q)
def |(q: Parser) = <|>(p, q)
def map(f: Term) = FMap(p, f)

}
extension (ps: List[Parser]) {

def zipped(f: Term) = Zipped(f, ps)
}

This makes the syntax for writing Parser terms feel natural and similar to writing parsley code. For example,
notice how constructing the code representation of the example parser resembles how the original parser itself
would be written:

val EXAMPLE = NonTerminal(Sym(Term.Name("example").symbol))

// val example: Parsley[String] = (example, string("a")).zipped( _ + _ ) | string("b")
val example: Parser = List(EXAMPLE, Str("a")).zipped(q"_ + _") | Str("b")

4.2.2 Lifting to the Intermediate Parser ast
Converting the raw Scala ast to this intermediate parser combinator ast requires the following basic operations:

1. Identifying all named parsers defined in the source program – these correspond to non-terminal symbols
in the grammar.
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2. Lifting the definition each parser into the intermediate ast, i.e. a Parser object.

3. Collecting these into a map to represent the high-level grammar – the unique symbol of each named parser
is mapped to its corresponding Parser object, along with extra metadata required for the transformation.

Most importantly, this metadata includes a reference to a parser’s original node in the Scala ast, so lint diagnostics
or code rewrites can be applied to the correct location in the source file:

case class ParserDefn(name: Term.Name, parser: Parser, tpe: Type.Name, originalTree: Term)

4.2.2.1 Identifying Named Parsers

Finding ast nodes corresponding to the definition sites of named parsers involves pattern matching on val, var,
and def nodes with a type inferred as some Parsley[_]. This type information is queried using the Scalafix
semantic api on the node’s symbol information. Consider the labelled ast structure of the example parser:

// lazy val example: Parsley[String] = (example, string("a")).zipped(_ + _) | string("b")
// ^^^^ ^^^^^^^ ^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// mods pats decltpe rhs

val exampleTree = Defn.Val(
mods = List(Mod.Lazy()),
pats = List(Pat.Var(Term.Name("example"))),
decltpe = Some(
Type.Apply(Type.Name("Parsley"), Type.ArgClause(List(Type.Name("String"))))

),
rhs = Term.ApplyInfix(...)

)

Note that the decltpe field refers to the syntax of the explicit type annotation, not the semantic information the
variable’s inferred type. Therefore, this field will not always be present, so in the general case, the type must be
queried via a symbol information lookup:

exampleTree match {
case Defn.Val(_, List(Pat.Var(varName)), _, body) =>
println(s"qualified symbol = ${varName.symbol}")
// Query the symbol information of the variable name, and get its type signature
varName.symbol.info.get.signature match {

// Scalameta treats this as a zero-arg method, so the relevant part is its return type
case MethodSignature(_, _, returnType) =>

println(s"type = $returnType")
println(s"structure of type object = ${returnType.structure}")

}
}
// qualified symbol = path/to/package/ObjectName.example.
// type = Parsley[String]
// structure of type object = TypeRef(
// NoType,
// Symbol("parsley/Parsley#"),
// List(TypeRef(NoType, Symbol("scala/Predef.String#"), List()))
// )

Seeing that the type of this ast node is Parsley[String], parsley-garnish can then proceed to convert the
rhs term into a Parser adt object. The map entry uses the fully qualified symbol for example as the key, and
the lifted Parser object as the value.
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4.2.2.2 Converting Scalameta Terms to the Parser adt

Having identified the ast nodes which represent parsers, they need to be transformed into the appropriate Parser
representation. This involves pattern matching on the scala.meta.Term to determine which parser combinator
it represents, and then constructing the appropriate Parser instance.

Each Parser defines a partial function fromTerm to instantiate a parser from the appropriate scala.meta.Term.
These fromTermmethods perform the menial work of pattern matching on the low-level syntactic constructs of the
Scala ast. All fromTerm methods are combined to define the toParser extension method on scala.meta.Term –
this is where ast nodes are lifted to their corresponding Parser representation.

The pattern matching example from §4.2.1 makes a reappearance in the definition of <*>.fromTerm, where
the arguments to the <*> combinator are instead recursively lifted to Parser objects:

// Type signatures in Parsley:
// p: Parsley[A => B], q: =>Parsley[A], p <*> q: Parsley[B]
case class <*>(p: Parser, q: Parser) extends Parser
object <*> {

// Match the specific symbol for parsley's <*> combinator
val matcher = SymbolMatcher.normalized("parsley.Parsley.`<*>`")

def fromTerm: PartialFunction[Term, <*>] = {
// Pattern match succeeds only if the term has the structure 'p <*> q'
case Term.ApplyInfix(p, matcher(_), _, Term.ArgClause(List(q), _)) =>

p.toParser <*> q.toParser
}

}

Where a combinator takes a non-parser argument, this is treated as a black box and kept as a raw ast node of
type scala.meta.Term:

// x: A, pure(x): Parsley[A]
case class Pure(x: Term) extends Parser
object Pure {

val matcher = SymbolMatcher.normalized("parsley.ParsleyImpl.pure")

def fromTerm: PartialFunction[Term, Pure] = {
// expr is an opaque AST node that cannot be further inspected
case Term.Apply(matcher(_), Term.ArgClause(List(expr), _)) => Pure(expr)

}
}

4.2.2.3 Building the Grammar Map

The overall process of converting the source file ast to a high-level map of the grammar can therefore be expressed
as a single traversal over the ast:

// Encapsulate all valid pattern matches into a single extractor object
object VariableDecl {

def unapply(tree: Tree): ParserDefn = tree match {
// isParsleyType uses symbol info to check if variable type is Parsley[_]
case Defn.Val(_, List(Pat.Var(varName)), _, body) if isParsleyType(varName) =>

// If the pattern match is successful, convert the definition body to a Parser
// Collect metadata and bundle into a parser definition object
ParserDefn(

name = varName, parser = body.toParser,
tpe = getParsleyType(varName), originalTree = body

)
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// ... similar cases for Defn.Var and Defn.Def
}

}

type Grammar = Map[Symbol, ParserDefn]
val grammar: Grammar = doc.tree.collect {

// Every AST node that satisfies the pattern match is added to the map
case VariableDecl(parserDef) => parserDefn.name.symbol -> parserDef

}.toMap

4.2.3 Lowering Back to the Scalameta ast
After all necessary transformations have been applied to parser terms, the final step is to convert them back
to a textual representation to be applied as a Scalafix patch. Parsers can be lowered back to scala.meta.Term
nodes by the inverse of the original fromTerm transformation. The Parser trait defines this transformation as
the method term, using quasiquotes to simplify the construction of the scala.meta.Term nodes. For example:

case class Zipped(func: Function, parsers: List[Parser]) extends Parser {
val term: Term = q"(..${parsers.map(_.term)}).zipped(${func.term})"

}

The Parser trait can then define a toString method based on Scalameta’s ast pretty-printer on the term field.
This “stringified” term is therefore guaranteed to be syntactically well-formed and is the appropriate type expected
by Scalafix’s Patch methods.

4.3 Implementing the Left-Recursion Transformation
With the Parser ast defined, it is now possible to implement the left-recursion factoring transformation in a more
high-level manner. Using the grammar map collected previously, the overall transformation can be summarised
as follows (in Scala-like pseudocode for brevity):

val transformedGrammar = grammar.to(mutable.Map)
for (currentNT <- grammar.keys) {

// Unfold each non-terminal parser into its three parts
val (results, nonLeftRec, leftRec) = unfold(transformedGrammar, currentNT)
// Update the grammar with the recombined postfix parser if it was left-recursive
transformedGrammar(currentNT).parser = transform(results, nonLeftRec, leftRec)

}
// Generate rewrite patches for each parser definition
transformedGrammar.mapValues { defn =>

Patch.replaceTree(defn.originalTree, defn.parser.toString)
}

The unfolding transformation is defined as follows, which is dynamically dispatched to the appropriate combina-
tor’s unfold method:

def unfold(env: Grammar, currentNT: Symbol) =
env(currentNT).parser.unfold(currentNT, env, visited = Set.empty)

4.3.1 Unfolding the Core Combinators
The most important core combinators in the left-recursion transformation are NonTerminal, Pure, Empty, <|>,
and <*>. Character combinators such as Str (string), Chr (char), and Item (item), although technically handled
by parsley-garnish as primitives, are grouped together as they behave in a simple and uniform manner. The
rest of the combinators in parsley are defined in terms of the primitive combinators, and are desugared into the
core combinators during unfolding.
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Non-terminals Non-terminals are the primary base case of the recursive unfolding transformation. There are
three cases to consider when a non-terminal symbol is encountered:

• This non-terminal is the same as the current non-terminal being analysed, which means it may be in a
left-recursive position. Recall that the leftRec result corresponds to a function, where the call to the
left-recursive non-terminal is stripped off. Therefore in this case, the left-recursive call is the identity
function which just returns its argument, i.e. the non-terminal itself. It is not an issue if the non-terminal
is not in left-recursive position, as the leftRec result will be subsumed by the nonLeftRec result during
the final recombination.

• The non-terminal refers to a different non-terminal, but has already been visited in the current unfolding
process. This means it should not be recursively visited again, as it has already been factored out. It is not
left-recursive and the nonLeftRec part is just a reference to this non-terminal’s name.

• The non-terminal refers to a different non-terminal that has not been visited yet. In this case, the non-
terminal is recursively unfolded, and the visited set is updated to include this non-terminal.

The three cases can be implemented as so:

case class NonTerminal(ref: Symbol) extends Parser {
def unfold(currentNT: Symbol, env: Grammar) =
if (ref == currentNT) (None, Empty, Pure(q"identity"))
else if (visited.contains(ref)) (None, NonTerminal(ref), Empty)
else env(ref).parser.unfold(currentNT, env, visited + ref)

}

Base cases The base cases are mostly straightforward. The unfolded results portion can be reasoned with
by the combinators’ correspondence to peg expressions [Eichenroth, Rein, and Hirschfeld 2022], as shown in
table 4.1. If the combinator can succeed by parsing the empty string, results is a Some value of its semantic
action, otherwise it is None. The other two portions are also easy: none are left-recursive, and if the combinator
consumes input on success then nonLeftRec is just the combinator itself. Thus, the base cases can be summed
up as follows:

/* Pure */ (Some(x), Empty, Empty)
/* Empty */ (None, Empty, Empty)
/* p: Str | Chr | Item */ (None, p, Empty)

Combinator Can succeed without consuming input?

pure(x) Yes, semantic action is x.
empty No, combinator fails immediately regardless of input.
string(s) Functionally, no. Can theoretically be given the empty string "", but this is illegal in

parsley and triggers a runtime exception.
char(c) No, always consumes the given character.
item No, always consumes any single character.

Table 4.1: Semantic action (results) portion behaviour for each base case.

Choice (<|>) This recursive case is also relatively simple: each branch is unfolded, then the nonLeftRec and
leftRec portions are recombined with the | combinator. The results portion is that of the left branch if it
can derive the empty string, otherwise it is the right branch. This behaviour differs slightly from the original
presentation of the transformation by Baars and Swierstra [2004], where | is based on cfg semantics. The
consequence of this is that choice is unbiased in the original transformation, triggering an ambiguity error if both
branches can succeed without consuming input. However, since parsley uses peg semantics, this ambiguity is
not possible – the choice operation represented by the | combinator is left-biased, so if the left parser succeeds
the right parser is not attempted.
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case class <|>(p: Parser, q: Parser) extends Parser {
def unfold() = {
val (pe, pn, pl) = p.unfold
val (qe, qn, ql) = q.unfold
(pe.orElse(qe), pn | qn, pl | ql)

}
}

Ap (<*>) This is an important case, as parsley-garnish chooses to use <*> as the primitive combinator for
composing parsers. It is also the most complex:

• p <*> q can succeed without consuming input only if both p and q can do so. Parser combinators abide by
the law that pure(f) <*> pure(x) = pure(f(x)), so the resulting semantic action is that of p applied as
a function to the semantic action of q.

• In the nonLeftRec and leftRec portions, if p can succeed without consuming input, then q must be
subjected to the semantic value corresponding to p [Swierstra and Duponcheel 1996]. This is achieved
using the result shown in eq. (4.1), which is a special case of grammar right-factoring in reverse.

– The leftRec portion requires re-associating semantic actions back to the left, which necessitates
using the flip higher-order function. Therefore, the left branch of the rhs in eq. (4.1) is reformulated
as p.map(flip) <*> q.

– Since leftRec is a parser of a function, the right branch also needs adjusting: the function composition
operation must be used in order to apply the function to q with the <*> combinator.

(p <|> pure f) <*> q ⇒ (p <*> q) <|> (f <$> q) (4.1)

Given the above observations, the implementation of the <*> combinator’s unfolding is as follows:

case class <*>(p: Parser, q: Parser) extends Parser {
def unfold() = {
val (pe, pn, pl) = p.unfold
val (qe, qn, ql) = q.unfold

val result = for {
f <- pe
x <- qe

} yield App(f, x)

val nonLefts = {
val lnl = pn <*> q
val rnl = pe.map(q"f => ${qn}.map(f)").getOrElse(Empty) // f <$> qn
lnl | rnl

}

val lefts = {
val llr = pl.map(q"flip") <*> q
val rlr = pe.map(q"${ql}.map(compose)").getOrElse(Empty) // f.map(compose) <$> ql
llr | rlr

}

(result, nonLefts, lefts)
}

}
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4.3.2 Composite Combinators
The remaining combinators are defined in terms of the core combinators, and are unfolded by recursively
unfolding their constituent parts. For example, the map combinator is defined as p.map(f) = pure(f) <*> p, so
its unfolding is simply implemented as:

case class FMap(p: Parser, f: Term) extends Parser {
def unfold() = (Pure(f) <*> p).unfold

}

Further high-level combinators are defined in a similar manner. The improved sequencing combinators lift and
zipped, as well as bridge constructors using the Parser Bridges design pattern [Willis and Wu 2022], represent a
further generalisation of the map combinator:

liftN(f, p1, ..., pN) // explicit lift syntax, where f is a function of arity N
f.lift(p1, ..., pN) // implicit lift syntax
(p1, ..., pN).zipped(f) // zipped syntax, improves Scala's ability to infer types
F(p1, ..., pN) // parser bridge pattern, abstracts the construction of f behind bridge F

// All are equivalent to the following desugared form,
// which is idiomatic in Haskell, but not in Scala for performance reasons
= pure(f.curried) <*> p1 <*> ... <*> pN

These are handled in parsley-garnish as the LiftLike family of combinators, which converts them into the
desugared form in terms of core combinators pure and <*>, allowing the unfolding transformation to be applied:

trait LiftLike extends Parser {
// foldLeft builds a parser of the form 'pure(f.curried) <*> p1 <*> ... <*> pN'
def unfold() = parsers.foldLeft(Pure(q"$func.curried"))(_ <*> _).unfold

}

4.3.3 Defining Utility Functions
In various places within the unfolding transformations, three higher-order functions are utilised, which may not
be provided by the Scala standard library:

• The flip function reverses the order of arguments applied to a function. This is not defined in the standard
library, so it must be defined manually.

• Function composition is defined in the standard library, but a more versatile curried version is required by
the transformation, so it is also defined manually.

• The identity function identity[A]: A => A is defined in the standard library.

Therefore, parsley-garnish will insert the following definitions into the source file as a patch:

def flip[A, B, C](f: A => B => C)(x: B)(y: A): C = f(y)(x)
def compose[A, B, C](f: B => C)(g: A => B)(x: A): C = f(g(x))

Although this is not very aesthetically pleasing, it is necessary to bring these higher-order functions into scope
for the transformed code to make use of them.
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Success...?
With the unfolding transformations defined for all core combinators, the left-recursion factoring transformation
is now complete. Running the transformation on the example parser yields the output in fig. 4.2.

def flip[A, B, C](f: A => B => C)(x: B)(y: A): C = f(y)(x)
def compose[A, B, C](f: B => C)(g: A => B)(x: A): C = f(g(x))

lazy val example: Parsley[String] = chain.postfix(
empty | (empty.map((_ + _).curried) | empty <*> example) <*> string("a")
| string("b") | empty

)(
(empty.map(flip) <*> example | pure(identity).map(compose((_ + _).curried)))
.map(flip) <*> string("a")
| empty | empty

)

Fig. 4.2: The initial attempt at factoring out left-recursion from the example parser.

This is... disappointing, to say the least. There are many things wrong with the transformed output:

• The parser is horrendously complex and unreadable, its intent entirely obfuscated in a sea of combinators.
It’s especially frustrating that there are so many empty combinators, when both p | empty and empty | p
are just equivalent to p.

• Having to define the flip and compose functions is not ideal, but inlining them as lambdas would make
the code even worse.

• Even worse, the parser does not even typecheck – unlike classical Hindley-Milner-based type systems,
Scala only has local type inference [Cremet et al. 2006]. As a result, the compiler is unable to correctly
infer correct types for flip and also asks for explicit type annotations in the lambda (_ + _).curried.

The result is discouraging especially because it is not impossible to factor out the left-recursion in a nice manner:
a hand-written equivalent using postfix would resemble the concisely defined parser in fig. 4.3. There is still
hope, though – if the empty combinators can be removed and something is done about the higher-order functions,
perhaps fig. 4.2 could be salvaged into something that looks more like the human-written version.

lazy val example: Parsley[String] = chain.postfix(string("b"))(string("a").as(_ + "a"))

Fig. 4.3: An idiomatic way to express the example parser using chain.postfix.
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Chapter 5
Simplifying Parsers and Expressions
At this stage, the left-recursion factoring transformation leaves a lot to be desired in terms of output quality. This
chapter takes a step back from linting rules and focuses on ensuring how transformed terms can get pretty-printed
in a human-readable form. The following ideas are explored:

• First, §5.1 discusses how parsers can be simplified via domain-specific optimisations based on parser laws.

• Afterwards, §5.2 discusses how expressions can be partially evaluated to some extent. This is achieved
using another intermediate ast, this time based on the 𝜆-calculus, which unlocks the idea of 𝛽-reduction
and normalisation as tools to reduce the complexity of these terms.

5.1 Simplifying Parsers
Reusing a similar abstract syntax representation as parsley itself unlocks some interesting insights for parsley-
garnish. Gibbons and Wu [2014] note that a deep-embedded dsl consists of two components:

1. A representation of the language’s abstract syntax, in the form of the aforementioned datatype.

2. Some traversals over the datatype, which gives semantics to that syntax.

A deep-embedded dsl and a linter for that dsl can thus be viewed as two different semantic interpretations over
the same abstract syntax:

• The dsl semantics are evaluation. The syntactic structure may be transformed for optimisation purposes
before generating code to be evaluated.

• The linter’s semantics are two-fold for lint diagnostics and code rewrites:

– Emitting side-effects as diagnostics, based on patterns of interest within the syntactic structure.

– Pretty-printing a transformation over the syntactic structure, as a rewrite action – crucially, unlike
evaluation, the transformed output is not converted into code but rather a textual representation to be
rewritten over the original source file. The output of this transformation may benefit from the same
optimisation transformations as with the dsl semantics to simplify the pretty-printed textual output.

This section shows that this is indeed the case for parsley-garnish: the same optimisation transformations
apply for both parsley (the dsl) and parsley-garnish (the linter). The only difference lies in the purpose of
performing these transformations:

• parsley-garnish needs to perform simplifications on the Parser ast to produce output of hand-written
quality, or else the resulting parser would be unreadable, as was the case in fig. 4.2.

• parsley performs simplifications on its combinator tree to produce output of hand-written quality, in order
to deliver excellent parser performance.

5.1.1 Parser Laws
Willis [2024] notes that parser combinators are subject to parser laws, which often form a natural simplification
in one direction. Both parsley Scala [Willis and Wu 2018] and parsley Haskell [Willis, Wu, and Pickering 2020;
Willis 2024] use these laws as the basis for high-level optimisations to simplify the structure of deeply-embedded
parsers. These same principles are used by parsley-garnish to simplify parser terms to resemble the natural
style that a human would write by hand.

Fig. 5.1 shows the subset of parser laws utilised by parsley-garnish for parser simplification. Most of these
laws have already been shown to hold for Parsley by Willis and Wu [2018]; an additional proof for eq. (5.8) can
be found in appendix A.
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p.map(f).map(g) = p.map(g compose f) (5.1)

pure(f) <*> pure(x) = pure(f(x)) (5.2)

pure(f) <*> x = x.map(f) (5.3)

empty | u = u (5.4)

u | empty = u (5.5)

pure(x) | u = pure(x) (5.6)

empty <*> u = empty (5.7)

empty.map(f) = empty (5.8)

Fig. 5.1: Functor (5.1), Applicative (5.2, 5.3), and Alternative (5.4–5.8) laws.

5.1.1.1 Simplifying the Example Parser

It is useful to illustrate how these laws are used to simplify a parser term, by starting with the parser in fig. 4.2.
In the following example, function terms will be greyed out as they are still currently uninspectable – this is
work that is addressed in the next section.

First of all, most of the noise in example comes from the large number of empty combinators. These can be
eliminated using eqs. (5.4), (5.5), (5.7), and (5.8):

lazy val example: Parsley[String] = chain.postfix(string("b"))(
(pure(identity).map(compose((_ + _).curried))).map(flip) <*> string("a")

)

This already looks a lot better, but the second parameter to postfix can be further simplified as follows:

(pure(identity).map(compose((_ + _).curried))).map(flip) <*> string("a")

= { eqs. (5.2) and (5.3) }

pure(compose((_ + _).curried)(identity)).map(flip) <*> string("a")

= { eqs. (5.2) and (5.3) }

pure(flip(compose((_ + _).curried)(identity))) <*> string("a")

= { eq. (5.3) }

string("a").map(flip(compose((_ + _).curried)(identity)))

The final simplified form of the parser is then:

val f = flip(compose((_ + _).curried)(identity))
lazy val expr: Parsley[String] = chain.postfix(string("b"))(string("a").map(f))

The parser is now expressed in a much simplified form, in a similar style to the hand-written example in fig. 4.3!
The remaining challenge is to simplify the contents of the expression f, which is tackled in §5.2.

5.1.2 Implementing Rewrites on the Parser ast
Lawful simplifications are applied by a bottom-up transformation over the recursively defined Parser ast. Since
there are many parser cases, this inevitably leads to repetitive and error-prone boilerplate code which simply
exists to recursively propagate the transformation through each case. To avoid this, the recursive traversal itself
can be decoupled from the definition of the transformation function. Although the traversal is still hand-written,
this implementation is inspired by the generic traversal patterns offered by Haskell’s uniplate library [Mitchell
and Runciman 2007].

Partial functions Scala supports partial functions, which are functions only defined for a subset of its possible
input values. If invoked on an undefined input, this results in a runtime error. A useful idiom utilising partial
functions is the collect method on collections, which combines functionality of filter and map in a clean
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manner. This method will attempt to apply a partial function to each element in the collection, and only include
the result if the function is defined. In fact, collect has already been used in earlier sections to inspect and
gather ast nodes of interest in the Scalameta ast:

doc.tree.collect { case Term.Name(name) => name }
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// A partial function only defined for Term.Name nodes, not on any other type of AST node

Rewrite rules on parsers are most naturally expressed as a partial function, since they are only defined for certain
parser cases. Therefore, the traversal method transform takes a partial function, applying it to nodes where it is
defined. The transformation is applied via a bottom-up traversal:

def transform(pf: PartialFunction[Parser, Parser]): Parser = {
val p = this match {
case p <*> q => p.transform(pf) <*> q.transform(pf)
case Zipped(f, ps) => ps.map(_.transform(pf)).zipped(f)
case Pure(f) => Pure(f)
...

}
// Apply the partial function if defined, otherwise return the original parser
pf.applyOrElse(parser, identity[Parser])

}

A rewrite method can then be defined in terms of transform, applying the partial function everywhere and
re-applying it until it no longer makes a change. This has the effect of applying a transformation exhaustively
until a normal form is reached.

def rewrite(pf: PartialFunction[Parser, Parser]): Parser = {
def pf0(p: Parser) = if (pf.isDefinedAt(p)) pf(p).rewrite(pf) else p
this.transform(pf0)

}

With this, any transformation on parsers can be defined without having to worry about recursion boilerplate: the
act of traversal itself is fully abstracted away and encapsulated within the transform method. Using rewrite,
parser simplification can then be expressed in a clean and maintainable manner:

def simplify: Parser = this.rewrite {
case FMap(FMap(p, f), g) => FMap(p, compose(g, f))
case Pure(f) <*> Pure(x) => Pure(App(f, x))
case u <|> Empty => u
case Pure(f) <|> _ => Pure(f)
...

}

Extensibility and Safety Further design considerations are made to ensure the extensibility of this approach:
the Parser trait is sealed, which enables compiler warnings if a new Parser case is added and the transform
method is not updated. Although this formulation of the traversal is inspired by generic traversals, it still manually
defines the traversal for each case: a safer approach would be to generically derive this. In Scala, this would
require the use of an external dependency such as shapeless1, which is overkill given the relative simplicity of
the Parser adt.

Discussion
The design of the parser simplification process for parsley-garnish was not intended to closely follow the
methods used in parsley, so it is remarkable that the two approaches have ended up being so similar. However,
in retrospect, this resemblance is not surprising given that the act of parser simplification and optimisation are

1https://github.com/milessabin/shapeless
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fundamentally the same transformation. Since both parsley and parsley-garnish represent the parser ast as
a deep-embedded structure, it is natural that this transformation is implemented similarly in both cases as a
bottom-up traversal over the abstract syntax.

This insight can be extended to any deep embedded dsl based on an algebra, where constructs within the dsl
are subject to algebraic laws and operations. It would be interesting to see an edsl and linter pair that shares a
unified data structure for its abstract syntax, in order to take full advantage of this duality.

5.2 Representing and Normalising Expressions
The previous section demonstrated the process of simplifying the Parser ast, but this is not the only syntactic
structure that requires simplification. So far, parsers such as pure and map still treat expressions as black boxes in
the form of raw scala.meta.Term ast nodes. This is evident from where the example in §5.1.1.1 left off, where
the parser itself is in a simplified form, but the function passed to map is not:

val f = flip(compose((_ + _).curried)(identity))

Therefore, this section explores the following:

• How expressions can be represented as another intermediate ast, so that they are statically inspectable
enough to be simplified.

• The notion of normalisation, in order to reduce expressions into a semantically equivalent but syntactically
simpler form.

5.2.1 The 𝑛-ary Lambda Calculus
Once again, the complexity of manipulating the generic Scalameta ast can be avoided by building a new
intermediate ast representation for expression terms.

Scala, as a functional programming language, uses an extension of the 𝜆-calculus [Church 1936] as its
theoretical foundations [Cremet et al. 2006; Amin et al. 2016]. The expression terms present within parsers
are equivalent to 𝜆-terms, just with extra syntactic sugar. In the standard 𝜆-calculus, each function only takes
one argument, and multi-argument functions are represented as a chain of single-argument functions: this is
known as currying. Scala supports curried functions using multiple parameter lists, but uncurried functions are
preferred for performance reasons. Since these functions will be transformed from Scala code and back, it is
desirable to maintain a high-level equivalence between these two representations. As a result, the expression ast
will be based on fig. 5.2, which extends the 𝜆-calculus to support proper multi-argument functions using 𝑛-ary
abstraction and application.

𝑀,𝑁 ::= 𝑥 variable

∣ (𝜆x.𝑀) 𝑛-ary abstraction, where x = (𝑥1, … , 𝑥𝑛)
∣ (𝑀 N) 𝑛-ary application, where N = (𝑁1, … , 𝑁𝑛)

Fig. 5.2: Syntax for the untyped 𝜆-calculus extended with 𝑛-ary abstraction and application.

5.2.1.1 𝛽-Reduction and 𝛼-Conversion

In the 𝜆-calculus, terms are evaluated via 𝛽-reduction: fig. 5.3 shows how this can be defined for the 𝑛-ary
𝜆-calculus. Unlike the standard 𝜆-calculus, reduction will only take place if the expected number of arguments in
x are equal to the number of arguments in N; otherwise, evaluation is stuck.

(𝜆x.𝑀) N →𝛽 𝑀 [N/x] (if |x| = |N|)

Fig. 5.3: The 𝛽-reduction rule for the 𝑛-ary lambda calculus.

The syntax 𝑀[𝑁/𝑥] denotes term substitution, where all free occurrences of 𝑥 in 𝑀 are replaced with 𝑁. Sub-
stitution must avoid variable capture, when 𝑁 contains free variables that are bound in the scope where 𝑥 is
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found [Bakel 2022]. Avoiding capture is achieved by performing 𝛼-conversion, which is the process of renaming
bound variables. In the 𝜆-calculus, two terms are considered 𝛼-equivalent if they can be transformed into each
other by only renaming bound variables: the term 𝜆𝑥.𝑥 is equivalent to 𝜆𝑦.𝑦.

Illustrating variable capture For example, substitution without 𝛼-conversion incorrectly 𝛽-reduces the
following term:

(𝜆𝑥. 𝜆𝑦. 𝑥 𝑦) 𝑦 →𝛽 (𝜆𝑦. 𝑥 𝑦) [𝑦/𝑥]
= 𝜆𝑦. 𝑦 𝑦

The 𝑦 that was substituted was originally a free variable, distinct from the 𝑦 bound in the lambda 𝜆𝑦.𝑥𝑦. However,
after substitution, it became captured under the lambda, where the two 𝑦 terms have become indistinguishable
in the incorrect expression 𝜆𝑦.𝑦𝑦. Instead, the correct 𝛽-reduction using capture-avoiding substitution would
proceed as follows:

(𝜆𝑥. 𝜆𝑦. 𝑥 𝑦) 𝑦 →𝛽 (𝜆𝑦. 𝑥 𝑦) [𝑦/𝑥]
=𝛼 (𝜆𝑧. 𝑥 𝑧) [𝑦/𝑥]
= 𝜆𝑧. 𝑦 𝑧

5.2.1.2 Simplifying the Example Expression

The example from the beginning of the section can thus be evaluated by hand via 𝛽-reduction, representing the
higher-order functions as 𝜆-abstractions:

flip(compose((_ + _).curried)(identity)) = flip (compose (𝜆𝑎. 𝜆𝑏. 𝑎 + 𝑏) identity)
= flip ((𝜆𝑓. 𝜆𝑔. 𝜆𝑥. 𝑓 (𝑔 𝑥))(𝜆𝑎. 𝜆𝑏. 𝑎 + 𝑏)(𝜆𝑥. 𝑥))
→∗

𝛽 flip (𝜆𝑔. 𝜆𝑥. (𝜆𝑏. 𝑔 𝑥 + 𝑏)(𝜆𝑥. 𝑥))
→∗

𝛽 flip (𝜆𝑥. 𝜆𝑏. 𝑥 + 𝑏)
= (𝜆𝑓. 𝜆𝑥. 𝜆𝑦. 𝑓 𝑦 𝑥)(𝜆𝑥. 𝜆𝑏. 𝑥 + 𝑏)
→∗

𝛽 𝜆𝑥. 𝜆𝑦. 𝑦 + 𝑥
= (x, y) => y + x

This normalised expression has the same meaning as the original, but is now expressed in a clearer form! This is
much more suitable to be placed back into the code rewrite, as it is easier to understand by the user. The rest of
the section now explores how this process can be implemented in parsley-garnish.

5.2.2 Representing Names
There are a plethora of approaches to implementing the 𝜆-calculus, mostly differing in how they represent variable
names. This affects how variable capture is handled, and also how 𝛼-equivalence of two terms can be determined.
For parsley-garnish, cheap 𝛼-equivalence is desirable to help check equivalence of parser terms, which is useful
for some transformations.

Naïve capture-avoiding substitution Representing variable names as strings is the most straightforward
approach in terms of understandability. The example below shows how the simply typed 𝜆-calculus can be
represented as a generalised algebraic data type (gadt) [Cheney and Hinze 2003] in Scala:

type VarName = String
trait Lambda
case class Abs[A, B](x: Var[A], f: Lambda[B]) extends Lambda[A => B]
case class App[A, B](f: Lambda[A => B], x: Lambda[A]) extends Lambda[B]
case class Var[A](name: VarName) extends Lambda[A]

val (f, x) = (Var("f"), Var("x"))
val expr = Abs(f, Abs(x, App(f, x))) // λf. λx. f x
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Although naïvely substituting these terms seems logically simple, it can be very tricky to get right. This approach
requires calculating the free variables in a scope before performing substitution, renaming bound variables if it
would lead to variable capture. Due to the inefficiency of having to traverse the whole term tree multiple times,
this approach is not used in any real implementation of the 𝜆-calculus. Furthermore, checking 𝛼-equivalence is
also tedious, requiring another full traversal of the term tree to compare variable names.

Barendregt’s convention Renaming all bound variables to be unique satisfies Barendregt’s convention [Baren-
dregt 1984], which removes the need to check for variable capture during substitution. However, to maintain this
invariant, variables must also be renamed during substitution – this administrative renaming incurs a relatively
high performance overhead and chews through a scarily large number of fresh variable names. The approach has
been successfully optimised to very impressive performance, though: the Haskell ghc compiler uses Barendregt’s
convention with a technique dubbed “the Rapier” [Peyton Jones and Marlow 2002], maintaining further invariants
to avoid renaming on substitution when unnecessary. Unfortunately, maintaining the invariants to keep this
transformation correct becomes very difficult [Maclaurin, Radul, and Paszke 2023].

Nameless and hybrid representations Nameless representations like De Bruijn indices [de Bruijn 1972]
eschew names entirely, instead representing variables as the number of binders between the variable and its
binding site. For example, 𝜆𝑥.𝑥(𝜆𝑦.𝑥𝑦) would be represented as 𝜆.0(𝜆.1 0): the variable 𝑦 is replaced with 0 to
signify that 𝑦 is bound by the closest 𝜆 binder. The first occurrence of 𝑥 is replaced with 0 in the same way, but its
second occurrence is replaced with 1 since it is bound by the 𝜆 two levels up.

An advantage of De Bruijn indexing is that it makes 𝛼-equivalence trivial to check, as it is just a matter of
comparing the indices. However, although an elegant representation, De Bruijn terms are notoriously difficult to
work with as they are not easily human-readable. Furthermore, performing substitutions with De Bruijn terms
has an overhead as variable positions have to be shifted – this is undesirable given that the purpose of the ast
is to normalise 𝜆-terms. To avoid this, hybrid representations combining named and nameless representations
exist [McBride and McKinna 2004; Charguéraud 2012], but they become rather complex solutions for what should
be a relatively simple 𝜆-calculus implementation for parsley-garnish’s needs.

Higher-order abstract syntax Using higher-order abstract syntax (hoas) [Pfenning and Elliott 1988] sidesteps
variable binders entirely by borrowing substitution from the meta-language, making it the meta-language’s
responsibility to handle variable capture instead. In contrast, the previous techniques were examples of first-order
abstract syntax, which represents variables and unknowns with identifiers (whether with names or indices). A
hoas approach does not name bound variables, instead representing them as bindings in the meta-language:

trait HOAS
case class Abs[A, B](f: HOAS[A] => HOAS[B]) extends HOAS[A => B]
case class App[A, B](f: HOAS[A => B], x: HOAS[A]) extends HOAS[B]

val expr = Abs(f => Abs(x => App(f, x))) // λf. λx. f x

Therefore, this representation performs substitution through Scala’s function application, which makes it ex-
tremely fast compared to the other approaches. However, since lambda abstractions are represented as closures
within Scala itself, the function body becomes wrapped under Scala’s variable bindings, making them difficult to
inspect and work with.

5.2.3 Normalisation Strategies
One remaining hurdle stands before deciding on an adt representation: how normalisation will be implemented.
The ideas of partial evaluation and normalisation are related concepts – it is useful to view normalisation as
statically evaluating as many terms as possible, but since not all terms have known values, the expression cannot
be fully evaluated to a result value. Normalisation can thus be viewed simply as a process of evaluation, but in the
presence of unknown terms. This section briefly explains the traditional notion of reduction-based normalisation,
before introducing normalisation by evaluation as a more elegant and efficient strategy.

5.2.3.1 Reduction-Based Normalisation

The 𝛽-reduction rule is a directed notion of reduction, which can be implemented as a syntax-directed term-
rewriting system, in a similar way to how Parser terms are simplified. The goal is to achieve beta normal form
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(𝛽-nf) by allowing 𝛽-reduction to occur deep inside 𝜆-terms, in all redexes of a term, until no more reductions
can be made.

5.2.3.2 Normalisation by Evaluation

An interesting alternative strategy stems from a notion of reduction-free normalisation, based on an undirected
notion of term equivalence, rather than directed reduction. Normalisation by evaluation (nbe) [Filinski and
Korsholm Rohde 2004] achieves this by evaluating syntactical terms into a semantic model, then reifying them
back into the syntactic domain. The denotational model (denoted by ⟦ − ⟧) generally involves implementing a
separate datatype from the syntactic ast representation of functions. The semantics is specifically constructed to
be residualising, meaning that terms can be extracted out into the original syntactic representation. Normalisation
is then just defined as the composition of these two operations, as illustrated in fig. 5.4.

Syntactic domain Semantic domain
⟦−⟧

reify

normalise = reify ∘ ⟦ − ⟧

Fig. 5.4: Normalisation by evaluation in a semantic model.

5.2.4 The Expression adt
The final implementation of the Expr ast normalises terms with nbe, which results in a two-tiered representation
of expression terms:

1. Scalameta ast nodes corresponding to expressions are lifted to the Expr adt, which represents the syntax
of lambda expressions using a simple named approach.

2. Sem uses hoas to leverage Scala semantics as the denotational model for lambda expressions. During
normalisation, Expr terms are evaluated into Sem, then reified back into Expr.

This achieves the following desired properties for parsley-garnish’s use cases:

• The syntactic Expr adt is represented in a simple manner, which is easy to construct and manipulate as
opposed to a hoas representation. This allows function terms to be pattern matched on, as part of parser
simplifications.

• Lifting the syntactic constructs to Scala semantics with hoas unlocks extremely efficient normalisation,
and easier guarantees of correctness with respect to variable capture.

• Reifying Sem terms back into syntactic Expr terms automatically 𝛼-converts names, granting 𝛼-equivalence
for free.

Fig. 5.5a shows the implementation of the untyped Expr adt representing the abstract syntax of 𝑛-ary 𝜆-terms,
extended with the following:

• Optional explicit type annotations for variables – these are not used for type-checking, but are there to
preserve Scala type annotations originally written by the user.

• Translucent terms to encapsulate open terms holding a scala.meta.Term which cannot be normalised
further. These carry an environment of variable bindings to substitute back in during pretty-printing – in a
metaprogramming context, this is analogous to splicing into a quoted expression.

This structure is largely mirrored by the hoas-based Sem adt shown in fig. 5.5b, which allows it to be reified
back into Expr terms.
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trait Expr
case class AbsN(xs: List[Var], f: Expr) extends Expr
case class AppN(f: Expr, xs: List[Expr]) extends Expr
case class Var(name: VarName, displayType: Option[scala.meta.Type]) extends Expr
case class Translucent(t: Term, env: Map[VarName, Expr]) extends Expr

(a) The Expr adt for representing the abstract syntax of lambda expressions.

trait Sem
case class Abs(paramTypes: List[Option[scala.meta.Type]], f: List[Sem] => Sem) extends Sem
case class App(f: Sem, xs: List[Sem]) extends Sem
case class Var(name: VarName, displayType: Option[scala.meta.Type]) extends Sem
case class Translucent(t: Term, env: Map[VarName, Sem]) extends Sem

(b) The Sem adt for representing the residualising semantics of lambda expressions.

Fig. 5.5: The intermediate ast for expressions.

Constructing higher-order functions Expr also implements some helper objects to make it more convenient
to construct and deconstruct single-parameter abstractions and applications:

object Abs {
// Convenience factory method to create a single-parameter abstraction
def apply(x: Var, f: Expr) = AbsN(List(x), f)
// Extractor allows user to pattern match on Abs(x, f)
// instead of the more tedious AbsN(List(x), f)
def unapply(func: AbsN): Option[(Var, Expr)] = func match {
case AbsN(List(x), f) => Some((x, f))
case _ => None

}
}

object App {
// Convenience factory method to apply a single argument to a function
def apply(f: Expr, x: Expr) = AppN(f, List(x))
// Apply multiple arguments in sequence, as f(x)(y)(z) instead of f(x, y, z)
def apply(f: Expr, xs: Expr*) = xs.foldLeft(f)(App(_, _))

}

Using these objects, fig. 5.6 shows how the higher-order functions necessary for left-recursion factoring can be
implemented as constructors for Expr terms.

Improved type safety The originally intended design was to represent Expr as a type-parameterised gadt
for improved type safety, where it would be based on a typed variant of the 𝜆-calculus. This would have also
allowed Parser to be represented as a gadt parameterised by the result type of the parser. However, attempting
to implement this ran into two main hurdles:

• Var and Translucent terms would need to be created with concrete type parameters of their inferred types.
Scalafix’s semantic api is not powerful enough to guarantee that all terms can be queried for their inferred
types – in fact, the built-in Scalafix rule Explicit Result Types calls the Scala 2 presentation compiler to
extract information like this2. This solution is complex and brittle due to its reliance on unstable compiler
internals, which undermines Scalafix’s goal of being a cross-compatible, higher-level abstraction over
compiler details.

2https://github.com/scalacenter/scalafix/issues/1583
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/* id : A => A */
def id: Expr = {

val x = Var.fresh()
Abs(x, x)

}

/* flip : (A => B => C) => B => A => C */
def flip: Expr = {

val (f, x, y) = (Var.fresh(), Var.fresh(), Var.fresh())
Abs(f, Abs(x, Abs(y, App(f, y, x)))) // λf. λx. λy. f y x

}

/* compose : (B => C) => (A => B) => A => C */
def compose: Expr = {

val (f, g, x) = (Var.fresh(), Var.fresh(), Var.fresh())
Abs(f, Abs(g, Abs(x, App(f, App(g, x))))) // λf. λg. λx. f (g x)

}
def compose(f: Expr) = App(compose, f)
def compose(f: Expr, g: Expr) = App(compose, f, g)

Fig. 5.6: Constructors for higher-order functions represented as 𝜆-expressions in Expr.

• Scala 2’s type inference for gadts is less than ideal, requiring extra type annotations and unsafe casts which
ultimately defeat the original purpose of type safety. This situation is improved, although not completely
solved, in Dotty [Parreaux, Boruch-Gruszecki, and Giarrusso 2019] – but Scalafix does not yet support
Scala 3.

5.2.5 Lifting to the Intermediate Expression ast
The Parser ast is amended to take Expr arguments where they used to take scala.meta.Term values. Take the
Pure parser as an example:

case class Pure(x: Expr) extends Parser
object Pure {

def fromTerm: PartialFunction[Term, Pure] = {
case Term.Apply(matcher(_), Term.ArgClause(List(func), _)) => Pure(func.toExpr)

}
}

The toExpr extension method on scala.meta.Term is used to lift Term ast nodes to Expr terms. Expression
lifting is invoked whenever a parser expects an expression (whether a function or simple value) as an argument.
This section gives a high-level overview of the three cases that toExpr handles.

5.2.5.1 Lambda Expressions

Writing parsers often involves defining simple lambda expressions used to glue together parsers, or to transform
the result of a parser, as so:

val asciiCode: Parsley[Int] = item.map(char => char.toInt)

These lambda expressions are represented in the Scalameta ast as Term.Function nodes, which are recursively
traversed to collect all parameter lists. This is folded into a chain of 𝑛-ary abstractions, with the final term being
the body of the lambda, which is wrapped into a Translucent term.

To ensure that the parameter names in the Translucent body term are unique, the parameters are 𝛼-converted
to fresh names. The body is also transformed to make sure references to these bound variables use their new
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names: this conversion is well-scoped as it compares terms using their unique Scalameta symbols. The following
example illustrates when this is necessary:

a => (a, b) => a + b

Although no sane Scala programmer would write this, this lambda demonstrates how it is possible to shadow
variables – the a in the function body refers only to the a in the second parameter list, as it shadows the a in the
first parameter list. The lifted Expr term would then resemble the following 𝜆-calculus expression, where bold
values correspond to scala.meta.Term nodes as opposed to Expr values:

λ(x1). λ(x2, x3). Translucent(x2 + x3, env = {x1 → x1, x2 → x2, x3 → x3})

This shows how the lambda body’s environment maps Term.Name nodes to their corresponding variable terms.
When the term is pretty-printed, each Term.Name node is replaced with their corresponding Expr term – this is
analogous to the splicing operation on quasiquotes:

q"x1 => (x2, x3) => $x2 + $x3"

5.2.5.2 Placeholder Syntax

Scala supports a placeholder syntax using underscores to make lambda expressions more concise, so the earlier
parser can be rewritten as:

val asciiCode: Parsley[Int] = item.map(_.toInt)

Scalameta differentiates between regular lambda expressions and those using placeholder syntax, representing
the latter as Term.AnonymousFunction nodes. This makes it easy to identify which approach to be taken during
conversion. To convert this case, each successive underscore in the expression body is replaced with a fresh
variable name. Placeholder syntax creates a fully uncurried function with a single parameter list3. Therefore, the
converted Expr term is always a single 𝑛-ary abstraction, where the arguments are the freshly generated variable
names in order of their occurrence in the expression body.

5.2.5.3 Eta-Expansion

If the term is not a lambda expression, parsley-garnish attempts to 𝜂-expand the term if possible. For example,
an idiomatic parser written using the Parser Bridges pattern [Willis and Wu 2022] could resemble the following:

case class AsciiCode(code: Int)
object AsciiCode extends ParserBridge1[Char, AsciiCode] {

def apply(char: Char): AsciiCode = AsciiCode(char.toInt)
}
val asciiCode = AsciiCode(item)

When parsley-garnish converts asciiCode to a Parser, it desugars the bridge constructor into something
resembling item.map(AsciiCode.apply). The 𝜂-expanded form of AsciiCode.apply would be as follows:

(char: Char) => AsciiCode.apply(char)

To 𝜂-expand scala.meta.Term nodes, parsley-garnish attempts to look up the method signature of its symbol
using Scalafix’s semantic api. This is not always possible – in that case, the term cannot be statically inspected
any further and is just wrapped in a Translucent term.

5.2.6 Normalising Expression Terms
Using nbe, normalisation therefore follows a two-step process: Expr values evaluate into Sem values, which are
then reifyed back into Expr:

trait Expr {
def normalise: Expr = this.evaluate.reify

}
3https://www.scala-lang.org/files/archive/spec/2.13/06-expressions.html#anonymous-functions

Rocco Jiang 38

https://www.scala-lang.org/files/archive/spec/2.13/06-expressions.html#anonymous-functions


parsley-garnish: A linter for the parsley parser combinator library Simplifying Parsers and Expressions

Evaluation Evaluation proceeds by carrying an environment mapping bound variables to their semantic
representations. Evaluating a variable looks up its name in the environment, while evaluating a lambda abstraction
produces a closure using the current environment – using hoas allows these closures to be represented as native
Scala closures. The interesting case is evaluating function application: this allows 𝛽-reduction within the semantic
domain at any point within the term, not just on the head term. The function and its arguments are first evaluated
separately – then, if the function evaluates to an abstraction, the arguments are passed to the Scala closure g:
List[Sem] => Sem, collapsing the term structure by one step.

trait Expr {
def evaluate: Sem = {
def eval(func: Expr, boundVars: Map[Var, Sem]): Sem = func match {

case v @ Var(name, displayType) =>
boundVars.getOrElse(v, Sem.Var(name, displayType))

case AbsN(xs, f) =>
Sem.Abs(xs.map(_.displayType), vs => eval(f, boundVars ++ xs.zip(vs)))

case AppN(f, xs) => eval(f, boundVars) match {
case Sem.Abs(_, g) => g(xs.map(eval(_, boundVars)))
case g => Sem.App(g, xs.map(eval(_, boundVars)))

}
case Translucent(term, env) =>

Sem.Translucent(term, env.mapValues(eval(_, boundVars)))
}

eval(this, Map.empty)
}

}

Reification The nbe semantics utilised by parsley-garnish are intensional [Lindley 2005], meaning that
once syntactic terms are fully evaluated into their semantics, the expression is normalised to 𝛽-nf. Reification is
then a simple process of converting each level of the term back into its syntactic counterpart. When a lambda
abstraction is reified, bound variables are assigned names from a fresh name supply. This step is what grants
𝛼-equivalence for free, as the fresh name generator can be made deterministic: given two terms that evaluate to
the same semantic structure, reifying both will yield syntactic representations with the same names.

trait Sem {
def reify: Expr = {
def reify0(func: Sem)(implicit freshSupply: Fresh): Expr = func match {

case Abs(tpes, f) =>
val params = tpes.map(Expr.Var(freshSupply.next(), _))
Expr.AbsN(params, reify0(

f(params.map { case Expr.Var(name, tpe) => Sem.Var(name, tpe) } )
))

case App(f, xs) => Expr.AppN(reify0(f), xs.map(reify0))
case Translucent(t, env) => Expr.Translucent(t, env.mapValues(reify0))
case Var(name, displayType) => Expr.Var(name, displayType)

}

reify0(this)(new Fresh)
}

}
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5.2.7 Lowering Back to the Scalameta ast
Once any transformations on the Expr terms are complete, they need to be converted back to strings to be
placed in a Scalafix patch. This is achieved in the same way as parsers in §4.2.3, by lowering them back as
scala.meta.Term ast nodes and re-using Scalameta’s pretty-printer to generate a syntactically well-formed string
representation. These can also be achieved using quasiquotes:

• Lambda abstractions are transformed into a lambda expression of form q"(...params) => body".

• Function application is transformed into method calls.

• Variables are simply Term.Name nodes with their syntactic names.

• Translucent terms splice their environment bindings back into their term body.

Discussion
parsley Haskell, as a staged parser combinator library, also has the ability to inspect and optimise the code of
user-defined functions. The approach taken by parsley-garnish and parsley share many similarities, both using
the 𝜆-calculus as a core language to normalise expressions. In both cases, the need to reduce expression terms
is motivated by how parser simplifications involve fusion, which results in function applications that can be
partially evaluated.

However, the two have differentmotivations and requirements for normalising expressions, so their approaches
differ in some ways – fig. 5.7 illustrates these differences.

Semantics Sem

Low-Level Syntax Expr Expr
(𝛽-nf) Lambda Lambda

(𝛽-whnf)

High-Level Syntax Defunc

scala.meta.Term scala.meta.Term
(𝛽-nf) Code Code

(𝜂𝛽-nf)

reify

evaluate

normalise =
evaluate ∘ reify

normalise

Fig. 5.7: Comparison of expression normalisation in parsley-garnish (left) and parsley Haskell (right).

Syntactic representation Unlike parsley-garnish, parsley has a two-level syntactic representation for
expressions. Defunc is akin to a deep embedding of higher-order functions, representing them as a gadt: this
process is known as defunctionalisation [Reynolds 1972; Danvy and Nielsen 2001]. This helps facilitate certain
parser law optimisations which require pattern matching on functions as well as parsers, for example:

pure(identity) <*> u = u

After this step, Defunc values are then brought into the lower-level 𝜆-calculus representation Lambda, to be
normalised by 𝛽-reduction.

At the moment, parsley-garnish does not have a need to implement any parser simplifications based on
these laws, although this may change in the future. Adding an extra defunctionalised layer to the expression ast
would be fairly straightforward.
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Normalisation strategy parsley normalises terms to full 𝜂𝛽-nf, whereas parsley-garnish only normalises
to 𝛽-nf. This is because 𝜂-reduction in Scala 2 is not as straightforward as in Haskell, and is not always possible –
in most cases the appropriate reduction is instead to convert lambdas to placeholder syntax. Implementing this is
left as future work.

In parsley, normalisation is implemented as a reduction-based approach over the hoas Lambda datatype.
Normalisation by 𝛽-reduction with Haskell function application brings this to 𝛽-whnf. Then, code generation
brings this further to 𝛽-nf as desired, as well as an extra step for 𝜂-reduction to put the term into full 𝜂𝛽-nf.

The main reason why parsley-garnish takes a different normalisation approach is because unlike parsley,
there is still a need for 𝛼-equivalence checking after normalisation. In parsley, the normalised forms are
immediately utilised for code generation, so they can be kept as hoas the entire time, without representing
variables with any names. Conversely, in parsley-garnish, these normalised terms undergo further analysis
before being transformed into code patches for pretty-printing.

Summary
This chapter introduced the idea of simplifying parsers and normalising expressions, by representing both as
intermediate asts to improve their static inspectability. It also demonstrated how these processes are related to
the optimisation techniques used in both parsley Scala and parsley Haskell.

With promising results applying these simplifications on the example parser from last chapter, the improved
Parser ast unlocks the potential for more powerful and interesting transformations utilising specialised domain
knowledge of parser combinators.
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Chapter 6
Using the New Parser ast
The ability to simplify parsers, as well as normalising their expression arguments, makes it feasible to use the
intermediate Parser ast for high-level parser transformations. This chapter first revisits the left-recursion
factoring rule from chapter 4, demonstrating how parser simplification drastically improves the quality of
the rule. This is followed by a brief exploration of other rules that can be trivially implemented on top of the
intermediate ast, rather than the generic Scalameta ast.

6.1 Removing Left-Recursion: Revisited
Chapter 4 left off with a disappointing result for the left-recursion factorisation transformation, producing a
mostly unreadable output in fig. 4.2. The transformation can now be revisited given the improvements made to
the Parser ast. This section briefly explores some of the changes made to the rule, and the final result of the
transformation on the example parser.

6.1.1 Pretty Parsers
The need to obtain simpler parser terms was the main driving motivation behind the new Parser ast, which
now defines the following methods on top of simplify:

• normalise: Simplifies parsers via parser laws and normalises their expression arguments. This is used to
check parser equivalence using their canonical forms.

• prettify: Adds an extra step after normalisation, using a set of “resugaring” rules to rebuild the combinators
that were desugared during the left-recursion unfolding.

After the left-recursion transformation, prettify is used to make parser terms more readable, before applying
the final Scalafix patch. The following demonstrates the implementation of these methods, as well as a subset of
the resugaring rewrite rules:

trait Parser {
def normalise: Parser = this.simplify.normaliseExprs
def isEquivalent(other: Parser) = this.normalise == other.normalise
def prettify: Parser = this.normalise.resugar
def resugar: Parser = this.rewrite {
// p.map(x => y => y) <*> q == p ~> q
case FMap(p, Abs(_, Abs(Var(y, _), Var(z, _)))) <*> q if (y == z) => p ~> q
// f.curried.map(p) <*> q == (p, q).zipped(f)
case FMap(p1, Abs(x1, Abs(x2, body))) <*> p2 =>

Zipped(AbsN(List(x1, x2), body), List(p1, p2))
}.transform {
// Scala 2 cannot resolve implicit stringLifts in some positions
// Replace with explicit 'string' combinator so the compiler does not complain
case FMap(Str(s, _), f) => FMap(Str(s, implicitSyntax = false), f)

}
}

6.1.2 Evaluating Expressions
The higher-order functions flip and compose are represented as in fig. 5.6, eliminating the need to patch in their
definitions as Scala code. Instead, they get partially evaluated as lambda expressions during normalisation.

The currying of functions passed to LiftLike combinators are also expressed with the Expr ast, to ensure
that they are well-formed during the transformation. This also significantly reduces the occurrence of .curried
method calls in the transformed output, which helps Scala’s type inference and reduces syntactic noise in the
final output.
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trait Expr {
// Curries a lambda expression, flattening into a chain of unary functions
def curried: Expr = this match {
case Abs(x, f) => Abs(x, f.curried)
case AbsN(x :: xs, f) => Abs(x, AbsN(xs, f).curried)
case _ => this

}
}

trait LiftLike extends Parser {
def unfold() = {
val curriedFunc = Pure(func match {

// If the Expr is still opaque, it is treated as before
case Translucent(term, env) => Translucent(q"($term).curried", env)
// If statically inspectable, curry the lambda expr properly
case _ => func.curried

})
parsers.foldLeft(curriedFunc)(_ <*> _).unfold

}
}

6.1.3 The Improved Rule
Being able to normalise parsers lets parsley-garnish make more informed decisions about the result of the
transformation. By normalising the leftRec portion of the unfolded parser, it can be determined whether the
transformation was successful or not:

• If leftRec resolves to empty, the original parser was not left-recursive, so parsley-garnish does not
bother rewriting it.

• If it simplifies to a pure(x), this indicates a deeper problem which rewriting into the postfix combinator
cannot solve. This generates a lint error diagnostic instead of an auto-fix.

• Otherwise, the parser is left-recursive and can be fixed using the postfix combinator. This result is
prettified before applying the final patch.

These cases are implemented in the transform method to generate the a Scalafix patch per unfolded parser:

def transform(results: Option[Expr], nonLeftRec: Parser, leftRec: Parser) = {
val result = results match {
case None => Empty
case Some(t) => Pure(t)

}

leftRec.normalise match {
case Empty => Patch.empty // not left-recursive, do not rewrite
case Pure(_) => Patch.lint(LeftRecDerivesEmptyLint) // left-recursive but unfixable
case _ =>

val transformed = Postfix(nonLeftRec | results, leftRec).prettify
Patch.replaceTree(originalTree, transformed.toString)

}
}
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The Final Result
Finally, the example parser from chapter 4 can be automatically transformed into the following form:

lazy val example: Parsley[String] =
chain.postfix[String](string("b"))(string("a").map(x1 => x2 => x2 + x1))

This is a significant improvement over the original output in fig. 4.2, and is visually very similar to the “optimal”
hand-written version in fig. 4.3. In fact, the two parsers can be proven to be equivalent – §7.2 explores this further
with some different examples.

6.2 Simplify Parsers
The improved Parser ast also grants a new auto-fix rule for free: automatic simplification of parsers. At a
high-level, the rule works as follows:

• For each parser, get its prettified form and compare it to the original.

• If the result is different, apply the simplified version as a code rewrite.

The implementation of the entire rule is very straightforward, and only 20 lines long:

class SimplifyParser extends SemanticRule("SimplifyParser") {
override def fix(implicit doc: SemanticDocument): Patch = {
getAllParserDefns.map { case ParserDefinition(_, parser, _, originalTree) =>

val simplifiedParser = parser.prettify
if (parser.normaliseExprs != simplifiedParser) {

val simplifiedParserTerm = simplifiedParser.term.syntax
Patch.replaceTree(originalTree, simplifiedParserTerm)

} else {
Patch.empty

}
}.asPatch

}
}

This rule therefore lints for overly complex parsers that can be automatically simplified with parser laws. It
is unclear how useful this rule would be in practice, but it demonstrates the power of the new Parser ast in
enabling high-level transformations, and is gained with very minimal effort. For example:

/* Before */ val anise = pure("basil").map(add(_, "coriander"))
/* After */ val anise = pure(add("basil", "coriander"))

6.3 Avoid Parser Redefinitions
Another rule that can be easily implemented with the new Parser ast is to catch cases where a user manually
writes out a parser that is already defined in the library. This is similar in spirit to the previous rule, but makes use
of the new rewrite and transformmethods on parsers introduced in §5.1.2, which makes it incredibly convenient
to write syntax-directed rewrite rules on parsers. Expressing high-level rewrites is much less error-prone than
working with the Scalameta ast directly, and prevents re-duplication of efforts. As an example, consider the
following rewrite:

parser.rewrite { case ManyP(p <~ sep) => EndBy(p, sep) }

This catches a case where a user writes a parser in the form of many(p <~ sep), which is already defined in
parsley as endBy(p, sep). Compare this to the equivalent pattern match if utilising the low-level ast:
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tree.collect {
case Term.Apply.After_4_6_0(
manyMatcher(_),
Term.ArgClause(

List(Term.ApplyInfix.After_4_6_0(
Term.Name("p"),
Term.Name("<~"),
Type.ArgClause(Nil),
Term.ArgClause(List(Term.Name("sep")), None)

)), None)) => q"endBy(p, sep)"
}

This rule is likely to be much more useful in practice than Simplify Parsers, serving as a pedagogical tool to guide
users towards using the library’s higher-level combinators.

Summary
This chapter demonstrates how the left-recursion factoring rule is made feasible with the simplification machinery
in the new Parser ast. It also introduces two rules, Simplify Parsers and Avoid Parser Redefinitions, that are
trivial to implement on top of the new Parser ast, showcasing the power of the new high-level ast in expressing
transformations in a more maintainable and readable way. The improved Parser ast machinery makes it easy to
extend parsley-garnish with more complex rules on top of a parser abstraction, without having to worry about
manually simplifying its output. Future work could explore more complex rules, such as detecting ambiguous
parsers or conversely, overuse of the atomic combinator.
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Chapter 7
Evaluation
The project was initially intended to mostly focus on implementing a variety of parser lints, however implementing
these rules revealed an unanticipated level of complexity in the infrastructure needed to support them. This ended
up necessitating a lot more work on the intermediate Parser and Expr asts than expected, which has led to a
robust internal machinery that allows parsley-garnish to be easily extended with more domain-specific rules
in the future. However, the time spent on this infrastructure work meant that the variety of implemented linting
rules were not as comprehensive as initially desired. The vast majority of work was spent on the left-recursion
transformation, which motivated much of the work on the intermediate asts. Therefore, evaluating the outputs
of the left-recursion transformation also evaluates the success of the intermediate machinery.

This chapter evaluates the overall project by assessing the performance of its expression normalisation
infrastructure, which represents some of the most complex and critical parts of the system. Then, it evaluates the
success of the left-recursion transformation by examining its ability to handle different forms of left-recursion.

7.1 Performance of Expression Normalisation
Originally, the implementation of Expr used a named approach with Barendregt’s convention, generating fresh
variable names using an atomic counter. Normalisation proceeded by manually substituting variable objects
following the 𝛽-reduction rules. However, this required an extra 𝛼-conversion pass to clean up variable names
before pretty-printing the expression, as fresh name generation resulted in undesirably long names like x4657476.

The implementation was then switched to a hoas approach, which made the correctness of the normalisation
process more easy to reason about. However, this lost the ability to easily show 𝛼-equivalence of terms, so the
next logical step was to implement the final two-tiered nbe approach, where a syntactic representation allowed
for easy 𝛼-equivalence checking, and a semantic hoas-based representation was used for normalisation.

Fig. 7.1 shows the performance benchmarking results of the expression normalisation process on five different
tasks. These were compiled on Scala 2.13.14, running on AdoptJDK jvm version 8.

• parser normalises a fairly standard parser term generated during the left-recursion transformation. This
𝜆-expression has a maximum depth of 10 nested terms, and contains 39 total variables.

• norm tree normalises a 𝜆-expression encoding a binary tree in the 𝜆-calculus. This has a depth of 23 and
contains 1,117 variables.

• sum tree normalises a 𝜆-expression encoding a sum fold over the same binary tree, using Church numerals
to represent integers. This has a depth of 25 and contains 1,144 variables.

• eq 20 normalises a 𝜆-expression comparing the equality of two differently-built Church numerals repre-
senting the integer 20. This has a depth of 27 and contains 326 variables.

• eq 40 is the same as eq 20, but for the integer 40. This also has a depth of 27 and contains 539 variables.

Note that the benchmark results are visualised on a log scale: nbe and hoas, are orders of magnitude faster
than the named substitution approach. As expected, nbe and hoas are very close in performance, as they both
use Scala’s native variable bindings. In all cases, nbe is slightly faster than hoas, which is also expected as it has
slightly less overhead in creating new Expr objects.

In the parser task, which is representative of the standard use case for the normalisation process, the
substitution approach is still relatively performant, taking only 0.5ms to normalise the term. This shows that even
if parsley-garnish remained with the original approach, the performance would still be acceptable. However,
the other approaches still outperform this by 50× in this simple case. For more complex tasks, this increases
to as much as 6000× slower, as in the case of the eq 40 task. From the benchmark results it is rather evident
that the reasoning behind this is not the total number of variables, since the eq tasks have fewer variables than
the tree tasks, but perform worse. Maximum depth is also an unlikely explanation – rather, it is likely that the
individual size of specific terms being substituted is the main factor in the deteriorating performance of the
named substitution approach. This requires copying and re-constructing objects for each variable substitution,
which adds up to a significant amount of overhead. Contrast this with the nbe and hoas approaches, which do
not experience the same rate of decrease in performance, as they mitigate this overhead by using Scala’s native
function application.
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Fig. 7.1: Benchmark results for the expression normalisation process on five tasks.

Summary

The performance benchmarks show that the final implementation of expression normalisation is extremely
performant, even for unrealistically large 𝜆-terms. Although the original named substitution approach would
have likely been sufficient for the standard use case of normalising parser terms, the cheap operational cost of
nbe allows expression normalisation to be used frequently and liberally throughout the system, without worrying
about performance bottlenecks.

7.2 Removing Left-Recursion
Broadly speaking, left-recursive grammars can be classified into three categories: direct, indirect, and hidden. The
left-recursive transformation implemented by parsley-garnish is able to handle all three of these cases, however
this does not necessarily mean that the output is of high quality. This section evaluates parsley-garnish’s
ability to handle each case, based on a mostly qualitative set of evaluation criteria:

• Was the instance of left-recursion detected?

• If an auto-fix was performed, was it correct? Can it be proven to be correct?

• How clear was the output? How does it compare to an idiomatic, manually fixed version?

• Does the output compile?

The following examples assume the existence of a number parser, defined the same way as earlier in §2.3:

val number: Parsley[Int] = digit.foldLeft1(0)((n, d) => n * 10 + d.asDigit)

7.2.1 Direct Left-Recursion
Direct left-recursion is the simplest and most obvious form of left-recursion, where a parser directly refers to
itself in its definition. Thus, it is the easiest case to detect and handle, regardless of the transformation technique
used. This section evaluates parsley-garnish’s handling of direct left-recursion in a few different scenarios.
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7.2.1.1 Unary Postfix Operator

The following minimal grammar for a postfix unary incrementing operator is directly left-recursive:

⟨inc⟩ ::= ⟨inc⟩ ‘+’ | ⟨number⟩

A parser for this grammar, written in left-recursive form, would be as follows:

enum Expr {
case Num(n: Int)
case Inc(x: Expr)

}
val incs: Parsley[Expr] = Inc.lift(incs) <~ "+" | Num.lift(number)

In this instance, parsley-garnish detects the left-recursion and transforms the parser into the form shown
below; this is compared with a hand-written version.

// Transformed by parsley-garnish
val incs = chain.postfix[Expr](number.map(x1 => Num(x1)))

(string("+").map(x1 => x2 => Inc(x2)))
// "Optimal" version written by hand
val incsByHand = chain.postfix[Expr](number.map(Num(_)))("+" as Inc)

The output from parsley-garnish manages to compile and is clear and idiomatic, although the hand-written
version is slightly more concise. These two versions can be shown to be equivalent via equational reasoning –
the first argument to postfix is obviously the same, but with placeholder syntax instead of using explicit lambda
arguments. The second argument can be derived as follows:

string("+").map(x1 => x2 => Inc(x2))

= { definition of as: p.as(x) = p.map(_ => x) }

string("+") as (x2 => Inc(x2))

= { 𝜂-reduction on Inc }

string("+") as Inc

= { re-introduce Implicit Conversions pattern }

"+" as Inc

This example highlights some subtle points that parsley-garnish considers in order to improve the likelihood
of producing compilable output:

• The type ascription chain.postfix[Expr] is not always necessary, although in this case it is actually
required to help Scala correctly unify the types expected by the combinator. Since parsley-garnish cannot
typecheck its outputs, it always includes this type ascription to boost Scala’s type inference.

• The original parser used the Implicit Conversions pattern to elide the string combinator, but parsley-
garnish re-introduces the explicit string combinator in its output. This is intentional – Scala 2 has trouble
with implicit conversions in certain positions, such as in this case where "+".map(...) would not compile.
parsley-garnish attempts to add the explicit combinator back in cases like this, although in general it
will respect the original style the parser was written in.

7.2.1.2 Arithmetic Expression Language

As a larger-scale example, the left-associative arithmetic operators from §2.3 are also defined in a directly
left-recursive manner. Recall how the hand-written version using chain.left1 was presented:

lazy val expr: Parsley[Expr] = chain.left1(term)('+' as Add(_, _) | '-' as Sub(_, _))

Compared with the full transformed output from parsley-garnish:
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lazy val expr = chain.postfix[Expr](term)(
('+' ~> term).map(x1 => x2 => Add(x2, x1)) | ('-' ~> term).map(x1 => x2 => Sub(x2, x1)))

lazy val term = chain.postfix[Expr](atom)(
('*' ~> atom).map(x1 => x2 => Mul(x2, x1)) | ('/' ~> atom).map(x1 => x2 => Div(x2, x1)))

lazy val atom = '(' ~> expr <~ ')' | number.map(Num(_))

This also manages to successfully compile, and is relatively clear to read. However, it does highlight a current
shortcoming of the left-recursion rule: left-recursive parsers can only be transformed into the most generalised
postfix form, which may not always be the most optimal choice of combinator. In this case, the chain.left1
combinator would have been a more appropriate choice; even better would be the precedence combinator, since
the grammar forms multiple layers of expression operators.

It is theoretically possible to automatically transform a postfix parser into one of its more specialised
brethren, but this would require a more sophisticated ability to factor out common patterns in parsers and
expressions. Willis [2024] demonstrates how chain.left1 can be defined in terms of postfix, presented in
Haskell as it illustrates the relationship more clearly. The only major syntactical difference of note is that Haskell
uses <$> for the map combinator:

chainl1 p op = postfix p (flip <$> op <*> p)

Using this definition, the postfix version can be provably shown to be equivalent to the chain.left1 version.
This proof will again use Haskell syntax as it is more suitable for equational reasoning. The goal is to show that
('+' ~> term).map(x1 => x2 => Add(x2, x1)) can be rewritten in the form op.map(flip) <*> p, where p
is term and op is shown to be '+' as Add(_, _).

(λx1 x2 → Add x2 x1) <$> ('+' *> term)

= { definition of flip }

flip Add <$> ('+' *> term)

= { definition of *> (equivalent to ~> in Scala): p *> q = const id <$> p <*> q }

flip Add <$> (const id <$> '+' <*> term)

= { re-association: u <*> (v <*> w) = pure (∘) <*> u <*> v <*> w }

pure (∘) <*> flip Add <$> (const id <$> '+') <*> term

= { applicative fusion: pure f <*> pure x = pure (f x) }

(flip Add .) <$> (const id <$> '+') <*> term

= { functor composition: fmap f ∘ fmap g = fmap (f ∘ g) }

((flip Add .) . const id) <$> '+' <*> term

= { point-free manipulation }

(flip . const Add) <$> '+' <*> term

= { functor composition, in reverse }

flip <$> (const Add <$> '+') <*> term

= { definition of $> (equivalent to .as in Scala) }

flip <$> ('+' $> Add) <*> term

The same proof can be applied to the other operators, and the map combinator distributes over choice:

(u | v).map(f) = u.map(f) | v.map(f)

The proof shows that the final term obtained by parsley-garnish can be rewritten in the form op.map(flip)
<*> p. Thus, the obtained postfix parser is equivalent to the hand-written version using chain.left1.

7.2.1.3 Evaluating the Arithmetic Expression Language

The evaluating parser variant of the same grammar, as presented in the introduction, has the same resulting form:
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lazy val expr: Parsley[Float] = chain.postfix[Float](term)(
('+' ~> term).map(x1 => x2 => x2 + x1) | ('-' ~> term).map(x1 => x2 => x2 - x1))

However, in this case, the output unfortunately fails to compile. Scala’s local type inference prevents the compiler
from inferring the types of the x2 parameters, as the arithmetic operators used in the lambdas are overloaded. This
problem does not occur for the previous example, since the Expr constructors are explicitly and unambiguously
typed. Users will have to manually fix parsley-garnish’s output by adding an explicit type annotation (x2:
Float).

Resolving this issue is future work: the most likely solution is to refactor the parser so that they do not
take curried functions, which would make it easier for Scala to infer their types. For example, if the parser was
refactored into the chain.left1 form utilising the as combinator, the addition function _ + _ would be in a
fully uncurried form.

Summary Direct left-recursion is the most straightforward form of left-recursion to detect, so it is unsurprising
that parsley-garnish handles it well. It is important that this case is handled well, however, since it is generally
the most common form of left-recursion. The transformation on these test examples are provably correct, and the
resulting parsers are relatively clear and idiomatic. parsley-garnish also takes care to improve the likelihood of
producing compilable output, although there is still some future work to be done in this area. The most significant
weakness is the inability to specialise the postfix parser into a more specific form, however this is not a critical
issue as the postfix form is still correct and idiomatic.

7.2.2 Indirect Left-Recursion
Instances of indirect left-recursion are harder to detect, since the parser’s reference to itself takes more than one
step to reach. Consider the following alternative grammar for arithmetic expressions, reduced to only addition
for simplicity:

⟨expr⟩ ::= ⟨add⟩ | ‘(’ ⟨expr⟩ ‘)’ | ⟨number⟩
⟨add⟩ ::= ⟨expr⟩ ‘+’ ⟨expr⟩

The indirect left-recursive cycle arises since expr firstly needs to parse add, which firstly needs to parse expr,
and so on. This grammar can be naïvely translated in its left-recursive form in the following code segment. For
variety, this example utilises the Parser Bridges pattern instead of using lift combinators:

enum Expr {
case Num(n: Int)
object Num extends ParserBridge1[Int, Num]
case Add(x: Expr, y: Expr)
object Add extends ParserBridge2[Expr, Expr, Add]

}
lazy val expr: Parsley[Expr] = add | '(' ~> expr <~ ')' | Num(number)
lazy val add: Parsley[Expr] = Add(expr, '+' ~> expr)

The indirect left-recursion is successfully detected by parsley-garnish, and it is able to offer an automated fix.
For brevity, the parser type annotations will be omitted in subsequent examples, as they are not changed by
parsley-garnish.

lazy val expr = chain.postfix[Expr]('(' ~> expr <~ ')' | number.map(x1 => Num(x1)))
(('+' ~> expr).map(x1 => x2 => Add(x2, x1)))

lazy val add = Add(expr, '+' ~> expr) // unchanged and no longer referenced by expr

Although the output compiles and is functionally correct, there are a few areas for improvement:

• The definition of expr becomes somewhat cluttered, as the transformation operates by recursively visiting
non-terminals and inlining their transformed definitions if they are left-recursive. In this example, the add
parser was originally mutually left-recursive with expr, so it was inlined into expr. A possible solution to
address this is to separate out these inlined parsers into new variables – they cannot overwrite the original
definitions, as they may still be required by other parsers.

• Use of the parser bridge constructor for Num is not preserved – parsley-garnish was unable to resugar
this back into its original form, instead leaving it in a more syntactically noisy form with map.
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7.2.3 Hidden Left-Recursion
The final class of left-recursive grammars is hidden left-recursion, which in general are the most challenging to
detect and handle. Hidden left-recursion occurs when a parser invokes itself after invoking other parsers that
have not consumed any input. They generally have a form similar to the following:

⟨a⟩ ::= ⟨b⟩ ⟨a⟩ ⋯
⟨b⟩ ::= 𝜖

In this example, ⟨b⟩ is able to derive the empty string, so ⟨a⟩ is able to parse ⟨b⟩ without consuming input and
then invoke itself, creating a left-recursive cycle. The following rather contrived example showcases a hidden
left-recursive cycle in a, and the warning that parsley-garnish issues:

lazy val a: Parsley[Int] = b ~> a
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// error: [FactorLeftRecursion] Left-recursion detected, but could not be removed from a.
// The resulting chain would be given a parser which consumes no input,
// causing it to loop indefinitely:
// chain.postfix[Int](some(digit) ~> a)(pure(x1 => x1))

lazy val b: Parsley[Int] = many(digit).map(_.mkString.toInt)

This parser is an instance of hidden left-recursion, since many repeatedly parses its given parser zero or more times,
allowing it to succeed without consuming any input. parsley-garnish can detect cases of hidden left-recursion
as long as it encounters combinators that it recognises, because as part of the unfolding transformation it must
know about the empty-deriving semantics of parsers. However, it is unable to provide an automated fix since the
postfix combinator encodes the behaviour of associative operators, which is not the case here.

Most cases of hidden left-recursion likely require manual intervention to fix, as it is unclear what the intended
behaviour of the parser is. Therefore, although parsley-garnish is able to detect hidden left-recursion, it is
unable to suggest a fix in any case. The mechanism in which it catches these cases is when the leftRec portion
of the unfolded parser simplifies to pure(x), which parsley-garnish rejects because it would cause an infinite
loop. This can be seen in the error message, although in this context it is not particularly helpful as it leaks how
parsley-garnish has desugared the parser while attempting to unfold it – for example, the some results from
unfolding the many combinator. Future work could see improvements in the error messages to make them more
helpful and informative in the case of hidden left-recursion.

Summary

The evaluation in this section shows that parsley-garnish is able to detect and handle all forms of left-recursion,
although the quality of the output varies depending on the case. Revisiting the evaluation criteria:

• All classes of left-recursion can be detected, although hidden left-recursion cannot be automatically fixed.
However, this is mostly due to the difficult nature and inherent ambiguity of grammars with hidden
left-recursion.

• In all tested examples, the automated fixes were correct – some of these have been proven by equational
reasoning. A natural extension of this work would be to formally prove the correctness of the transformation
in the general case.

• The transformed output is generally clear and idiomatic, although there are areas for improvement in
the preservation of syntactic sugar. A desirable next step would be to refactor postfix parsers into more
specialised forms if possible for the given parser.

• In most tested cases, the transformed output is able to compile. However, since parsley-garnish tends
to prefer creating curried functions, more complex parsers may require manual intervention to fix type
inference issues. This is one of the major limitations of the current implementation, as it is undesirable for
linters to suggest non-compiling fixes.
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Chapter 8
Related Work
The work in this project draws inspiration from a variety of areas, which are briefly summarised in this chapter.

8.1 Library-Specific Linters

Renggli et al. [2010] acknowledge that generic language-level linters and static analysers fail to capture best
practices and common errors particular to specialised domains. This is a sentiment shared by Gregor and Schupp
[2006], who discuss how statically checking library semantics is very different from checking language semantics,
arguing that this necessitates new program representation at the appropriate level of abstraction. The work in
this project corroborates these claims, as the work in chapter 5 demonstrates that the generic Scala ast is not at
a sufficient level of abstraction to perform complex parser transformations. Gregor and Schupp [2006] also use a
similar terminology to parsley-garnish of “lifting” their static checker from language to library level.

The situation that Renggli et al. [2010] faced is similar to the one in this project, as they worked with an
embedded dsl, but in Smalltalk. For their static analyser, the authors also had access to a Scalafix-like tool which
reuses the existing ast of the host language. However, they opted to define their own separate dsl to specify lint
and rewrite rules. In contrast, this project argues that the most ergonomic approach is to model the linter ast on
the original ast of the dsl itself – this allows parsley-garnish to manipulate asts of parsers in a high-level
declarative manner comparable to writing standard parsley code.

8.2 Left-Recursion Removal
The need to remove left-recursion from parsers is not a new problem, as many popular parser-writing tools
such as antlr [Parr 2013] produce recursive-descent parsers. Classical left-factoring algorithms such as Paull’s
algorithm [Moore 2000] and the left-corner transform [Rosenkrantz and Lewis 1970] have been around for decades.
The idea of using the chain family to idiomatically write left-associative parsers using parser combinators is
also rather established [Fokker 1995], and the left-recursion transformation algorithm in parsley-garnish is
itself based on work from 2004 [Baars and Swierstra 2004]. However, the context in which this transformation
is applied is relatively novel, as it is implemented as a code rewrite rule for a linter. Since the output of the
transformation is user-facing, rather than generated code, it must be readable and understandable to the end user
– this was one of the key challenges faced in this project.

8.3 Metaprogramming and Domain-Specific Languages
The work in chapter 5 draws many parallels to techniques in the field of metaprogramming, especially in
its intersection with dsls. Squid [Parreaux, Shaikhha, and Koch 2017b; Parreaux, Shaikhha, and Koch 2017a;
Parreaux, Voizard, et al. 2017] implements quasiquotes for Scala 2.11 and 2.12 that, unlike Scalameta’s quasiquotes,
are type-safe and hygienic. These quasiquotes also have rudimentary function inlining features, similar to
the 𝛽-reduction and normalisation techniques used in this project. Squid quasiquotes were used to perform
multi-staged rewrite-based optimisations on a linear-algebra dsl [Shaikhha and Parreaux 2019], generating
optimised code using the same flavour of approach as parsley Haskell [Willis, Wu, and Pickering 2020; Willis
2024]. This dsl, similar to parser combinators, is highly based on algebraic laws, so there are many similarities
in the optimisation techniques used in both projects. By the observation in §5.1, therefore, this work is dual to
the simplification work achieved in parsley-garnish – it is possible to adapt the work used by the authors to
develop a linter for their dsl.

Scala 3’s macro system [Stucki, Brachthäuser, and Odersky 2021] has similar type-safety and hygiene guaran-
tees as Squid, and supports 𝛽-reduction on staged Expr trees. These techniques supersede the work in §5.2, which
was necessitated only because Scalameta trees do not have the same functionalities. Squid and Scala 3 macros are
superior to the expression representation in this project in the sense that they formalise their type-safety and
hygienic properties.

Finally, as already noted in §5.2, the implementation of the Expr ast also shares similarities with the Defunc
and Lam infrastructures for code optimisation in parsley Haskell.
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Chapter 9
Conclusion
This project has presented a number of lint rules for the parsley parser combinator library:

• Ambiguous Implicit Conversions (§3.1) alerts the user when multiple conflicting implicit conversions are in
scope for their parsers, providing further context why the Scala compiler rejects their program.

• No Explicit Implicit Conversions (§3.2) automatically removes unnecessary explicit calls to the implicit
conversion methods in parsley, which is a code smell.

• Factor Left-Recursion (chapter 4 and §6.1) rewrites unproductive left-recursive parsers into an idiomatic
form that parsley supports. In cases where this cannot be automatically fixed, the rule warns the user
that their parser will cause an infinite loop at runtime.

• Simplify Parsers (§6.2) suggests and applies simplifications to parsers based on the rules of parser laws.

• Avoid Parser Redefinitions (§6.3) suggests and applies rewrites to parsers that accidentally redefine existing
higher-level combinators in the parsley api.

Implementing these rules necessitated the development of intermediate ast representations to improve the
static inspectability of parser and expression terms. The Parser ast (§4.2.1 and §5.1) models the parsley dsl,
allowing code of parsers to be manipulated in a high-level manner, as if they were parsers themselves. It provides
a high-level interface for writing syntax-directed transformations on parser terms, and most importantly handles
the burden of simplifying parser terms into a readable form, based on similar optimisation techniques used
in parsley itself. The Expr ast (§5.2 models an extension of the 𝜆-calculus, allowing static representation of
expressions to be partially evaluated and normalised to a simpler form.

Section 7.2 shows that the left-recursion rule is effective at refactoring parsers for the majority of cases,
representing a success for both the transformation algorithm itself, but also the internal Parser and Expr
infrastructure that simplifies terms to a readable form.

9.1 Future Work
Other than the obvious of adding more lint rules to parsley-garnish, and those already discussed in the body of
the report, there are several avenues for future work that could be pursued.

9.1.1 Implementing Left-Recursion Factoring in parsley

Implementing the left-recursion factoring transformation in parsley itself would allow users to directly write
parsers in left-recursive form without needing to transform it into a chain combinator, whether by hand or via
parsley-garnish. This is possible to achieve in parsley: §5.1 discusses the relationship between the parsley-
garnish Parser ast and parsley’s own internal ast. Since parsley is introspective enough to be able to inspect
and manipulate its deep-embedded combinator tree, this transformation is possible. However, this is not ideal
from a performance perspective, since this transformation would have a runtime overhead – because of this,
parsley-garnish was conceptualised as a linter rather than part of parsley itself.

On the other hand, parsley Haskell and the future meta-parsley implementation in Scala would be able
to implement a staged version of this transformation, eliminating this overhead. This could therefore be future
work for the meta-parsley project.

One could argue from a design perspective that the higher-level abstraction of the chain combinators is
a more desirable form to write parsers for left-associative operations, rather than a lower-level left-recursive
grammar rule. It could also be controversial for purists, in the sense that it obfuscates the peg semantics of the
parser combinator library, allowing cfg-like parsers to be written directly. These are design problems that could
warrant further discussion in future work.

9.1.2 Resugaring Parsers
Significant improvements can be made in the resugaring of parser terms, since the current implementation
is relatively naive: §7.2 shows where this sometimes fails. The work by Pombrio and Krishnamurthi [2015]
seems to be a promising approach to this problem, describing a resugaring approach that remembers and reflects
the original style in which the expression was written. This may have further ramifications, such as allowing
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the left-recursion transformation (or any future transformation rules) to show the user how it was achieved
step-by-step, by resugaring the parser at each step of the transformation process. This would further improve the
pedagogical value of the parsley-garnish linter.

9.1.3 Intermediate Expression ast
The Expr ast could be further improved in a number of ways:

• Introducing a proper notion of 𝜂-reduction of Expr terms could further simplify their final output. This is
not well-defined on Scala, although a pseudo-𝜂-reduction transformation would see lambda expressions
being transformed to use placeholder syntax if they can.

• Implementing proper hygiene and well-scopedness in the Expr ast would improve the reliability of the
normalisation and partial evaluation techniques. Although the transformation of terms into expressions
should be well-formed, there is no guarantee that the resulting expression is well-scoped. An approach
similar to Squid’s quasiquotes or Scala 3 macros would be beneficial for the expression architecture.

• Further improving the static inspectability of what are currently Translucent terms could allow expressions
to undergo real partial evaluation, rather than just normalisation. For example, if a fully closed term is
reduced to Translucent(1 + 1), this could be evaluated to just 2. At the moment, this is not possible
since Translucent represents the furthest the term can be inspected.
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Appendix A
Proofs of Parser Laws
The Haskell gigaparsec library uses a continuation-passing style (cps) to define its parsers, which makes it
easier to reason about their semantics. The approach taken to prove the following parser law for parsley is
via equational reasoning on gigaparsec semantics, under the assumption that their semantics are equivalent.
While there is no formal proof of this equivalence at the present, gigaparsec was designed to have semantics
equivalent to parsley’s.

A.1 Left absorption for fmap

f <$> empty

= { applicative functor law }

pure f <*> empty

= { definition of <*> }

liftA2 ($) (pure f) empty

= { semantics of liftA2 }

Parsec $ λst ok err →

let ok' x st' = (unParsec empty) st' (ok . (x $)) err

in (unParsec $ pure f) st ok' err

= { semantics of empty }

Parsec $ λst ok err →

let ok' x st' = (unParsec $ raise (`emptyErr` 0)) st' (ok . (x $)) err

in (unParsec $ pure f) st ok' err

= { semantics of raise }

Parsec $ λst ok err →

let ok' x st' = (unParsec $ Parsec $ λst'' _ bad →

useHints bad (emptyErr st'' 0) st') st' (ok . (x $)) err

in (unParsec $ pure f) st ok' err

= { 𝛽-reduction }

Parsec $ λst ok err →

let ok' x st' = useHints err (emptyErr st' 0) st'

in (unParsec $ pure f) st ok' err

= { semantics of pure }

Parsec $ λst ok err →

let ok' x st' = useHints err (emptyErr st' 0) st'

in (unParsec $ Parsec $ λst'' ok'' _ → ok'' f st'') st ok' err

= { 𝛽-reduction }

Parsec $ λst ok err →

let ok' x st' = useHints err (emptyErr st' 0) st'

in ok' f st

= { inline ok' }
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Parsec $ λst ok err → useHints err (emptyErr st 0) st

= { rearrange and 𝛼-conversion }

Parsec $ λst _ bad → useHints bad ((`emptyErr` 0) st) st

= { fold definition of raise }

raise (`emptyErr` 0)

= { fold definition of empty }

empty
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