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Background 
 
Scientific research relies on our ability to simulate scientific phenomena. From 
understanding how biological systems interact to modelling the evolution of the 
universe, simulations allow us to predict properties, test hypotheses, and explore 
scenarios that might be di=icult to investigate experimentally. Many of the physical 
systems we are interested in studying today exhibit strongly multi-scale phenomena. 
These systems are characterised by their complex interactions across multiple spatial 
and temporal scales, for example, the interaction of clouds with atmospheric 
circulation in global climate models, or the formation of hierarchical dark matter 
structures. 
 
Accurately carrying out multi-scale simulation poses a significant challenge, as it 
requires sophisticated models that can correctly capture these interactions. Moreover, 
the computational cost of traditional numerical simulation (such as finite di=erence 
and finite element modelling) can be immense, requiring the use of supercomputers for 
each simulation. 
 
In recent years, the field of scientific machine learning has o=ered new ways of 
overcoming these challenges [1]. For example, physics-informed neural networks 
(PINNs) [2,3] are a way to carry out simulations using neural networks. In contrast to 
traditional numerical methods, they do not require complex simulation meshes and 
they can easily incorporate observational data to learn about interactions. However, 
using PINNs out-of-the-box comes with significant challenges; they can be 
computationally expensive to train and can struggle to model multi-scale interactions. 
 
Our recent work [4,5] showed that PINNs can carry out multi-scale simulation 
e=ectively by combining them with domain decomposition and multilevel modelling. 
Domain decomposition allows the global simulation problem to be decomposed into 
smaller, easier-to-solve problems, whilst multilevel modelling provides better 
communication between multi-scale interactions. 
 



 
 

Figure 1: Multi-scale simulation with physics-informed neural networks. In our recent 
work, we propose a method for multi-scale simulation which combines physics-
informed neural networks with domain decomposition and multilevel modelling. The 
simulation works by dividing the modelling domain into many subdomains, placing 
separate neural networks in each subdomain, and training the networks in parallel using 
a physics-informed loss function. Example shown is using our method to simulate 
seismic waves in an earthquake. 
 
Project 
 
The goal of this project is to investigate whether PINNs can carry out large, multi-scale 
simulation e=iciently and accurately. We will extend our existing method so that it trains 
across multiple GPUs, allowing arbitrary hardware scaling. We will also investigate 
algorithmic improvements for improving e=iciency and accuracy, such as adaptively 
learning domain decompositions. 
 
A major goal is to be able to carry out realistic multi-scale simulations, such as 
turbulent fluid dynamic simulations with high Reynolds numbers (for example, 
modelling the Earth’s climate), and inhomogeneous wave simulations (for example, 
modelling regional earthquakes). Another goal is to use the PINN to learn multi-scale 
interactions from observational data. Key research questions are: how do PINNs 
compare to traditional numerical methods when carrying out multi-scale simulation? 
What are e=ective ways of modelling multi-scale behaviour with PINNs? How does 
accuracy and convergence scale with problem size? 
 
Please see the o=icial GitHub repository for our existing code: 
https://github.com/benmoseley/FBPINNs 
 
Impact 
 
E=icient and accurate multi-scale simulation methods will have a transformative 
impact on science. They will allow us to better understand the impact of complex 
interactions in physical systems, and lead to more accurate predictions and 
understanding in fields such as climate modelling, materials science, and biological 
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systems. There are many impactful simulation tasks across the Department of Earth 
Science and Engineering which could be studied. 
 
Supervision 
 
Dr. Ben Moseley is a Lecturer in AI (Schmidt AI in Science Fellow) at the Department of 
Earth Science and Engineering and a fellow at the Imperial I-X Centre. He heads the 
scalable scientific machine learning lab and is an expert in scientific machine learning, 
physics-informed neural networks, neural di=erential equations, hybrid modelling, 
learned inverse algorithms, high-performance computing, geophysics, and planetary 
data science. 
 
We are open to identifying a further co-supervisor or project advisor as necessary. We 
actively encourage collaboration with industry and other research groups. 
 
Research group 
 
The student will be part of the scalable scientific machine learning lab headed by Dr. 
Ben Moseley. The lab accelerates scientific research by designing scientific machine 
learning algorithms and applying them to impactful problems across Earth science, 
space science, and other domains. 
 
We value interdisciplinarity – we train our members across machine learning, applied 
mathematics, high-performance computing, and in domain-specific areas including 
geophysics, climate science, and planetary science. We collaborate with other groups 
at the Department of Earth Science and Engineering, I-X (Imperial’s AI initiative), other 
Imperial departments, and with external universities and industry partners. Lab 
members are encouraged to present and publish at high-impact conferences and 
journals. 
 
Student profile 
 
We are looking for someone who is motivated to complete a PhD in scientific machine 
learning, high performance computing, and multi-scale modelling across scientific 
domains. Given the interdisciplinary nature of this project and group, we do not expect 
candidates with deep experience in all areas; instead, we are looking for someone who 
has a strong foundation, a willingness to work across disciplines, a passion for 
continuous learning, and the ability to approach complex problems with creativity and 
curiosity. 
 
Essential qualifications / experience: 

- Good Master’s degree in a relevant field, e.g. mathematics, physics, computer 
science, engineering, or Earth science. Motivated candidates with an excellent 
bachelor’s degree and a relevant research portfolio are encouraged to apply 

- Completed courses in machine learning and/or applied mathematics / 
numerical modelling 



- Coding proficiency in e.g. Python/ C++/ Julia/ Fortran 

Desirable qualifications / experience: 
- Understanding of numerical modelling (finite di=erence, finite element, spectral 

methods, multilevel methods, etc) 
- Understanding of scientific machine learning, in particular physics-informed 

neural networks 
- Familiarity with di=erent deep learning architectures 
- Proficiency with Python machine learning frameworks (PyTorch, JAX (with 

Equinox)) 
- Experience in scientific, HPC, GPU, and/or parallel computing 
- Relevant publications and/or industry experience are a plus 

 
Funding 
 
This project is not currently funded through a research grant and is eligible for College 
and/or Departmental scholarship funding. For more details on scholarship funding and 
deadlines see here:  https://www.imperial.ac.uk/earth-science/prosp-students/phd-
opportunities/funding/  
 
Apply 
 
If you are interested, please start by sending us a CV and detailed description (~200-400 
words) of your relevant experience and specific research interests. 
 
For more details on the Imperial PhD application process see here: 
https://www.imperial.ac.uk/earth-science/prosp-students/phd-opportunities/ 
 
Contact 
 
Ben Moseley will be joining Imperial in November 2024. Before this date, please visit his 
personal website for contact details: https://benmoseley.blog/ 
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