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Previous work: Use Improved Pyramid Wasserstein Generative Adversarial Networks (IPWGAN)

to generate pore-space images
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S o Figure 2. Overview of feature statistics mixing regularization (Section 3.2). Within the forward pass in the discriminator, we perturb

features by applying AdaIN with a different sample. In deeper layers, the perturbations are applied recursively. A scalar o ~ Uniform(0, 1)
moderates their strength. Then we enforce similarity between the original output and the perturbed one.

Feature statistics mixing regularization (FSMR)

https://github.com/ImperialCollegeLondon/IPWGAN

Zhu, L., Bijeljic, B., & Blunt, M. J. (2024). Generation of heterogeneous pore-space images using improved pyramid Wasserstein generative
adversarial networks. Advances in Water Resources, 104748.



Use IPWGAN to generate pore-space images

e. Savonnieres carbonate

d. Estaillades carbonate

5 J
g o dt
i &
E '. ..‘
3 y Training image size : 128 s
N N Cmn! image size: 64
as: ] l
) 0 150 200 - 0 £ 10wo

- Beres ~— Bentheimer

Corvelation coefficient

o
Lag distance (pixels) Lag distance (pixels)

a. Berea sandstone b. Bentheimer sandstone

= Mt Simon|

. Training image size: 64

100 I‘II
Lag distance (piscls)

c. Mt. Simon sandstone

Type Berea sandstone Estaillades carbonate

Savonnieres carbonate

T, ¢\4¢ a2 ”. .4 -.\-‘
« o "

. " \
P -4"(‘" b ‘1\‘

Real i 1magee

e i \ 1
z(ﬂn’ o 200500 % 400 pns 46tum~u

o,
IPWGAN ¥ ’ “y

v,, Naa 4 _‘_ .\ ‘
20(?41..4: 200 jm * 400 pm<® 5 Rm

’..‘:u ‘

DCGAN ’_'

zo@,.mi

fe tﬁ%;

¢ ‘P‘g.
400 ym 4 Oﬁm

i

Wlum'

The study of rock sample generation has made it possible to obtain virtual digital rocks with

arbitrary scales and feature shapes. (Completed using Imperial high-performance computing)
Zhu, L., Bijeljic, B., & Blunt, M. J. (2024). Generation of heterogeneous pore-space images using improved pyramid Wasserstein generative

adversarial networks. Advances in Water Resources, 104748.



Use IPWGAN to generate pore-space images
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The study of rock sample generation has made it possible to obtain virtual digital rocks with

arbitrary scales and feature shapes. (Completed using Imperial high-performance computing)
Zhu, L., Bijeljic, B., & Blunt, M. J. (2024). Generation of heterogeneous pore-space images using improved pyramid Wasserstein generative
adversarial networks. Advances in Water Resources, 104748.



Generate multiphase fluid pore-scale 1mages

Why?

® Generate images of both the pore space and the
fluids within.

® Have pore-scale imaging experiments for training.

® Can be used as a basis for simulation to determine
relative permeability and capillary pressure.

Data: Bentheimer Sandstone (Fw = 0.15)
(Voxel size: 3.58 um, 1000x1000x3600)
Red: oil; Blue: brine; Green: matrix.

Lin, Q., Bijeljic, B., Pini, R., Blunt, M., Krevor, S. Imaging and measurement of pore-scale interfacial curvature to

determine capillary pressure simultaneously with relative permeability. Water Resources Research. 2018.



Diffusion models

Diffusion models: X0
Gradually add Gaussian - - - - - - - R
noise and then reverse

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

score functlon .
dx = [f(x,t) — ¢° (t{Vx log p; (xi] dt + g(t)dw

Reverse SDE (noise — data)

Base model: Transformer



Diffusion models
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The generation of multiphase fluid pore-scale images involves the pores and the shapes and

relationships between the two-phase fluids, which requires higher diversity and authenticity.

In order to speed up the generation, we chose Denoising Diffusion Implicit Models (DDIM)
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Two-point cross-correlation function (oil-water) image. Train dataset include 13,000 data.



Results: visualization of 2D cross-sections of 3D images (size: 967)
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Results: Porosity, permeability and saturation parameters
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Results: Curvature
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Results: Interfacial area
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Results: correlation functions
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https://github.com/ImperialCollegeLondon/DDIM
Zhu, L., Bijeljic, B., & Blunt, M. J. (2025). Diffusion Model-Based Generation of Three- Dimensional Multiphase Pore-Scale Images.
Transport in Porous Media, Under review.



Next steps and conclusions

Diffusion models provide good images of both the pore space and fluids within them with a superior
performance compared to GANSs.

Work on further testing and training.

Each fluid distribution, under any conditions we want
Two-phase flow, capillary trapping, ripening, reactive transport. ..



Next steps and conclusions
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Thanks for your attention!

Continuing progress in Al for dynamic flow in porous media to
advance pore-scale modelling and imaging research!

We gratefully acknowledge the assistance provided by the other group members

(e.g., Sajjad Foroughi, Zhuangzhuang Ma, Asli Gundogar, Min Li...) throughout this research.



