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Abstract— Air-filled metal-pipe rectangular waveguides (MPRWGs) represent one of the most
important forms of guided-wave structure for terahertz applications. Well-known commercial
electromagnetic modelling software packages currently employ over-simplified intrinsic frequency
dispersion models for the bulk conductivity of normal metals used in terahertz structures at room
temperature. This paper has compared various conductivity modelling strategies for normal
metals at room temperature and characterized rectangular waveguides and associated cavity
resonators between 0.9 and 12 THz. An expression for the geometrical factor of a rectangular
cavity resonator has been derived for the general case of a metal characterized with µr 6= 1 and
ωτ > 0. In addition, a method for determining the corresponding lossless frequency of oscillation
had been given for the first time for such models. Using these techniques, a quantitative analysis
for the application of different models used to describe the intrinsic frequency dispersion nature
of bulk conductivity at room temperature has been undertaken. When compared to the use of
the accurate relaxation-effect model, it has been found that HFSSTM (Versions 10 and 11) gives
a default error in the attenuation constant for MPRWGs of 108% at 12THz and 41% errors in
both Q-factor and overall frequency detuning with a 7.3 THz cavity resonator. With the former,
measured transmission losses will be significantly lower than those predicted using the current
version of HFSSTM, which may lead to an underestimate of THz losses attributed to extrinsic
effects. With the latter error, in overall frequency detuning, the measured positions of return
loss zeros, within a multi-pole filter, will not be accurately predicted by the current version of
HFSSTM. This paper has highlighted a significant source of errors with the electromagnetic
modeling of terahertz structures, operating at room temperatures, which can be rectified by
adopting the classical relaxation-effect model to describe the frequency dispersive behavior of
normal metals.

1. INTRODUCTION
The past decade has seen rapid developments in the exploitation of the lower terahertz frequency
band [1–5]. Applications include radiometric imaging and remote sensing; spectroscopy and radio
astronomy; as well as high-speed communications. Air-filled metal-pipe rectangular waveguides
(MPRWGs) represent one of the most important forms of guided-wave structure for applications at
(sub-)millimetre-wave frequencies. With the development of low-cost microfabrication technologies,
high tolerance structures are becoming more affordable [6, 7]. This is helping to open up the lower
terahertz frequency band to new, and possibly ubiquitous, applications in the not too distant future.

In addition to the advances being made for the manufacture of terahertz MPRWG structures [1–
5], AB MILLIMETRE claim that their 8 GHz to 1THz vector network analyzer (MVNA-8-350) can
be pushed to perform measurements up to ca. 2THz [8]. However, some well-known commercial
electromagnetic modelling software packages currently employ over-simplified frequency dispersion
models for the conductivity of metals used to predict the performance of terahertz structures
at room temperature. For example, Ansoft’s High Frequency Structure Simulator (HFSSTM) is
considered by some to represent a benchmark standard in electromagnetic modelling software,
even though it can give anomalous results under certain conditions (e.g., electrically thin-walled
MPRWGs [9]).

We investigate modelling anomalies found with HFSSTM for the simulation of terahertz air-filled
MPRWGs and associated cavity resonators. To this end, recommended standards for MPRWGs
have been adopted here for operation between 0.9 and 12 THz, based on ISO 497:1973 Preferred
Metric Sizes [10].

2. FREQUENCY DIPSERISON IN NORMAL METALS AT ROOM TEMPERATURE
For any normal metal at room temperature, the generic equations for intrinsic surface impedance
Zs, propagation constant γs, skin depth δs and complex skin depth δc are given by:
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ZS ≡ RS + jXS =

√
jωµ0µr

σ + jωεo

∼=
√

jωµ0µr

σ
with ω < 1015 rad/s

γS ≡ αS + jβS =
jωµ0µr

ZS
=

√
jωµoµrσ and δS =

1
<{γS} =

1
αS

and δc ≡ δ′c−jδ′′c =
1
γS

(1)

where Rs = <{Zs} is the surface resistance; Xs = ={Zs} is the surface reactance; j =
√−1

is the complex operator; ω = 2πf is the angular frequency; f is the frequency of the driving
electromagnetic field; µo is the permeability of free space; and µr is the relative permeability; σ
is the intrinsic bulk conductivity of the metal; εo = permittivity of free space; αS = <{γS} is the
attenuation constant; and βS = ={γS} is the phase constant.

2.1. Intrinsic Frequency Dispersion Models for Normal Metals at Room Temperature

The “classical relaxation-effect model” (variables identified by the suffix R) is well understood and
recognized as an analytical model that accurately describes the frequency dispersive nature of
normal metals at room temperature [11, 12]. With the classical relaxation-effect (or Drude) model,
intrinsic bulk conductivity is given by:

σR ≡ σ′R − jσ′′R =
σo

(1 + jωτ)
⇒

{
σ′R = σo

1+(ωτ)2 Simple Relaxation-Effect Model
σo Classical Skin-Effect Model

(2)

where, σo is the intrinsic bulk conductivity at DC; and τ is the phenomenological scattering relax-
ation time for the free electrons (i.e., mean time between collisions).

The “simple relaxation-effect model” (variables identified by the suffix R′) takes only the real
part of the conductivity from the classical relaxation-effect model. This model tried to remove
the need for a complex conductivity, while still acknowledging that it has both a frequency and
temperature dependency.

The “classical skin-effect model” (variables identified by the suffix o) removes the frequency de-
pendency, while still keeping a temperature dependency. This model is traditionally used by RF,
microwave and even millimeter-wave engineers, by default. With both the simple relaxation-effect
and classical skin-effect models, equations for surface impedance, propagation constant and skin
depth are greatly simplified; albeit overly-simplified at terahertz frequencies. Commercial electro-
magnetic modelling packages, such as HFSSTM (Versions 10 and 11), assume the classical skin-effect
model by default, while giving the option to input frequency-dependent real values only for con-
ductivity [13]. It should be noted here that HFSSTM (Versions 10 and 11) allows complex values
for conductivity to be entered, but the imaginary term does not appear to be used in calculations.

The “effective relaxation-effect model” represents a logical way around the problem of not being
able to incorporate the imaginary part of conductivity. It can be shown that the effective intrinsic
bulk permittivity of the metal can be represented as:

εeff = εoεreff ≡ εo(ε′reff − jε′′reff ) = σeff /jω =
[
σ′ + j(ωεo − σ′′)

]
/jω (3)

where εreff is the effective relative intrinsic bulk permittivity of the metal (also know as the dielectric
function), and the effective dielectric constant of the metal ε′reff = <{εreff } is given by:

ε′reff = 1− σ′′/ωεo (4)

Therefore, with the effective relaxation-effect model, only the real values of intrinsic bulk conductiv-
ity and effective relative permittivity are needed to represent the classical relaxation-effect model.
Unfortunately, it will be shown that with HFSSTM (Versions 10 and 11) this solution does not
appear to work either, as the real part of effective relative intrinsic bulk permittivity also appears
to be ignored for normal metals.

2.2. Surface Impedance and Skin Depth Calculations

Using (1)–(2), the surface impedance and skin depth can be easily defined and calculated for a
normal metal at room temperature:
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Classical relaxation-effect model: σ(ω) → σR(ω)

ZSR ≡ RSR + jXSR =
√

jωµ0µr

σR
= ZSo

√
1 + ju;

δSR =
1

αSR
= <

{
jωµoµr

ZSR

}−1

= δSo

√
1 + u2

RSR

RSo
where u = (ωτ)

δcR =
1

γSR
=

√
1 + ju

jωµoµrσo
= δSo

√
1 + ju

(1 + j)
=

δSo

j2

√
1 + ju (1 + j)

=
δSo

2

(√√
1 + u2 + u− j

√√
1 + u2 − u

)

(5)

where RSR = RSo

√√
1 + (ωτ)2 − ωτ is the surface resistance and XSR = RSo

√√
1 + (ωτ)2 + ωτ

is the surface reactance.
Simple relaxation-effect model: σ(ω) → σR′(ω)

ZSR′ ≡ RSR′ + jXSR′ =

√
jωµoµr

σ′R
= ZSo

√
1 + u2;

δSR′ =
1

αSR′
=

1
σ′RRSR′

=

√
2

ωµoµrσ′R
= δSo

√
1 + u2

δcR′ =
1

γSR′
=

√
1 + u2

jωµoµrσo
= δSo

√
1 + u2

(1 + j)
=

δSo

2

√
1 + u2(1− j) =

δSR′

2
(1− j)

(6)

where RSR′ = RSo

√
1 + (ωτ)2 is the surface resistance and XSR′ ≡ RSR′ is the surface reactance.

Classical skin-effect model: σ(ω) → σo

ZSo ≡ RSo + jXSo =
√

jωµoµr

σo
= RSo (1 + j) ;

δSo =
1

αSo
=

1
σoRSo

=
√

2
ωµoµrσo

δco =
1

γSo
=

√
1

jωµoµrσo
=

δSo

(1 + j)
=

δSo

2
(1− j)

(7)

where RSo =
√

ωµoµr

2σo
is the surface resistance and XSo ≡ RSo is the surface reactance.

For gold at room temperature, the electrical parameters may differ between published sources;
depend on the exact temperature and method of deposition [11, 13, 14]. The values adopted here
for bulk DC conductivity, relative permeability and relaxation time are σo = 4.517 × 107 S/m,
µr = 0.99996 and τ = 27.135fs, respectively. In order to be consistent, these values have been used
in all methods of modelling (i.e., in both calculations and HFSSTM simulations). Fig. 1 shows the
calculated values from 0.9 to 12 THz for gold at room temperature for surface resistance, surface
reactance, skin depth and the imaginary part of complex skin depth.

It can be seen from Fig. 1(a) that all three models give diverging values for surface resistance as
frequency increases. Indeed, contrary to normal expectations, the rise in value for the relaxation-
effect model is much less than with the other models; resulting in lower levels of predicted at-
tenuation and higher unloaded Q-factors with the relaxation-effect model for MPRWG structures.
From Fig. 1(b), it can be seen that surface reactance is very similar for both classical and simple
relaxation-effect models, and these have a much greater increase with frequency when compared to
the classical skin-effect model; resulting in higher levels of predicted frequency detuning error with
the classical skin-effect model for cavity resonators.

With reference to Fig. 1(c), both classical relaxation- and skin-effect models give similar reduc-
tions in skin depth δS(ω) with frequency. However, with the simple relaxation-effect model, there
is a turning point at the relaxation frequency fτ = 5.865THz; above which the skin depth begins
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Figure 1: Calculated values for gold at room temperature: (a) surface resistance; (b) surface reactance; (c)
skin depth; and (d) imaginary part of complex skin depth.

to increase with frequency — contrary to conventional expectations. It will be seen in Section 4
that, for the general case of a metal with ωτ > 0, the unloaded Q-factor is inversely proportional
to the imaginary part of the complex skin depth ={δc(ω)}; this has been plotted in Fig. 1(d). It
can be seen that while the simple relaxation- and classical skin-effect models have frequency re-
sponses that scale those of skin depth, the classical relaxation-effect model has its imaginary part
of complex skin depth that decreases much more than with the other models. This will result in
higher levels of unloaded Q-factor and significant errors with the simple relaxation- and classical
skin-effect models for cavity resonators.

3. THZ METAL-PIPE RECTANGULAR WAVEGUIDE MODELLING

3.1. Proposed ISO 497:1973-based Standards for THz Frequencies

In Fig. 2, a uniform air-filled MPRWG is defined within the Cartesian coordinate system xyz.
Transmission is along the z direction, and over a distance d, with internal cross-sectional dimensions
a and b.

Figure 2: Internal spatial variable definitions for a uniform air-filled MPRWG.
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The structure in Fig. 2 has the ideal (i.e., lossless) dominant-mode guided wavelength given by
the following textbook expression [15]:

λg ideal =
λo√

1−
(

λo

λc

)2
=

λo√
1−

(
fc

f

)2
(8)

where, λo is the free space wavelength; λc = 2a is the ideal cut-off wavelength; a is the internal
width dimension of the MPRWG; fc = c/2a is the ideal cut-off frequency for the dominant TE10

mode; and c is the speed of light in free space.
For many decades, MPRWGs have been standardized by different designations (e.g., IEC-R,

EIA-WR and WG). Currently, commercialization of such waveguides exists up to 500 GHz (i.e.,
WR-2.2) by Millitech R© [15] and up to 1.157THz (i.e., WR-0.51) by Virginia Diodes Inc. [16].
However, there are still no global standards for frequency bands at terahertz frequencies. Cross-
sectional dimension variations between well-established standards create serious problems, which
are exacerbated by inadequate mechanical tolerances, as frequencies approach the terahertz spec-
trum. In order to provide compatible (interchangeable) hardware at terahertz frequencies, the
width dimension can be generated using the ISO 497:1973 Preferred Metric Sizes standard [10]; as
recently proposed for operational frequencies between 0.9 and 2.9 THz [17, 18]. The ISO 497:1973
standard is already adopted widely by industry for other applications, is infinitely extendable and
finer choices can accommodate smaller dimensions. Based on this standard, as shown in Table 1,
we have extended the four lower terahertz frequency bands [17, 18] up to 12 THz.

Table 1: Proposed air-filled MPRWG and cavity resonator definitions and specifications.

3.2. Calculation of Attenuation Constant
The propagation constant for a lossy metal-pipe rectangular waveguide can be accurately calculated
using the variational method [19] for the TEmo mode [7], as follows:

γ2
mo = Γ2

d − j
2Zs

ωµoµrb

[(
Γd

kc

mπ

a

)2

− k2
c

(
1 +

2b

a

)]
; Γ2

d = k2
c − k2

od

kc = ωc
√

µoµrεoεr → ωc
√

µoεo =
ωc

c
in free space

kod = ω
√

µoµrεoεr (1− j tan δ) → ko = ω
√

µoεo =
ω

c
in free space

(9)

where εr is the dielectric constant and tan δ is the loss tangent for the dielectric filler.
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The attenuation constant for this guided-wave structure can be obtained directly from the real
part of the propagation constant, i.e., α = <{γmo}. For the dominant TE10 mode, the following
expressions for attenuation constant can be calculated, based on the intrinsic frequency dispersion
models for normal metals at room temperature.

Classical relaxation-effect model
αR = <{γ10R} ; γ10R = f {ZSR} (10a)

Simple relaxation-effect model

αR′ = <{γ10R′} ; γ10R′ = f {ZSR′} (10b)
Classical skin-effect model

αo = <{γ10o} ; γ10o = f {ZSo} (10c)

Using (10) with the simple Power Loss approximation method, as used in [6], for calculating
attenuation constant in terms of the real part of the surface impedance only, it is easy to calculate
the percentage error in attenuation constant for the simple relaxation-effect model EαR′ and classical
skin-effect model Eαo

, relative to the classical relaxation-effect model, as follows:

EαR′ =
(

αR′ − αR

αR

)
· 100% ∼=




√√√√ 1 + (ωτ)2√
1 + (ωτ)2 − ωτ

− 1


 · 100%

Eαo
=

(
αo − αR

αR

)
· 100% ∼=

[√√
1 + (ωτ)2 + ωτ − 1

]
· 100%

(11)

For simplicity, it will be assumed throughout that the MPRWGs will have a height dimension of
b = a/2. The attenuation constants and resulting errors have been plotted against frequency, and
are shown in Fig. 3. To a first degree of approximation, it can be seen that the error increases
linearly with frequency for the classical skin-effect model; with a 108% error at 12 THz. The error
obtained with the simple relaxation-effect model is 373% at 12 THz.
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Figure 3: Calculated attenuation constants for the dominant TE10 mode: (a) JPL bands; (b) our bands;
and (c) resulting errors in attenuation constants.

3.3. Electromagnetic Simulation of Attenuation Constant

HFSSTM is often used to design terahertz guided-wave structures [1–5]. Therefore, to test its suit-
ability at these frequencies, a number of simple, uniform THz air-filled MPRWGs were simulated.
The HFSSTM results are shown in Fig. 4(a), while the calculated values are superimposed, for
comparison, in Fig. 4(b). It can be clearly seen in Fig. 4 that all the relaxation-effect model values
entered into HFSSTM give identical results to the calculated simple relaxation-effect model, while
HFSSTM (by default) gives results that conform to the calculated classical skin-effect model. This
clearly shows that HFSSTM (Versions 10 and 11) cannot give accurate results and that very large
errors will result, corresponding to those given in Fig. 3(c).
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Figure 4: HFSSTM simulated attenuation constant for the dominant TE10 mode in the JPL bands: (a)
HFSSTM only; and (b) HFSSTM and calculated values.

4. THZ CAVITY RESONATOR MODELLING

4.1. Derivation of Basic Equations
With reference to Fig. 2, the internal dimensions of a cavity resonator are a, b and d. The corre-
sponding textbook expression for the resonant frequencies for the TEmnl modes in an ideal (i.e.,
lossless) cavity is give by:

fmnl ideal =
c

2π

√(mπ

a

)2
+

(nπ

b

)2
+

(
lπ

d

)2

(12)

For simplicity, it will be assumed throughout that the cavity will have spatial dimensions of b = a/2
and d =

√
2a. Moreover, only the dominant TE101 mode will be considered:

∴ f101 ideal =
√

1.5fc =

√
3
8

( c

a

)
≡ ωI

2π
(13)

In HFSSTM, the eigenmode solver determines the complex resonant frequency of a structure ω̃o [20]:

ω̃o ≡ ω′o + jω′′o = ωo

√
1−

(
1

2Qu (ωo)

)2

+ j
ωo

Qu (ωo)

ωo = |ω̃o| =
√

(ω′o)
2 + (ω′′o )2 and Qu (ωo) =

ωo

2ω′′o

(14)

With a non-zero surface reactance, the equivalent surface inductance effectively reduces the loss-
less frequency of oscillation ωo from the ideal case ωI by a small perturbation, ∆ωI = (ωo − ωI).
Moreover, with most applications, the unloaded Q-factor Qu(ωo) is large enough so that the cor-
responding frequency detuning caused by ohmic losses (e.g., surface resistance) is negligible, such
that ω′o ∼= ωo. It has been shown by Slater [20] that, to the first order of small quantities:

ω̃o = ωo + j
ωI

2Qu (ωo)
where ωI = π

√
3
2

( c

a

)
(15)

when σo →∞ : ωo → ωI and QU (ωI) →∞ : ∆ω̃o = (ωo − ωI) + j
ωI

2Qu (ωo)
(16)

Now, the cavity perturbation formula can be used to relate the change in complex resonant fre-
quency to the corresponding change in surface impedance, as follows [20]:

∆ZS = −j2Γ ·∆ω̃o (17)
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It can be shown that, for the general case, the geometrical factor Γ is given by:

Γ = µ0

{
abd

(
a2 + d2

)

2 [2b (a3 + d3) + ad (a2 + d2)]

}
= µ0

(
3a

2(
√

2 + 10)

)
(18)

But, when σo →∞ : ZS(ωI) → 0 ∆ZS = ZS(ωo):

∴ ZS (ωo) = ωIΓ
(

1
Qu (ωo)

+ j
2 (ωI − ωo)

ωI

)

where RS (ωo) =
ωIΓ

Qu (ωo)
and XS (ωo) = 2Γ (ωI − ωo) (19)

We have found that for the general case of a metal with µr 6= 1 and ωτ > 0, in order to achieve a
self-consistent solution, the unloaded Q-factor can be expressed as follows:

Qu (ωo) =
λI(ωI)

8µr={δc (ωo)}
(

ωI

ωo

) {
2b

(
a2 + d2

) 3
2

[2b (a3 + d3) + ad (a2 + d2)]

}

=
1

µr={δc(ωo)}
(

ωI

ωo

) (
3
√

2a

4
(
5
√

2 + 1
)
)

where δc(ωo) ≡ δ′c(ωo)− jδ′′c (ωo) =
1

γS(ωo)
(20)

Now, the frequency of oscillation ω′o is defined in (14). The overall frequency detuning, which
takes both perturbation and frequency detuning due to ohmic losses into account, is given by
∆ω′o = (ω′o − ωI). The corresponding errors in overall frequency detuning, relative to the classical
relaxation-effect model, are given by:

Eω =
∣∣∣∣
∆ω′o −∆ω′oR

∆ω′oR

∣∣∣∣× 100% =
∣∣∣∣
ω′o − ω′oR

ω′oR − ωI

∣∣∣∣× 100%

where ∆ω′oR =
(
ω′oR − ωI

)
and ∆ω′o → ∆ω′oo = (ω′oo − ωI) or ∆ω′oR′ =

(
ω′oR′ − ωI

)
(21)

At the frequency of oscillation:

∴ Qu

(
ω′o

)
=

ωIΓ
RS (ω′o)

=
1

µr={δc (ω′o)}
(

ωI

ω′o

) (
3
√

2a

4
(
5
√

2 + 1
)
)

where δc(ω′o) ≡ δ′c(ω
′
o)− jδ′′c (ω′o) =

1
γS(ω′o)

(22)

The corresponding errors in unloaded Q-factor, relative to the classical relaxation-effect model, are
given by:

EQ =
∣∣∣∣
QU (ω′o)−QUR(ω′oR)

QUR(ω′oR)

∣∣∣∣× 100% =
∣∣∣∣
(

RSR(ω′oR)
RS(ω′o)

)
− 1

∣∣∣∣× 100%

where QU (ω′o) → QUo(ω′oo) or QUR′(ω′oR′) and RS(ω′o) → RSo(ω′oo) or RSR′(ω′oR′) (23)

4.2. Derivation of Lossless Frequency of Oscillation
In order to determine the level of unloaded Q-factor and overall frequency detuning, both at the
frequency of oscillation, it is first necessary to determine the lossless frequency of oscillation and
then the unloaded Q-factor at this frequency, so that the frequency of oscillation can be found
using (14). To this end, by equalizing equations for surface reactance, the lossless frequency of
oscillation can be found by solving the roots of the characteristic equation given for each of the
intrinsic frequency dispersion model.

The classical relaxation-effect model: ωo → ωoR

XSR(ωoR) = RSo(ωoR)
√√

1 + (ωoRτ)2 + ωoRτ ≡ 2Γ (ωI − ωoR)

∴ ·

√
ωoR

(√
1 + (ωoRτ)2 + ωoRτ

)

(ωI − ωoR)
−K ≡ 0 where K =

√
8µoσo

µr
·
(

3a

2(
√

2 + 10)

)
(24)
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For the simple relaxation-effect model: ωo → ωoR′

XSR′(ωoR′) = RSo(ωoR′)
√

1 + (ωoR′τ)2 ≡ 2Γ (ωI − ωoR′)

∴ ·
√

ωoR′ (1 + (ωoR′τ)2)
(ωI − ωoR′)

−K ≡ 0 (25)

For the classical skin-effect model: ωo → ωoo

XSo(ωoo) =
√

ωooµoµr

2σo
≡ 2Γ (ωI − ωoo)

∴
√

ωoo

(ωI − ωoo)
−K ≡ 0

ωoo = (W + ωI)−
√

(W + ωI)
2 − ω2

I where W =
1

2K2
(26)

4.3. Calculation and Electromagnetic Simulation of Unloaded Q-factor and Frequency Detun-
ing
The calculated and HFSSTM simulated values for unloaded Q-factor and overall frequency detuning
are plotted in Fig. 5(a), for rectangular waveguide cavity resonators operating in the dominant
TE101 mode. It can be seen that the results from HFSSTM correspond exactly to those calculated
using the classical skin-effect model. As previously explained in Section 2.2, the classical relaxation-
effect model will predict higher unloaded Q-factor and overall frequency detuning, when compared
to the other models.

The resulting errors in unloaded Q-factor and overall frequency detuning, relative to the classical
relaxation-effect model, show an almost identical frequency response for both with the classical skin-
effect model. Here, a 41% error is calculated for a 7.3THz cavity resonator. This level of error in
overall frequency detuning can have a dramatic impact on the positions of return loss zeros, within
a multi-pole filter. A much lower error is found in the overall frequency detuning with the simple
relaxation-effect model; with a worst-case value of 12% for a 3.7THz cavity resonator. However, a
63% error in the unloaded Q-factor has been calculated with the simple relaxation-effect model for
a 7.3 THz cavity resonator.
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Figure 5: (a) Unloaded Q-factor and overall frequency detuning for TE101 cavity mode, at the resonant
frequencies; and (b) resulting errors in Q factors and frequency detuning.

5. CONCLUSIONS

This paper has compared various conductivity modelling strategies for normal metals at room
temperature and characterized rectangular waveguides and associated cavity resonators between
0.9 and 12 THz. It has been found that the current versions of HFSSTM (Versions 10 and 11) cannot
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accurately predict the performance of structures operating at terahertz frequencies. For example,
with simple uniform MPRWGs, measured transmission losses can be significantly lower, which may
lead to an underestimate of THz losses attributed to extrinsic effects; such as poor mechanical
tolerances and surface roughness. Also, from the errors found in the frequency detuning of simple
rectangular cavity resonators, the measured positions of return loss zeros, within a multi-pole filter,
will not be accurately predicted.

It should be noted that while this paper has focused on the current version of HFSSTM, the
same problem can be found with other commercial electromagnetic modelling software packages
that use the overly-simplified classical skin-effect model by default. This paper has highlighted a
significant source of errors with the electromagnetic modeling of terahertz structures, operating
at room temperatures, which can be rectified by adopting the classical relaxation-effect model to
describe the frequency dispersive behavior of normal metals.
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