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Surface waves at an interface of two metamaterial structures with interelement coupling
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A configuration of two strongly coupled homogeneous two-dimensional metamaterial lattices of resonant
elements is shown to be able to propagate surface magnetoinductive waves along the interface by virtue of
coupling between the elements at the boundary. A study of the dispersion equations reveals the existence of two
separate pass bands for surface waves which may partly overlap with pass bands supporting bulk waves.
Experiments are reported on a structure consisting of 90 magnetically coupled capacitively loaded resonant
rings designed to operate around 55 MHz. The measured current distributions and dispersion curves extracted
from the experimental data are compared both with numerical simulations, using the generalized Kirchhoff’s
equation and with analytical expressions derived on the assumption of nearest-neighbor interaction. Excellent
agreement between the three approaches is found. Considering that surface waves of various kinds have found
a wide range of applications in the past, it is envisaged that this surface wave will open up fresh possibilities.
A number of examples are presented. It is conjectured that other existing metamaterial structures might also be

suitable candidates for propagating analogous surface waves.
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I. INTRODUCTION

Waves over surfaces of finite conductivity have been
known for over a century.!> They have had great significance
in understanding and making possible free space radio trans-
mission in the long and medium wave bands. Dielectric
coated metal wires, also capable of supporting surface
waves, were used in microwave applications as transmission
lines.>* Surface acoustic waves found application in a wide
variety of devices (see, e.g., Ref. 5). Perhaps the best known
surface waves are that which propagate along the boundary
of metals and dielectrics, known originally as surface plasma
waves,’ later called surface plasmons’ and surface plasmon
polaritons.® These waves exist due to the negative effective
dielectric constant of metals below the plasma frequency.
Their properties have been widely investigated (see, e.g.,
Ref. 9). A proposal for the amplification of surface plasmons
has also been made!'® and corroborated by experiment.'! Op-
tical phonons may also support surface waves'>!? due to the
negative effective dielectric constant available in the range
between the longitudinal and transverse optical-phonon
frequencies.

Waves due to coupling between metamaterial elements
were introduced by Shamonina et al.'* in 2002 who observed
that a chain of split-ring resonators'>!'® was capable of sup-
porting slow waves. They called them magnetoinductive
(MI) waves. Many aspects of these waves have by now been
explored such as the dispersion characteristics of forward
and backward waves,'”!® Brillouin diagrams accounting for
evanescent waves,!? spatial resonances,?® positive and nega-
tive refraction,”! propagation,?” waveguide components,?3?*

PACS number(s): 41.20.Jb, 42.25.Bs, 42.70.Qs, 73.20.Mf

All the experimental studies in the papers quoted above
were conducted in the megahertz and gigahertz regions. New
impetus to the study of MI waves came a few years later
when three new groups (those of X. Zhang, M. Wegener, and
H. Giessen) joined in extending the studies to infrared and
optical frequencies and to the third dimension. They also
introduced new terminology referring to these waves as mag-
netic plasmons and magnetization waves. Zhang’s group
studied in more detail the properties of two coupled elements
and introduced new structures.**~** They also made the in-
teresting proposal that waves due to coupling might also lead
to extraordinary optical transmission.*> Giessen’s and Wege-
ner’s groups investigated both two-dimensional (2D) and
three-dimensional (3D) configurations and, in particular, the
fishnet structure.*-32 Another new direction was initiated by
Baena et al’® and Radkovskaya et al>* who combined
effective-medium theories with those describing MI waves.
For a detailed review of waves on coupled elements see
Chaps. 7 and 8 in Ref. 55.

Surface waves have several advantages relative to bulk
waves: (i) they can concentrate the fields in a region close to
the surface, (ii) the surface is available and easily accessible
for placing devices, (iii) radiation effects are much reduced
in slow waves, (iv) as slow waves, they are capable of inter-
acting with other slow waves and since the advent of
metamaterials we also know that (v) their excitation on op-
posite surfaces of a slab makes possible the operation of the
“perfect lens.”® There is a prospect therefore that combining
the versatility of MI waves and their availability in the fre-
quency region from megahertz to optical frequencies with

coupling between the elements,? biperiodic structures,”®%  the wide range of applications offered by surface waves that
ring structures,” imaging,’*% nonlinear effects,>*7 and  different opportunities for practical applications will be
retardation. 33 opened.
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FIG. 1. (Color online) Schematic representation of two coupled
lattices capable of propagating MI waves.

Most waves that exist in the bulk have surface-wave
counterparts. However, it is far from obvious that MI waves
will display a surface wave behavior. In the present paper,
we show that two coupled media, each capable of supporting
a bulk MI wave in isolation, are indeed able to propagate
surface MI waves along their common boundary.

In Sec. II we shall derive the dispersion relations for two
strongly coupled homogeneous 2D lattices and in Sec. III
establish the conditions under which a wave can propagate
along the boundary and decay in the direction transverse to
the boundary. In Sec IV we present some examples of dis-
persion curves showing that at the same frequency it is pos-
sible for both surface waves and bulk waves to propagate.
Section V describes the experimental apparatus and the ex-
perimental arrangement. Experimental results are discussed
in Sec. VI. In Sec. VII the experimental results are compared
with simulated results obtained from the generalized Kirch-
hoff’s equation. The dispersion curves analytically derived
from the nearest-neighbor interaction assumption are com-
pared in Sec. VIII with those derived from experiments and
simulations. A discussion on the merits of this type of surface
wave is given in Sec. IX and conclusions are drawn in Sec.
X.

II. DISPERSION RELATIONS FOR TWO
COUPLED LATTICES

The first thought that comes to mind when considering
surface waves is that will a medium, that can support bulk
waves, also be able to support surface waves along the
boundary between the medium and a dielectric? This is ob-
viously not true in general but may be true if one of the
media has a negative materials constant (permittivity or per-
meability). In this paper we adopted a more general approach
in our search for surface waves. Instead of an interface be-
tween the MI-wave-supporting medium and a dielectric we
chose an interface between two media (see Fig. 1) each of
them capable of propagating bulk MI waves separately.

We shall now derive the dispersion relation of MI waves
in the two adjoining lattices shown in Fig. 1. This problem
has already been treated by Syms et al.>! when deriving re-
flection and transmission coefficients for a wave incident
from one of the media. The technique is to find the disper-
sion relations in the two media separately and then find the
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coupling between them by writing Kirchhoff’s equation for
each of the two boundary layers taking into account the mu-
tual inductance between elements across the boundary. In the
present paper we have an analogous approach starting with
the Lagrangian.*3

The elements chosen are split-ring resonators, arranged in
a planar-axial configuration (Fig. 1). The split-ring resonators
are in the x-z plane coupled axially in the z direction. In the
experiments they are realized by copper rings loaded by
lumped capacitors (see Sec. V) so they can be regarded as
LC circuits but, of course, the analysis would be valid for
any homogeneous set of resonant elements. The essential
requirement is that a,, which is the period in the x direction,
must be the same for both lattices. There is, however, a con-
siderable amount of freedom: the elements can have different
separations in the z direction, a,; and a,,, different mutual
inductances, M, M5, M,;, and M, in the x and z direc-
tions, and different resonant frequencies, wgy; and wg,. For
the existence of surface waves, as it will be shown later, the
most important parameter is M, the mutual inductance be-
tween the elements across the boundary. The column and
row numbers are denoted by 7n, and n,. The currents in the
top and bottom lattices are taken as Jnn. and I, n_ respec-
tively. ’ o

The Lagrangian for the upper lattice may be written as
follows:

£0=2 {é[qf;?nf—

nyn, 2

1 1 -(1
Z_C,I[qux?nz]z + Mxlqi(z):nz

(1 (1 (1 -(1 -(1
100 M 0 0
(1)

(1)

where ¢ ) is the charge on the capacitor in element (n,,n,),
C, is the capacitance, L is the inductance, and the dot de-
notes the time derivative. The superscript (1) refers to the
upper lattice. The summation runs from n,=0 to N,—1 and
from n,=0 to N,—1, where N, and N, are the number of
elements in the x and z direction, respectively.

The Lagrangian for the lower lattice is also given by Eq.
(1) provided the superscript 1 is replaced by superscript 2.
When we write the Lagrangian for the interface layers we
have to take into account the fact that the two lattices are
coupled by the mutual inductance, M. Therefore, the
Lagrangians for the interface layers are

1 (1 (2 (1
‘CI(J ) = ’C(l)(nxvo) + qr(qx)O[ngzt)O - leqz}:—l >

LY = £01,,0) + 47 [Md g - MogD . ()
Equations (1) and (2) may be converted into differential

equations with the aid of the Euler equation (see, e.g., Ref.
43). For the two lattices the operations to be performed are

d( ILw ) aLw®
di\ og?, | da,

and for the two boundary layers

p=1.2 (3)
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Assuming a time variation exp(—iwt) and performing the op-
erations indicated in Egs. (3) and (4) we have a set of differ-
ence equations in terms of the currents

@

],l ”, 1wq,(ll)n and I,l ”, tqu n, (5)

This set of difference equations may also be obtained by the
alternative method of using Kirchhoff’s voltage equations.
The next step is to assume a wave solution in the form

Jnx,n, = JO exp[i(nxkxax + nzkzlazl)]’

Inx,n, = IO exp[i(nxkxax + nzkz2az2)] > (6)

where Jj, and I, are constants, k.a, and k; »a,; , are the phase
changes per element in the x and z directions, respectively.

Solving the difference equations with the aid of Eq. (6),
we obtain the dispersion equations (the relationship between
frequency and wave numbers k, and k,) for the upper and
lower lattices as follows:

w%l
1- e + Ky cos(ka,) + k. cos(k,ja,) =0,

2
()

1- —022 + Ky cos(ka,) + ko cos(kpa.,) =0, (7)
w

where 2_2Mxl »/L and Kk, 2—2le »/L are the coupling
coefficients, wOl—l/LCl and w02—1/LC2 are the resonant
frequencies.

The influence of the boundary layers upon the solution is
obtained from Egs. (2) and (4) in the form

2
w,
1= =3+ 1y cos(kyay) + —Kﬂexp(ik,laz,) Jo+ 5I0 =0,
w 2 < 2

2
w, K. K
|:l — _022 + Ky COS(kxax) + _zzzexp(ikzzaZZ):|IO + EJO = O,
w

(8)
where k=2M/L. With the aid of Eq. (7), Eq. (8) reduces to

- %exp(— ik, a.1)Jo+ glo =0,

K. ) K
- ?zexp(— ikoa,)ly+ EJO =0. 9)

The above equation has nontrivial solutions when
2

exp(— ik, a,; —ika.,) = (10)

K:1Kz
We now have three equations, the two dispersion equa-
tions for the upper and lower lattices and Eq. (10) describing
the coupling between them. Our aim is to deduce from them
the full dispersion diagram, the dependence of frequency on
k.a,.
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III. CONDITIONS FOR SURFACE WAVES

Up to now the analysis has been entirely general, valid for
both propagating and evanescent waves. We shall now ex-
plore the conditions under which surface waves can be
present. In order to be able to talk about waves decaying
away from the boundary both k,; and k,, must have imagi-
nary components and considering the form in which the cur-
rents are assumed [see Eq. (6)] those imaginary components
must be negative. The key equation is Eq. (10). Clearly, in
order to satisfy this k,; and k., must be complex. Introducing
k.1 2=k, ,+ik’, , Eq. (10) can be rewritten as

exp[— i(kzlazl + kz,2az2)]exp[(kglazl + kZZ“zZ)] =%, (1 1)

where y=k?/(k, k.,). Surface waves must decay in the
transverse direction. There are actually two ways in which
they can decay, monotonically or alternately. For monotonic
and alternate decay the phase change per element must be
zero and mr, respectively. It may be seen from Eq. (11) that
the right-hand side is a real number and the second exponent
always gives us a real positive number. Hence the first expo-
nent must also give a real number depending on the sign of
v. If y<O (i.e., M., and M_, are of the opposite sign) then
one of the waves must be monotonic and the other one alter-
nate. If y>0 then both waves must have the same type of
decay, either monotonic or alternate.

The condition for the existence of surface waves may then
be clearly seen from Eq. (11). As mentioned before k7,a,,
and k’,a,, must both be positive and that can only be true if
[Y]>1 or

M?>|M_M_,|.

(12)

IV. DISPERSION CURVES

Let us next investigate the role of the various parameters
in shaping the dispersion curves. For simplicity let us start
with the case when the two lattices are identical, i.e., wy,
=wgy, M, ;=M ,, M,;=M,,, and a, =a,. In this case condi-
tion (12) makes very good sense. The coupling between the
lattices must be stronger than the transverse coupling be-
tween the elements in the lattices. It is interesting that there
are no other conditions. Under usual surface-wave conditions
(as it applies both to surface plasmons and surface phonons)
the two adjoining media must be different, one of the dielec-
tric constants must be positive and the other one negative.
This is not the case for magnetoinductive waves: the two
adjoining media can be identical. What matters is the strong
coupling between them. Obviously, for the surface waves in
the case of identical media the decay rates away from the
boundary in the +z and —z directions must be the identical,
and also the decay types must be the same: both monotonic
or both alternate. Then from Eq. (10) we find for the decay
rate

M

kglazl = kZZ“zZ = k”az =lo og 7 (13)

whence the dispersion relation takes the form
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FIG. 2. (Color online) Dispersion curves for two identical lat-
tices. Surface waves are shown by solid lines. Bulk waves may
exist within the shaded region bounded by dashed lines. Parameters
are k=0.4, k,=—0.095, and «,=0.05. (a) Real part and (b) imagi-
nary part of the normalized complex wave number.

2 2 2
1 —ﬁ;+%cos(kxax) + M:O, (14)
w L LM
where the = indicates whether the decay is monotonic or
alternate. It is worth noting that Eq. (14) is of the same form
as that of a one-dimensional MI wave shifted by = (M?
+M§)/(LM). There are, clearly, two pass bands, their sepa-
ration depends mainly on the parameter M /L. The value of
M, determines the dispersion inside the bands (width of the
band, the group velocity and whether we have a forward or a
backward wave) whereas M. influences the decay. The
smaller is M. the larger is the decay [see Eq. (13)].

Let us next plot the solution of Eq. (14) for some realistic
values of coupling coefficients: k=0.4, x,=-0.095, and «,
=0.05 corresponding to the planar-axial configuration shown
in Fig. 1. The dispersion curves, o/, as a function of k a,
for propagation and k7, for attenuation, are plotted in Fig. 2.
The surface waves are shown by solid lines.

There are also bulk MI waves described by Eq. (7). For
any particular value of k,a, the function cos(k.a,) may take
any value between —1 and 1. It follows then that MI waves
can propagate within the range of frequencies (shaded area in
Fig. 2 between dashed lines)

o_<ow<o,, (15)

where w. can be determined from the equation

2
Wy M
w—2 =1+ Txcos(kxax) *

Z

(16)

It may be seen in Fig. 2 that there is a frequency region in
which bulk and surface MI waves coexist. This is again dif-
ferent from some of the “traditional” surface waves which
propagate in the stop band of the bulk waves. In the metama-
terial context, however, such coexistence is known (see Ref.
57). Notice that in Fig. 2 the k,a, values for bulk and surface
modes are different. In other words the dispersion curves for
bulk and surface MI waves do not intersect each other. They
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FIG. 3. (Color online) Same as Fig. 2 but the coupling constant
between the lattices is increased to x=0.5.

represent independent solutions. They are not coupled to
each other. However, we cannot exclude the possibility that
they might become coupled in the presence of a major dis-
continuity in the structure.

The attenuation is plotted only for surface waves and only
for the lossless case which we assume here. There is no
attenuation in the pass bands and the attenuation sharply in-
creases outside the pass band. If we increase the coupling
coefficient between the lattices to 0.5 the two surface wave
bands will be further separated and the frequency bands for
the bulk and surface waves no longer overlap as shown in
Fig. 3.

Next we shall leave the geometry unchanged but assume
different resonant frequencies in lattices 1 and 2 choosing
wp=1.11w,, (Fig. 4). The dispersion curves plotted show
now two pass bands for bulk MI waves (their boundaries are
again marked with dashed lines) and the upper and lower
pass bands for surface waves. Again the attenuation is plot-
ted only for surface waves.

e
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FIG. 4. (Color online) Same as Fig. 2 but resonance frequencies
are assumed to be different in the two lattices: wg,=1.11wy;.
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FIG. 5. (Color online) A photograph of the experimental setup.
Excitation of the central elements on both sides of the interface by
a single transmitting coil may be seen on the right-hand side. De-
tection is by a receiving antenna moving above the elements.

V. EXPERIMENTAL CONFIGURATION

The experimental arrangement was similar to that re-
ported in Refs. 27 and 32. Two sets of elements were pre-
pared by loading singly split loops (mean radius of 11 mm)
by capacitors yielding resonant frequencies of 50.4 and 56
MHz and a quality factor of 165. The elements were ar-
ranged on a balsawood to form two adjoining planar-axial
lattices of 5 by 9 elements each, with either identical or
nonidentical resonant frequencies, and with the distance be-
tween the elements variable for each set of measurements.
The center-to-center distance between the elements in the
planar layers was kept 24 mm in all measurements whereas
the distance between layers within each lattice could be var-
ied between 20 and 30 mm. The center-to-center distance
across the boundary was only 10 mm assuring the strong
coupling needed for the excitation of surface waves.

A photograph (top view) of the adjoining lattices, corre-
sponding to the parameters used in constructing Fig. 4, is
shown in Fig. 5. The capacitances, making the rings resonant
cannot be seen since they are on the lower side of the rings.
The transmitting and receiving antennas are wire coils of 2.5
mm radius connecting the inner and outer conductors of a
coaxial cable so that the antenna area is one order of magni-
tude smaller than that of a split ring. The structure was ex-
cited by a transmitter coil put next to the first elements of
both interface layers as shown in the photograph, so that the
elements were excited asymmetrically, in order to be able to
excite both branches of surface modes. The current in each
element of the structure was measured by the receiver scan-
ning the magnetic field above the structure (see the inset in
the photograph). The phase and amplitude of the signal at
each element were determined with the aid of a network
analyzer (type HP8753C) at 1601 frequency points between
30 and 78 MHz. The coupling coefficients were measured
separately; their values have already been given in the pre-
vious section for calculating the theoretical curves.

VI. GENERALIZED KIRCHHOFF’S EQUATIONS
METHOD

Current distributions in metamaterial structures of interest
can be simulated with the aid of an extremely simple ana-
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lytical relationship, the generalized Kirchhoff’s equation
(GKE) introduced for the calculation of currents in Ref. 17.
It relates the excitation voltages to the currents via the im-
pedance matrix Z. If there are N elements, in any configura-
tion not necessarily in a regular lattice, then the relationship
may be written as

V=71, (17)
where

V=(V1,V2, ...,Vl',

,VN), 12(11,12,...,Ij,...,IN).

(18)

Here, V; is the voltage applied to the ith element and /; is the
current flowing in the jth element. The element Z;; (i # j) of
the impedance matrix is the mutual impedance between ele-
ment i and element j. Since Z;;=Z;; the matrix is symmetric.
The diagonal elements Z;; give the self-impedance of the ith
element equal to

Zi,»=—iwL+L+R, (19)
wC

where the resistance R is added to account for losses in the
elements. For a given excitation the current can be obtained
by inverting the Z matrix. It should be emphasized here that
the GKE is a very powerful method. In general, it could take
care of the situation in which the coupling between all the
elements is of importance. Its disadvantage is that it is a
blunt instrument: we can calculate the current distribution
but it offers no physical insight. In this sense it is similar to
numerical packages, a reason why we prefer to call it simu-
lation rather than theory. In the present case we shall sim-
plify the problem by taking only nearest-neighbor interac-
tions into account.

There are altogether 90 elements in the experiment, hence
N=90. We shall number them from the upper left-hand cor-
ner moving down from 1 to 9 then up to element one in the
second column, down to the bottom of the structure, etc. The
point and method of excitation has already been described in
Sec. V and shown in Fig. 5. In view of the numbering
scheme introduced above, Vs and Vy are the only elements in
the V vector which are different from zero. The mutual im-
pedances between elements made up by capacitively loaded
rings have been calculated before.?” Thus from the geometry
we can determine the Z matrix and the inversion of the ma-
trix multiplied by the V vector will yield the current distri-
bution.

VII. CURRENT DISTRIBUTIONS: EXPERIMENT
AND SIMULATIONS

The dispersion Eq. (16) illustrated in Figs. 2—4 predicts
the existence of various combinations of bulk and surface
waves which propagate and/or decay in the two coupled lat-
tices. To verify the dispersion equation we find, both by ex-
periment and by simulations, current distributions which we
may compare with each other and with predictions of the
dispersion equation.

The technique is to extract the variation in phase and am-
plitude of the current from the experimental results and com-
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FIG. 6. (Color online) Contour plots of wave amplitudes for
nonidentical lattice geometry. Left, measurement; right, simulation.
(a) f=61.59 MHz. There are no bulk waves, only the surface wave
is present in the upper pass band. (b) f=58.98 MHz. There is a
bulk wave in lattice 2 and there is also a surface wave present in the
upper pass band. (c) f=54 MHz. There are bulk waves in both
lattices. The surface wave is absent.

pare them with the current distributions obtained by the
GKE, over a range of frequencies including both pass bands
and stop bands of the surface waves for the excitation shown
in Fig. 5. We look at a number of examples of both identical
and nonidentical adjoining lattices.

In our first example, the adjoining lattices 1 and 2 consist
of 5X9 elements having dimensions a,=24 mm, a,;=a,
=30 mm. The separation between the boundary layers is 10
mm. The geometry and the resonant frequencies (fy,
=50.4 MHz, f,=56.0 MHz) correspond to the dispersion
curves plotted in Fig. 4.

The current distributions for three values of the frequency
are shown in Figs. 6(a)-6(c) as contour plots: experimental
and simulation results are in the left and right columns, re-
spectively, using a logarithmic scale. In the experiments the
noise level was quite high so that results plotted below about
—50 dB are unreliable. They are shown for completeness but
no great significance should be attached to them. Figure 6(a)
shows the current distribution at f=61.59 MHz in the upper
pass band of the surface wave (see the dispersion in Fig. 4).
A surface wave is clearly present propagating in the x direc-
tion. The decay may be seen to be a little faster for the
simulations but otherwise the agreement is very good.

Figure 6(b), plotted at 58.98 MHz, shows the case when,
besides the surface wave, bulk waves are also present in
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FIG. 7. (Color online) Contour plots of wave amplitudes for
identical lattice geometry at f=59.38 MHz. There are no bulk
waves, only the surface wave is present in the upper pass band.
Left, measurement; right, simulation.

lattice 2. The space available for the propagation of bulk
waves is rather limited by only four units away from the
center. Hence there are numerous reflections from the edges
distorting their shape. There is some qualitative agreement
between experiment and simulations in the sense that both of
them show considerably higher wave amplitudes in lattice 2
than in lattice 1.

At f=54 MHz [Fig. 6(c)] the surface wave is no longer
there but bulk waves are propagating in both lattices. The
waves decay in the x direction as they should due to losses.
There is also an indication of reflection from the edge. There
is again qualitative agreement between experiment and simu-
lations showing the higher amplitudes in lattice 2. We have
done the measurements and performed the simulations for
three further frequencies. The agreement between them is
about the same as for the higher frequencies and conclusions
follow again from the dispersion curves of Fig. 4. At f
=49 MHz there are both bulk and surface waves, at f
=46.5 MHz there are only surface waves. At f=45.5 MHz
both the bulk and surface waves are in the stop band, conse-
quently the currents decay from the point of excitation in all
directions.

In further experiments the two resonant frequencies were
made equal, fy;=f»=50.4 MHz, with the separation re-
maining unchanged. This geometry corresponds to the dis-
persion curves plotted in Fig. 2. Only one of the results is
worth mentioning that is measured at 58.38 MHz (Fig. 7)
where the surface wave is in its upper pass band and there
are no bulk waves.

VIII. DISPERSION EQUATION DERIVED FROM
MEASUREMENTS

Results of the previous section, both experiments and
simulations, confirm qualitatively the various combinations
of waves which propagate or decay on two adjoining coupled
lattices. The qualitative agreement between measured and
simulated current distributions both for the case of noniden-
tical and identical resonant frequencies is remarkably good.
A qualitative picture has already emerged from linking Figs.
6 and 7 to the corresponding dispersion equations plotted in
Figs. 4 and 2. The theoretical prediction, that surface waves
can propagate in a lower and in an upper pass band, has been
amply confirmed.
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FIG. 8. Variation in the amplitude of the surface wave along the
elements. (a) nonidentical lattices at a frequency of 61.59 MHz, (b)
identical lattices at a frequency of 58.38 MHz. Circles, measure-
ment; crosses, simulations.

Next we shall show comparisons between experimental
and simulated results adding this time losses!” corresponding
to the measured value of the quality factor, 0=165. At 61.59
MHz for different resonant frequencies [Fig. 8(a)] and at
58.38 MHz for identical resonant frequencies [Fig. 8(b)] the
wave amplitudes are shown by circles for experiments and
by crosses for simulations. The agreement is good. The next
step is to extract the parameters in the whole frequency re-
gion of interest from the kind of plots shown in Fig. 8.

It needs to be noted that since the attenuation is only
moderate and we have made no attempts to match the surface
waves, they will be reflected at the outer boundary. Hence we
shall assume the current in the n,th element along the bound-
ary in the form

Inx = Ts exp[inx(kxax)s] + Fs exp[— inx(kxax)s]
+ Tb exp[inx(kxax)b] + Fb eXP[_ inx(kxax)b]’ (20)

where T and I are the amplitudes of the waves propagating
in the +x and —x directions, respectively. The subscripts s
and b stand for surface waves and bulk waves. We have now
six complex unknowns: Ty, Ty, I'y, ', (k,a,),, and (k.a,),.
For any given frequency we can determine them by a simple
fitting technique which minimizes the total mean-square de-
viation between the assumed current [Eq. (20)] and the mea-
sured results where again both amplitudes and phases are
available. Our primary interest is in (k,a,), i.€., we wish to
reproduce the dispersion equation of the surface waves. The
same calculation will also yield (k.a,), but that is only in
effect an overall average of the bulk wave phase shifts.
Knowing the geometry we can find the coupling coeffi-
cients. Knowing the coupling coefficients and the quality
factor of the individual elements we can plot the dispersion
curves. We do this in Figs. 9 and 10 for lattices with non-
identical and identical resonant frequencies already presented
in Figs. 4 and 2 for the lossless case. The presentation is also
the same. The surface waves are denoted by solid lines, the
boundaries of the bulk waves by dashed lines, and the range
of bulk waves is shaded. However, we are interested only in
the surface waves. The dispersion curves derived from mea-
surements are denoted by dots corresponding to the 1601
discrete frequency values. There are a few spurious dots but
the large majority coalesces into a thick continuous curve.
The agreement between the theoretical and experimental

PHYSICAL REVIEW B 82, 045430 (2010)

/0

0.85 : : :
0 0.5 1 0 0.1 0.2 0.3
kx'a/ n kx"a/ m
(a) (b)

FIG. 9. (Color online) Dispersion curves of surface waves when
the lattices have different resonant frequencies. Parameters are the
same as for Fig. 4 but losses are included by assuming a quality
factor of 165. Theoretical results by solid lines, experimental results
by dots which mostly constitute thick continuous lines.

curves is very good both for the real and for the imaginary
part of (k.a,),.

IX. DISCUSSION

It has been shown by an analytical theory, simulations,
and experiments that surface magnetoinductive waves may
exist on magnetically coupled metamaterial structures. The
main requirement is strong coupling between adjoining lat-
tices. We have shown that this requirement is satisfied in the
structures studied. There is, however, no reason why the
same result could not be achieved by other structures. We
believe that most metamaterial structures proposed in the
past (excluding photonic band-gap materials which do not
have resonant elements) would be prominent candidates. We
would also make the conjecture that some hybrid structures

FIG. 10. (Color online) Dispersion curves for the equal-
resonant-frequency case. Parameters are the same as for Fig. 2 but
losses are included by assuming a quality factor of 165. Theoretical
results by solid lines, experimental results by dots which mostly
constitute thick continuous lines.
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might exhibit surface waves, e.g., a lattice supporting elec-
troinductive waves®® coupled to a metal-dielectric structure
or possibly to a diatomic semiconductor capable of propagat-
ing optical phonons.

The surface waves we discussed propagated along a line
at the interface of two 2D lattices. Obviously, two strongly
coupled 3D structures would also be able to propagate sur-
face waves along the common planar interface. That could
give rise to a large number of applications analogously to
those achieved by surface acoustic waves and by surface-
plasmon polaritons. For example, rearranging the elements
on the interface may result in a Fabry-Perot resonator, a Y
junction, a directional coupler, or a tunnelling device.

X. CONCLUSIONS

Dispersion curves, showing the existence of a different
type of surface wave, belonging to the magnetoinductive
wave family, have been derived. The surface waves have
been shown to propagate along the boundary of two strongly
coupled homogeneous lattices consisting of capacitively
loaded rings. A necessary condition for the existence of the
surface waves has been formulated analytically. The main
requirement is for the coupling between the lattices to be

PHYSICAL REVIEW B 82, 045430 (2010)

sufficiently strong. Experiments have been conducted on a
structure consisting of 90 elements by exciting two boundary
elements at one end. The current in each element has been
measured and displayed by 3D plots. The amplitude and
phase of the surface wave along the boundary has also been
plotted. The experimental results for the currents have been
compared with those obtained by simulations (solving the
generalized Kirchhoff’s equations). Excellent agreement has
been found for the surface waves and good qualitative agree-
ment for the bulk waves. The theoretical dispersion equation
for the surface waves (obtained on the basis of nearest-
neighbor interaction) has been compared with that extracted
from the experimental current distributions and, again, re-
markably good agreement was found. Generalization to other
structures has been proposed and potential for applications
has been discussed.
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