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Dynamic Response Modeling of MEMS Micromirror
Corner Cube Reflectors With Angular
Vertical Combdrives

Young Ki Hong and Richard R. A. Syms, Senior Member, IEEE

Abstract—A model for the dynamic response of microelectro-
mechanical-systems micromirrors with angular vertical comb-
drive electrostatic actuators has been proposed based on a
numerical solution of the nonlinear dynamic equations for tor-
sional oscillation. The torque generated by the electrostatic drive
is assumed to depend at least on the second order of the turn angle,
and the model shows a shift in the resonant frequency with drive
voltage, in agreement with the experimental results obtained from
components fabricated by self-assembly of bonded silicon parts.
The dynamic response of a corner cube reflector (CCR) based
on a pair of scanning mirrors and a fixed mirror is predicted
using the model, and the theoretical response agrees well with the
experimental results. From the model, a small initial misalignment
of the CCR mirrors can be determined.

Index Terms—Angular vertical combdrive, corner cube reflec-
tor (CCR), microelectromechanical systems (MEMS), micromir-
ror, nonlinear dynamics.

I. INTRODUCTION

LECTROSTATIC combdrives have been widely used for
the actuation of microelectromechanical systems (MEMS)
devices. Depending on the electrode geometry, combdrives can
be used for linear or angular motion. The former type is called
an in-plane combdrive, whereas the latter type is a vertical
drive. Compared to a parallel-plate actuator [1], combdrives
have the advantages of a larger working range and high stability.
Vertical combdrives have recently been the subject of con-
siderable attention due to their high force densities [2]-[6].
They can be further classified into two types depending on the
geometry: The first is a staggered vertical combdrive, which has
a vertical asymmetry between the fixed and moving electrodes,
in terms of both the depth and position of the fingers [2]-[4],
[6]. The second is an angular vertical drive, in which the moving
fingers are initially skewed with respect to the fixed fingers
(51, [71, [8].

Hah er al. have shown that angular vertical combdrives
can offer better performance than staggered vertical drives
[8]. However, their behavior is generally difficult to predict
because of their inherent nonlinearity [9]-[11]. Xie ef al. have
analyzed the electrostatic force generated by an angular vertical
drive using parallel-plate approximation to calculate the overlap
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area between the moving and fixed fingers [12]. Although
the method correctly estimated the complicated aerial overlap
variation between the fingers, the model ignored the fringing
field. Hah et al. carried out a similar calculation considering
the fringe field. However, in this model, only simple electrode
geometries were considered [8].

In this paper, we present a simple numerical model for the
nonlinear dynamics of resonant scanning micromirrors with an-
gular vertical combdrives. To develop the model, we first carry
out experiments using self-assembled mirror scanners. Using
these preliminary data, the equations of motion can be solved
regardless of the geometry or fringe-field consideration. The
model predictions are in good agreement with the experimental
result. Moreover, the response of more complicated devices
based on scanning mirrors [for example, modulatable corner
cube reflectors (CCRs)] can be predicted using an extended
model.

The fabrication of and experimental results obtained from a
scanning mirror and a CCR formed by self-assembly of bonded
silicon parts are summarized in Section II. A general solution
method for the dynamic equations of motion for a torsional
oscillator is proposed in Section III. Numerical predictions
for the response of a single scanning mirror are presented in
Section IV, and the performance of a modulatable CCR based
on multiple scanning mirrors and predicted by an extended
model is compared with the experimental results in Section V.
Conclusions are presented in Section VI.

II. COMPONENT FABRICATION, DESIGN, AND
OPTICAL PERFORMANCE

Scanning micromirrors and CCRs with angular vertical
combdrive actuators were fabricated using a surface tension
self-assembly method previously described in [7], [9], and [13].
In this section, we briefly summarize their fabrication and
performance.

A. Fabrication and Design

Fabrication involved a simple two-mask process:

1) patterning of fixed and movable parts on a bonded silicon-
on-insulator (BSOI) substrate by optical lithography and
deep reactive ion etching;

2) patterning of thick pads of photoresist linking the fixed
and movable parts;

3) sacrificial etching of the underlying oxide;
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Fig. 1. Scanning electron microscope view of (a) scanning micromirror and
(b) active CCR.

4) freeze-drying to remove wash water without sacrificial
layer collapse;

5) out-of-plane rotation of the movable parts by melting the
photoresist;

6) sputter coating with Cr/Au to allow electrical contact and
improve reflectivity.

Fig. 1(a) shows a scanning electron microscope view of a
completed micromirror formed in BSOI material with a bonded
layer thickness of 3.5 um and an interlayer oxide thickness
of 2 pum. The mirror itself is a rectangular element measuring
496 x 456 pm that is suspended on a torsion bar measuring
5 % 324 pm. The mirror is supported by a frame that has been
rotated out of plane by the surface tension developed during
the self-assembly step and latched in place at an angle of 45°
by a second similarly rotated component. The pads powering
the rotation were formed in Shipley AZ4562 photoresist and
measure 32 x 230 um, with a thickness of 12 ym. Melting was
carried out in a convection oven at 160 °C. The moving half of
an angular vertical drive is carried by the mirror, while the fixed
half is provided on a land attached to the substrate. There are 29
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Fig. 2. (a) Variation of scan angle with frequency at different voltages, for a

mirror actuated by an angular vertical combdrive. (b) Variation of scan angle
and electrical resonant frequency with square voltage.

moving electrode fingers and 28 fixed fingers. Electrical con-
tact is provided by sputtered metallization, which consisted of
100 A Cr and 500 A Au metal.

Fig. 1(b) shows a scanning electron microscope view of a
CCR based on two 45° scanning micromirrors and one 90°
fixed mirror. By intermittently changing the angle of either
or both of the scanning mirrors, the device can modulate
an incident signal and hence transmit data back to a light
source [1]. The dimensions of each scanning mirror are similar
to those in Fig. 1(a).

B. Optical Performance

Optical performance was measured by the laser reflection
method, as described in [9]. Fig. 2(a) shows the variation of
the peak-to-peak scan angle of a scanning mirror with drive
frequency, at different drive voltages. These data highlight
one aspect of the nonlinear dynamic behavior of the overall
system: The resonant frequency clearly decreases as the voltage
increases [Fig. 2(b)]. This nonlinear response has been
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observed in other devices with angular vertical drives [7],
[10], [11], and we present a more detailed theoretical model
of this aspect in Section III.

When two scanning mirrors are used as components of a
CCR, the modulated signal again varies considerably, depend-
ing on the driving voltage. Fig. 3(a) shows the response of
an active CCR obtained using a 26 V,_, square wave at a
frequency of 20 Hz. Fig. 3(b) shows the response at a higher
driving voltage of 48 V,,_,. Although the signal is effectively
modulated in both cases, the transient oscillations at turn-on
and turn-off are entirely different. Zhu et al. have previously
proposed an optical model for the static response of a CCR [14].
In Section IV, we show how this model may be combined with
the solution for the motion of the scanning mirror to predict
dynamic behavior.

III. GENERAL SOLUTION METHOD

In any electrostatic actuator, the driving force or torque is
important. For an in-plane combdrive, the driving force F' can
be expressed as follows:

F = ntegV2g. @))
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Here, n is the number of electrode fingers, ¢ is their thickness,
g0 is the dielectric constant of free space (8.85 x 10712 Fm™!),
g is the gap between the electrode fingers, and V' is the applied
voltage. For an angular vertical combdrive, it is difficult to
obtain an analytic expression for the torque because it must
depend on the relative angular position of the electrodes. How-
ever, numerical methods can be used to evaluate the torque, as
will be shown.
The basic equation of motion for a torsional oscillator is

d?0/dt* + 2¢w,df/dt + w20 = T(0)/1. 2)

Here, 6 is the turn angle, T() is the driving torque, w, =
(k/I)'/? is the angular resonant frequency, where k is the
angular stiffness and I is the moment of inertia, and ( is
the damping coefficient. For an electrostatically driven system,
the torque is always given by the general expression

T(0) = 1/20C/06V?>. 3)

Here, V is the voltage, and C' is the electrode capacitance. In
general, we may write the variation of the capacitance near a
given angle 6 as a power series of the form

80/892004—01(9—90)+02(9—90)2.... 4

Assuming that 6 is measured from the rest position, we
may set 6y = 0. Here, constants c¢g, c1, c2, etc. may be found
by differentiating the angular variation of the capacitance and
fitting a power series to the result. For an angular vertical
combdrive, C/00 may initially increase with angle, until the
moving comb passes through the fixed comb. In the initial
phase, only a small positive value of ¢; needs be considered.

With a sinusoidal excitation, we may write V' = V} cos(wt),
where w is the angular frequency, so that V2 = V{1 +
cos(2wt)}/2. Combining (2)—(4) and retaining terms only up
to ¢1, we obtain

d*0/dt* + 2(w,df/dt + {w? — 1 V7 /4T } 0
= (coVg /AI) {1 4 cos(2wt)} + (c1 V5 0/AI) cos(2wt).  (5)

Note that the effective angular resonant frequency wy, in (5)
has now become

w2 = w? — | V@ /AL (6)

Using a binomial approximation, we obtain wye = w, —
c1VZ/81Iw,. This result suggests that the resonant frequency
is modified electrostatically, as previously noted by other
authors [11].

To solve (5) numerically, we used the Runge—Kutta method,
which is widely accepted as an efficient method of solving first-
order differential equations. The algorithm first computes four
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auxiliary quantities to solve a first-order differential equation
y' = f(z,y) [15]. The truncation error is of the order of h°,
where h is the step length, and the method is of the fourth order.
ODEA45, which is a function of the commercial software pack-
age MATLAB 6.0, can implement the Runge—Kutta method
using (4) and (5) [16]. Since (5) is of the second order, it is
first expressed in terms of two coupled first-order equations in
terms of new variables #; = 6 and 65 of the form

01 =0: @)
0y = (coVg/AI) {1 + cos(2wt)}
+ [(c1 Vi /AI) {1 + cos(2wt)} — w?] 61 — 2¢w, b2
(®)

The ODE45 function is then used to solve (7) and (8)
simultaneously.

As a first step in solving the equation, the damping factor ¢
must be known. This term can be determined experimentally
from the resonance curve of the mirror as [17]

(= (w2 —w1)/2wy. )

Here, w; and wy are the angular frequencies at which the
oscillation amplitude falls to 1/./2 of its peak value. We can
obtain the damping factor from Fig. 2(a). Since the resonance
curve shows nonlinear behavior at a large amplitude, the damp-
ing factor is determined from the data set with the smallest
amplitude, as ( = 0.02.

The second step is to define the limiting resonant frequency
w, (i.e., the resonant frequency for small amplitude oscilla-
tions) and to choose suitable coefficient values. The analytic
approximation of the effective resonant frequency (6) can be
used for this purpose. Using the data set used for Fig. 2(b),
the limiting resonant frequency can be extrapolated to 2236 Hz,
and coefficient ¢; can be estimated as 4.82 x 10713, To choose
a suitable range for ¢y, (5) can be further approximated by as-
suming that § = ¢ + ¢1 exp(jwt) + @2 exp(2jwt) + - - -. Sub-
stituting this expression into (5) and expanding, we can obtain
an approximation given as follows:

(10)
(1)

pow; =coVy Al + 10V /AT
po =coVi /{4l (w2 — 1V /AL } .

Assuming that ¢; = 4.82 x 10713 and using the measured
data set, the coefficient cg can be estimated as 1.65 x 10711,
Equations (7) and (8) can then be solved by varying coefficients
co and c¢; around these initial values. The boundary conditions
are takenas ; = 0and 65 = 0att = 0.

A least square fitting method is used to determine the best
values of ¢y and c¢;. The correctness of the simulation is
estimated using a coefficient of determination R2, which is an
indicator from O to 1 that reveals how closely the estimated

values for the trend line correspond to the actual data. The
coefficient can be expressed as [18]

R2:1_{Z(yi_yi)2}/ Zy2—<zy> /N

i=0
(12)

Here, y; and Y; are a set of actual and predicted values, and N is
the number of data points. The simulation result is most reliable
when the R? value is at or near 1. Equation (2) can obviously
be solved for higher order approximations to the capacitance
variation by substituting more of the terms in (4) into (5). Using
this method, the torque on the mirror and the overall dynamic
response can then be determined.

IV. SCANNING MIRROR RESPONSE

Fig. 4 shows the predicted turn-on response of a single
mirror, which was obtained using the coefficient values ¢y =
0.21 x 10713, ¢; =4.79 x 10713, and ¢, = 43.31 x 10713,
for different applied voltages. The drive frequency is assumed
to be 1067 Hz. Because the torque is proportional to the square
voltage, the period of the resulting oscillation is 1/(2f) =
0.46 ms. Fig. 4(a) shows the response at a low applied volt-
age. The magnitude of the oscillation initially increases, then
slightly decreases, and finally stabilizes, as expected from a
linear device. At a higher voltage, the oscillation amplitude
increases for a longer time and stabilizes, as shown in Fig. 4(b).
At a very high voltage, the oscillation amplitude increases with
time, as shown in Fig. 4(c), and eventually becomes infinite.
This result shows the nonlinear response because the electrical
torque term in (5) is expressed in combination of both angle
and time.

The nonlinear response can also be seen from the detailed
shape of the oscillation. Fig. 5 shows the steady-state response
obtained with various applied voltages. At a low voltage, the
initial shape of the oscillation, which is symmetric with a
period of 0.46 ms, is still preserved after a long time, as
shown in Fig. 5(a). This period is the same as that of the
driving torque. Fig. 5(b) shows the shape at a higher voltage.
The period becomes longer, 0.47 ms in this case, and the
symmetric shape of the response starts to disappear. Finally, at
a very high voltage, the periodic response after 10 ms shows
a nonsymmetric and unstable shape, and a period of 0.49 ms,
as shown in Fig. 5(c). The nonlinear behavior of the angular
vertical combdrive therefore alters both the oscillation period
and the harmonic content.

The frequency response of the mirror can be evaluated by
calculating the stabilized amplitude from the time response
obtained at different drive frequencies. By comparing these
numerical predictions with real data, the coefficients describing
the variation of the capacitance in (4) can be determined.

Fig. 6 shows the least square fitted result, and Table I shows
the coefficients obtained using the data sets corresponding
to the voltages of 52 and 92 V. Fig. 6(a) shows the model
prediction obtained from a first-order approximation for the
torque. Although the graph correctly shows the shift of the
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Fig. 4. Numerically simulated variation of mirror angle with time, which was
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resonant frequency with voltage, the absolute angles do not
coincide very well. Moreover, in the simulated trend, we cannot
see the distortion near the resonant frequency shown in the
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experimental result for the highest voltage. Fig. 6(b) shows the
result obtained using a second-order approximation. The result
is now much closer to the experiment, and the distortion in the
response at high voltage can also be seen. Approximation to
higher order in 6 is not necessary, as can be seen from the R>
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TABLE 1
COEFFICIENTS OF THE POWER SERIES VARIATION OF THE CAPACITANCE
OBTAINED FROM NUMERICAL SIMULATION

Approximation ¢ ¢ P c3 R? R?

for capacitance | (x 10"%) | x 103 | x 10" | x10"%) | 52v) | (91V)
1% order 0.25 535 0.700 | 0.591
2" order 0.21 4.79 433 0.826 | 0.969
39 order 0.21 4.79 433 0.02 | 0.826 | 0.969

value in Table I. The mirror actuation torque can therefore be
expressed as

T(0)=1/20C/00V?=(0.11 + 2.390 + 21.76%) x 10 3V2.
(13)
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The solution provides a good fit for the nonlinear behavior
seen at high voltage up to 97%, whereas for low voltage, the
predicted result fits up to 83%. This difference may result
from measurement error. Fig. 7 shows the predicted peak
deflection for two other applied voltages of 65 and 78 V
obtained using (13). The simulated results again agree well with
the experiment. Although the size of the higher order terms
appears surprising, the explanation is simply that the effect of
interdigitation of the electrode system is largely lost at the rest
position of the moving electrode, and as a result, the system
shows some of the strong nonlinearity of a parallel-plate drive.

V. CCR RESPONSE

Using a model that has now been validated for the steady-
state response, the transient response (Fig. 3) may be predicted,
and the power transmitted to the receiver may be simulated. The
calculation starts with ray tracing through the CCR. Fig. 8(a)
shows a ray trace through a perfectly aligned system [14]. When
an incident ray along the incident direction —n; strikes the
CCR, the ray is reflected from each of the three mirrors in
turn and exits along the direction 7;. The effective area can
be defined as the area within which a ray can strike all three
mirrors and still be reflected back to the light source. Fig. 8(b)
shows the effective area for the case where 2n;, > n;, >
Njy > NMyz. Since the incident rays generally strike the CCR
along the body diagonal direction, we can use the effective area
in Fig. 8(b) for the simulation.

To calculate the power transmitted to the receiver, Zhu et al.
used the differential scattering cross section (DSCS), which
is defined as the reflected power per unit solid angle of ob-
servation per unit illumination irradiance or do (7, 71,)/d2,.
Here, 7, is the reflected beam direction, and (), is the solid
angle of observation. The received power P, can then be ex-
pressed as [1]

P, = I;ry,> x {do (i, 7o) /dQ } dS,.

Qe

(14)
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Here, I; is the light intensity incident on the CCR, 7, is the
reflectivity of the mirror, and €2,. is the solid angle subtended by
the receiver. When the direction of illumination and observation
are colinear, n, = n;. This assumption is reasonable because
the receiver is usually placed along the axis of illumination in a
CCR link system, and the distance to the receiver is much larger
than its diameter. The colinear DSCS (CDSCS) can therefore be
expressed approximately as [14]
P, = Iiry, {do (7, 73) /dQ% } Q. (15)
The power detected at the receiver then can be modeled by
calculating the DSCS. The DSCS can be expressed using an
optical relation as

do(fii, 1) /dQe = IgR?/I; = |Eo(71s, 710 )|> R?/21;.  (16)

Here, R is the distance between the receiver and the CCR.
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During modulation, when one of the mirrors is misaligned by
an angle ¢, the electric field amplitude at the receiver position
Eo(n;,n,) is altered. Assuming that the mirrors are perfectly
flat (a reasonable assumption for BSOI material), we can use
a relatively simple relation for the electric field amplitude
modified from [14] as

Eo(ni, o) = [\/(21;) exp{—j(kd + 7v)} /AR]

X //exp{fjwuv(u,v)dudv. a7

uv

Here, k = 27/), A is the wavelength of the light (6328 A for
a HeNe laser), d is the path traveled from source to receiver,
v is the number of reflections undergone, the u—wv plane is the
plane perpendicular to the incident beam direction 7;, Sy, is the
total effective area, and 1), (u, v) is the phase delay of a beam
at the (u,v) plane. Assuming only one mirror (for example,
the zy mirror) is modulated, the phase delay )., (u, v) can be
expressed as

wuv (’U,7 U) = wmy(xa y) = 2k - cos [e(ﬁxyv ﬁz)] Y- 6y (18)

Here, ¢, is the y component of the deviation after the
mirror has rotated through the angle 4, and 7, is the normal
vector of the rotated xy mirror plane. The CDSCS can be
simulated using (16)—(18). Fig. 9 shows the predicted variation
of CDSCS with misalignment angle § for different mirror
sizes. The incident direction is set along the body diagonal
n; = (1/4/3,1/4/3,1/4/3), which is reasonable for the link
where the distance from the light source to the CCR is large.
Fig. 9 shows that the CDSCS angle increases as the mirror size
increases and that a small misalignment of 3 mrad is enough to
switch the CCR from ON-state to OFF-state. This result is also
consistent with the literature [14].

Dynamic behavior can then be modeled by substituting
the mirror response obtained in the previous section into the
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Fig. 10. Predicted dynamic response of a CCR actuated by a 20-Hz square
wave with a voltage of 26 V, _, (a) for an ideal case and (b) for a misalignment
of 1 mrad.

misalignment term of this CCR model. In the experiment, the
actuation voltage is a square wave with a frequency of 20 Hz
at different voltages. Fig. 10 shows the predicted dynamic re-
sponse at a low voltage (26 V,_,,). Fig. 10(a) shows the DSCS
obtained in the ideal case, when all the three mirrors are aligned
perfectly. This result should be compared with the experimental
result previously shown in Fig. 3(a). Ideally, the DSCS has the
maximum value when the mirror angle is zero. The signal at
the beginning of turn-off shows a beating, which corresponds to
the mirrors oscillating in the opposite direction. The experimen-
tal result, however, shows higher value at the beginning of the
turn-off state and no beating. This result implies that the CCR
initially must have a small angular misalignment. Fig. 10(b)
shows the DSCS, assuming an initial misalignment of 1 mrad.
In this case, the predicted DSCS shape is consistent with the
experimental data.

The dynamic response at a high voltage can also be predicted.
Fig. 11(a) and (b) shows the response at 48 V,_,, without and
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Fig. 11. Predicted dynamic response of a CCR actuated by a 20-Hz square

wave with a voltage of 48 V,_, (a) for an ideal case and (b) for a misalignment
of 1 mrad.

with a misalignment, respectively. In this case, when the voltage
is turned on, the deviation of the CCR mirror is sufficient to
cause the retro-reflected beam to miss the detector entirely.
This effect causes a “clipping” of the DSCS, as can be seen
in Fig. 11(a). Fig. 11(b) shows the DSCS, assuming an initial
misalignment of 1 mrad. Because the oscillation angle of
the mirror at the beginning of the turn-off state exceeds the
initial misalignment, some beating oscillations can be seen in
Fig. 11(b). This result also coincides with the experimental data
previously shown in Fig. 3(b).

Although the model suggested in this section is well matched
with the experimental data, the predicted and experimental
results do not agree exactly. The reason lies in the geometry
of the experimental CCR, which has a larger overall area than
the three perpendicular mirrors. For example, there is a land
between the two 45° mirrors, as shown in Fig. 1(b). This region
affects the ray trace reflected from the mirrors. In addition,
the 90° mirror has a different size and shape compared to
the 45° mirrors. Finally, actuation is also different in the real
device. We have assumed, for simplicity, that only one mirror
was actuated in the simulation. In fact, two mirrors are driven



480

experimentally. These differences could be easily resolved in an
extended model.

VI. CONCLUSION

A model for the dynamic response of an electrostatic mi-
cromirror driven by an angular vertical combdrive actuator has
been proposed based on a numerical solution of the nonlinear
equations of motion for a torsional oscillator. The model has
been compared with experimental data obtained from self-
assembled micromirror devices. From the solution, it has been
shown that the torque generated by the angular vertical drive
depends at least on the second order of the turn angle, which
results in a deformation in the shape of the resonance curve at
high voltage. The numerical solution also shows a shift in the
resonant frequency with voltage, and the model can accurately
predict the resonant frequency at an arbitrary input voltage.
However, simpler models for the capacitance variation do not
provide sufficient accuracy.

By extending the model, the dynamic response of a CCR
based on similar micromirrors can be predicted. The theoretical
predictions agree well with the experimental results. From the
model, a small initial angular misalignment of the CCR mirrors
can also be determined. The model highlights the high assembly
accuracy required in a practical CCR system.
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