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Abstract

Parametric amplification of magneto-inductive (MI) waves propagating in magnetically coupled chains of nonlinear L–C res-
onators is studied. Analysis is first presented for a three-frequency travelling wave scheme in which the signal, idler and pump all
propagate as MI waves. The effect of de-coupling the idlers is then considered and it is shown that this configuration relaxes the
standard phase matching condition. Confirmation of the theory is provided using low-frequency PCB unit cells containing varactor
diodes. The cells are characterised individually and then arranged as a 16-element ring resonator. Frequency matching and selective
amplification of the primary resonance is demonstrated. The primary resonance can be excited using the field of a rotating magnetic
dipole, and an application in magnetic resonance imaging is described.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Following developments by Veselago [1] and Pendry
et al. [2], considerable interest has been shown in the
behaviour of periodic structures known as metama-
terials. Metamaterials can have novel properties such
as negative values of ε and μ at electromagnetic fre-
quencies that are achieved by virtue of their physical
arrangement rather than their constituents. For example,
so-called ‘left-handed’ metamaterials exhibit negative
refraction.
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One simple metamaterial is a periodic arrangement of
magnetically coupled L–C resonators, which can support
a travelling magnetic field known as a magneto-inductive
(MI) wave. The theory of MI waves has been developed
for one [3] or more [4,5] dimensions, and interactions
with electromagnetic waves [6] and radiation effects [7]
have been considered. Experimental confirmation of the
major effects has been obtained using low-frequency
circuits [8–12], and MI waves have been observed in
other metamaterials such as ‘Swiss rolls’ [13]. Appli-
cations in splitters [14], filters [15,16], ring resonators
[17] and lenses for sub-wavelength imaging [18,19] are
emerging. Parametric amplification has been proposed
to reduce propagation losses [20], inherent in electro-
magnetic metamaterials. MI waves have analogies with
waves in arrays of cylinders [21,22] and dipoles [23] and
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other periodic structures [24], and direct correspondence
with waves in arrays of open loop [25] and split ring res-
onators [2,26–28]. There are even analogies with chains
of optical cavities [29].

Recently, tunable elements such as varactor diodes
have been used to provide electrically controllable
metamaterials [30–32]. Theoretical and experimen-
tal studies of parametric processes in metamaterials
have also been conducted [33–37], showing that
classical effects such as amplification and second har-
monic generation may be obtained, together with new
effects such as changes from left- to right-handed
behaviour.

The propagation of waves in periodic structures is of
course an old field, best exemplified by Brillouin’s clas-
sic work [38], and transmission line representations are
often used to describe metamaterials [39–41], exactly
as they were for generations of older ladder networks.
Parametric amplification is also an old field, brought
to prominence by Manley and Rowe in the late 1950s
[42,43] but with much earlier roots. A review from 1960
[44] contains 200 references, the first due to Faraday in
1831.

Early parametric amplifiers were lumped element cir-
cuits that transferred energy from a pump at angular
frequency ωP = 2ωS to a signal at ωS using two res-
onators coupled by a varactor diode, which was then
being developed [45]. However, these so-called ‘degen-
erate amplifiers’ suffered from the serious drawback
of requiring the pump to be phase locked to the sig-
nal, an unrealistic scenario [46,47]. Consequently, they
were rapidly discarded in favour of three-frequency
amplifiers, which avoided any requirement for phase
locking using a two-step energy conversion via an
additional idler resonator operating at ωI [48]. Frequen-
cies were then raised, by replacing lumped elements
with resonant cavities [49,50], and bandwidth was
increased using double-tuned circuits [51,52]. A sum-
mary of lumped-element circuits can be found in
[53].

Exploration of ladder filters [54,55] led to devel-
opment of lumped-element travelling wave parametric
amplifiers [56–58] that are the true precursors of non-
linear metamaterials. Following a classic analysis by
Tien [59], a transition was made to continuous travel-
ling wave amplifiers based on ferromagnetic [60] and
space charge [61,62] waves. Parametric methods have
of course been heavily exploited in optics [63]. Devel-
opments in other fields continue with Josephson junction
amplifiers [64,65], amplifiers for acoustic waves [66] and
most recently microelectromechanical (MEMS) devices
[67].

The use of a variable reactance promised low noise
amplification, a feature that was extremely attractive
for astronomy and space communications [68]. A vari-
ety of instrumentation applications have been proposed,
including amplification of electron spin resonance [69]
and ac magnetic [70] signals. In this paper, we consider
a further detection application, based on the ability of a
MI ring resonator to couple to the field of a precessing
magnetic dipole [17]. Such an arrangement is strongly
analogous to the ‘birdcage’ detector for magnetic res-
onance imaging (MRI) developed by Hayes et al. [71],
in which the dipole field is coupled to the primary reso-
nance of a backward wave on a ladder-structured ring
resonator [72,73]. An alternative involving a forward
wave has also been developed [74].

Here, our aim is to develop a scheme for para-
metric amplification that might improve signal-to-noise
ratio in MRI. The arrangement for parametric ampli-
fication of MI waves presented in [20] involved two
frequencies propagating in two concentric rings and
a crude demonstration of two-frequency amplification
on a ring resonator with a non-propagating pump was
made recently [75]. However, for practical use a three-
frequency scheme is clearly required and here we
demonstrate a suitable approach.

In Section 2, we provide a brief introduction to
MI waves and ring resonators, reviewing earlier work
[3,4,17]. In Section 3, we also review three-frequency
parametric amplification, largely following [53]. In Sec-
tion 4, we propose a three-frequency travelling wave
amplification scheme for MI waves, demonstrate the
relation to earlier work, and develop a modification based
on de-coupled idlers that is more suitable for ring res-
onators. In Section 5, we describe the construction of a
parametrically amplified magneto-inductive ring using
varactor diodes and printed circuit board inductors, and
present experimental results that demonstrate selective
amplification of ring modes. Conclusions are drawn in
Section 6.

2. Magneto-inductive waves and ring resonators

Fig. 1a shows a one-dimensional magneto-inductive
waveguide [3], which consists of a set of capacitively
loaded loops with a regular separation “a”. The array is
infinitely long, and each element is coupled magnetically
to its nearest neighbours. Fig. 1b shows the equivalent
circuit. The elements are modelled as resonant circuits
consisting of a capacitor C, an inductor L and a resistor
R accounting for loss. Using Kirchhoff’s voltage law
to relate the currents In in neighbouring elements, the



Author's personal copy

124 R.R.A. Syms et al. / Metamaterials 2 (2008) 122–134

Fig. 1. (a) Magneto-inductive waveguide with nearest-neighbour cou-
pling; (b) equivalent circuit.

dispersion equation may be obtained as:{
1 − ω2

0

ω2 − j

Q

}
+ κ cos(ka) = 0 (1)

Here ω is the angular frequency, ω0 = (LC)−1/2 is the
corresponding resonant frequency and Q = ω0L/R is the
quality factor. The constant κ = 2M/L is the coupling
coefficient, where M is the mutual inductance. “κ” may
be positive or negative, depending on whether the loops
are arranged in the axial or the planar (edge-coupled)
configuration. In the former case, a forward wave is
obtained, and in the latter a backward wave. The prop-
agation constant is k = k′ − jk′′, where k′a and k′′a are
the phase shift and attenuation per element, respectively.
Eq. (1) may of course be solved exactly. However, when
losses are low, we may write:(

1 − ω2
0

ω2

)
+ κ cos(k′a) ≈ 0

k′′a ≈ 1

κQ sin(k′a)

(2)

The result is a single propagating wave solu-
tion, which exists over the frequency band
1/(1 + |κ|) ≤ (ω/ω0)2 ≤ 1/(1 − |κ|) whose extent depends
on the value of κ, and hence on the strength of the mutual
inductance between the loops. Low losses require both
a high Q-factor and a high coupling coefficient, and
losses are maximised at the band edges and minimised
at the band centre. Higher losses, which require full
solution of Eq. (1), result in lossy propagation outside
the band. For backward waves, k′′a is negative, and
|k′′a| is a more realistic indicator of loss. Interactions
between nth nearest neighbours may be modelled by
introducing additional coupling terms κn into Eq. (1) to
obtain [11].{

1 − ω2
0

ω2 − j

Q

}
+
∑

n

κn cos(nka) = 0 (3)

Fig. 2a shows a magneto-inductive ring resonator
[17]. Here a set of N resonant elements is arranged in
a polygon. The ring will clearly be resonant when the
phase accumulated in a round trip is a whole number of
multiples of 2π, so that k′Na = 2μπ, where μ is an inte-
ger (the mode number). For a ring with an even number
of elements, modal degeneracy implies that there will be
N/2 + 1 distinct resonances, whose propagation constants
k′

� are:

k′
μa = 2μπ

N
(μ = 0, 1, . . . , N/2) (4)

Once these values of k′
μa are known, the correspond-

ing angular frequencies ωμ may be obtained from the
dispersion equation. In the low loss case, Eq. (2) gives:

ωμ

ω0
= 1√

1 + κ cos(k′
μa)

(5)

For example, the full line in Fig. 2b shows the
dispersion characteristic of a low-loss backward MI
waveguide with a coupling coefficient κ = −0.3, together
with a graphical determination of the resonances of a
16-element ring. The primary resonance (μ = 1) is at
k′a = π/8. This resonance may be coupled to a mag-
netic dipole rotating at the centre of the ring at the
same angular frequency. The primary effect of non-
nearest-neighbour coupling is to change the dispersion

Fig. 2. (a) MI wave ring resonator; (b) MI wave dispersion charac-
teristic, and resonances for a 16-element ring. Full line: κ1 = −0.3,
κ2/κ1 = 0. Dashed line: κ1 = −0.3, κ2/κ1 = 1/9.
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characteristic (see for example [73]), although a sec-
ondary effect is to introduce higher order modes [11].
The dashed line shows the effect of a second neigh-
bour coupling coefficient κ2/κ1 = 1/9, which increases
high-frequency propagation.

3. Three-frequency parametric amplification

Fig. 3a shows the usual arrangement for three-
frequency amplification in a lumped-element circuit
[53]. Here three L–C resonators operating at signal,
idler and pump angular frequencies ωS, ωI and ωP
are linked by a nonlinear capacitor C. The signal
voltage is VS = {vS exp(jωSt) + c.c.}/2, where ‘c.c.’
denotes complex conjugate, and is taken from a source
with output impedance RSO. The pump voltage VP =
{vP exp(jωPt) + c.c.}/2 is taken from a source with out-
put impedance RP0 and the output from a load RL.
Because the idler is generated by a nonlinear interaction
between the signal and pump, the relation ωP = ωS + ωI
can be assumed. The signal resonator contains a capac-
itor CS and an inductor LS with an associated resistance
RS. The idler and pump resonators are similar and their

Fig. 3. (a) Three-frequency parametric amplifier; unit cell for ampli-
fication of MI waves (b) with and (c) without idler coupling.

components are subscripted ‘I’ and ‘P’. The nonlin-
ear capacitor is assumed to respond as C = C1(1 + βVC),
where C1 and β are constants and VC is the voltage across
C, which has a series resistance RC. The current in each
resonator is assumed only to contain terms oscillating
near its resonance while the voltage across the nonlinear
capacitor contains all three frequencies. Hence:

IS = iS exp(jωSt) + c.c.

2

II = iI exp(jωIt) + c.c.

2

IP = iP exp(jωPt) + c.c.

2

VC = vCS exp(jωSt) + c.c.

2
+ vCI exp(jωIt) + c.c.

2

+ vCP exp(jωPt) + c.c.

2

(6)

Application of Kirchhoff’s voltage law around each of
the loops containing the nonlinear capacitor and neglect
of unwanted terms yields:{

1 − ω2
S0

ω2
S

− j

QS

}
iS + vCS

jωSLS
= vS

jωSLS{
1 − ω2

I0

ω2
I

− j

QI

}
iI + vCI

jωILI
= 0

{
1 − ω2

P0

ω2
P

− j

QP

}
iP + vCP

jωPLP
= vP

jωPLP

(7)

Here ω2
S0 = 1/LSCS, ω2

I0 = 1/LICI and ω2
P0 =

1/LPCP are nominal resonant frequencies for
the signal, idler and pump resonators. Similarly,
QS = ωSLS/R′

S, QI = ωILI/R
′
I and QP = ωPLP/R′

P
are the corresponding Q-factors, where R′

S =
RS + RC + RSO + RL, R′

I = RI + RC and R′
P =

RP + RC + RPO are resistances around the three loops.
For C itself, we have:

ISn + IIn + IPn = d(CVC)

dt
= C1(1 + 2βVC)

dVC

dt
(8)

Equating coefficients of exp(jωSt), exp(jωIt) and
exp(jωPt) separately, making use of the frequency rela-
tionship, and again ignoring unwanted terms, we obtain:

iS = jωSC1{vCS + βv∗
CIvCP}

iI = jωIC1{vCI + βv∗
CSvCP}

iP = jωPC1{vCP + βvCSvCI}
(9)

If the signal and idler are weak, the product vCSvCI
in the lowest of Eq. (9) may be neglected, so that
vCP ≈ iP/jωPC1. Substituting into the lower of Eq. (7),
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we obtain:[
1 − ω′2

P0

ω2
P

− j

Q′
P

]
iP = vP

jωPLP
(10)

Here ω′2
P0 = (1/LP){1/CP + 1/C1} is a modified pump

resonant frequency, derived from the inductor LP and the
series sum of the capacitance CP and the linear capaci-
tance term C1. If the pump frequency is such that ωP =
ω′

P0, we obtain iP = vP/R′
P and vCP ≈ vP/jωPC1R

′
P.

Considering now the signal and idler, the upper pair of
Eq. (9) reduces to:

vCS = iSα

jωSC1
− i∗I αβvP

ωIωPC2
1R

′
P

vCI = −i∗SαβvP

ωSωPC2
1R

′
P

+ iIα

jωIC1

(11)

Here α = 1/[1 − β2vCPv∗
CP] is of order unity. The upper

pair of Eq. (7) then becomes:{
1 − ω′2

S0

ω2
S

− j

QS

}
iS − i∗I αβvP

jωSωIωPLSC2
1R

′
P

= vS

jωSLS{
1 − ω′2

I0

ω2
I

− j

QI

}
iI − i∗SβvP

jωSωIωPLIC
2
1R

′
P

= 0

(12)

Here ω′2
S0 = (1/LS) {1/CS + α/C1} is a modified sig-

nal resonant frequency, and ω′2
I0 = (1/LI) {1/CI +

α/C1} is a similar term for the idler. If the signal and
idler frequencies are correctly chosen we can have ωS =
ω′

S0 and ωI = ω′
I0 and hence

iI = i∗SαβvP

ω′
S0ω

′
P0C

2
1R

′
IR

′
P

iS = vS

R′
Seff

(13)

Where R′
Seff is an effective signal resistance, given by:

R′
Seff = R′

S − RA, where RA = α2β2vPv∗
P

ω′
S0ω

′
I0ω

′2
P0C

4
1R

′
IR

′2
P

(14)

The amplifier is therefore a negative resistance type,
which uses the power of the pump to decrease the
effective resistance of the signal circuit and increase its
Q-factor. The voltage dropped across RL is iSRL, so the
voltage gain is G = R′

S/(R′
S − RA). Because the effect

is determined by vPv∗
P, there is no dependence on pump

phase. However, low overall idler and pump resistances
are required to achieve a significant effect at low pump
powers. Furthermore, at high pump powers and high
gains, the amplification is sensitive to small changes in

the resonant frequencies caused by the term α and to
frequency variations, and if the device is pumped suffi-
ciently hard that RA = R′

S, self-oscillation will occur.

4. Parametric amplification of
magneto-inductive waves

We now consider how the three-frequency amplifier
might be adapted for MI waves. Fig. 3b shows a unit
cell that might offer one approach. Here the signal, idler
and pump loops in Fig. 3a are provided with mutual
inductances MS, MI and MP that allow nearest-neighbour
magnetic coupling when a set of cells are arranged in an
array. This arrangement will clearly allow propagation
of signal, idler and pump as separate MI waves, which
are linked by nonlinear capacitances. Note that the signal
and pump sources have been omitted, together with the
load and the varactor resistance. Analysis can proceed
as before. If the signal, pump and idler currents in the
nth section are labelled ISn, IIn and IPn and the voltages
across the nonlinear capacitor at the three frequencies
are labelled vCSn, vCIn and vCPn, Kirchhoff’s law gives:

{
1 − ω2

S0

ω2
S

− j

QS

}
iSn

+ (κS/2){iSn−1 + iSn+1} + vCSn

jωSLS
= 0{

1 − ω2
I0

ω2
I

− j

QI

}
iIn

+ (κI/2){iIn−1 + iIn+1} + vCIn

jωILI
= 0{

1 − ω2
P0

ω2
P

− j

QP

}
iPn

+ (κP/2){iPn−1 + iPn+1} + vCPn

jωPLP
= 0

(15)

Here κS = 2MS/LS, κI = 2MI/LI and κP = 2MP/LP are the
coupling coefficients for the signal, idler and pump. Sim-
ilarly, for the nonlinear capacitor we now have:

iSn = jωSC1{vCSn + βv∗
CInvCPn}

iIn = jωIC1{vCIn + βv∗
CSnvCPn}

iPn = jωPC1{vCPn + βvCSnvCIn}
(16)

If the signal and idler waves are weak compared with
the pump, the voltage product in the lowest of Eq. (16)
may be neglected as before, so that vCPn ≈ iPn/jωPC1.
Substituting into the lowest of Eq. (15), we obtain a
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recurrence equation for the pump currents:{
1 − ω′2

P0

ω2
P

− j

QP

}
iPn +

(κP

2

)
{iPn−1 + iPn+1} = 0

(17)

Eq. (17) implies that the pump simply propagates as
a magneto-inductive wave. Considering now the signal
and idler, the upper pair of Eq. (15) reduces to:

vCSn = iSnα

jωSC1
− i∗InαβiPn

ωIωPC2
1

vCIn = − i∗SnαβiPn

ωSωPC2
1

+ iInα

jωIC1

(18)

Substituting into the upper pair of Eq. (15) we then
get:{

1 − ω′2
S0

ω2
S

− j

QS

}
iSn

+ (κS/2){iSn−1 + iSn+1} − i∗InαβiPn

jωSωIωPLSC2
1

= 0{
1 − ω′2

I0

ω2
I

− j

QI

}
iIn

+ (κI/2){iIn−1 + iIn+1} − i∗SnαβiPn

jωSωIωPLIC
2
1

= 0

(19)

Eq. (19) can of course be recast as iteration relations,
allowing (for example) iSn+1 and iIn+1 to be found in
terms of iSn, iIn, iPn, iSn−1 and iIn−1 under any con-
ditions. Here, however, we briefly examine a simpler
solution. If we assume the signal, idler and pump currents
are travelling waves in the form iSn = iS exp(−jkSna),
iIn = iI exp(−jkIna) and iPn = iP exp(−jkPna) where iS, iI
and iP are amplitudes and kS, kI and kP are propagation
constants, we obtain:[{

1 − ω′2
S0

ω2
S

− j

QS

}
+ κS cos(kSa)

]
iS

− i∗I αβiP exp{j(kS + kI − kP)na}
jωSωIωPLSC2

1

= 0[{
1 − ω′2

I0

ω2
I

− j

QI

}
+ κI cos(kIa)

]
iI

− i∗SαβiP exp{j(kS + kI − kP)na}
jωSωIωPLIC

2
1

= 0

(20)

The exponentials vanish if kP = kS + kI—the phase
matching condition for a three-frequency travelling wave
amplifier [59]. If this condition holds, and there is also

no loss, we get:[{
1−ω′2

S0

ω2
S

}
+κS cos(kSa)

]
iS− i∗I αβiP

jωSωIωPLSC2
1

=0

[{
1−ω′2

I0

ω2
I

}
+κI cos(kIa)

]
iI − i∗SαβiP

jωSωIωPLIC
2
1

= 0

(21)

Uncoupling Eq. (21) we then get[{
1 − ω′2

S0

ω2
S

}
+ κS cos(kSa)

]

×
[{

1 − ω′2
I0

ω2
I

}
+ κI cos(kIa)

]
− γ2 = 0 (22)

Here γ2 = α2β2iPi∗P/ω2
Sω2

I ω
2
I LILPC4

1. To solve Eq.
(21), we assume that kS = kS0 + 	kS and kI = kI0 − 	kS,
where kS0 and kI0 are the propagation constants obtained
in the absence of pumping (γ = 0). Assuming that 	kS is
small, and eliminating terms using the dispersion equa-
tions of the signal and idler waves in the absence of
pumping, we get:

	kS = ± jγ

{κSκI sin(kS0a) sin(kI0a)}1/2 (23)

Because	kS is imaginary, Eq. (23) describes a gain coef-
ficient for exponential growth of the signal and idler, the
conventional result. Here we have implicitly assumed
that κS and κI have the same sign, so that the group veloc-
ities of the two waves are in the same direction. Loss and
lack of phase matching both complicate the analysis, and
it is not our purpose to present further details here. We
simply point out that the results obtained so far for MI
waves are entirely analogous to those of Tien [59], to
show how they relate to earlier work.

Instead, we note that the conditions ωP = ωS + ωI and
kP = kS + kI will be difficult to satisfy using waves with
complicated dispersion characteristics, and even more
so in a ring geometry in which the three waves must be
simultaneously resonant. To relax these constraints, we
return to Eq. (19), and consider the case when the idler
resonators are uncoupled as shown in Fig. 2c, so that
κI = 0. Now, the lower equation becomes:

iIn = i∗SnαβiPn

jωSωIωPLIC
2
1{1 − (ω′2

I0/ω
2
I ) − (j/QI)}

(24)

Assuming now that the idler matches its resonance,
so that ω2

I = ω′2
I0, the idler currents are simply given

by iIn = i∗SnαβiPn/ωSωPR′
IC

2
1 and the upper Eq. (19)
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reduces to:{
1 − ω′2

S0

ω2
S

− j

QSeff

}
iSn +

(κS

2

)
{iSn−1 + iSn+1} = 0

(25)

Here the effective Q-factor of the signal resonators is
now QSeff = ωSLS/R′

Seff, where:

R′
Seff = R′

S − RB, where RB = α2β2iPni
∗
Pn

ω′
Sω′

I0ω
′2
PC4

1R
′
I

(26)

Eq. (25) is again a recurrence equation for a magneto-
inductive wave. Eq. (26) implies that the effective
Q-factor of the signal resonators must rise as iPni

∗
Pn

increases, and Eq. (2) then implies that MI wave
propagation losses must reduce. The overall system
therefore again corresponds to a travelling wave neg-
ative resistance amplifier, albeit with slightly different
characteristics to the conventional design.

The requirement that ωI = ω′
I0 clearly renders the

arrangement in Fig. 3c less versatile than the one in
Fig. 3b, in which the idler can exist over a band. How-
ever, in the case of a ring resonator in a MRI application
where bandwidths are small, it offers some advantages.
The signal and pump need merely be resonant on suit-
able ring modes, and the idler operating on its resonant
frequency. Because the effect is determined by iPni

∗
Pn,

there is again no dependence on pump phase. There is
no requirement for phase matching, and the group veloc-
ities of the pump and signal waves need not even have
the same sign.

5. Experimental verification

Experimental verification of the ideas of the previ-
ous section is not straightforward. The MRI application
requires construction of a ring with suitable size, oper-
ating on a specified frequency (for example, 63.8 MHz
for 1H MRI in a 1.5 T field), using non-magnetic
components. However, several non-ideal effects can
be anticipated. The nearest-neighbour coupling needed
for MI waves will inevitably be accompanied by cou-
pling between non-nearest-neighbours and between the
three sets of resonators. Provision of the low-impedance
sources and loads needed for high Q-factors is difficult,
given standardisation on 50 
 systems. Weak inductive
probes can be used for input and output coupling, but
will lead to coupling between the pump and signal source
and the detector, resulting in poor SNR and an inaccu-
rate gain figure. Compromises were therefore required. A
scaled-down test-bed operating in the correct frequency

Fig. 4. (a) Layout of amplifier unit cell; (b) prototype unit cell and
arrangement for amplification.

band was constructed, using as few magnetic compo-
nents as possible, with the intention of following the
demonstration of amplification with a more realistic sys-
tem. Strong nearest-neighbour coupling was obtained
using closely spaced air-cored rectangular inductors.
There is little to be done about non-nearest-neighbour
coupling; however, coupling between the signal and
pump lines was minimised by separating the two with
the idlers, which were based on compact, cored induc-
tors.

5.1. Electrical components

Experiments were carried out using FR-4 PCB unit
cells with the layout of Fig. 4a. The inductors LS
and LP were three-turn spirals formed from 85 �m
thick Cu with 1 mm wide tracks and 0.5 mm sepa-
rations, designed with rectangular shape to provide
strong nearest-neighbour coupling between elements
placed edge-to-edge. The PCB inductors had a good
Q-factor (110 at 80 MHz), but a significant parasitic
capacitance (3.3 pF), which necessitated careful choice
of components to ensure that the idler and the pump
and signal bands were appropriately separated. The
inductors LI and the capacitors CS, CI and CP were
surface-mount components. The nonlinear capacitors
were Philips BB149A RF varactor diodes, with a reverse
bias applied using inductors LB. Fig. 4b shows a unit
cell.
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Table 1
Component values for unit cells and rings

LB (�H) LS (�H) CS (pF) LI (�H) CI (pF) LP (�H) CP (pF)

Unit cell 4.7 0.68 330 4.7 3.3 0.68 10
Ring 4.7 0.68 330 4.7 10.0 0.68 10

The varactor capacitance varies with reverse voltage
V approximately as [76]:

C ≈ C10

(1 + V/Vbi)0.5 (27)

Here C10 ≈ 22 pF and Vbi ≈ 0.9 V. Assuming that V is
the sum of a dc bias VB and an ac voltage VC, where VC
is small, we obtain C = C1(1 + βVC), with:

C1 = C10

(1 + VB/Vbi)0.5 and β = − 1

2(Vbi + VB)
(28)

The effect of the term C1 on the resonant frequencies
f ′

S0, f
′
I0 and f ′

P0 (corresponding to the angular frequen-
cies ω′

S0, ω′
I0 and ω′

P0, respectively) will be significant
if CS, CI and CP are large compared with C1. Since the
resonances will all then depend on VB, it is preferable
to choose CS and CI so that f ′

S0 and f ′
I0 are approx-

imately fixed, while f ′
P0 can be varied to satisfy the

relation f ′
P0 = f ′

S0 + f ′
I0. However, since the nonlinear

coefficient β declines as VB increases, it is important
that matching is achieved at a VB that is small, but not
so small that the diode is driven into conduction when
pumped. Component values were as shown in Table 1;
these gave resonant frequencies f ′

I0 ≈ 30 MHz, f ′
S0 ≈

40 MHz and f ′
P0 ≈ 70 MHz.

5.2. Unit cells

Characterisation was carried out using an Agilent
E5061A network analyser. The voltage dependence of
the signal, idler and pump resonances was first estab-
lished, by weak coupling using small PCB inductors, as
shown in Fig. 4b. This approach avoided degradation of
the Q-factor of the signal resonator. Fig. 5a shows the
frequency variation of S21 at different VB and Fig. 5b
the voltage dependence of f ′

S0, f ′
I0 and f ′

P0. These
results imply that the signal and idler resonances are rela-
tively constant. However, the pump resonance increased
quasi-linearly with VB, allowing frequency matching at
VB ≈ 3 V. Weak coupling was then used to couple a HP
8647A source into the pump resonator, via a 17 dB Far-
nell LA1000 RF power amplifier. Fig. 6a shows the
frequency variation of S21 at VB = 3 V, with and without
pumping at 23 dB m. Pumping increases the Q-factors of
the idler and signal, and causes small shifts in resonance

to lower frequencies. However, there is significant break-
through of the pump. To measure the gain, a second HP
8647A source was coupled into the signal resonator and
the amplified signal observed on the network analyser at
the signal frequency. Fig. 6b shows the variation in gain
with pump power, showing a gain of >20 dB. However,
care was required to prevent oscillation at high gains.

5.3. Ring resonators

MI waveguides were constructed with edge-coupled
cells as shown in Fig. 7a, using connecting wires to dis-
tribute the ground and bias. Coupling coefficients were
established by the split resonance method [10,11], giving
the values shown in Table 2. The values ofκ1 and Q corre-

Fig. 5. (a) Transfer characteristics of inductively probed unit cell at
different VB; (b) voltage dependence of signal, idler and pump reso-
nances.
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Fig. 6. (a) Transfer characteristics of unit cell, without and with pump
applied; (b) variation of gain with pump power.

spond to loss of ≈0.15 dB/element at mid-band. Similar
coefficients were obtained for the signal and pump.
As expected, significant coupling between non-nearest-
neighbours was found, with κ2/κ1 ≈ 1/9, the value used
to generate the dashed line theoretical dispersion curve in
Fig. 2b. Coupling was also found between the signal and
the pump waveguide; this coefficient is positive because
of the definition of the current directions. As a result, res-
onant frequencies altered and it was necessary to increase
CI and reduce the idler frequency to around 20 MHz,
to prevent the idler overlapping the signal band. A 16-
element polygonal ring was constructed by inserting
cells into Perspex baseboards carrying grooves formed
by CNC machining. Fig. 7b shows the complete ring
with an inductively coupled input and output for the sig-
nal on either side of a diameter. The pump was applied
in a similar way, using additional probes.

Table 2
Coupling coefficients for the most significant interactions

κ1 κ2

Signal–signal −0.3 −0.035
Signal–pump +0.055

Fig. 7. (a) Arrangement for travelling wave amplification; (b) proto-
type 16-element ring.

The voltage dependence of the different resonances
was again established first. Fig. 8a shows the frequency
variation of S11 and S21 for VB = 2 V. The individ-
ual signal and pump resonances of Fig. 5a have now
both separated into a set of resonances at frequencies
f ′

S� and f ′
P�, confirming that the signal and pump are

both propagating as waves. No band was observed for
the idler. Losses were low enough to identify all except
the lowest frequency resonances (μ = 8, which is close to
μ = 7) unambiguously. Fig. 8b shows the mode frequen-
cies as a dispersion diagram, for different VB. The signal
and pump have similar dispersion, as might be expected
from their near-identical coupling arrangements. In each
case, the dispersion diagram is distorted from the sim-
plest example in Fig. 2a, due to non-nearest-neighbour
coupling. The pump modes are more sensitive to changes
in VB.
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Fig. 8. (a) Transfer characteristic and (b) dispersion characteristic of
inductively probed ring.

Fig. 9a shows the variation with VB of the lowest
order signal and highest order pump resonances. These
results show that frequency matching may be achieved
for several pairs of resonances at different VB, in the
useful range of a few Volts. In particular, it was possible
to match the primary signal mode with the sixth pump
mode at VB ≈ 2 V. Fig. 9b shows the variation of S21 over
the signal band, without and with pumping at 21 dB m at
f ′

P6. Amplification of ≈5 dB at f ′
S1 may be seen, demon-

strating a transfer of energy from the pump band to the
signal band. This figure is lower than the gain for sin-
gle elements, but respectable given the complexity of the
circuit.

Similar gains were achieved when the pump was
applied at the signal input and at the output, suggesting
that the pump direction is unimportant. Similar gain was
also achieved at lower power when the pump was applied
at both locations, suggesting that pump loss is signif-
icant. Gain was also achieved at the signal frequency
f ′

S0, which may also be coupled to the sixth pump mode.
By component adjustment, it is likely that further match-
ing may be achieved, so that (for example) the primary
signal mode might be amplified by a lower loss pump
mode near the band centre.

Fig. 9. (a) Voltage dependence of signal, idler and pump resonances;
(b) transfer characteristics of ring, without and with pumping by the
6th pump mode to amplify the 1st signal mode.

6. Discussion

Parametric amplification of magneto-inductive waves
propagating in coupled chains of nonlinear L–C
resonators has been studied theoretically and experimen-
tally. Analysis has been presented for a three-frequency
travelling wave scheme in which the signal, idler and
pump all propagate as MI waves. Nearest-neighbour
coupling has been assumed, but it is relatively simple
to incorporate non-nearest-neighbour coupling between
elements of the same line following the method in [11],
for example as in Eq. (3). The major result is a dis-
tortion of the dispersion characteristic, as indicated in
Fig. 2b. De-coupling the idler resonators has been shown
to relax the standard phase matching condition, making
it relatively simple to investigate alternative pumping
configurations.

Confirmation of the theory has been provided using
low-frequency printed circuit board unit cells containing
varactor diodes, arranged as a 16-element polygonal ring
resonator. Frequency matching and selective amplifica-
tion of the primary resonance has been demonstrated.
Currently the main limitations are losses and unwanted
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mutual interactions between the pump and signal lines.
Because of the lack of sensitivity to pump phase, the lat-
ter could be overcome by avoiding the use of a MI wave
to distribute the pump, for example by using a co-axial
line. Such a modification would in turn greatly reduce
pump noise. Alternatively, the pump wave could be prop-
agated on an axial MI waveguide rather than a planar
waveguide. In this case, nearby unit cells of the signal
and pump waveguides would be approximately orthog-
onal and hence weakly coupled. These alternatives will
be considered in future investigations. The primary res-
onance can be excited by a rotating magnetic dipole in
magnetic resonance imaging. Future work will involve
improvement of the gain and signal to noise ratio, elim-
ination of all remaining magnetic materials and tuning
to a suitable frequency for MRI experiments.
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