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Propagating between the contacts of a field-effect transistor �FET�, plasma waves in its channel can
become unstable and lead to generation of terahertz radiation. While previous studies of this
instability concentrated on rectangular FETs, alternative geometries present fresh opportunities. We
studied theoretically plasma oscillations in a gated FET with Corbino geometry where, in contrast
with the rectangular FET, the oscillations become unstable at symmetric boundary conditions.
Moreover, their lowest eigenfrequency is almost twice as high as that in the rectangular FET at
comparable instability increments. These advantages make the Corbino FET promising for practical
realizations of terahertz oscillators. © 2010 American Institute of Physics. �doi:10.1063/1.3532850�

Due to their potential for terahertz sources and detectors,
plasma waves �also known as plasmons and plasmon-
polaritons� in two-dimensional electron structures have at-
tracted increased attention in recent years. A mechanism for
terahertz generation was suggested by Dyakonov and Shur1

who noticed that plasma waves in the channel of a field-
effect transistor can become unstable when propagating be-
tween the transistor’s contacts. Various aspects of the
Dyakonov–Shur instability have been considered subse-
quently: effects of collisions and diffusion,2–4 nonuniform
channels,5,6 etc. For a recent review, see Ref. 7 and for recent
experiments, see Ref. 8.

The Dyakonov–Shur instability can occur only in chan-
nels of finite length. The channel boundaries—the source and
the drain—are, therefore, central in determining the condi-
tions for the instability. In their pioneering work, Dyakonov
and Shur1 demonstrated the instability for two asymmetric
boundary conditions, one requiring zero ac potential at the
source and the other, zero ac conduction current at the drain.
Although other boundary conditions were subsequently
studied,3,5 their asymmetry has been considered essential for
the instability to occur.7

While being impeccable mathematically, asymmetric
boundary conditions do not easily lend themselves to practi-
cal realizations. They might need either different source and
drain contacts or external circuits, both complicating experi-
mental design. Knap, Lusakowski and co-workers9,10 also
suggested that such boundary conditions can be realized by
driving the transistor in saturation, but they admitted that the
original theory of Dyakonov and Shur may not work in this
regime. Moreover, the plasma waves in the saturated transis-
tor can be suppressed by hot-carrier effects.11

Realizing the Dyakonov–Shur instability under symmet-
ric boundary conditions could, therefore, simplify the experi-
mental design and lead to practical terahertz sources.
Whereas previous studies of the instability concentrated on
rectangular field-effect transistors �FETs�, we abandon the
rectangular symmetry and consider instead the cylindrical
geometry shown schematically in Fig. 1. In this geometry,
known as a Corbino FET,12 the source and the drain are two

concentric electrodes. The two-dimensional channel occupies
the space between the source and the drain, and there is a
gate above it. The geometric asymmetry between the source
and the drain will allow the instability to occur at symmetric
boundary conditions. We concentrate on the boundary condi-
tions corresponding to highly conducting contacts, which are
important both for theory and experiment, but we discuss
alternative boundary conditions as well.

The Dyakonov–Shur instability belongs to a large family
of instabilities in confined plasmas. These have been known
since 1944 when Pierce13 studied electron beams drifting be-
tween two grid electrodes kept at equal potentials. The insta-
bilities of Pierce and Dyakonov and Shur are analogous in
that they both occur when an otherwise stable plasma is con-
fined between two boundaries. Interestingly, in Pierce’s in-
stability, both space-charge waves propagate in the same di-
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FIG. 1. The Corbino FET �top- and side-view� has concentric source and
drain and a top gate.
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rection, and it was not explained as amplification of a
reflected wave. Instead, an interpretation was given based on
feedback between the electrodes controlled by external
circuits.14,15 Later work by Read16 on transit time oscillators
belongs to the same category. Devices based on Read’s pro-
posal have been commercially available for quite some time.

This letter presents the derivation and solution of the
equations governing the plasma oscillations in the Corbino
FET. It shows that the oscillations become unstable for the
boundary conditions of zero ac potential both at the source
and the drain, and it further discusses the eigenfrequency and
the instability increment for the lowest plasma eigenmode.

To describe the plasma oscillations, we use three equa-
tions: the equation of motion, the continuity equation, and
the gradual-channel equation. The equation of motion has the
form

�v

�t
+ �v · ��v = −

e

m�
� � , �1�

where v is the electron velocity, e is the electron charge, m�

is the electron effective mass, and � is the potential. Here,
we used the quasistatic approximation by presenting the
electric field E as E=−��. Also, we ignored in Eq. �1� elec-
tron collisions and diffusion.

The continuity equation has the form

e
�n

�t
+ � · J = 0, �2�

where J=env is the current density, and n is the electron
density.

The gradual-channel equation has the form17

n =
C�

e
, �3�

where C is the capacitance per unit of the gate area. This
equation requires a thin dielectric layer between the channel
and the gate �see Fig. 1�. For plasma oscillations in a FET,
this equation was used by Dyakonov and Shur1 in their origi-
nal publication, and it has been recently verified by Millitha-
ler et al.18 using Monte-Carlo calculations.

As is usually done for the analysis of instabilities, we
present the potential, velocity, and density as a sum of a
large dc part and a small ac part: �� ,v ,n�= ��0 ,v0 ,n0�
+ ��̃ , ṽ , ñ�exp�j�t�, ���̃ , ṽ , ñ��� ���0 ,v0 ,n0��; here � is the
angular frequency and j is the imaginary unit. With this as-
sumption, we can linearize Eqs. �1�–�3� by ignoring products
of small quantities; for example, for the ac density, we write

J̃=en0ṽ+eñv0. Having done that, we can solve the equations
for the ac quantities subject to boundary conditions and thus
determine the spectrum of eigenfrequencies. The values of
the eigenfrequencies will be, in general, complex, so that
�=Re �+ j Im �. Unstable oscillations are indicated by
Im ��0.

To analyze the equations for the ac quantities, we need to
know their dc counterparts. According to the gradual-channel
equation, Eq. �3�, constant dc potential, �0=const, implies
constant dc electron density, n0=const. As follows from the
continuity equation, the dc �drift� velocity should be of the
form

v0 =
�

r
er, �4�

where r is the radial coordinate, er is the radial unit vector,
and � is a constant such that �=R1v0 �r=R1

. This behavior of
the velocity in the Corbino FET is in contrast with that in the
rectangular FET, where both the drift velocity and the den-
sity are constant along the channel.

To further simplify the analysis, we will concentrate only
on the lowest-order mode, which is most likely to be of
practical significance. For this mode, there is no angular de-
pendence of any quantity, so that � /��=0. Consequently, we
consider only the radial component of the ac velocity.

With the help of the above assumptions and of Eq. �3�,
we can rewrite the equation of motion, Eq. �1�, and the con-
tinuity equation, Eq. �2�, for the ac velocity ṽ and potential �̃
in the form

j�ṽ −
�ṽ
r2 +

�

r

dṽ
dr

= −
e

m�

d�̃

dr
,

j��̃ + �0
dṽ
dr

+
�0ṽ

r
+

�

r

d�̃

dr
= 0. �5�

These two equations require two boundary conditions, which
we take in the form �̃ �R1

= �̃ �R2=R1+L=0.
Introducing a dimensionless coordinate x=r /L, a dimen-

sionless potential �= �̃ /�0, a dimensionless velocity 	
= ṽ /v0, and defining the plasma-wave velocity as1 s2

=e�0 /m�, we recast the above equations in the form

� j
 −
�

x2�	 +
�

x

d	

dx
= −

d�

dx
,

j
� +
�

x

d�

dx
+

d	

dx
+

	

x
= 0, �6�

where 
=�L /s and �=� / �Ls�. The boundary conditions can
then be written as ��x1�=��x2�=0, where x1,2=R1,2 /L.

We proceed with the analysis of Eq. �6�. In the absence
of electron drift �=0, the equation for the potential � re-
duces to Bessel’s equation. With the boundary conditions
chosen, the equation for the lowest eigenfrequency is then
J0�
x1� /Y0�
x1�=J0�
x2� /Y0�
x2�, where J0 and Y0 are zero
order Bessel functions of the first and second kinds, respec-
tively. This equation can only be solved numerically. Conse-
quently, we also chose to solve numerically the more general
boundary value problem �6� in the presence of drift.

The real and imaginary parts of the eigenfrequency de-
pend on two parameters: the electron drift velocity and the
ratio between the sizes of the channel and the source. Figure
2 shows the �a� real and the �b� imaginary parts of the eigen-
frequency, 
=�L /s, depending on the drift velocity at the
source in the Corbino FET for three values of the channel
length. The dashed lines are for L=R1, the dashed-dotted
lines are for L=5R1, and the solid black lines are for L
=20R1. Also shown by solid gray lines are the real and
imaginary parts of the lowest eigenfrequency in the classical
rectangular FET with the asymmetric boundary conditions of
Ref. 1.

For all three values of L, Im 
�0, which means the
plasma oscillations are unstable; see Fig. 2�b�. At low drift
velocities, which are of most practical significance, the insta-
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bility increment is proportional to the drift velocity, and it is
larger for longer channels. For L=R1, the instability incre-
ment at small drift velocities is smaller than that in the rect-
angular FET. For L=5R1, both increments are almost the
same, and for L=20R1, the increment in the Corbino FET
exceeds that in the rectangular FET. As our calculations
show, if electrons drift in the opposite direction �in other
words, if the source and the drain are interchanged�, the
imaginary part of the eigenfrequency is positive, and the
plasma oscillations become damped instead of being un-
stable.

The real parts of the dimensionless eigenfrequency Re 

are close to � at low drift velocities for all three values of
the channel length; see Fig. 2�a�. As such, the eigenfrequen-
cies are almost twice as large than the corresponding value
in the rectangular FET, shown by gray line in Fig. 2�a�.
For example, for the typical plasma-wave velocity1,3,7,9 of
s=108 cm /s, the frequency of 1 THz in the Corbino FET
corresponds to the channel length of approximately 500 nm.

The instability can occur also at other symmetric bound-
ary conditions. In particular, we have studied the boundary
conditions when the ac density and potential are related to
each other by a pure reactance X. We found instability in a

wide range of X, both positive and negative. As these results
suggest, relying on geometrical source-drain asymmetry
rather than on asymmetry in boundary conditions might be of
general significance.

Thus, plasma oscillations in the Corbino FET can be-
come unstable in the presence of electron drift, and this in-
stability can be used for generating terahertz radiation. Com-
pared with the rectangular FET, the oscillations in the
Corbino FET become unstable for symmetrical boundary
conditions and have higher eigenfrequencies at comparable
or higher increment values. These properties could make the
Corbino geometry advantageous for realization of practical
terahertz oscillators. To increase the instability increment
and, therefore, the output power, the size of the source
should be made small comparable with the channel length.
For terahertz applications, it implies nanometric sources.
Practical realization of such FETs poses some obvious diffi-
culties, particularly in lithography.
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FIG. 2. �a� Real and �b� imaginary parts of the lowest eigenfrequency of
plasma oscillations in the Corbino FET depending on the drift velocity at the
source. The negative imaginary parts indicate unstable oscillations, which
can be used for terahertz generation.
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