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Slow waves on chains or lattices of resonant elements offer a unique tool for guiding and
manipulating the electromagnetic radiation on a subwavelength scale. Applications range from radio
waves to optics with two major classes of structures being used: (i) metamaterials made of coupled
ring resonators supporting magnetoinductive waves and (ii) plasmonic crystals made of
nanoparticles supporting waves of near-field coupling. We derive dispersion equations of both types
of slow waves for the case when the interelement coupling is governed by retardation effects, and
show how closely they are related. The current distribution is found from Kirchhoff’s equation by
inverting the impedance matrix. In contrast to previous treatments power conservation is
demonstrated in a form relevant to a finite structure: the input power is shown to be equal to the
radiated power plus the powers absorbed in the Ohmic resistance of the elements and the terminal
impedance. The relations between frequency and wave number are determined for a 500-element
line for two excitations using three different methods. Our approach of retrieval of the dispersion
from driven solutions of finite lines is relevant for practical applications and may be used in the
design of metamaterials and plasmonic crystals with desired properties. © 2009 American Institute
of Physics. [doi:10.1063/1.3259397]

I. INTRODUCTION

The three most important questions to be answered for
any practical guiding structure are (i) how to launch the
wave, (ii) how the wave propagates (what the wavelength in
the guide is), and (iii) what the attenuation is. The propaga-
tion and attenuation characteristics can be rigorously calcu-
lated at least for a class of waveguides which do not radiate.
Best examples are the coaxial cable and the hollow metallic
waveguide in which the fields are confined within bound-
aries. Rigorous solutions are still available for open
waveguides of infinite length, e.g., for optical fibers. The
chances of finding an exact solution quickly recede when
considering open periodic waveguides. An early example is a
periodic array of electric dipoles' which was studied experi-
mentally. For a theoretical treatment of coupled waveguides
in terms of nearest neighbor interaction, see Ref. 2. Two
recent examples of propagation on an array of resonant par-
ticles (see Fig. 1) are nanoparticle (NP) and magnetoinduc-
tive (MI) waves, although the physical mechanisms of the
resonance are quite different. It is an LC resonance for the
loop and a plasma resonance for the NP. The analysis to be
presented here applies to both of them although they were
found experimentally in entirely different frequency regions.

Waves along a linear chain of spherical metal NPs were
first investigated by Quinten et al.’ Their motivation was
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energy transport at visible frequencies by means of particles
that are much smaller than the wavelength. Subsequently
other aspects of these waves such as switching,4 splitting
between longitudinal and transverse modes,” radiative
properties,6 pulse plropagation,7 detection of electromagnetic
energy, multipoles,9 effect on a channel Waveguide,10 and
two-dimensional representations11 were investigated either
experimentally or theoretically.

The first paper on MI waves came about as a by-product
of the research on metamaterials.'” The elements were me-
tallic rings made resonant by inserting lumped capacitors
into the rings. The initial experiments were performed in the
lower megahertz 1regi0n.13 Further analyses and experimental
proofs followed.'*™"® The properties of biperiodic and
coupled MI waves were discussed'*** and higher order
interactions™ were considered. Applications as waveguide
components,m’26 transducers,27 imagers,zg’31 and nonlinear
elements®> ™ were similarly treated. For review papers, see
Refs. 36 and 37.

FIG. 1. (Color online) Array of coupled (a) metamaterial elements and (b)
NPs both supporting slow waves.

© 2009 American Institute of Physics
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There are a number of similarities between MI waves
and NP waves. (i) Both of them have resonant elements pos-
sessing axial symmetries (loops combined with capacitances
for the former, metallic nanospheres for the latter). (ii)
Losses may be simply included for both of them by assum-
ing that the metal has finite conductivity for the MI wave and
an imaginary dielectric constant for the NP wave. (iii) Both
of them have near-field coupling between the elements as
manifested by the mutual inductance between loops for the
former and the near field of an electric dipole for the latter.
(iv) Both of them have two different kinds of coupling oc-
curring when the (magnetic/electric) field is perpendicular to
or parallel with the direction of propagation (these are called
planar and axial configurations for MI waves and transverse
and longitudinal waves for NP waves). (v) Both of them have
far-field coupling as manifested by the radiation field of
loops for MI waves, and the far field of electric dipoles in the
transverse configuration for NP waves. (vi) Dispersion char-
acteristics have been derived in both cases by considering
coupling between (a) all the elements and (b) nearest neigh-
bors only.

Our interest in the present paper is in the dispersion
characteristics of a linear array in the presence of retardation,
i.e., when all the elements are coupled to each other due to
the radiation fields. The dispersion equation is supposed to
tell us how the waves propagate, i.e., what the wave number
q is for a given frequency w. To find this relationship the
guiding structure needs to be homogeneous, lossless and
should have neither a beginning nor an end, it must be infi-
nitely long. The derivation of the dispersion equation is fairly
straightforward in principle. One needs to find the polariz-
ability of an individual element which must include radiation
damping as well. Then, conversely, the effect of all the ele-
ments upon a given element, represented by the interaction
function, needs to be determined. The dispersion equation
may be derived by combining these two effects (see, e.g.,
Refs. 38 and 39). Since the number of elements is infinite the
dispersion equation appears in the form of an infinite series,
each term having both real and imaginary parts. One should
then specify a value for the frequency w and find the corre-
sponding values of the wave number g. An alternative ap-
proach is by Alu and Engheta40 who found the dispersion
equation (still for an infinite line but valid for small losses as
well) in closed form in terms of polylogarithms.

Weber and Ford™ had the solution for NP waves as an
infinite series (both for the transverse and for the longitudinal
variety) but made no attempt to solve it. Instead they chose a
finite array of 20 elements. Since the coupling between the
elements is known, they could determine the matrix connect-
ing the dipole moment at element m to the excitation in
element n. They found the normal modes from the condition
that the matrix is singular. The method works both for the
lossless and for the lossy case yielding complex values of the
frequency. The disadvantage of the method of taking a finite
number of elements is that only a discrete set of points can
be obtained on the dispersion curve. Their most notable re-
sult is that for the transverse case the quasistatic dispersion
characteristics are strongly perturbed when retardation is
taken into account. They have shown that the dispersion
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curves tend to the light line from both directions. In the case
when retardation effects can be disregarded, as for example
in a chain with strong lateral localization,41 such perturbation
does not occur.

Another solution of the dispersion curve is due to Koen-
derink and Polman.*? They assumed the dipole moment in
the wave form exp(jmgqa), where m is an integer and a is the
separation of the elements, and calculated the corresponding
complex values of the frequency from the dispersion equa-
tion. They found the interesting result that the two branches,
to the left and to the right of the light line, do not cross.

The lossless dispersion equation was examined by Belov
and Simovski*® and Simovski er al.* In the case of NP
chains, the imaginary part of the interaction function exactly
cancels the imaginary part (due to radiation damping) of the
inverse polarizability. Thus all terms in the dispersion equa-
tion are real provided the value of ¢ is to the right of the light
line. In physical terms Belov and Simovski*® argue that “the
far field radiation of a single scatterer is compensated by the
electromagnetic interaction in a regular three-dimensional
(3D) array, so that there is no radiation loss for the wave
propagating in the lattice.” This explanation, however, does
not hold to the left of the light line where there are strong
radiation effects.

It is generally agreed that the dispersion equation has
meaning only for an infinitely long array. The arguments of
Belov and Simovski*® and Simovski et al.** concerning the
cancellation of radiation damping are no longer valid for a
finite line. Open finite structures are bound to radiate and of
course all practical structures are finite. If we want to know
what happens under practical conditions we must look at the
way the array is excited, and find the current distribution and
the corresponding radiation. The aim of this paper is, taking
excitation into account, to find how the wave number varies
with frequency in the presence of radiation.

We have argued in this section that MI waves and NP
waves are analogous. We shall derive the dispersion charac-
teristics for both waves in Sec. II and explore the extent of
the analogy. In Sec. III we shall find the current distribution
of MI waves in a 500-element array for a given value of
frequency by applying the generalized Kirchhoff’s equation.
The relationship between frequency and wave number is
then derived for two types of excitation by three different
methods: Fourier analysis, input power maximization, and
deduction from currents in consecutive elements. In Sec. IV
we point out the difference between power conservation for
an infinite line and for a finite line. Conclusions are drawn in
Sec. V.

Il. ANALOGY BETWEEN NP AND MI WAVES

Currents in a linear array of magnetic resonant circuits
can be excited by external magnetic fields or by applying
voltages to selected elements. For a 3D array it is also pos-
sible to excite the waves in the medium by an incident plane
wave.” The voltage in element m is determined by the cur-
rent in the same element and by the voltage induced by the
currents flowing in all the other elements. Formally, the re-
lationship is given by Kirchhoff’s equation as follows:
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where an exp(jwr) temporal variation is assumed, Zy=jwL
+1/(jwC)+R, L is the inductance, C is the capacitance, R is
the resistance that includes both the Ohmic and the radiation
parts, I, is the current in the mth element, V,, is the voltage
applied to the mth element, and M,,; is the mutual inductance
between elements m and /. The summation is infinite for the
moment although later we shall make it finite. Assuming a
wave solution

1,,= 1 exp(= jgma), 2)

substituting Eq. (2) into Eq. (1), disregarding the excitation,
and using the symmetry of the situation, we find the disper-
sion equation after a moderate amount of algebra in the form
2 . e
] J M n
—=1-=—-22, ——cos(gna), 3
e 0 z 7 cos(qna) 3)

. .
where wy=1/VLC is the resonant frequency and Q=wL/R is
the quality factor. For NP waves the dispersion equation can
be written in the form”

w? [ wv 2k3r3 rS
—S=1+jl—+ +25D, 4)
o ;) a
where
o 1+ jkan — (kan)?
D= 1—3()cos(qan)exp(— Jjkan), (5)
n=1 n

r, is the radius of the sphere, wy is its resonant frequency,
k=w/c, and c is the velocity of light.

Some simple relationships can already be seen. For the
usual case of a narrow passband the two formulations agree
although the left-hand sides in Eqgs. (3) and (4) are reciprocal
to each other. However the analogy becomes very close if we
replace our capacitively loaded loops by resonant magnetic
dipoles and determine the mutual inductances accordingly. It
may be shown then that the terms in the infinite series are
identical and the other terms are closely related. In particular,
the radiation resistance of the electric dipole is replaced by
the radiation resistance of the magnetic dipole.

This analogy is of practical importance. NP arrays have
potential applications as subwavelength waveguides in the
infrared and visible regions but they do not easily lend them-
selves to experimental investigations, e.g., it would be quite
difficult to measure the phase and amplitude of the dipole
moment on each element. Considering that experiments on
MI waves could be performed with ease in the megahertz
and gigahertz regions,13’15’18’20_23’25_31’3 > it makes good sense
to use MI waves as a testing ground for NP waveguide de-
signs.

lll. DRIVEN SOLUTIONS FOR MI WAVES

We shall start with a one-dimensional array of N identi-
cal resonant elements, as shown in Fig. 1(a), capable of sup-
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porting MI waves. The resonant elements are capacitively
loaded loops, investigated experimentally in Refs. 13, 20,
and 21.

Our intention is to find the simplest model still suitable
for the study of retardation effects. We wish to avoid the
situation when the current in an element is no longer uni-
form. We have therefore chosen the size of the element to be
much smaller than the wavelength. On the other hand, for
retardation effects to be significant in exciting the various
elements, the array has to be long relative to the wavelength.
As in a previous attempt46 our choice was a frequency of f
=w/(27)=0.96 GHz, an element radius of ry=10 mm, wire
thickness of 1 mm, and distance between the elements a
=22.5 mm. Thus the size of the element is much smaller
(\/16) than the wavelength. The self-inductance in the me-
tallic ring is L=33.1 nH, which is made resonant at the de-
sign frequency by inserting a capacitor of C=0.83 pF. We
shall take here N=500, which is now about 36 free space
wavelengths making it clear that retardation effects will be
important. To take a large number of elements is also an
advantage in giving more discrete points on the dispersion
characteristics.

The difficulties with the dispersion equation of the infi-
nite line have already been pointed out in Sec. I. When a
solution is found, whether in the form of an infinite series or
special functions, it is still difficult to relate it to a practical
problem. All practical arrays are finite and must be excited.
All finite arrays radiate. We shall start with finding the cur-
rent distribution first and then the relation between frequency
and wave number. This relationship might differ a little from
that obtained equation (3), but it is more relevant to practical
cases.

Once we have a finite number of N elements it is more
convenient to have a somewhat different mathematical for-
mulation, namely, that of Eq. (1) which can be written in
matrix form as

Z1=V, (6)

where Z is an N X N impedance matrix. The diagonal ele-
ments correspond to the self-impedances (including the ra-
diation resistance) and the off-diagonal elements to the real
and imaginary parts of the mutual inductances.

We shall have two different kinds of excitations: (i) the
first element is excited and (ii) all elements are excited by a
standing wave. The two cases differ from each other only in
the form of the applied voltage vector. The current distribu-
tion in both cases can be obtained by inverting the imped-
ance matrix, yielding

1=7"'V. (7)

The inversion of a 500 X 500 matrix can be easily performed
numerically using MATLAB.

We wish to reiterate here that the method described in
this section is applicable also when all the elements are dif-
ferent. This includes the freedom of taking the last element
different by inserting a matching impedance.
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FIG. 2. (a) Real and (b) imaginary parts of the current as a function of the
number of elements showing whether a wave is forward or backward.

A. Excitation by the first element

We shall now assume that only the first element of the
voltage vector is different from zero and find the current
distribution from Eq. (7). The current should be a declining
periodic function. And this is indeed what we find in Figs.
2(a) and 2(b) where the real and imaginary parts are plotted
for elements 1-20 and 30-50, respectively. We may conclude
that the wave is a backward wave at the beginning of the line
and turns into a forward wave as it propagates down the line.
The explanation is that two waves are simultaneously ex-
cited: a large-amplitude, high-attenuation backward wave
and a low-amplitude, low-attenuation forward wave, similar
to that found in Ref. 46. The backward wave vanishes by the
20th element and only the forward wave propagating close to
the velocity of light survives.

We can repeat the exercise for a number of Q values. As
Q increases losses decrease and the amplitude decline is
more gradual. This is shown in Fig. 3 for Q=100, 1000,
2500, and 5000. The phase against element number also de-
pends strongly on the value of Q, as shown in Fig. 4, for
0=100, 1000, 2000, 3000, 4000, and 5000. We can see again
that as losses are lower the backward wave dominates further
away in the line. An alternative way of extracting the infor-
mation is to find the Fourier components of the current dis-
tribution which for small losses is a good approximation. We
have done it by using the FFT MATLAB program. Thus we
may find the real part of the wave number ¢’ (or wave num-
bers if there are more than one) for any value of frequency.
Repeating the exercise for 220 values of the frequency and
four values of the quality factor, Q=100, 1000, 10 000, and

Q=5000
05 ]
0
1
05 Q=2500 |
©
R
g Q=1000
c 0.5 1
0
1
=100
0.5\ Q
0
0

100 200 300 400 500
element number

FIG. 3. Decay of current amplitude as a function of element number.
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FIG. 4. Variation in the phase of the current as a function of element
number.

o, we have four curves, as shown in Figs. 5(a)-5(d), as con-
tour plots. For a given value of w we find a spread in the
corresponding ¢’ values. The amount of the spread depends,
as may be expected, on the value of Q. For 0=10 000 and
infinity the lines are quite narrow so they should be close to
the “true” dispersion curve. For Q=10 000 there is a just
discernible curve in the range 1 <g'a/mw<<2. For Q== the
curve is clearly visible. The reason is that without a matched
load there is a nearly perfect reflection from the end of the
array; hence, in the presence of low Ohmic losses, the ¢’
values are about the same in both directions.

The spread in the wave vector was shown in order to
appreciate how narrow (or wide) the Fourier spectrum is.
Taking the maxima of the spectrum, an unambiguous disper-
sion curve is obtained for each value of Q, as shown in Figs.
6(a)-6(d). The new feature shown is the convergence of the
curve to the light line for Q=10 000 and %, which means
that another solution exists (represented by a local maxi-
mum) as well. It could not be seen in Figs. 6(a) and 6(b)
because their values were too small. This is in line with the
conclusions arrived at earlier in this section. There are two
waves excited, a backward wave and a forward wave, the
latter one propagating close to the velocity of light.

The relation between the wave number ¢ and the fre-
quency w can be found by yet another method. Assuming
that the line is able to propagate L waves with the wave
numbers g;, we can write the current in the mth element of

the line in the general form,*
L
1= 2 U] exp(= jqiam) +15] expliguam)). (8)

=1

where the superscripts (t) and (r) refer to the transmitted and
reflected waves. At each frequency, the values of ¢, I(()tl) , and
I(()rl) can be found from the values of currents in 3L consecu-
tive elements.”’ Note that the wave numbers q, are assumed
to be complex, and this method allows to extract the disper-
sion characteristics also in the presence of loss.

As seen in Fig. 6(d), there are two propagating waves in
the frequency band from 0.985w, to 1.011w,, so it is suffi-
cient to take L=2 in Eq. (8). The resulting dispersion relation
is shown in Fig. 7. The dispersion was extracted from the
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FIG. 5. Magnitude and distribution of the Fourier components plotted in the normalized w vs ¢'a/ plane for four different values of the quality factor:

[(a)—(d)] ©=100, 1000, 10 000, and o°.

currents in the 500-element line with Q=% starting from the
250th element. Similar dispersion curves were extracted
starting from different elements sufficiently far from the line
ends. The dispersion curves of Fig. 7 are the same as those of
Fig. 6(d) between 0.985w, and 1.011w,. Outside this band,
the dispersion curves follow the light line.

B. Excitation by standing waves

An alternative method relies on excitation of the spatial
resonances. This is accomplished by applying voltages to
each element of the array, such that the voltage amplitudes
follow the amplitudes of the standing wave patterns. In order
to excite the s-order resonance (s is the number of the half
MI wavelengths in the resonator) the voltage amplitudes can
take the form

. smw

Va.=Vo st 9)
where m is the element number, V|, is the constant voltage,
which for simplicity is chosen to be 1 V, and N is the number
of resonators in the array. The number of possible spatial
resonances coincides with the number of elements in the ar-
ray, which is 500 in our case. For every spatial harmonics a
frequency scan is performed. Excitations with the temporal
and spatial frequencies close to the dispersion line will be
excited most efficiently. We have chosen the input power as
a measure for this efficiency,

N

P, = Re(VmIfn), (10)
1

0 | —

m=

where the summation is over all the elements in the array.
The numerical work is now much easier to perform because
the impedance matrix has already been inverted when single-
element excitation was considered. Taking now excitation in
the form of Eq. (9) the dependence of the input power on
frequency and wave number is presented in Figs. 8(a)-8(d)
in the form of contour plots for Q=100, 1000, 10 000, and .
The spread may be seen to decline as the quality factor in-
creases. The positions of the maxima are the same in all four
cases. They are plotted in Fig. 9. The dispersion curves ob-
tained from the propagating and standing wave excitations
for the lossless elements are compared in Fig. 10. To the
right of the light line the agreement is excellent. There is
some discrepancy to the left of the light line presumably for
the reason that the radiation patterns are quite different for
the two excitations and that it has an effect upon the w—g¢g
relationship.

The fact that the three different approaches to the disper-
sion equation yield practically identical results gives us con-
fidence that each one of them is built on solid physical foun-
dations.
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FIG. 6. Dispersion characteristics obtained from the positions of the
maxima of the Fourier amplitudes. The plots (a)—(d) correspond to the four
values of the quality factor: 0=100, 1000, 10 000, and .

IV. ANOTE ON POWER CONSERVATION

It is far from obvious that a model describing both guid-
ing and radiation effects for a finite array will necessarily
lead to power conservation, particularly so when there are
several power absorbing mechanisms. Altogether there are
four different powers to consider: (i) the input power, (ii) the
power absorbed in the elements due to Ohmic losses, (iii) the
power absorbed in a terminal impedance, and (iv) the radi-
ated power. Power conservation means that the input power
is equal to the sum of the other three.

There are several points to emphasize here. All the treat-
ments of NP waves we know of have considered neither
input power nor terminal impedances. First, they did not con-
sider excitations by applied voltages, and second, they could
not consider terminal impedances because it makes little
sense if the array is infinitely long. Similar arguments apply
to radiating power. As shown by Belov and Simovski* and

1.03

0.99

0.98

FIG. 7. Dispersion curves obtained from the values of the currents in ele-
ments 250-255 of the 500-element line assuming two propagating waves.

FIG. 8. Input power in a line consisting of 500 elements for quality factors
(a) 100, (b) 1000, (c) 10000, and (d) infinity. Each element of the line is
excited with a voltage such that the voltages mimic one of the standing
waves.

Simovski et al.** for an infinite array and mentioned in Sec.
I, there is no radiation in the guided wave region due to a
delicate canceling mechanism. However the situation is quite
different for a finite array. Once the array is finite and open to
air, and currents flow in the elements, there will be a field in
any of the points of 3D space due to each element, which
need to be added up in phase to obtain the far field. The
radiated power may then be obtained by integrating the ra-
diated power density over a sphere in the far field.

We have investigated numerically power conservation in
the sense mentioned above for a large number of parameters
and terminal impedances. Power was found to be conserved
in each case to a high degree of accuracy. If we replace our
capacitively loaded loops by resonant magnetic dipoles, then
the power conservation can be shown analytically. However
some care needs to be exercised. If in our numerical study of
power conservation we take the mutual inductances as cal-
culated for loops of finite size but take the radiation resis-
tance as that of a magnetic dipole, then power conservation

103 ‘ ‘ ‘ ]
1.02f

1.01r

w/coo

0.99-

09802 04 06 08 1

g'aln

FIG. 9. Dispersion curve for Q=1000 derived from the criterion of maxi-
mum input power.
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FIG. 10. Comparison of the dispersion curves obtained by single-element
excitation (solid line) and standing-wave excitation (dashed line).

may be violated by as much as 20%. Proper power conser-
vation is obtained only if the radiation resistance is recalcu-
lated by integrating the radiation field of a single loop.

V. CONCLUSIONS

The dispersion characteristics of both MI and NP waves
have been derived and shown to be analogous provided the
passband of the waves is narrow. It has been argued that the
dispersion equations derived from driven solutions for a fi-
nite array are more relevant for practical applications than
those derived from the infinite series. It is suggested that the
analogy between MI and NP waves could be exploited for
using MI waves as a testing ground for NP waveguide de-
sign.

Two kinds of driven solutions are considered for a MI
line consisting of 500 elements: first, with the excitation of
the first element, and second, with a standing wave excita-
tion. The relation between the frequency and the wave num-
ber is obtained by three different methods: Fourier analysis,
optimization of input power, and deduction from the currents
in consecutive elements. All three methods have been shown
to give very similar results.

Power conservation has been shown to apply. The input
power is equal to the sum of powers lost by resistive and
radiative effects plus the loss in a terminal impedance.
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