SUPERVISORS:

DR. JEREMY WOODS, CENTRE FOR ENVIRONMENTAL POLICY DR. AJAY GAMBHIR, GRANTHAM INSTITUTE FOR CLIMATE CHANGE DR. DIRK-JAN VAN DE VEN, BASQUE CENTRE FOR CLIMATE CHANGE

SDG SYNERGIES AND TRADE-OFFS ON THE ROAD TO PARIS

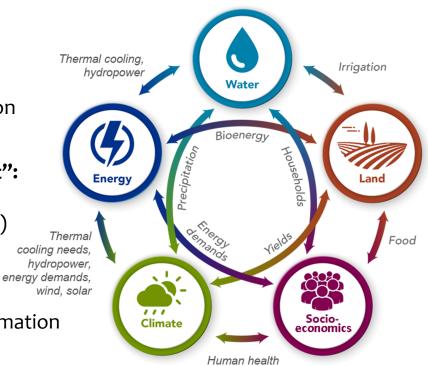
CEP PHD SYMPOSIUM - JULY 2021

AUTHORS:

JORGE MORENO MEMBRILLERA, CENTRE FOR ENVIRONMENTAL POLICY, BASQUE CENTRE FOR CLIMATE CHANGE DIRK-JAN VAN DE VEN, BASQUE CENTRE FOR CLIMATE CHANGE JON SAMPEDRO, JOINT GLOBAL CHANGE RESEARCH INSTITUTE, PACIFIC NORTHWEST NATIONAL LABORATORY

INTRODUCTION

- The SDGs and Paris Agendas call for an integrated approach to assess how multiple goals can be met simultaneously.
- There is a risk of following a silo approach considering SDGs as individual elements which would fail to maximise synergies and detect trade-offs.
- Trade-offs happened during recent lock-down periods evidence the need of this approach (GHG reductions economic & health implications).
- Nexus approach to support policymaking when dealing with complex interactions between policy sectors.


Integrated Assessment Models (IAMs) can offer a holistic vision on specific aspects of human earth interactions by combining scientific knowledge on different domains.

MODEL - GCAM

- GCAM represents interactions of 5 systems: energy, water, agriculture and land use, economy and climate.
- Operates with market equilibrium. Representative agents in each of the systems use prices (and others) to allocate resource.
- Agents: electricity sectors, energy demand sectors or land users:
 - > Allocate e.g. land among competing crops within any given land region
 - Interact through markets to balance supply and demand.
- Suitability of allocation choice based on **choice indicator** and **"shareweight":**
 - Choice indicator incudes costs and other factors
 - "Shareweight" includes factors not captured in the model (calibrated)
- Economic systems (population and GDP) are the exogenous drivers for activities.
- Energy system cover primary energy resource production, energy transformation and final energy demands.
 - > Depletable resources: oil, gas, coal, uranium
 - Renewable resource: biomass, wind, geothermal, hydropower, PV

Source: Calvin et al. (2019). GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698. https://doi.org/10.5194/gmd-12-677-2019

Imperial College

Londor

MODEL - GCAM

- Land use module land is divided into different land use cate
 - Commercial uses (crops, forestry)
 - Non-commercial uses (natural forest, scrubs) Crops:
 - Staple crops: grains and roots commodities (corn, ric
 - Non-staple crops: oil/sugar crops, palm fruit, and anin
- The water module balances water supply and demand in the agricultural systems.
- The climate module tracks GHGs both from fossil fuel and i. Iand uses.
- The energy-economy system operates at 32 regions globally, land is divided into 384 sub regions, and water is tracked for 233 basins worldwide. The climate module operates at a global scale.
- Study aggregates R5 regions following SSP database: ASIA, LAM, MAF, OECD and REF.

Imperial College

London

Source: Authors' calculations

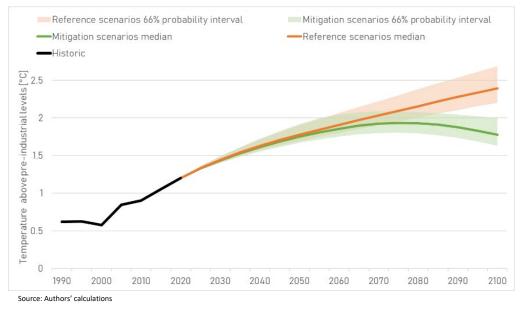
SCENARIO DESIGN

✤ Baseline:

- > SSP2 assumptions for socioeconomic inputs, income elasticities, food preferences and resource use
- Region-specific INDCs are met through 2030.
- Reference scenario: Regional post-2030 emission intensities (GHG/GDP) are assumed to evolve with the same pace as in 2020-2030. (Fawcett et al., 2015).

✤ Bioenergy & Capture:

- Unconstrained bioenergy production
- Moderate carbon capture and storage (CCS)


✤ Forest & Fossils:

- Extensive CCS deployment
- Incentives for afforestation
- Bioenergy constraints

Electrification & Conservation:

- Extensive deployment of solar and wind technologies
- No CCS
- Bioenergy constraints
- ✤ Lifestyle: SSP1 assumptions on consumers' demand:
 - Households energy consumption
 - Diet choice
 - Modal shift

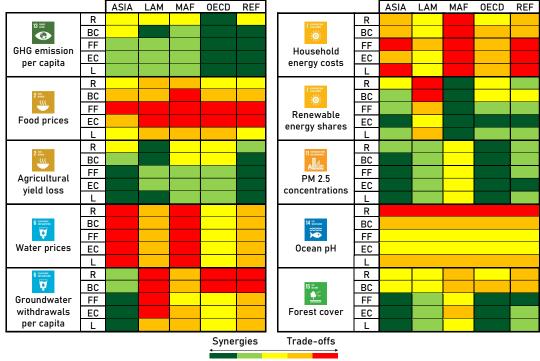
All the mitigation scenarios were designed in order to stay within the 1.63°C-2°C range in 2100 with 66% probability

Imperial College

Londor

	OFFICIAL SDG INDICATOR	INDICATOR USED
2 HRO HIMBER	2.c Indicator of food price anomalies2.3 Agricultural productivity	Food prices Relative agricultural yield loss attributable to ozone
6 CLAMMATIR MOSANISIPSI	6.4.2 Equitable access to affordable drinking water 6.4.2 Level of water stress: freshwater withdrawal as a proportion of available freshwater resources	Water prices Per capita groundwater withdrawals
7 AFFORMARE AND ELEMENTERS	7.1.1 Proportion of population with access to electricity 7.2 Renewable energy share in the total final energy consumption	Household energy costs Renewable energy share
	11.6.2 Annual mean levels of particulate matter in cities	PM2.5 concentration
13 CLANATE	13 GHG emissions reductions [*]	Total and per capita GHG emissions
14 LIFE EELOW WATER	14.3 Minimise the impacts of ocean acidification	Ocean pH
15 DE LAND	15.1.1 Forest area as a proportion of total land area	Relative forest cover

*Not officially part of the 2030 Agenda for Sustainable Development. SDG 13 was further elaborated for the Paris Agreement


RESULTS

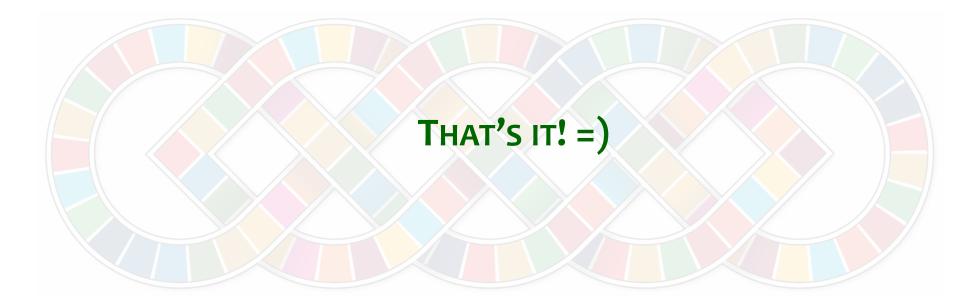
- Bioenergy & Capture:
 - GHG reductions in LAM and OECD
 - Delays mitigation: yield losses, PM2.5, ocean pH
 - Water stress in OECD, LAM and REF
- ✤ Forest & Fossils:
 - 🖶 SDG 15 Forest Cover
 - Reduces water stress in regions with higher forest coverage (Asia)
 - -Shifts agricultural land and increase food prices
- Electrification & Conservation:
 - 🖶 SDG 7 Renewable energy share
 - GHG reductions in REF
 - PM2.5 concentration and ocean pH
 - Increases food prices

✤ Lifestyle:

- Single scenario not increasing water and food prices with respect to R scenario
- Quickest impact reduction of PM2.5 and yields
- Similar forest cover in MAF and ASIA as FF

Summary of SDG impacts averaged for the period 2025-20100 with respect to 2020

Source: Authors' calculations


R = Reference, BC = Bioenergy & Capture, FF = Forest & Fossils, EC = Electrification and Conservation, L = Lifestyle

- Roads to a Paris-compatible world do not come at a sustainable zero cost, potential consequences of mitigation scenarios need to be carefully assessed.
- It is unlikely that the world follows exactly one of the suggested pathways, but scale of the challenge calls for the assessment a combination of strategies to anticipate their impacts.
- Mitigation shifted almost exclusively to the supply side may increase impact on natural resources and limit access of vulnerable populations to basic services.
- Encourage shifts on the **demand side** may limit unintended consequences of mitigation strategies.

