JULIAN SMART
SUPERVISOR: DR NIALL MAC DOWELL

"Optimizing Carbon Dioxide Removal and Carbon Markets to Stimulate Policy Towards Climate Resilience"

Research funded by NERC through the Science and Solutions for a Changing Planet (SSCP) DTP at the Grantham Institute

01. Background

Global Carbon Dioxide Removal (CDR)

- CDR refers to methods of removing atmospheric
 CO2 (separate from the reduction of emissions)¹
- There is a need for CDR to reach 1.5/2.0C warming targets according to most Integrated Assessment Models (IAMs) by the United Nations Framework Convention on Climate Change (UNFCCC)²
- Methods are plentiful and categorized according to

 (i) the method used to remove emissions (ii) the
 method used to store carbon

Figure 1: Classification of CDR by removal mechanism

The UK position on CDR

- The maximum technical potential of BECCS in the UK is 100-160MtCO2/year³
- HMG in the UK is amongst the most progressive on CDR, with teams working to include CDR within the UK Emissions Trading System (UK ETS)⁴

02. Research Questions

There remains a wealth of questions that need to be explored in the paradigm of Carbon Dioxide Removal:

- 1. What are the bottlenecks/risks for scaling carbon dioxide removal technologies?
- 2. What financial tools can support CDR deployment?
- 3. What is the potential for securitisation for CDR?

03. Aims, objectives and research stages

Aim 1: Understand the key risks in the CDR value chains.

Objective 1: Identify and compare the risks in the CDR value chains. Create **heat maps** showing the risks (initial findings in the graphs on the right), **quantify** the impact of risks through VaR metrics, and suggest methods of controlling risks.

Research Method 1: Use exploratory mixed methods to analyze CDR risks

Aim 2: Understand the existing mechanisms in the UK, such as UK ETS, and their role in scaling CDR

Objective 2: Develop a thorough understanding of all the existing financial/market mechanisms in the UK and how they can be leveraged to achieve the required levels of CDR in different scenarios.

Research Method 2: Create **case studies** and a **model** of the CDR impact on carbon pricing, including how it affects demand/supply of CDR and allowances

Aim 3: Understand how securitisation can be applied to CDR.

Objective 3: Study the **optimal CDR portfolios** in the UK and beyond, and develop policy recommendations that can facilitate the deployment of **securitised** CDR portfolios.

Research Method 3: Use optimization methods to quantify CDR portfolios and suggest policy recommendations.

Figure 2: The principal CDR types and their respective value chains⁵

04. Project relevance and implications

This project is multidisciplinary and serves the purpose of expanding our understanding of (i) carbon dioxide removal technologies, (engineered and nature-based) and (2) how different actors can come together to scale the technologies and close the emissions gap, expected at 10-20% of hard-to-abate emissions⁶. As such, this research has specific relevance for:

- 1. **Policy-makers**, by providing insight into the key areas of CDR that can be supported to establish a robust transition to net-zero (and negative) emissions
- 2. Financial Institutions, by facilitating insight into novel tradable instruments that can support the development of CDR
- 3. CDR providers, by offering an understanding of the inherent risks and opportunities
- 4. **Academia**, due to novel research in CDR and the multidisciplinarity between the engineering, political, and financial elements of CDR