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Abstract

Commodity futures contracts, with their frequent expiration periods, require investors to
regularly roll over their positions to maintain exposure. This rolling over process can create
significant price impacts in the market. This thesis explores these price impacts using a
non-linear propagator model developed by Muhle-Karbe et al. [25] and identifies the most
suitable functional forms for calibrating price impact models across different commodity
futures. Our findings indicate that price impacts in these markets are typically non-
linear, with an optimal concavity coefficient smaller than the standard square-root law
traditionally applied in price impact modeling. Furthermore, given that the timing of
futures contract rollovers for major indices, such as the SP-GSCI, is generally known, the
thesis investigates the potential for designing simple anticipatory arbitrage strategies to
exploit these predictable price movements. While we demonstrate that such strategies
were profitable until 2010, their effectiveness has markedly declined in recent years. This
decline is likely due to the transition to electronic trading and increased market liquidity,
which have reduced price impacts around rolling events.
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Introduction

Since the early 2000s, commodity futures markets have experienced a remarkable rise in
investment and participation. Commodities have become increasingly popular, offering
diversification and protection against inflation, especially among hedgers and speculators.
The primary method for engaging with commodities is through futures markets, which al-
low investors to replicate the returns of physical commodities without the hassle of owning
them. Since futures contracts come with regular expiration dates, investors typically have
to sell the contracts that are about to expire, and buy new ones with longer maturities, in
a bid to maintain their exposure. This phenomenon is described as the ‘rolling forward’ of
futures contract. Major indices typically adhere to strict rules, determining the timing of
the rolls well in advance and making this information public. To reduce tracking errors,
commodity investors typically execute their roll trades within the index’s designated roll
window. This makes the timing of rolling activity highly predictable. Moreover, since
rolling involves the substantial sale of nearby contracts and the purchase of further ma-
turity contracts, basic supply and demand principles suggest that nearby prices will drop
and prices for the next contracts will rise. Therefore, the rolling forward of futures con-
tracts should create significant and predictable market anomalies, presenting opportunities
for investors to use simple anticipatory strategies capitalizing on these temporary price
impacts.

While recent literature has closely examined the effects of futures contracts rolling,
the results remain mixed and it’s unclear if this predictability translates into clear and
predictable price impacts. On the one hand, Mou [24] found that the rolling activity of
commodity indices in futures markets created statistically and economically significant
price impacts, leading to profitable trading opportunities through anticipatory arbitrage.
He also showed that the rolling forward of futures contracts created significant order
flow cost for index investors. Similarly, other studies [1, 7, 30] reported significant price
impacts and trading opportunities in the crude oil futures market due to the roll. On
the other hand, a more recent part of the literature [4, 15, 20, 27] examined the price
impact surrounding roll events across different data sets and commodities, finding little
to no impact of futures rolling on commodity futures prices.

These studies differ in terms of data frequency, data availability, commodities consid-
ered, and the specific rolls studied. An important aspect shared by all these studies is
the methodology used to detect potential price impacts. Specifically, they all employ a
similar approach: simple linear regression of the return differential between the next and
deferred contracts, based on the number of contracts traded as part of the roll. While
linear regressions may seem suitable for examining the impact of increased investment
on commodity futures prices, these models might not be well-suited for studying price
impacts in limit order books. Indeed, the price impact of trades is a concave function of
trade size, which then gradually decays over time [17]. As noted in [3], large trades tend
to have a non-linear impact, suggesting the need to explore potential non-linearity in price
impacts and their evolution over time.

This lack of focus on price impact of futures rolling specifically in limit order books,
and the oversight of potential non-linear effects is a significant gap. This problem is cru-
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cial for stakeholders, including institutional investors, hedge funds, and market regulators.
Indeed, understanding the precise dynamics of price impacts in limit order books can help
institutional investors and hedge funds develop more effective trading strategies that cap-
italize on or mitigate these impacts. For market regulators, insights into non-linear price
impacts are essential for ensuring market stability and preventing market manipulation.
Finally, for index investors, understanding how price impact of trades propagates through-
out time allows them to mitigate the significant costs associated with the rolling forward
of their futures contracts, and to execute their according trade optimally. Addressing this
gap in the literature will lead to more accurate price impact models for commodity futures
markets, and a better understanding of market behavior.

The first and main goal of this thesis is to understand how price impact propagates
throughout time in commodity indices, including during rolling periods. Our approach
involves using trade imbalance to accurately explain and predict price changes. Pre-
vious studies have shown that calibrating trade imbalances with the propagator model
effectively captures key stylized facts of market impact, such as intraday liquidity shifts,
impact propagation, and highly concave instantaneous impact [25, 18]. Therefore, to
specifically capture the dynamics of price impact within commodity futures markets, we
follow Muhle-Karbe et al’s framework for using the non-linear propagator model [25], and
focus on finding the most adequate functional form to calibrate the model to the different
commodities, as detailed in Chapter 4.

Additionally, after understanding the price impact dynamics, a second goal will be
to design simple anticipatory trading strategies to try and take advantage of the market
anomalies during futures rolling. Specifically, we build on Mou [24] and implement three
simple anticipatory trading strategies. We then evaluate the performance of these strate-
gies over time. Notably, the data considered in the design of the trading strategies in
the literature is limited to the period until 2010. Therefore, evaluating the performance
of these strategies on post-2010 data will shed light on whether anomalies still exist and
whether it is still profitable to trade surrounding the rolling events.

To the best of my knowledge, this thesis represents one of the first significant studies
focused on the specific price impact dynamics in commodity futures markets. While it is
widely recognized that price impact exhibits concavity as a function of trade size, there is
an ongoing debate regarding the most accurate functional form to model this relationship
in practice. Existing literature which also examine trades in commodity futures, suggests
that a square root function often provides a robust fit for metaorders. However, when
examining public trades at the fill level, the optimal functional form remains less clear,
with any degree of concavity being beneficial, though a square root may not necessarily
be the best choice. Additionally, it also appears to be the first study considering trading
strategies surrounding rolling events post-2010, leading to more accurate and relevant
findings on the potential profits from simple anticipatory arbitrage strategies in commodity
futures markets.

This thesis is structured as follows. We start by introducing futures markets in Chapter
1, specifically focusing on commodity index futures and the motivation for investors to
trade them. Next, in Chapter 2, we discuss the state of the literature on the price impact
of futures contracts rolling, before detailing the data used in the analysis in Chapter 3.
Chapter 4 introduces the price impact model used in the analysis and how it is calibrated.
It also presents the results of our calibration, including the optimal scale and concavity
of market impact. In Chapter 5, we present the different strategies that will be used to
anticipate the price impact, how to evaluate them and present their performance. Finally,
we offer concluding remarks, and discuss potential limitations and avenues for further
research.
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Chapter 1

Commodity Index Futures and the
Background

1.1 Futures contracts

A futures contract is an agreement to buy or sell a specific underlying asset at a prede-
termined price on a future date [10]. In general, the contracts are made by producers and
suppliers to avoid market volatility. For example, consider an airline and a fuel supplier.
If an airline buys jet fuel at £2.50 per gallon from a supplier and sells tickets based on
that fuel cost, both parties may wish to secure that price. Engaging in a futures contract
eliminates the uncertainty of fluctuating fuel prices in the future, providing them with
financial stability.

1.1.1 Evolution of futures markets

The first futures trading exchange was the Dojima Rice Exchange, established in Japan
in 1730 for trading rice futures [31]. Subsequently, futures markets gained popularity with
the opening of the New York Cotton Exchange (NYCE) in 1870 and the London Metals
and Market Exchange in 1877. From the 1970s onwards, the futures trading markets ex-
perienced significant expansion. The Chicago Mercantile Exchange (CME) began offering
futures on foreign currencies, the Chicago Board of Trade (CBOT) introduced T-bond
futures, and the New York Mercantile Exchange (NYMEX) added financial futures, in-
cluding crude oil and gas. Additionally, the Commodities Exchange (COMEX) started
offering metal futures. Today, futures contracts are available not only for commodities but
also for other asset classes, including foreign exchange, interest rates, and equity indices.

1.1.2 Underlying mechanisms

Most futures markets are registered with the Commodity Futures Trading Commission
(CFTC), which regulates them. This regulation ensures that futures contracts are highly
standardized, with specific quantities and set expiration dates. For instance, WTI Crude
Oil futures expire every month of the year. Futures tickers consist of three parts. For
example, CLF24 represents a WTI Crude Oil contract (CL) expiring in January (F) 2024
(24). The letters corresponding to each expiry month are provided in Table 1.1.

Historically, upon expiration of a futures contract, the agreed-upon cash amount was
exchanged for the physical good. Nowadays, it is more common to settle contracts with
cash, exchanging the difference between the agreed price and the current spot price to
simplify the settlement process.
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Key Month

F January
G February
H March
J April
K May
M June
N July
Q August
U September
V October
X November
Z December

Table 1.1: Futures Expiry Months Keys.

1.1.3 Futures’ prices

Let F (t, T ) denote the price of a futures contract at time t with expiry T . Typically,
this price is determined through a replication strategy, where the futures’ price is closely
linked to the spot price of the underlying asset by constructing a portfolio that mimics
the payoff of the futures contract. However, in practice, several factors can influence the
price, causing deviations from the spot price. For example, the replicator might incur
extra costs such as storage and insurance, and there can be advantages to holding the
underlying assets, such as dividends.

The futures curve, often referred to as the forward curve, illustrates the relationship be-
tween futures contract prices and their time to maturity. While both terms are sometimes
used interchangeably, it’s important to note the distinction between them. The futures
curve represents the prices of standardized futures contracts traded on an exchange, where
these prices are marked to market daily. In contrast, the forward curve represents prices for
forward contracts, which are customizable agreements typically traded over-the-counter
(OTC) and settled at the end of the contract. Despite these differences, both curves pro-
vide a snapshot of the current value of the underlying asset based on anticipated future buy
or sell transactions. The shape of the futures curve is crucial for market participants as it
influences trading strategies and market expectations. When the futures curve slopes up-
wards, the spot price is lower than the futures’ price, and the market is described as being
in contango. In this situation, the maturing contract is less expensive (F (t, T1) < F (t, T2)).
The opposite condition, where the spot price is above the futures’ price, is described as
backwardation, and the maturing contract is more expensive (F (t, T1) > F (t, T2)) , as illus-
trated in the case of WTI Crude Oil in Figure 1.1. Typically, backwardation is favorable
for investors with long positions, as they benefit from the futures’ prices rising to meet
the spot price. As the time to maturity decreases, the futures’ price tends to converge to
the spot price of the underlying asset, expressed as F (T, T ) = ST , with St the spot price
at time t.

1.1.4 Futures Rolling and Open interest

Due to the expiring nature of futures contracts, indexes or investors typically need to
maintain exposure to the underlying asset by selling the near-to-maturity contract and
purchasing a later-maturity contract in the same underlying asset. This process is known
as futures rolling. The expiring contract, often referred to as the front or expiring contract,
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Figure 1.1: Futures curve for WTI Crude Oil (CL) on 2022-01-02.

is the one being rolled from, while the new contract with a later maturity, referred to as
the deferred contract, is the one being rolled into. While futures contracts allow investors
to gain exposure to an underlying asset, it’s important to note that this exposure is not
static. Because the futures contracts must be rolled over periodically, the price exposure
is effectively reset with each roll. This periodic resetting means that while the futures
contracts track the underlying asset, the rolling process introduces a form of revaluation
that can reduce direct exposure to short-term volatility of the underlying asset. However,
this also means that investors do not lock in a fixed price for the duration of their exposure,
but instead continuously adjust to market conditions as each contract expires and a new
one is entered. This characteristic can reduce the impact of sudden price swings but also
means the position is subject to the ongoing influence of market dynamics at each roll.

The roll yield refers to the return gained from rolling over a futures position from a
near-to-maturity contract to a longer-dated contract. Specifically, Mou [24] defines it as
“the difference between the log price of the expiring contract that investors roll out of and
the log price of the deferred contract they roll into”.

A crucial concept in the futures market is open interest, representing the number of
contracts that have been traded (opened) but not yet liquidated by an offsetting trade or
delivery. Information on open interest is valuable for estimating the number of contracts
that might be rolled during a rolling period. Changes in open interest can significantly
affect the liquidity of a futures contract. An increase in open interest indicates that new
money is flowing into the market, enhancing liquidity and making it easier to enter or
exit positions [13]. The CFTC publishes regular Commitment of Traders (COT) reports
providing open data on open interest, broken down by trader type and market position,
allowing for a good estimation of the rolling behavior of different market participants.

1.2 Commodity Index Markets

In this paper, we focus our analysis on commodity futures markets, with particular em-
phasis on commodity indices. In the following section, we provide a concise overview of
the appeal of commodity index investing, identifying the key participants, highlighting the
most significant indices, and examining the evolution of commodity index investing over
time.
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1.2.1 Who invests and why ?

The most significant theory of portfolio management was developed by Markowitz [22].
According to his pioneering work, investors should construct portfolios to maximize ex-
pected returns for a given level of risk. Specifically, an investor should first determine
an acceptable level of risk and then adjust their portfolio to match this risk tolerance.
Physical commodities, with returns that are relatively uncorrelated with those of more
traditional asset classes, have grown in popularity over the years. In addition to their
attractive returns, this lack of correlation helps reduce portfolio risk, partly because com-
modities serve as an inflation hedge [30]. However, physical commodities were rarely used
in practice due to the high costs of purchasing and storing items like grain or crude oil.
This is where commodity futures became useful. Through futures contracts, investors can
achieve the returns of physical commodities synthetically, without holding the actual com-
modities. Since in an efficient market, the return and risk of the futures position should
mirror those of the underlying commodity [30], futures contracts have bridged the gap and
become extremely popular over the years.

Typically, futures traders are categorized into two types: hedgers and speculators. As
the names suggest, hedgers aim to mitigate risk to which they are exposed, usually holding
long positions in physical commodities and short positions in futures markets to offset their
price risk exposure. They trade potential financial upside for certainty. Speculators, on
the other hand, take on such risk, seeking to profit from price changes. They have a
directional view of the markets and take long or short positions based on their predictions
of future price movements.

The weekly COT reports provided by the CFTC include aggregate long and short
positions of participants in the commodity futures markets, classifying participants into
three categories: commercials, non-commercials, and non-reportables. Commercials are
associated with hedgers, and non-commercials with speculators. The third category typ-
ically includes commodity index traders. These traders are a more recent classification,
lacking a physical presence in commodity markets and not taking a directional view on fu-
tures’ prices. Their primary motivation is to leverage the risk-reducing benefits of futures
contracts through buy-and-hold strategies, requiring them to roll their futures positions
regularly to maintain this exposure.

1.2.2 Financialisation and the most important indices

The process by which commodity futures have become a popular asset class for portfolio
investors is referred to as ‘financialization’, as described by Cheng and Xiong [11]. The
trend in commodity index investment can be divided into four financialization stages [20]:
the pre-financialization period (1980 to 1990), the early stage (1991 to 2003), the growth
stage (2004 to 2011), and the post-financialization period (post-2012). During the first
period, investments in commodities were typically very difficult and rare, as it predates
the development of major commodity indexes. Starting in 1991, the development of ma-
jor commodity indexes attracted significant interest, leading to a surge in investment in
commodity futures markets during the growth stage. This boost was partly driven by the
conclusion of Gorton and Rouwenhorst [14] that commodities could provide equity-like
returns and diversification. After 2012, investment stabilized, maintaining historical highs
despite not continuing to grow as rapidly as before.

The two most important commodity indexes are the Standard & Poor’s Goldman Sachs
Commodity Index (SP-GSCI) and the Bloomberg Commodity Index (BCOM). Introduced
in 1991, the SP-GSCI was the first major investable commodity index and includes the
most liquid commodity futures. It currently holds 24 commodities from all sectors: energy,
industrial metals, precious metals, grains, softs, and livestock. The index follows strict
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rules, is rebalanced annually, and is rolled monthly from the 5th to the 9th business day,
typically referred to as ‘Goldman Roll’. It is particularly popular among hedge funds
and other traders for portfolio diversification, although it is heavily weighted towards the
energy sector, with about 60-70% of its weight dependent on this sector. The BCOM also
offers broad-based exposure to commodities but ensures no single commodity or sector
dominates the index, aiming to reduce volatility compared to non-diversified commodity
investments. Created by AIG in 1998, it was later acquired by UBS in 2009 and Bloomberg
in 2020. The BCOM represents all commodity sectors and its roll period lasts five days,
from the 6th to the 10th business day of the month.

Over time, many other commodity futures indexes have been developed to meet the
diverse needs of market participants. Notable examples include the United States Oil
Fund (USO), the UBS Bloomberg Constant Maturity Commodity Index (CMCI), the JP
Morgan Commodity Curve Index (JPM CCI), and the DB Liquid Commodity Index. Each
of these indexes follows specific rules but must adhere to a rolling schedule to maintain
exposure to commodity futures contracts as they expire.

1.3 Arbitrage and the limits to arbitrage

As defined in the lectures, an arbitrage is a portfolio (a.k.a. a trading strategy, or an in-
vesting strategy) L that, starting with no initial capital to invest, and without taking any
risk, makes money at some point; i.e. an arbitrage is a portfolio L with zero initial capital
and with final value V L

T which satisfies V L
T < 0 with zero probability (i.e. P (V L

T < 0) = 0)
and V L

T > 0 with strictly positive probability (i.e. P (V L
T > 0) > 0). Arbitrage theory

is a cornerstone of financial economics. Malkiel [21] argues that a market is considered
efficient if it incorporates all relevant information completely and accurately into prices.
This concept, that he defined as the Efficient Market Hypothesis (EMH), states that all
available information are reflected into share prices, making it impossible to consistently
achieve higher returns than the overall market on a risk-adjusted basis. Arbitrage oppor-
tunities theoretically align with the EMH, as rational arbitrageurs should eliminate price
discrepancies quickly. However there exists several limitations to this theory in practice.
Indeed, the limits to arbitrage theory suggests that market inefficiencies can persist due
to capital available for arbitrage activities [29]. In particular, the effectiveness of arbitrage
diminishes when the size of index investments declines and arbitrage capital increases. As
highlighted by Mou [24], empirical evidence indicates that anomalies can persist due to
slow-moving arbitrage capital and market frictions. In particular, commodities futures
markets, which do not have short-selling constraints and offer high leverage, still exhibit
anomalies. Such anomalies can be exploited by statistical arbitrage strategies for instance,
relying on statistical models to identify and exploit short-term price deviations.
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Chapter 2

Literature Review of Commodity
Index Futures Price Impact

2.1 Origins

Studying price impact around rolling events in commodity futures markets has gathered
significant attention, particularly following the influential 2008 testimony by Michael Mas-
ters. Employed by a large hedge fund at the time, Masters asserted that the surge in
commodity index investing was driving up futures prices for commodities. This assertion,
now known as the “Masters Hypothesis” as termed by Irwin and Sanders [27], suggested
that the intense buying pressure from index investors was creating a substantial bubble in
commodity futures prices. This bubble, through arbitrage linkages between futures and
spot prices, was subsequently affecting spot prices as well. Since the congressional hearing,
numerous studies have delved into whether this effect truly exists, focusing not only on
the general impact of commodity index investing on futures prices but also examining the
specific effects of futures rolling on futures prices.

2.2 Price impact around futures rolls

2.2.1 Mechanism

The main mechanism through which there might be a price impact surrounding futures
rolling operates as follows: during a roll month, traders sell nearby futures contracts and
purchase second nearby contracts. Figure 2.1 illustrate this process for the case of WTI
Crude Oil. It can be seen that, every month, one contract is being traded much more than
the other ones. Given that many traders need to sell expiring contracts and buy deferred
contracts during the rolling period, it is anticipated that the price of the maturing contract
will decrease, while the price of the deferred contract will increase. Specifically, nearby
prices are pushed lower than they would be otherwise, and deferred contract prices are
pushed higher. This results in a decrease in the price spread between the nearby and
deferred futures contracts, often referred to as the order flow cost of roll trades.

Additionally, a large amount of trading activity is expected around roll dates, making
these trades and their directions predictable. This predictability can lead to predatory
trading, as described by Brunnermeier and Pedersen [8]. Predatory traders may become
aware of the need for large-scale liquidations or acquisitions by other traders and exploit
this information to their advantage, exacerbating price movements. This phenomenon can
contribute to increased volatility and market inefficiencies during roll periods.
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Figure 2.1: Volume trends for WTI Crude Oil (CL) futures.

2.2.2 Related Literature

As hinted at in the introduction, a wide range of studies specifically studied the effects of
commodity index investing on commodity futures prices, and all covered at least partially
an analysis of price impact surrounding rollover periods ([1, 4, 7, 15, 20, 24, 27, 30]). The
methodologies employed by various papers to capture the price impact around futures
rolls focused on the relationship between index investments and futures prices through
regression analyses, spread calculations, and causality tests.

Mou [24] provides decisive conclusions on the potential price impact during the rolling
period. By analyzing data from 19 commodities traded in the SP-GSCI, 17 additional
commodities not part of the index, and weekly index trader positions from the COT re-
ports from January 1980 to March 2010, he examines roll yields and spreads through a
panel regression of contract returns on the amount of index investment, a dummy variable
for index inclusion, and control variables. Mou’s findings indicate significant and variable
price pressure on the relative prices of the involved contracts during the Goldman roll,
and he suggests trading strategies to exploit these opportunities for substantial returns.
Building on Mou’s methodology but extending the dataset to 2019, Irwin et al. [20] ob-
served that roll impacts were present during the early and growth stages of financialization
but disappeared in the post-financialization period. They attribute the disappearance of
these opportunities to increased capital investment and arbitrage mechanisms reducing
arbitrage possibilities as awareness grew.

Hamilton and Wu [15], using weekly positions from the COT reports and multiple
linear regressions of returns against past returns and the amount of index investing, found
minimal impact of index fund investing on futures prices, although crude oil futures prices
may have been affected. Similarly, Bessembinder et al. [4], employing regression analysis
with higher frequency data on oil futures prices, determined that the temporary price
impact of an order imbalance on roll days was nearly entirely reversed within one minute
in the expiring contract and within three minutes in the second contract.

Stoll and Whaley [30], acknowledging some impact on the crude oil futures market
during the index roll period, concluded that commodity index rolls generally have mini-
mal impact on futures prices. Through linear regression of the return differential between
nearby and deferred contracts on the number of futures contracts rolled, they found that
futures markets could absorb commodity index roll activity without significant price ef-
fects. Likewise, Sanders and Irwin [27], by calculating spreads and their changes for a
single fund’s roll transaction across energy futures markets from 2007 to 2012, found little
evidence that rolling activity impacted spreads in the energy futures markets.

Finally, both [1] and [7] studied futures rolling price impact using daily changes in
trader position, available in the Large Trader Reporting System (LTRS) report from the
CTFC. The former focused on agricultural futures markets from 2003 to 2012 and used
GARCH models to examine the spread between daily settlement prices of deferred and
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nearby contracts, concluding that CITs temporarily increase futures prices in specific ma-
turities, indicating trading opportunities. The latter employed bivariate Granger causality
tests with CIT positions, exploring the lead-lag dynamics between financial index trader
positions and daily futures returns. Still focusing on agricultural commodities, they found
that CIT positions impacted daily returns during the roll period in 5 out of 12 markets.
However, contrary to expectations, the cumulative impacts were negative, suggesting that
CIT rolling activity simultaneously pressured nearby prices upward and first deferred
prices downward.

Related to the predictable futures index rolling, a similar body of research exists around
index rebalancing in equities, which examines the price impact and potential arbitrage
opportunities associated with predictable changes in index composition. Notably, Shleifer
[28] explored the price effects of inclusion in the S&P 500, finding that stocks added
to the index experienced a significant price increase, which he attributed to increased
demand from index funds. Harris and Gurel [16] provided further evidence of this effect,
suggesting that the price impact is largely temporary and driven by liquidity imbalances.
More recently, Wurgler and Zhuravskaya [34] examined the phenomenon of downward-
sloping demand curves for stocks and how index changes can lead to non-fundamental
price movements, reinforcing the idea that index rebalancing created predictable price
shifts that could be exploited by arbitrageurs. Adding to this literature, Wang et al. [32]
highlighted how the predictable rebalancing of ETFs could be anticipated and exploited
by hedge funds, leading to significant price impacts around the rebalancing dates. These
studies collectively highlight that predictable changes in index composition, whether in
equity or futures markets, create opportunities for market participants to anticipate and
profit from the resulting price movements, raising important considerations about market
efficiency and the role of index-linked investing.

2.2.3 Limitations

The literature on the price impact of commodity futures rolling presents contrasting re-
sults. While there is some indication of potential price effects, it remains unclear whether
these impacts are consistent across all markets, persist over time, and are significant
enough to exploit through anticipatory arbitrage. Previous studies have predominantly
focused on weekly or daily changes in open interest positions, which might miss higher-
frequency dynamics where price impacts are more likely to manifest and subsequently
reverse. Performing regression of price changes on the changes in positions captured from
open interest limits the ability to properly capture a price impact. This limitation arises
from the availability of data, as high-frequency trading data was not commonly accessible.

In this study, I have access to limit order book data, including volume traded at a higher
frequency, to conduct a more granular analysis. This allows to observe the immediate
price changes associated with rolling periods and the subsequent reversals that are not
detectable with lower-frequency data. Additionally, the literature has not yet reached a
definitive conclusion on the exact impact structure and the order flow cost of rolling large
commodity indexes such as the SP-GSCI. By employing a non-linear propagator model, I
aim to capture the precise non-linear dynamics of price impacts in the limit order book.
Recognizing that price impact is typically a concave, non-linear function of trade size, this
study is expected to provide an accurate fit and offer valuable insights into the behavior
of price impact in futures markets for both roll and non-roll days.
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Chapter 3

Data Description

In this section, we describe the data that is used to perform our analysis. With the
objective of analysing the price impact surrounding futures rolling in commodities index,
we gather data about the volumes traded and prices of the different commodities included
in the SP-GSCI index. Velador Associates provided me with futures data for various
commodities sourced from Tick Data1. The data files followed the format XXMYY.csv,
where XX represents the ticker, M denotes the expiry month, and YY indicates the expiry
year. Each futures contract’s file included the following columns: Symbol, Date, Time,
Open, High, Low, Close, Volume, Tick Count, Date, and Time. The data was available
at a minute-by-minute frequency throughout the trading day. For most commodities, the
contracts were available from 1990 to the end of 2023. However, Volume data was mainly
available from 2008 onwards. Note that the direction of each trade was not indicated,
hence we need to estimate them. We show how this is done in Section 3.3.2 below.

3.1 Commodities in the SP-GSCI Index

We focus our analysis on the commodities included in the Standard and Poor’s Goldman
Sachs Commodity Index due to its position as the main commodity futures index, and the
predictability of its rolling period. Indeed, the SP-GSCI rolls contracts forwards from the
5th to the 9th business day of each month where the contracts are expiring. Additionally,
the composition of the index is known, as well as the rolling schedule for each commodity,
making it easy to predict which contracts will be rolled each month. The SP-GSCI contains
24 commodities, however, due to data availability, we discard 5 commodities and focus on
the 19 commodities for which we have futures data available. They are listed in Table 3.1
and span four sectors: agriculture, livestock, energy, and metals.

Each commodity has unique expiry months and trading frequencies. For example,
Crude Oil (WTI), with the ticker CL, has a new contract expiring every month. In
contrast, Corn, with the ticker CN, only has contracts expiring in February, April, June,
August, and December, as illustrated in Figure 3.1.

3.2 Descriptive Statistics

Table 3.2 presents descriptive statistics for the key variables associated with each com-
modity. Panel A details the daily closing prices, while Panel B provides information on the
daily traded volumes. The data reveals considerable fluctuations in closing prices across all
commodities, with standard deviations notably large relative to the mean prices. Among
the commodities, CC (Cocoa) emerges as the most expensive, while HO (Heating Oil) is

1Available at https://www.tickdata.com/.
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Commodity Sector Trading Facility Ticker Maturity of contracts at Month Begin

Chicago Wheat Agriculture CBT WC H, H, K, K, N, N, U, U, Z, Z, Z, H
Kansas Wheat Agriculture KBT KW H, H, K, K, N, N, U, U, Z, Z, Z, H

Corn Agriculture CBT CN H, H, K, K, N, N, U, U, Z, Z, Z, H
Soybeans Agriculture CBT SY H, H, K, K, N, N, X, X, X, X, F, F
Coffee Agriculture ICE-US KC H, H, K, K, N, N, U, U, Z, Z, Z, H
Sugar Agriculture ICE-US SB H, H, K, K, N, N, V, V, V, H, H, H
Cocoa Agriculture ICE-US CC H, H, K, K, N, N, U, U, Z, Z, Z, H
Cotton Agriculture ICE-US CT H, H, K, K, N, N, Z, Z, Z, Z, Z, H

Lean Hogs Livestock CME LH G, J, J, M, M, N, Q, V, V, Z, Z, G
Live Cattle Livestock CME LC G, J, J, M, M, Q, Q, V, V, Z, Z, G

Feeder Cattle Livestock CME FC H, H, J, K, Q, Q, Q, U, V, X, F, F
WTI Crude Oil Energy NYM/ICE CL G, H, J, K, M, N, Q, U, V, X, Z, F
Heating Oil Energy NYM HO G, H, J, K, M, N, Q, U, V, X, Z, F

RBOB Gasoline Energy NYM XB G, H, J, K, M, N, Q, U, V, X, Z, F
Brent Crude Oil Energy ICE-UK CO H, J, K, M, N, Q, U, V, X, Z, F, G

Gasoil Energy ICE-UK GO G, H, J, K, M, N, Q, U, V, X, Z, F
Natural Gas Energy NYM/ICE NG G, H, J, K, M, N, Q, U, V, X, Z, F

Gold Metals CMX GC G, J, J, M, M, Q, Q, Z, Z, Z, Z, G
Silver Metals CMX SV H, H, K, K, N, N, U, U, Z, Z, Z, H

Table 3.1: Commodity Futures in the SP-GSCI Index.

Figure 3.1: Volume trends for WTI Crude Oil (CL) and Corn (CN) futures.
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the least costly future contract. Regarding traded volumes, there is significant variation,
including days with no trading activity for all contracts, likely due to data limitations
during the early periods of the analysis, alongside notably high maximums. Predictably,
the CL contracts are the most actively traded, whereas FC (Feeder Cattle) appears to
attract less interest from investors. The number of contracts analyzed for each commodity
varies, reflecting the differing numbers of contracts traded annually.

Table 3.2: Descripive Statistics of commodity futures in the SP-GSCI index.

Ticker mean std min max contracts

Panel A: Daily Closing Prices

WC 480.080 182.818 230.750 1326.500 174
KW 593.359 177.076 368.250 1340.750 54
CN 363.434 153.394 174.250 831.500 173
SY 880.909 334.291 411.500 1786.250 174
KC 126.115 49.514 42.000 314.000 174
SB 13.434 5.529 4.280 35.280 140
CC 2049.022 1087.143 680.000 12250.000 174
CT 71.556 21.684 28.520 219.700 139
LH 66.613 18.058 27.725 132.350 243
LC 97.708 30.294 54.800 189.850 207
FC 117.735 44.620 47.650 264.400 276
CL 50.716 29.419 1.430 145.320 413
HO 1.545 0.961 0.296 4.944 413
XB 2.157 0.638 0.443 4.308 212
CO 74.069 25.624 19.500 146.610 229
GO 700.095 218.759 193.000 1360.250 175
NG 3.973 2.199 1.300 15.491 377
GC 886.577 580.549 253.800 2441.300 173
SV 1306.521 886.266 351.000 4843.000 173

Panel B: Daily Traded Volumes

WC 12446.761 19575.821 0.000 178753.000 174
KW 8012.654 7523.945 0.000 48243.000 54
CN 29541.307 46852.840 0.000 411359.000 173
SY 22675.067 34383.585 0.000 245468.000 174
KC 3282.438 5873.848 0.000 40899.000 174
SB 11224.377 18336.053 0.000 156111.000 140
CC 2909.225 5602.919 0.000 36913.000 174
CT 3391.068 5797.971 0.000 48494.000 139
LH 3680.257 5968.874 0.000 34239.000 243
LC 4433.376 7344.732 0.000 48038.000 207
FC 943.513 1727.536 0.000 11396.000 276
CL 88132.313 154171.639 0.000 1164773.000 413
HO 6452.978 10814.775 0.000 123633.000 413
XB 10766.742 11008.086 0.000 73068.000 212
CO 68846.423 75586.300 0.000 475019.000 229
GO 24737.454 20278.522 0.000 137358.000 175
NG 29402.402 42968.415 0.000 333756.000 377
GC 54790.087 86390.351 0.000 618848.000 173
SV 16305.212 26784.280 0.000 337765.000 173
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In Tables A.1 and A.2 in the appendix, where descriptive statistics are separately
calculated for Goldman roll days and non-roll days, a significant difference in daily traded
volumes between these two periods is evident. Notably, trading activity intensifies during
roll days, as exemplified by the CL contract, which averages around 152,585 contracts
traded during rolling periods, compared to only 67,264 contracts on non-rolling days.
Figure 3.2 further illustrates this by showing the variation in hourly traded volumes for a
single CL contract on roll versus non-roll days. This observation reinforces the notion that
the rolling over of futures contracts could have a price impact, as higher trading volumes
typically contribute to a more substantial price impact.

(a) Roll days. (b) Other days

Figure 3.2: Comparison of volume traded for CLZ22 during roll and non-roll days..

3.3 Data Processing

It was necessary to pre-process the data in several ways to prepare it for price impact
analysis using the non-linear propagator model and for designing trading strategies. The
various steps included combining different futures contracts, reconstructing the order sign
from the traded volume, normalizing the data for comparability across stocks, and resam-
pling the data to trade at various time granularities.

3.3.1 Futures rolling

Given the nature of futures contract, and their frequent expiration, there is a need to
combine different contracts together in order to perform the price impact analysis as
described in Section 4.1.2. Specifically, we need to obtain a single continuous database
of prices and volumes over the whole time frame to be able to use continuous training
and testing sample. As shown in Table 3.1, the traded contracts are known for each
commodity and every month, and we also know when the contracts are being rolled over
in the SP-GSCI index. Therefore, to combine the different contracts together, and to be
able to fit the model to the actively traded contracts that are held by the SP-GSCI, we
decide to only keep the active contracts as described in the table, and switch from one
contract to the next at the end of the rolling period of the SP-GSCI index. The resulting
‘synthetic’ continuous contract is illustrated in Figure 3.3 for the case of HO (Heating
Oil) and SY (Soybeans). It can be seen that the technique produces consistently the
most traded contract, allowing for an adequate study of price impact of futures contracts
trading activity.
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Figure 3.3: Synthetic contracts for HO and SY futures.

3.3.2 Order Sign

In order to properly calibrate the price impact models, it is important to know if the trade
was a buy or a sell order, namely, it is important to get the sign of the trade volume.
Unfortunately, the data files provided only contains volume data without specifying the
order of the operation. Hence, without access to specific limit order book data indicating
whether the transaction was buyer or seller initiated, an algorithm is needed to reconstruct
the signed order flow. For this purpose, we rely on the tick classification rule introduced
by Holthausen and Leftwich [19, Section 3.3, page 244]. Specifically, they assume that
transactions are seller-initiated if they trade on a downtick, and buyer-initiated if they
trade on an uptick. In particular this means that if the change in price from the prior
price is negative, the transaction is classified as seller-initiated, whereas if it is positive, it
is classified as buyer-initiated.

3.3.3 Normalisation

To ensure comparability of the impact coefficients across all commodity futures, a normal-
ization of the data is performed following [25]. Specifically, we normalize the data using
a daily volatility estimate for the future’s price, σ, and an estimate of the daily traded
volume of the future, ADV . Both these variables are computed using a rolling window
and are defined as

ADVi(k) =
1

k

k∑
j=1

vi−j ,

σi(k) =
1

k

k∑
j=1

σi−j ,

for day i, with k = 20 (rolling window over the past month, ≈ 20 days), vi the signed
volume traded on day i, and σi the standard deviation of returns on day i.

3.3.4 Resampling

The data used in our analysis is available at a minute-by-minute frequency. We chose to
use the Close column as the true price within each minute because it represents the last
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available price in the one-minute binned data. For our trading strategy, which operates
on a daily frequency, we resample the data by using the last available price for each day as
the daily closing price. For the opening price of each day, we use the last available price
from the previous day. However, it is important to note that for trading decisions at the
start of each bin (e.g., each day), we do not have knowledge of the closing price at the
end of that bin. Therefore, in our strategy, the previous bin’s closing price is used as the
opening price for the next bin, acknowledging that this introduces a lag in the price used
for decision-making. This approach ensures that our strategy is based on information that
would realistically be available at the time of execution.
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Chapter 4

Price Impact Analysis

4.1 Methods

Price impact is a reaction to order-flow imbalance. Indeed, trading of a stock causes
price moves for the stock that otherwise would not have happened [33]. Over time, a
vast amount of models have been developed to best capture this price impact. In this
section, we describe the framework for using the non-linear propagator model in a discrete
setting as proposed by Muhle-Karbe et al. [25] based on the original model developed by
Bouchaud et al. [6], which describes how each trade’s price impact propagates across time.

4.1.1 Propagator Models

Let Q be our position and dQ our trades, S be the price if we didn’t trade, Q = 0. Then
the price when we trade is P = S + I(Q) where I(Q) is the price impact of Q. This is the
actual price which is shifted relative to its fundamental level S by the order flow.

In the propagator model, each trade has an immediate impact described by a function
g(·) which gradually diminishes over time according to a decay kernel. In particular, the
dynamics of the price impact for an asset are [25, Definition 2.1, page 4]:

∆In = −βIn−1∆t+ g(∆Qn)

where β > 0 and g ∈ C1 is some odd function that is concave on [0,∞]. The decay
parameter β measures the timescale of price impact’s reversal. Hence, the term −βIn−1∆t
allows the price shift to dissipate over time. The price impact of buy and sell orders is
symmetric, and concavity implies that trading twice the amount at most doubles the price
impact [25].

As seen in the lectures, it is possible to implement this specification incrementally to
reduce computational cost, by using the recursive relationship existing between impacts:

In = (1− β∆t)In−1 + g(∆Qn).

Several versions of the functional forms have been used in the literature. We briefly
cover a few of them below, before detailing the functional form that will be used in this
analysis.

Obizhaeva-Wang Model

The simplest case is the original OW model, developed in [26] where each trade has linear
impact that decays exponentially, i.e. f(x) ∝ x:

In − In−1 = −βIn−1∆t+ λ∆Qn.

23



This baseline model is an exponential moving average (EMA) on λ∆Qn, and β, λ are the
only parameters to estimate. λ measures the sensitivity of prices to order flow, and is often
referred to as ‘Kyle’s lambda’. Note that a smaller λ indicates smaller market impact.

Non-linear Propagator Model

In the original propagator model, Bouchaud et al. [6] suggested the use of a functional
form such as f(x) ∝ log(x). However, after reviewing empirical studies of concave propa-
gator models, and to improve the model’s fit by passing to a concave parametric class of
functions, Bouchaud et al. [5] suggested the use of f(x) ∝ xp with p ∈ [0.2, 0.5] to capture
the non-linear behavior of price impact. The most well known model specification here is
the square root rule, where the impact decays as follows:

In − In−1 = −βIn−1∆t+ λsign(∆Qn)
√
|∆Qn|

This is an EMA on λsign(∆Qn)
√

|∆Qn|. The advantage of this specification is that the
model allows to capture the non-linearity in Q, but is still linear in λ. Therefore, one still
fits the model via linear regression on the non-linear features.

Reduced Form Model

Muhle-Karbe et al. [25] also suggest the use of reduced form version of the propagator
model where the square-root impact is proxied by a stochastic liquidity parameter λt ∝
1/

√
vt, leading the corresponding linear price impact model as:

In − In−1 = −βIn−1∆t+ λ
∆Qn√

vt
.

This is a parametric form of the extended OW model of Fruth et al. [12] and is motivated
by the lack of tractability of non-linear propagator models in general. Indeed, Muhle-
Karbe et al. [25] argue that this approach provides a bridge between linear price impacts
and non-linear propagator models by approximating non-linear discrete-time models with
linear continuous-time models, thereby linking the unobservable illiquidity parameter to
measurable market activity as proxied by moving averages of trading volumes.

4.1.2 Our Model

To identify the most accurate functional form for modeling price impact across different
commodities, we need a function that facilitates testing multiple forms in a straightforward
manner. The propagator model, with a functional form g(x) ∝ xc, is a natural choice
due to its simplicity and widespread use in the literature. To explore a broad range of
functional forms and achieve the best fit, we employ the function g(x) = λ sign(x) |x|c,
where c ∈ [0.1, 1]. This approach allows us to determine the optimal concavity coefficient
for each commodity future.

Specifically, an EMA is applied to the expression λsign(∆Qn)|∆Qn|c, preserving the
linearity with respect to λ while introducing non-linearity in the relationship between
order flow Q and price impact. This approach allows the model to be fitted using linear
regression on these non-linear features, thereby enabling the determination of the optimal
concavity for the price impact. The resulting price impact model is given by:

In − In−1 = −βIn−1∆t+ λsign(∆Qn)|∆Qn|c. (4.1.1)

By fitting this model, we can assess how changes in trading volume affect prices and adjust
the concavity coefficient c to achieve the most accurate representation of price impact in
the market.
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Choice of parameters

Given the specification 4.1.1, several key parameters still need to be determined: the bin
size ∆t, the decay parameter β, and the prediction horizon h. While a grid search for
each of these parameters could have been conducted, the associated computational cost
would have been substantial. Moreover, existing literature suggests that the model fit is
not significantly impacted by these specific parameters. Therefore, we are confident that
the reduction in computational cost achieved by fixing these parameters outweighs the
potential drawbacks of not optimizing each parameter individually.

In their study, Muhle-Karbe, Wang, and Webster [25] grouped data into 10-second
bins to reduce data size and standardize the number of data points across different days
and stocks. However, due to the granularity of our data, which is available only on a
minute-by-minute basis, we use 60-second bins instead. This choice does not significantly
impact the accuracy of our model fitting, as previous research found negligible differences
in R2 when using bins ranging from 10 to 300 seconds [23, 9].

Next, we need to determine the decay parameter β. In their work, Muhle-Karbe et
al. [25] set β to 0.7, which corresponds to a price impact half-life of log(2)/β = 60
minutes. They also demonstrate that performing a grid search over β has minimal effect
on the results for prediction horizons ranging from 1 to 120 minutes. Therefore, as long
as the prediction horizon remains within a reasonable range, the model fit should not
be significantly impacted. Following the approach discussed in the lectures, we set β =
log(2)/3600 to achieve a half-life of 1 hour.

Lastly, the behavior of price impact varies across different time horizons. In [25], the
authors examine prediction horizons of h = 1, 15, and 60 minutes. For a given horizon h,
they define the horizon-specific return as

∆h
t P = (Pt+h − Pt)/Pt,

and the impact return as

∆h
t I = It+h − It.

They then perform simple linear regressions for each horizon using the model

∆hP = ∆hI(λ) + ϵ

and evaluate the R2 of the regression. As expected, shorter time horizons yielded higher
in- and out-of-sample R2 values. Therefore, to better understand the price change over a
specific time interval due to the volume traded within that interval and to optimize the
model fit, we set h = ∆t, corresponding to 60 seconds.

Estimation

With the set-up clearly defined and the remaining parameters fixed, it is now possible to
estimate the model. We are interested in the price impact’s magnitude, as estimated by
λ, with a higher value indicating a higher impact. To ensure comparability of the impact
coefficients across all commodities, a normalization of the data is performed as described
in 3.3.3. The resulting impacts are

∆In = −β∆tIn−1 + σλsign

(
∆Qn

ADV

) ∣∣∣∣∆Qn

ADV

∣∣∣∣c . (4.1.2)

For each c ∈ {0.1, 0.15, ..., 0.95, 1}, we originally pre-compute the impacts by setting
λ = 1 in 4.1.2. Next, we estimate λ using linear regression in

∆hP = λ∆hI(1) + ϵ,
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taking advantage of the linearity of the model in λ. Note that λ is fitted for every hour
of each trading day. This is motivated by the fact that liquidity varies across the day
with both trading volumes and price volatility higher at the start and at the end of the
day. Indeed, Muhle-Karbe et al. [25] state that “Refiting λ to account for time-of-day
effects significantly improves the model”, and “the R2 of the non-linear propagator model
benefits from the refitting”. Consequently, for every value of c, we obtain a corresponding
value of λ for each hour during the trading day.

Finally, to identify the optimal combinations of parameters that best fit the data, we
adopt the methodology from [25]. This involves splitting the sample into in-sample and
out-of-sample parts. The model parameters are fitted using the in-sample data, and their
performance is then evaluated on the out-of-sample data. In this study, we use a moving
window approach with 6 months of training data and 3 months of testing data.

Evaluation

All statistical estimations are performed on a commodity-by-commodity basis using a 6-
month training sample, followed by a subsequent 3-month validation sample. To evaluate
the performance of each model, we provide performance statistics averaged across all
regressions. Specifically, we examine the in-sample (IS) and out-of-sample (OOS) R2 to
determine which pair best fits the data in both contexts. The in-sample R2 shows how
well the model fits the data with a poor IS R2 indicating an implementation bug or poor
model features. The out-of-sample R2 indicates how well the model works out of sample,
with a poor OOS R2 indicating overfitting compared to IS R2.

Additionally, following [25], to assess the model’s robustness across the universe of
commodity futures and the time period, we consider the estimator’s t-statistic:

mean(λ̂)

std(λ̂)
.

The mean and standard deviation are computed across all λ from different (commodity,
sample) pairs and help assess how stable the model is across all pairs. It can be generalized
over any dimension that one wants λ stable over and a poor t-stat indicates that the model
is incorrectly normalized or does not fit well. A higher t-stat, all else being equal, implies a
more stable model. Comparability across commodities is achieved through normalizations,
which make λ unitless and comparable across the cross-section.

4.2 Results of the calibration

We now present the results of our price impact analysis on commodity futures. We begin
by discussing the overall fit for all commodities, then move on to a comparative analysis
by sector. Finally, we conduct an in-depth examination of the energy sector. Due to the
limited availability in volume data before 2010, we restrict the analysis to the period from
2010 onwards for the purpose of the calibration.

4.2.1 Overall results

General Analysis

Table 4.1 provides a summary and comparison of each model’s performance at a 1-minute
horizon (h = 1 minute). The performance metrics for the different impact models are
averaged across all commodities and years since 2010, revealing a clear hierarchy among
the models. Notably, the model with a concavity coefficient of c = 0.1 shows strong
performance, achieving a training R2 of 0.650 and a test R2 of 0.646. This indicates that
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the price impact model with a strictly concave coefficient effectively captures the dynamics
of price impact in commodity futures markets. The model’s out-of-sample fit improves
as the concavity coefficient increases to 0.25, reaching its peak performance at c∗ = 0.25,
where it achieves an out-of-sample R2 of 0.665 with a t-statistic of 3.353. A higher t-
statistic suggests greater model stability, reinforcing that the model with this optimal
concavity coefficient outperforms the others in terms of fit and stability. Hence, the model
with c∗ = 0.25 performs well in terms of goodness of fit, and seems to be a good choice
for generalizing across different commodities and years. Beyond this point, the model’s fit
deteriorates linearly as the concavity coefficient increases further, as illustrated in Figure
4.1. This is an important results as it confirms that the lower concavity worked better
than the square root (c = 0.5 with out-of-sample R2 of 0.621) and the out-of-sample R2

seems to be the largest for the most extreme concavities. The contrast becomes even more
evident when comparing the optimal model to the commonly used linear impact model
with a coefficient of c = 1. The linear model achieves an in-sample R2 of 0.399 and an out-
of-sample R2 of 0.350. Although these results are reasonable on their own, the optimal
model delivers significant improvements, with approximately 85% better out-of-sample
fit. Additionally, the linear model demonstrates lower stability across commodities and
time, as indicated by its t-statistic of 1.161. Therefore, the optimal price impact model
performs very well in-sample, out-of-sample and its model shows great stability across all
commodities and years.

impact c Train R2 Test R2 T-Stat

0.10 0.650 0.646 3.097
0.15 0.660 0.656 3.291
0.20 0.666 0.663 3.381
0.25 0.669 0.665 3.353
0.30 0.668 0.664 3.223
0.35 0.663 0.658 3.028
0.40 0.655 0.644 2.807
0.45 0.643 0.637 2.583
0.50 0.629 0.621 2.371
0.55 0.612 0.602 2.178
0.60 0.592 0.581 2.005
0.65 0.571 0.557 1.852
0.70 0.548 0.531 1.716
0.75 0.524 0.504 1.596
0.80 0.499 0.475 1.490
0.85 0.474 0.445 1.394
0.90 0.449 0.414 1.309
0.95 0.424 0.382 1.231
1.00 0.399 0.350 1.161

Table 4.1: Performance of various price impact models for all commodities.

To determine whether the results would be similar when fitting the model on data
from a single year, we present a similar analysis, but solely focused on data from the year
2023. The results are shown in Table 4.2. From this table, it is visible that the model
fit improves slightly for all concavity coefficients, and the models exhibit greater stability
across commodities. Once again, a clear ranking of the models emerges, with the model
fit improving from c = 0.1 to the optimal value of c∗ = 0.25, where the out(in)-of-sample
R2 reaches 0.687(0.681). Additionally, the t-statistic (3.724) confirms that the model with
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Figure 4.1: Out-of-sample R2 against coefficient of concavity c for all commodities since
2010-01-01.

c∗ = 0.25 is a strong candidate for generalizing across commodities. As observed in the
broader dataset analysis, the fit deteriorates linearly as the concavity coefficient increases
beyond c∗ = 0.25. The improvement in fit compared to the linear impact model with
c = 1 is significant, showing a 60% better in-sample fit and a 74% better out-of-sample
fit. Moreover, the linear model is less stable, as indicated by a t-statistic of 1.407.

impact c Train R2 Test R2 T-Stat

0.10 0.659 0.667 3.185
0.15 0.670 0.677 3.506
0.20 0.677 0.684 3.706
0.25 0.681 0.687 3.724
0.30 0.681 0.687 3.574
0.35 0.678 0.683 3.323
0.40 0.671 0.675 3.041
0.45 0.661 0.664 2.773
0.50 0.648 0.649 2.536
0.55 0.632 0.632 2.335
0.60 0.614 0.612 2.167
0.65 0.594 0.589 2.027
0.70 0.571 0.565 1.909
0.75 0.548 0.538 1.808
0.80 0.523 0.511 1.718
0.85 0.498 0.482 1.635
0.90 0.472 0.453 1.556
0.95 0.446 0.424 1.480
1.00 0.421 0.394 1.407

Table 4.2: Performance of various price impact models for all commodities since 2023.

In general, these results confirm that it is indeed possible to generalize the model across
commodities and years without significantly deteriorating the performance of the model.
As expected, the model performs better out-of-sample when it is fitted on more recent
data. Indeed, commodity futures markets have evolved significantly over time. Changes
in market structure, regulatory environments, and the increasing role of algorithmic trad-
ing and institutional investment have altered the dynamics of price impact. For instance,
research indicates that the financialization of commodity markets in the early 2000s, driven
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by the influx of institutional investors, fundamentally changed the behavior of these mar-
kets [11]. Similarly, shifts in market liquidity, trading volume, and the emergence of new
trading strategies over the years can lead to variations in price impact that a model might
not fully capture when applied across different time periods. However, while the model
shows strong performance within a single year like 2023, it is a good sign that it is able
to generalize relatively well across multiple years. This suggests that, while models could
be periodically recalibrated or adapted to account for these evolving market conditions,
this is not a necessity and it is possible to maintain a great accuracy and stability when
fitting the model over multiple years.

Optimal Impact Analysis

After having analyzed the performance averaged across all years and commodities, we now
turn to the analysis of each commodity separately. Table 4.3 summarizes the R2 results for
all commodity futures analyzed. These R2 values correspond to the optimal coefficients of
impact and concavity, averaged over the period since 2010. For each commodity, the table
presents the optimal concavity and impact coefficients, along with the R2 values and the
t-statistic, which helps assess the stability of the model’s fit over time.

Optimal Impact λ Train R2 Test R2 T-stat

WC 0.20 6.245 0.749 0.750 7.024
KW 0.20 6.931 0.716 0.719 5.962
CN 0.10 3.448 0.800 0.796 5.189
SY 0.25 8.117 0.728 0.728 6.335
KC 0.25 10.788 0.694 0.692 8.945
SB 0.20 6.618 0.766 0.767 8.746
CC 0.25 8.460 0.701 0.697 8.188
CT 0.30 11.184 0.586 0.586 4.926
LH 0.25 10.462 0.656 0.655 3.750
LC 0.25 7.756 0.663 0.655 4.126
FC 0.25 10.163 0.605 0.564 3.269
CL 0.45 28.045 0.675 0.661 3.718
HO 0.25 7.147 0.566 0.560 3.896
XB 0.20 7.399 0.552 0.544 3.686
CO 0.25 6.696 0.618 0.617 4.213
GO 0.15 4.305 0.729 0.728 3.542
NG 0.25 17.530 0.691 0.693 2.902
GC 0.50 35.899 0.690 0.686 4.754
SV 0.35 13.848 0.719 0.717 5.448

Table 4.3: Average R2 results for best model for each commodity.

A key observation is that the optimal concavity coefficient for all commodities lies
within the range of [0.1, 0.5]. Interestingly, with the exception of Gold (GC) and Crude
Oil (CL), the concavity coefficient does not exceed 0.3. This suggests that strictly concave
impact models are particularly effective in capturing the dynamics of price impact over
time, highlighting the importance of incorporating this concavity in modeling. Given that
the scale of c reflects certain characteristics of the order book for a particular future, the
optimal values indicate that even a relatively small amount of trading can significantly
impact prices, yet the difference in impact between small and large trades is minimal. This
trend of low c values across most commodities suggests that it doesn’t take much trading
to generate price impacts in commodity futures markets.
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Due to the data normalization, differences in the λ coefficients across commodities can
be interpreted meaningfully. A higher coefficient indicates a greater price impact relative
to the volume traded as a percentage of the total daily volume. The highest impact
coefficient is observed for Gold (GC) with a value of 35.9, followed by Crude Oil (CL)
at 28 and Natural Gas (NG) at 17.5. These findings are particularly surprising given
that Gold, Crude Oil, and Natural Gas are typically considered highly liquid assets. In
general, more liquid assets have lower price impacts because their high trading volumes
can absorb large trades without causing substantial price movements. The expectation
would be for these commodities to exhibit lower price impact coefficients, reflecting their
liquidity. However, the observed higher coefficients suggest that even small trades can
significantly affect the prices of these commodities. This could be due to various factors,
such as market structure, the nature of trading in these specific commodities, or periods
of heightened market sensitivity. Another possible explanation lies in the rolling of futures
contracts, which can lead to increased trading volume and frequency. If there is a clear
imbalance in the direction of these trades, it could result in a more significant price impact.

The in-sample and out-of-sample R2 values provide valuable insight into the model’s
performance for all commodities over time. The in-sample R2 values consistently exceed
0.5 for all commodities and are generally within the range of [0.6, 0.75]. This indicates
that the model fits the historical data well. Notably, for all commodities, the performance
remains robust when considering the out-of-sample R2, suggesting that the model is ef-
fective in predicting price impact on unseen data. For example, Corn (CN) demonstrates
an in-sample R2 of 0.8 and an out-of-sample R2 of 0.796, indicating that the model’s
predictive power is retained even when applied to new data. Additionally, the t-statistic
is 5.189, signaling exceptional model stability over time. The strong performance of the
model across all commodities, particularly its stability and predictive power, indicates that
the underlying price impact mechanisms are consistent over time and can be effectively
captured by the model.

4.2.2 Analysis by sector

Next, we compare results across different sectors, with a particular focus on the energy
sector due to its significant influence on the SP-GSCI index. Table 4.4 presents the optimal
concavity coefficient, as well as the average impact coefficient and the average R2 across
all commodities and all years within each sector.

Optimal Impact λ Train R2 Test R2 T-stat

Agriculture 0.2 6.289 0.715 0.714 5.348
Energy 0.30 10.824 0.633 0.628 2.962
Livestock 0.2 7.617 0.641 0.624 3.854
Metals 0.45 26.472 0.700 0.697 4.559

Table 4.4: Average R2 results for the best model for each sector.

The table highlights several important findings related to the performance and sta-
bility of the optimal price impact model across different commodity sectors. Firstly, the
optimal impact coefficient (ranging from 0.2 to 0.45) confirms the superiority of a strictly
concave, non-linear model over a linear one when analyzing price impact in commodity
futures markets. This non-linearity captures the nuanced price dynamics more effectively,
as demonstrated by the results across all sectors. Next, the metals sector stands out
for its stability, with a high T-stat of 4.559, indicating robust model fit both in- and
out-of-sample. This stability is likely due to the fact that this sector includes only two
commodities, Gold (GC) and Silver (SV), which share similar characteristics, making the
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generalization easier and the model more consistent across time. Additionally, commodi-
ties in the metals sector suffer the highest price impact (λ = 26.472), largely due to the
high impact found for GC. The Energy and Livestock sectors show similar patterns, with
relatively high λ values (10.824 and 7.617, respectively), suggesting significant price im-
pact within these sectors. The reasonable stability and predictive performance in both
training and test data (R2 around 0.63) indicate that the models capture the price impact
dynamics well for these commodities. Finally, the Agriculture sector has the lowest opti-
mal concavity coefficient and impact λ, and it achieves the best performance in terms of
model fit. While it achieves a good in-sample R2 of 0.715, its out-of-sample performance
remains impressive at 0.714, reflecting great generalization. Unsurprisingly, this sector
also shows the higher stability (T-stat of 5.348), indicating that the model’s fit generalizes
well across different time periods and commodities within the Agriculture sector.

Energy Sector

As mentioned in Section 1.2.2, about 60 to 70% of the weight of the SP-GSCI index is
dependent on the energy sector. For this reason, we present a deeper dive into this sector,
and present the performance of the different models, an analysis of intraday impact of
the trades, and the evolution of the performance of the different models over time. The
corresponding figures and tables are available in the appendix for the other sectors.

Table 4.5 provides a summary and comparison of each model’s performance at a 1-
minute horizon averaged across all commodities in the energy sector and years, revealing
again a clear hierarchy among the models. Notably, it can be seen that the model fit
improves when increasing the concavity coefficient to reach optimality at c∗ = {0.25, 0.30}
with in sample R2’s of 0.633, and out-of-sample R2’s of 0.628. Additionnaly, the t-statistic
of 3.250 (for c = 0.25) implies that the model is relatively stable over commodities and
time. The performance of the model then deteriorates when increasing the concavity
coefficient. Most importantly, the difference is again striking compared to the linear model
with c = 1. Indeed, the linear model achieves R2’s of 0.394 (training) and 0.351 (testing),
implying an improvement of about 61% and 79% in and out-of-sample respectively. Similar
to most commodities, the same conclusion is obtained that not much trading is required
to have an impact, and there is little difference in impact between a small trade and a big
trade.

Intraday Effect

To dive deeper into the intraday effects of trades, Figure 4.2 provides the fit results for
the commodities in the energy sector with the test period starting on 2024-01-01. From
the figure, the in- and out-of-sample R2 are plotted, as well as the coefficient of impact λ.
The plots are shown for the coefficient of concavity that had the best average in-sample
R2.

The figure shows that for all commodities, the model exhibits strong consistency be-
tween in-sample and out-of-sample performance, as indicated by the close alignment of the
blue and green curves. This suggests that the model generalizes well to unseen data across
different times of the day. The patterns of price impact differ across commodities. For
Brent Crude Oil (CO) and Gasoil (GO), the impact remains relatively stable throughout
the early hours of trading but experiences a sharp increase towards the end of the trading
day. This could be due to end-of-day adjustments or the closing of positions, leading to
heightened activity and volatility. Conversely, Crude Oil (CL), RBOB Gasoline (XB), and
Natural Gas (NG) display a different pattern where the price impact is highest shortly
after the trading session begins. This initial spike may be driven by the rush of early
trades as market participants react to overnight news or market conditions. The impact
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impact c Train R2 Test R2 T-Stat

0.10 0.613 0.609 3.756
0.15 0.622 0.619 3.723
0.20 0.629 0.625 3.527
0.25 0.633 0.628 3.250
0.30 0.633 0.628 2.962
0.35 0.630 0.625 2.698
0.40 0.624 0.618 2.470
0.45 0.615 0.608 2.278
0.50 0.603 0.595 2.118
0.55 0.588 0.579 1.983
0.60 0.571 0.561 1.869
0.65 0.553 0.540 1.770
0.70 0.532 0.518 1.684
0.75 0.511 0.493 1.608
0.80 0.488 0.467 1.538
0.85 0.465 0.440 1.474
0.90 0.441 0.412 1.413
0.95 0.418 0.382 1.355
1.00 0.394 0.351 1.300

Table 4.5: Performance of various price impact models for commodities in the energy
sector.

Figure 4.2: Evolution of model fit for the energy sector with training start on 2014-01-01.

then decreases during the middle of the trading day, a period typically characterized by
lower volatility and more balanced supply and demand dynamics. Finally, there is another
increase in impact towards the end of the day, possibly as traders execute final transactions
before the market closes, which might occur during periods of lower liquidity.

In general, the higher price impact during out-of-market hours for most commodities
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suggests that reduced trading volume and liquidity at these times make the market more
sensitive to individual trades, leading to more significant price movements.

Evolution over time

As discussed, the performance of a model tends to evolve over time, specifically due to
the evolving nature of commodity futures markets. To understand the evolution of the
performance of each model further, Figure 4.3 provides the test R2 values for every backtest
window for the range of different c for the energy futures contracts. For each future, we
are interested in finding if there is any c that is consistently optimal, if there are distinct
regime changes in optimal c, or if there are frequent changes.

Figure 4.3: Evolution of the out-of-sample model fit for the energy sector over time.

Across all energy futures, there is a slight upward trend in test R2 values, indicating
an overall improvement in model performance over time. However, this trend is occa-
sionally interrupted by periods of decline, suggesting that the model’s effectiveness varies
with changing market conditions. For WTI Crude Oil (CL), the optimal c fluctuates but
generally remains within the range of [0.2,0.5], reflecting the need for regular adjustments
in the concavity of the impact function to maintain optimal performance. Typically, the
fit of the optimal model remains above 0.4 and often surpasses 0.7.

Similarly, for Natural Gas (NG), the model’s fit fluctuates over time, with lower coeffi-
cients being optimal in the early years, eventually shifting to less concave models, with an
optimal c of around 0.45 by the end of the sample. Heating Oil (HO) and RBOB Gasoline
(XB) exhibit relatively stable patterns over time, with few shifts in the optimal concavity
coefficient. The out-of-sample R2 for the optimal model ranges between 0.4 and 0.6, with
a low c value of 0.2 or 0.25 proving adequate throughout the entire timeframe.

Gasoil (GO) shows a similar pattern, with little change in the optimal concavity coeffi-
cient over time. However, as with Brent Crude Oil (CO), there is more variation in model
performance depending on the chosen c value, highlighting the importance of selecting the
appropriate concavity for these commodities. For CO, the out-of-sample fit ranges from
around 0 to above 0.6 during most of the period, depending on the selected coefficient.
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The optimal coefficient for CO remained around 0.15 until 2015, after which it shifted to
a higher value of about 0.35.

Importantly, across all commodities, the linear model with c = 1 consistently performs
the worst over the entire timeframe. This result reaffirms the findings presented in earlier
sections and underscores the importance of calibrating price impact models in commodity
futures markets with strictly concave functions to capture the inherent non-linearities
in limit order books. All models across all commodities show a noticeable decline in
performance around 2020, aligning with the onset of the COVID-19 pandemic. This effect
is particularly significant for Crude Oil but is also visible across all commodities, reflecting
the market disruptions and heightened volume and volatility of that period. Since the
models are trained in 6-month windows and tested in 3-month windows, the decline in
out-of-sample performance can be attributed to the fact that the models were trained on
data from different market conditions and then evaluated during the unique circumstances
of the pandemic.

4.2.3 Seasonality Analysis

To complement the price impact analysis, we introduce a preliminary exploration into
seasonality patterns specific to the commodity futures market. In particular, beyond the
commonly considered factors such as the time of day, the time remaining until the next
roll date could potentially exert a significant influence on price dynamics. Instead of re-
estimating our model with an additional seasonality parameter, we focus on analyzing
stylized facts using data from the Crude Oil (CL) futures market, while leaving room for
further research to build on these findings.

Seasonality around roll dates may manifest in several ways, including increased volatil-
ity, heightened trading volumes (suggesting enhanced liquidity), and imbalances in the
direction of trades. Understanding these patterns is important because they can provide
insights into market behavior that are distinct from the more generic patterns observed
in other markets.

Specifically, three main effects might be expected around roll dates. First, increased
volatility: as the roll date approaches, uncertainty over the roll process, combined with
adjustments in positions by various market participants, may lead to increased volatility.
Understanding how volatility changes as a function of time to the roll date can help market
participants better manage risk and anticipate periods of heightened price movements.
Second, increased trading volume: a rise in trading volume around roll dates might indicate
greater liquidity. Analyzing trading volume as a function of time to roll dates allows us to
identify potential periods of heightened market activity and assess whether such patterns
are systematic. High volumes can also signal periods when market orders are more likely to
be executed without significant price impact, which is critical for both liquidity providers
and takers. Finally, imbalances in trade direction: if trading flows around roll dates are
highly directional (e.g., more buying than selling or vice versa), this could have a notable
impact on price dynamics. For instance, in the FX market (FX fixings), it is observed that
price impact tends to increase during periods of directional flow, even when volumes are
high. It remains an open question whether similar patterns hold for commodity futures
around roll dates. Identifying any directional bias in trade flow could have important
implications for trading strategies, hedging approaches, and market-making activities.

To illustrate the potential analysis of seasonality effects, Figure 4.4 presents insights
into the average trading volume as a function to time to roll dates for the case of Crude
Oil (CL). Specifically, for both the maturing and deferred contracts, the figure highlights
two aspects: the average absolute volume as a function of the number of days until the
next roll event (left), providing an understanding of how liquidity evolves in both contracts
around these events, and the average signed volume as a function of number of days until
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the next roll event (right), offering insights into any potential seasonality in the direction
of the trades near roll dates.

Figure 4.4: Average trading volume as a function of days to roll dates for Crude Oil.

Starting with the average absolute volume as a function of time to roll dates, it can be
seen that there is a sharp increase in volume traded in the maturing contract from 25 to
20 days before the next roll period. For the case of Crude Oil, this corresponds to the last
rolling period. This is expected as during the previous rolling period, we expect investors
to start taking position in the (then) deferred contract, which is the maturing contract
in our case, explaining this sharp increase in absolute trading volume. From days 20 to
0, a slow upward trend is visible with some fluctuations, suggesting that the maturing
contracts remains the most liquid one during this period. Additionally, there is a slight
upward trend in the absolute volume traded for the deferred contracts from day 25 to 0,
indicating that investors are gradually taking interest in the deferred contract, which is
expected to see a significant rise in trading activity at the start of the next rolling period.
Note that very similar patterns have been found for most other commodities as illustrated
in Appendix B.

These findings imply a clear transition of liquidity from the maturing contract to the
deferred contract as the rolling period starts. The observed increase in trading volume
for the maturing contract, followed by a gradual rise for the deferred contract, suggests
that market participants systematically adjust their positions during the roll period. This
pattern of liquidity transition could have several implications. For instance, it highlights
predictable periods of heightened market activity that could be exploited for optimizing
trade execution strategies.

Turning to the analysis of the average signed trading volume as a function of days to
roll dates, the pattern is less clear. There are significant fluctuations in the directions
of the net trade volume for both the deferred and maturing contracts. On certain days,
there is a noticeable positive imbalance, with more contracts being bought (such as on
days 19 and 12 for instance), while other days show more selling activity. Still, from days
5 to 0 before the next rolling period, there appears to be a slight negative imbalance for
the maturing contracts, suggesting that investors may be unwinding their positions in
anticipation of the roll.

To understand these results, it is crucial to note that the averages are calculated from
the sum of the signed trading volumes for each day across multiple years. This aggregation
means that the data reflect a mix of different types of investors and trading behaviors,
which may not fully represent those investors who need to roll over their positions reg-
ularly. Additionally, the signs of the trades were estimated, which introduces potential
discrepancies compared to the actual market data. Despite these limitations, the figures
provide valuable insights into the behavior around roll dates. They suggest that while
there is no consistent directional pattern in signed volumes well before the roll, there
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is some evidence of position unwinding in the days immediately leading up to the roll
period. This observation could inform future studies on the behavior of various market
participants around roll dates, helping to identify specific conditions under which these
imbalances become more predictable or pronounced.

Investigating these potential seasonality effects provides a foundation for understand-
ing the unique characteristics of the commodity futures market around roll dates. Such
analysis could serve as a basis for further research, particularly in refining models of price
impact to account for seasonal patterns, developing trading strategies that take advantage
of predictable volume and volatility changes, and enhancing market efficiency by providing
more transparent information on trading behavior around key dates.
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Chapter 5

Trading Strategies

5.1 Background

To explore trading strategies designed to exploit potential temporary price movements
caused by the Goldman Roll, we build on the two initial strategies proposed by Mou [24]
and introduce a third strategy that aligns with the same underlying concept.

These strategies are rooted in the observation that the process of rolling over futures
contracts in commodity markets typically results in the underpricing of contracts near-
ing maturity and the overpricing of deferred contracts. By leveraging this phenomenon,
straightforward long-short positions can be established to capitalize on the resulting price
discrepancies.

Let F (t, T ) represent the price of a futures contract at time t with maturity T . Our
focus is on the spread between the near-maturing contract with maturity T1 and the
deferred contract with maturity T2, defined as:

SPt(T1, T2) = F (t, T1)− F (t, T2).

As noted by Mou (2010) [24], the spread serves as a measure of the potential profit or
loss per unit of the commodity when futures contracts are rolled forward. It represents the
value associated with a calendar spread strategy, which involves taking a short position in
the maturing contract while simultaneously holding a long position in a deferred contract.
This strategy aims to limit exposure to changes in the absolute price level, thereby allowing
traders to fully capture the effects of price pressures resulting from the futures roll. In a
market with minimal impact, the spread is generally expected to remain relatively stable
over short periods. However, when market impact is significant, the spread tends to narrow
during the roll period. This is due to the temporary downward pressure on the price of
the maturing contract, F (t, T1), and the upward pressure on the deferred contract price,
F (t, T2).

5.2 Strategies

There are two primary approaches to capturing the anticipated drop in the spread. The
first approach involves positioning ahead of the roll by establishing spread positions before
the actual rolling period begins. Specifically, this involves shorting the maturing contracts
and going long on the deferred contracts before the roll, with positions unwound precisely
when the index rolls its futures forward. Strategies 1 and 2 will focus on this approach.
The second approach, known as “back-running,” involves taking opposite positions con-
currently with the Goldman Roll and unwinding them a few days after the temporary
price impact dissipates. Strategy 3 will explore this method.
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5.2.1 Strategy 1

The first strategy is structured as follows. Each month, the contracts that the SP-GSCI
will roll forward and the timing of the roll are publicly available. The SP-GSCI conducts
its futures roll from the 5th to the 9th business day of each month. For this strategy,
beginning 10 business days before the first roll date and continuing until 6 days prior, we
short the maturing contracts and long the deferred contracts that the index will roll into.
We then unwind these positions during the Goldman Roll, allowing us to capitalize on the
price impact generated during the roll by anticipating it 10 business days in advance.

5.2.2 Strategy 2

Strategy 2 closely mirrors Strategy 1 but with a shorter lead time. Positions are established
only 5 days before the Goldman Roll. From 5 days before the first roll day until the day
before the roll begins, we short the maturing contracts and purchase the deferred contracts.
These positions are then unwound during the roll, aiming to capture the price impact with
a shorter anticipatory window.

5.2.3 Strategy 3

Strategy 3 takes a different approach by aiming to profit from the price impact after it has
occurred. During the Goldman Roll, this strategy involves buying the maturing contracts
and shorting the deferred contracts, effectively taking the opposite position to the SP-
GSCI index. The positions are then unwound during the 5 days following the roll dates,
allowing the strategy to benefit as the temporary price impact fades.

5.3 Performance Evaluation

Given that these strategies are implemented over very short timeframes, it is reasonable to
assume that any substantial abnormal excess returns are primarily a result of the rolling
over of futures contracts included in the SP-GSCI index, rather than other factors. To
assess the performance of the strategies, we focus on their excess returns. For strategies
j ∈ {1, 2}, the excess return on day t is defined as

rt =
SPtj (T1, T2)− SPt(T1, T2)

(F (tj , T1) + F (tj , T2))/2
=

(F (tj , T1)− F (tj , T2))− (F (t, T1)− F (t, T2))

(F (tj , T1) + F (tj , T2))/2
(5.3.1)

where t is the day when the strategy is unwound, which occurs on each day i of the
rolling period, where i = 1, ..., 5. tj represents the day the strategy is initiated, specifically
tj = t− 10 for strategy 1, and tj = t− 5 for strategy 2.

For strategy 3, the calculation is slightly different due to the reversal of positions,
leading to:

rt =
SPt(T1, T2)− SPtj (T1, T2)

(F (t, T1) + F (t, T2))/2
=

(F (t, T1)− F (t, T2))− (F (tj , T1)− F (tj , T2))

(F (t, T1) + F (t, T2))/2
. (5.3.2)

It is important to highlight that these are excess returns, and the monthly excess return
from investing in commodity i using Strategy j is calculated as the 5-day average of ri,jt
when the commodity is rolled forward within the month, and zero otherwise.
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Performance Indicators

For performance evaluation, we follow the methodology of [24], grouping the commodities
by sector to construct equally weighted portfolios, as well as an aggregate portfolio that
includes all commodities. Each month, the portfolio return is computed as the average
return of the commodities within the portfolio. Additionally, we adhere to the standard
metrics commonly used in trading strategy assessments. Specifically, for monthly excess
returns, we report the mean and standard deviation of returns, the t-statistic, skewness,
kurtosis, the minimum and maximum returns, and two key risk measures: the Sharpe
Ratio and the Maximum Drawdown.

The Sharpe Ratio is defined as

SR =
Rp −Rf

σp
,

where Rp is the portfolio return, Rf the risk-free rate, and σp represents the standard
deviation of the portfolio’s excess returns. The Maximum Drawdown is a critical risk
metric that measures the largest peak-to-trough decline in the value of a portfolio over a
specified period, before a new peak is achieved. It is defined as max(DDt) where

DDt =
maxs≤tVs − Vt

maxs≤tVs
,

and Vt represents the portfolio value at time t.
By reporting these measures, we aim to provide a comprehensive overview of the

performance and risk characteristics of the strategies.

5.4 Strategies’ Performance

We now turn to the analysis of the performance of the three strategies across sectors and
time. The full sample period is divided into three sub-period: 1999-2000, 2000-2010, and
2010-2024, and the commodities are grouped into sectors portfolios.

5.4.1 Strategy 1

We begin by presenting the results obtained from applying the first strategy. To recap, this
strategy entails shorting the contracts approaching maturity and going long on deferred
contracts 10 business days prior to the rolling period, with the positions being closed out
during the rolling period. Table 5.1 provides a summary of the monthly excess return
statistics for the portfolios.

When examining the mean monthly excess returns of Strategy 1, we observe that
during the first sample period (1990-2000), the monthly returns were generally low but
positive across most sectors, except for Metals, with values ranging from 0.051% to 0.176%.
However, these returns saw a significant increase in the following decade (2000-2010), with
mean excess returns ranging from 0.108% in Agriculture to 0.252% in Livestock, and even
turning positive for the Metals sector (0.017%). Unfortunately, this improvement did
not extend into the final sub-period (post-2010), where mean returns dropped sharply,
becoming negative for the Agriculture and Livestock portfolios, and remaining modest for
the Energy and Metals sectors.

A similar trend is evident when analyzing the risk-adjusted returns using the monthly
Sharpe Ratio. The pre-2000 period exhibited modest but positive Sharpe Ratios for all
sectors except Metals, followed by a substantial increase during 2000-2010, with ratios
ranging from 0.258 (Metals) to 0.557 (Energy). This indicates not only higher returns
but also a more favorable return-to-risk profile during that period. However, this positive
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Agriculture Livestock Energy Metals Total

Panel A: 1990 - 2000

Mean 0.051 0.176 0.141 -0.001 0.046
T-Stat 2.477 3.194 3.464 -0.160 3.192
Std 0.224 0.601 0.446 0.047 0.156
Skewness 1.285 0.031 -0.332 2.235 1.099
Kurtosis 7.972 2.160 5.385 14.885 8.404
Min -0.825 -1.917 -1.562 -0.167 -0.618
Max 1.223 2.161 2.048 0.268 0.806
Sharpe Ratio 0.228 0.293 0.316 -0.015 0.294
Max Drawdown 1.238 2.739 2.492 0.412 0.828
# of obs 118 119 120 119 118

Panel B: 2000 - 2010

Mean 0.108 0.260 0.240 0.017 0.088
T-Stat 5.014 4.802 6.180 2.849 5.942
Std 0.237 0.591 0.427 0.068 0.162
Skewness 1.586 1.259 1.766 6.399 1.936
Kurtosis 3.776 2.989 5.981 53.496 4.769
Min -0.376 -0.909 -0.610 -0.083 -0.241
Max 1.182 2.911 2.273 0.620 0.837
Sharpe Ratio 0.456 0.428 0.562 0.261 0.540
Max Drawdown 1.134 3.797 0.688 0.099 0.241
# of obs 121 121 122 121 121

Panel C: 2010 - 2024

Mean -0.013 -0.049 0.003 0.002 0.018
T-Stat -0.725 -0.950 0.065 0.954 1.222
Std 0.243 0.678 0.681 0.031 0.193
Skewness -0.042 0.204 -3.262 5.499 2.083
Kurtosis 8.043 2.604 31.310 50.496 14.676
Min -1.248 -2.229 -5.668 -0.079 -0.644
Max 1.126 2.774 2.905 0.294 1.307
Sharpe Ratio -0.055 -0.073 0.005 0.073 0.093
Max Drawdown 4.206 14.119 7.878 0.157 1.464
# of obs 171 171 170 169 171

Table 5.1: Performance of Strategy 1 during the three sub-periods.

trend reversed post-2010, with Sharpe Ratios turning negative for the Agriculture and
Livestock portfolios, and a sharp decline in the Energy portfolio’s ratio to just 0.005. In
terms of risk, the maximum drawdown remained relatively low across all portfolios and
sub-periods, suggesting that these strategies generally carried low risk.

Overall, the Energy sector consistently outperformed the other sectors across all sub-
periods, with mean monthly excess returns of 0.141% in the pre-2000 period, rising to
0.237% in 2000-2010, and continuing to achieve positive returns in the final sub-period.
Similarly, the Energy sector exhibited the highest Sharpe Ratios across all periods. The
Livestock portfolio performed relatively well during 1990-2000, but the Agriculture port-
folio performed slightly better in terms of risk-adjusted returns in the 2000-2010 period.
The Metals portfolios underperformed in the first sample period, but later managed to
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achieve positive mean monthly excess returns and Sharpe Ratios of 0.261 (2000-2010) and
0.073 (2010-2024).

Figure 5.1: Average Monthly Excess Returns of the Four Sector Portfolios with Strategy
1

Figure 5.1 illustrates the excess returns year by year for the 4 sector portfolios. From
the Figure, it can be seen that the Energy and Livestock portfolios had consistently pos-
itive returns until the year 2010, before oscilating between the negative and the positive
thereafter. The pattern is relatively similar for the Agriculture portfolio, with slightly
more variations in the period until 2010. Finally, the Metals portfolio had very irregular
monthly excess returns over time, oscillating between the positive and the negative for
most years, except for 2008 and 2020, where it performed particularly well.

5.4.2 Strategy 2

Next, the second strategy is examined, which involded establishing the ‘roll’ position 5
business days before the Goldman Roll. The results are detailed in Table A.6.

When examining the mean monthly excess returns of Strategy 2, we observe again that
during the first period, the returns were generally low but positive across most sectors,
except for Metals, with values ranging from 0.066% to 0.111%. However, contrary to
Strategy 1, these returns saw a slight decrease in the following decade (2000-2010) for
the Agriculture and Livestock portfolio, while the mean excess returns of the Energy and
Metals sectors rose to respectively 0.130% and 0.007%. As in Strategy 1, the mean excess
returns were lowest in the final sub-period, becoming negative for the Agriculture and
Livestock portfolios, and remaining modest for the Energy and Metals sectors.

When analyzing the risk-adjusted returns using the monthly Sharpe Ratio, we see that
the strategy performed better than Strategy 1 in the first sample period, before being
slightly less performing in the second sample period with monthly Sharpe Ratios in the
range 0.120 (Metals) to 0.327 (Energy). Eventually, the positive trend reversed post-2010,
with Sharpe Ratios turning negative for the Agriculture and Livestock portfolios, and a
sharp decline in the Energy portfolio’s ratio to just 0.033. In terms of risk, the maximum
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drawdown remained relatively low across all portfolios and sub-periods, suggesting that
these strategies generally carried low risk.

Overall, the Energy sector consistently outperformed the other sectors across all sub-
periods, with mean monthly excess returns of 0.111% in the pre-2000 period, rising to
0.130% in 2000-2010, and continuing to achieve positive returns in the final sub-period.
Similarly, the Energy sector exhibited the highest Sharpe Ratios across most sub-periods.
The Livestock and Agriculture portfolio performed relatively well during 1990-2000, before
losing out the lead to Energy in terms of risk-adjusted returns in the 2000-2010 period.
The Metals portfolios underperformed until 2010, but later managed to achieve positive
mean monthly excess returns and a monthly Sharpe Ratio of 0.066.

Lastly, Figure B.7 illustrates the excess returns year by year for the 4 sector portfolios.
Similar to Strategy 1, it can be seen that the Agriculture, Energy and Livestock portfolios
had relatively positive returns until the year 2008, before oscillating between the negative
and the positive thereafter. Once again, the Metals portfolio performed particularly well
in 2008. In terms of volatility, it appears that the Livestock portfolio moved the most over
time.

5.4.3 Strategy 3

Finally, we analyze the performance of Strategy 3, which involved taking the opposite
position during the Goldman Roll and closing the trades 5 business days later. The
results of this strategy are presented in Table A.7.

When examining the mean monthly excess returns of the strategy, we observe again
that during the first period, the returns were generally low but positive across most sec-
tors, except for Metals, with values ranging from 0.066% to 0.111%. Then, similar to
Strategy 1, the returns increased in the following decade (2000-2010) for the Agriculture
and Energy portfolio to respectively 0.045% and 0.124, while the they slightly decreased
for the Livestock portfolio, and barely became positive for Metals. As in Strategy 1 and 2,
the mean excess returns decreased in the final sub-period, with the slight difference that
they remained positive and modest for all portfolios.

The same trend is evident when analyzing the risk-adjusted returns using the monthly
Sharpe Ratio. The strategy exhibited relatively similar Sharpe Ratios across the first two
sample periods, with Sharpe Ratios in the range 0.205 (Agriculture) to 0.383 (Energy) in
the period 2000 to 2010. Note that the Sharpe Ratio remained very modest for Metals
throughout the entire period under study. Eventually, as in Strategy 1 and 2, the monthly
Sharpe Ratio decreased in the final subperiod, with the notable difference that they re-
mained positive for the Agriculture, Livestock and Energy portfolios. In terms of risk
carried during the strategy, the maximum drawdowns were very low across all portfolios
and sub-periods, suggesting that these strategies generally carried low risk.

Overall, the Livestock portfolio performed the best in the first sample period with
a monthly Sharpe Ratio of 0.485, before leaving the best performance to the Energy
portfolio for the remaining sub-periods with a Sharpe Ratio of 0.383 in 2000-2010. The
Agriculture had positive performance measures, but performed slightly less than the other
two portfolios. Similar to the Strategy 1 and 2, the Metals portfolios did not perform well in
the first sample period, however, here, the performance did not increase significantly over
the time period. Finally, Figure B.8 illustrates the average monthly excess returns year by
year for the four sector portfolios. Again, the Energy, Agriculture and Livestock portfolios
had similar patterns over time, with some oscillation between the positive and the negative,
even though they still managed to maintain mostly positive returns throughout. Notably,
the livestock portfolio achieved roughly 0.5% monthly excess returns on average in 2020.
Contrary to Strategies 1 and 2, the Metal portfolio did not have peaks of performance in
years 2008 and 2020, and exhibited mostly negative mean excess returns over the whole

42



sample period.

5.4.4 Strategies’ comparison

In this section, we provide a direct comparison of the strategies’ performance using their
annualized Sharpe Ratios. Table 5.2 presents the annualized excess returns for each strat-
egy across all subperiods. Following the methodology of Mou [24], we annualize the excess
returns of Strategy 1 based on 10-day returns and those of Strategies 2 and 3 based on 5-
day returns. Accordingly, we annualize the returns of Strategy 1 using a factor of 252/10,
and those of the other strategies using a factor of 252/5. The annualized Sharpe Ratios
facilitate the comparison of similar portfolios. Generally, a Sharpe Ratio greater than 1
is considered acceptable, while a ratio above 2 is deemed very good. Conversely, a ratio
below 1 is regarded as sub-optimal.

Agriculture Livestock Energy Metals Total

Strategy 1
Pre-2000 1.145 1.470 1.587 -0.074 1.475
2000-2010 2.288 2.210 2.820 1.311 2.712
Post-2010 -0.278 -0.365 0.025 0.369 0.469

Strategy 2
Pre-2000 2.760 1.491 2.438 -0.289 2.642
2000-2010 1.607 1.255 2.323 0.858 2.766
Post-2010 -0.767 -0.454 0.234 0.469 0.274

Strategy 3
Pre-2000 0.590 3.445 1.542 -0.295 1.087
2000-2010 1.453 2.211 2.719 0.043 2.438
Post-2010 0.823 0.244 0.586 0.286 0.427

Table 5.2: Annualized Sharpe Ratios by Trading Days for each strategy.

In the first sample period, from 1990 to 2000, Strategy 1 displayed Sharpe Ratios
ranging from 1.145 in Agriculture to 1.587 in Energy. Strategy 2 outperformed during
this period, with Sharpe Ratios ranging from 1.491 in Livestock to 2.760 in Agriculture.
Conversely, Strategy 3 performed poorly in Agriculture, with a Sharpe Ratio of 0.590,
but excelled in Livestock, achieving an impressive annualized Sharpe Ratio of 3.445. It is
noteworthy that all portfolios within the Metals sector exhibited negative Sharpe Ratios
during this period. In the subsequent period from 2000 to 2010, the performance of
Strategy 1 improved significantly, with all Sharpe Ratios exceeding 2, except for Metals,
which had a Sharpe Ratio of 1.311. Strategy 3 also experienced a substantial performance
increase, with Sharpe Ratios ranging from 1.453 to 2.719, except for Metals, which had
a Sharpe Ratio of 0.043. Surprisingly, Strategy 2 did not see a significant performance
boost during this period, though it still performed relatively well, with Sharpe Ratios
ranging from 1.255 to 2.323. Finally, in the last sub-sample period, the performance of
all strategies declined markedly across most sectors. Strategies 1 and 2 exhibited negative
Sharpe Ratios in the Agriculture and Livestock portfolios, while the Energy and Metals
portfolios managed to maintain positive but modest performance. Although Strategy 3
did not have any negative Sharpe Ratios, all its ratios were below 1, indicating that the
strategy generated limited excess returns relative to the risk taken.
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5.5 Discussion

Finally, we dive deeper into the key insights gained from the analysis and explore the rea-
sons behind the performance of these strategies. The key takeaway from these results is
the significant variation in strategy performance across different sectors and time periods.
Specifically, the strategies exhibited strong performance in the early periods, with Strate-
gies 1 and 3 showing substantial improvement during the 2000-2010 period, while Strategy
2 also performed relatively well. However, in the final period, all strategies experienced
a notable decline in performance. When examining sector-specific strengths and weak-
nesses, the Energy sector consistently performed well across all strategies, particularly in
the early periods. Strategy 3 demonstrated exceptional performance in the Livestock sec-
tor but faced challenges in Agriculture, while Strategy 2 performed relatively well in the
Agriculture sector during the early period. Conversely, the Metals sector generally under-
performed in the early periods but showed a notable improvement in the final sub-period,
overtaking other sectors for Strategies 1 and 2.

To fully understand these results, it’s crucial to examine the average changes in spreads
over the different time periods considered. As indicated by Equations 5.3.1 and 5.3.2, the
monthly excess returns are largely driven by the changes in spreads between expiring
and deferred contracts. The strategies are specifically designed to exploit the anticipated
decrease in spreads during the rolling period, driven by the tendency for the price of the
maturing contract to be lower and the deferred contract price to be higher during the
Goldman Roll. Figure 5.2 illustrates the average change in spreads between the nearby
and first deferred contracts for index commodities across all sub-periods, broken down
into 5-day intervals, providing insights into the evolving performance of these strategies.

Figure 5.2: Average spreads between the nearby and first deferred contracts of commodi-
ties around the GR in three time periods.

The figure highlights the differences in strategy performance over time. In the earlier
periods, a clear V-shaped pattern in spreads is visible, with spreads declining leading up to
the Goldman Roll (visible in grey shades in the figure), stabilizing during the roll, and then
increasing afterward. This pattern was most pronounced in the 2000-2010 period, where
spreads declined by nearly 50 basis points during the roll, supporting the notion of front-
running impacts as discussed by Mou [24]. Strategy 1, which involved entering positions
earlier days -10 to -6, benefited more during this period due to a more significant decline
in spreads earlier on, explaining its relative outperformance in 2000-2010. Conversely, in
the pre-2000 period, Strategy 2 (which enters positions later in the event period, days -5
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to -1) performed well, as the difference in spread changes between the two periods was
less pronounced. Additionally, the widening of spreads post-Goldman Roll helps explain
the positive performance of Strategy 3 during these periods.

The most significant insight from this figure is the disappearance of the V-shaped pat-
tern in the post-2010 period (green line). During this period, the average spreads remain
near zero across all days, indicating that the price impact or opportunities to capitalize
on spread changes during the roll have largely vanished, which explains the overall poor
performance of these strategies after 2010. This finding aligns with the work of Irwin et
al. [20], who found that spreads between nearby and deferred futures prices decreased sig-
nificantly during the early (1991-2003) and growth (2004-2011) stages of financialization,
with a substantial decline in impact during the post-financialization period (2012-2019).
This suggests that while price impacts from futures rolling were significant in earlier pe-
riods, they have largely dissipated in more recent years, consistent with the findings of
Bessembinder et al. [4], Hamilton and Wu [15], and Sanders et al. [27].

Since Mou’s original paper [24] identified price impacts in futures rolling and the result-
ing arbitrage opportunities, the field has attracted considerable attention. This increased
attention likely led to greater capital flows into these strategies, raising awareness and
reducing arbitrage opportunities. As more market participants sought to exploit these op-
portunities, the market became more efficient, diminishing the potential for excess returns.
This outcome is consistent with the work of Cheng and Xiong [11], who examined the ef-
fects of financialization on commodity markets and found that as more capital entered
these markets, the potential for excess returns diminished. By 2010, increased participa-
tion and awareness among market participants had reduced the impact of the Goldman
Roll on spreads, explaining the diminished performance of these strategies in the last sub-
sample period. Another reason for the reduction in the price impact surrounding rolling
events is brought by Irwin et al [20]. They suggest that the reduction in price impact dur-
ing rolling events can be largely attributed to the significant increase in liquidity supply
in commodity futures markets, which has been driven mainly by the shift to electronic
trading.

Next, to better understand the variation in strategy performance across different sec-
tors, Figure 5.3 presents the average spreads during the event days across three time
periods, broken down by sector.

The figure reveals that the Energy portfolio exhibits a clear V-shaped pattern in the
earlier periods, with spreads decreasing leading up to the Goldman Roll, stabilizing during
the roll, and increasing afterward. This pattern is consistent with findings in the litera-
ture, such as those by Mou [24], who documented the significant price impact during the
Goldman Roll, particularly in energy markets. The pronounced V-shape in the Energy
sector for the earlier periods highlights the potential for high excess returns during these
times. However, in the period after 2010, this pattern disappears, with spreads forming
a relatively straight line, indicating a significant reduction in the opportunities to exploit
price impacts. This shift helps explain the reversal in strategy performance after 2010, as
the market became more efficient and the potential for excess returns diminished.

In both the Agriculture and Livestock portfolios, similar patterns are observed, though
with some notable differences. In the pre-2000 period, the Agriculture portfolio shows a
more linear decrease in spreads, while in the Livestock portfolio, spreads tend to increase
during the Goldman Roll. This difference is crucial in understanding the sector-specific
performance: Strategy 2 performed best in the Agriculture portfolio during this period,
likely because the most significant decrease in spreads occurred between days -5 to -
1, aligning with Strategy 2’s timing. Conversely, Strategy 1 excelled in the Livestock
portfolio, where the sharpest spread decrease occurred earlier in the event period (days -10
to -5). This observation is in line with studies such as Hamilton and Wu [15], which noted
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Figure 5.3: Average spreads between the nearby and first deferred contracts of commodi-
ties around the GR in three time periods per sectors.

sector-specific differences in how futures markets respond to rolling activities, particularly
in agricultural markets where liquidity dynamics can vary significantly. In the 2000-2010
period, both the Agriculture and Livestock portfolios performed better with Strategy 1,
which aligns with the sharper decrease in spreads observed during this period—reaching
40 to 50 basis points. This sharp decline underscores the effectiveness of Strategy 1 in
capturing early spread decreases, as supported by Irwin and Sanders [27], who emphasized
the increased influence of financial traders in this period, leading to more pronounced price
movements around rolling activities.

The Metals portfolio presents a unique case. Unlike other sectors, it does not exhibit
a strong or consistent pattern in spread changes. During the pre-2000 period, average
spreads in the Metals sector tended to increase initially, then oscillate between positive
and negative values, leading to poor performance across all strategies. This lack of a
clear pattern in spreads, and thus a predictable price impact, aligns with findings by
Bessembinder et al. [4], who observed that metals markets often behave differently from
other commodities, with less pronounced reactions to rolling activities due to different
market structures and participant behaviors. In the 2000-2010 period, the Metals portfolio
showed some improvement in spread behavior, with a more noticeable decline, which
partially explains the modest improvement in strategy performance. However, this decline
was not as pronounced or consistent as in other portfolios, leading to less significant gains.
Finally, in the post-financialization period (2010 onwards), the Metals portfolio exhibited
a small decline in spreads, reaching only -4 basis points at most. This modest decline
explains why the Metals portfolio performed relatively better than others in the last sub-
period, despite the general decline in strategy effectiveness. This outcome is consistent
with research by Cheng and Xiong [11], which suggests that as markets mature and more
participants engage in arbitrage strategies, the opportunities for significant price impacts,
and thus excess returns, diminish.

Finally, in the analysis of the results, we saw that the metals portfolios performed par-
ticularly well in 2008 and 2020, as visible in Figures 5.1 and B.7. The strong performance
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of the metals portfolio, including silver and gold, in 2008 and 2020 can be attributed
to several factors, particularly the role of gold as a safe-haven asset during periods of
financial crisis. Indeed, during both the 2008 global financial crisis and the 2020 COVID-
19 pandemic, investor demand for safe-haven assets surged, with gold often serving as a
primary refuge. As market uncertainty increased, investors flocked to gold, driving up
its price and causing significant movements in the spreads between nearby and deferred
futures contracts. This heightened volatility and the associated price impacts during the
Goldman Roll likely created greater opportunities for the strategies to capitalize on these
changes in spreads, leading to higher excess returns. The phenomenon of gold acting as
a safe haven during times of economic turmoil is well-documented in the literature. For
instance, Baur and Lucey [2] found that gold often acts as a hedge and a safe haven against
stocks, particularly during extreme market conditions. Moreover, the financial crises in
2008 and 2020 led to increased market liquidity in safe-haven assets and the implementa-
tion of aggressive monetary policies, including low-interest rates and quantitative easing.
These factors contributed to higher demand for precious metals, not only as safe havens
but also as hedges against inflation and currency depreciation. This increased demand
further amplified the price impacts during futures rolls, enhancing the effectiveness of
strategies based on exploiting changes in spreads.
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Conclusion

The first and main objective of this thesis was to understand how price impact propagates
over time in commodity indices, including during rolling periods. Using the nonlinear
propagator model framework developed by Muhle-Karbe et al. [25], we focused on identi-
fying the most suitable functional form for calibrating the model to different commodity
futures. Specifically, we experimented with a range of concavity coefficients, c, in the ex-
pression 4.1.2, aiming to find the optimal coefficient, c∗, that would provide the best model
fit and stability. Additionally, we calibrated the model for every hour of the trading day
to gain insights into intraday patterns of price impact around rolling events and assessed
its performance across time and different sectors.

Our findings indicate that, across all commodities and time periods, the optimal con-
cavity coefficient, c∗ = 0.25, yielded the best performance. Notably, this coefficient sig-
nificantly improved model fit and stability compared to the linear impact model with
c = 1, which has been typically used to study price impacts around roll dates in com-
modity futures contracts. Furthermore, the optimal model outperformed the commonly
used square-root law (c = 0.5), which is typically applied to account for the concavity of
price impact in limit order books. This suggests that relatively little trading is needed to
create a price impact and that there is minimal difference in impact between small and
large trades. Additionally, we observed that the model’s performance was highly robust
across both time and commodities, with the highest impacts found for Gold, Crude Oil,
and Natural Gas. We also found that price impacts were generally higher during out-of-
market hours and that the model’s effectiveness varied under changing market conditions.
For example, during the onset of the COVID-19 pandemic, the model showed much poorer
out-of-sample fit for most commodity futures when trained on pre-pandemic data, which
did not account for this unpredictable change in market conditions.

After completing the price impact analysis, the second goal of this thesis was to de-
sign simple anticipatory trading strategies to exploit market anomalies during the rolling
over of futures contracts. Specifically, building on the concept that the rolling over of
futures contracts involves large-scale selling of maturing contracts and buying of deferred
contracts, we replicated two strategies developed by Mou [24] and implemented a third
simple strategy to evaluate their performance after 2010. The objective was to determine
whether such anomalies could still be profitable over time. Strategies 1 and 2 anticipated
the rolling over of futures contracts by establishing positions in advance, while Strategy 3
essentially took the opposite approach.

Regarding the results of these strategies, we found outcomes similar to those reported
by Mou [24] up to 2010. Both Strategies 1 and 2 showed low but positive monthly Sharpe
Ratios and monthly excess returns until 2000, followed by a significant performance in-
crease with the financialization of the commodity futures market, achieving annualized
Sharpe Ratios as high as 2.8 for the Energy sector during the 2000-2010 period. The
third strategy exhibited a similar pattern, with modest performance in the initial period,
followed by substantial improvement from 2000 to 2010, reaching annualized Sharpe Ra-
tios of about 2.7 for the Energy portfolio. Overall, the Energy portfolio performed the
best across all strategies, while the Metals sector generally underperformed in the earlier
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periods.
More importantly, the performance of all strategies declined significantly post-2010,

with Strategies 1 and 2 showing negative returns for the Agriculture and Livestock portfo-
lios and only modest returns for other sectors and Strategy 3. During this period, average
spreads hovered around zero across all days, indicating that opportunities to profit from
spread changes during the rolling period had largely disappeared. This aligns with find-
ings by [20], who observed a substantial decline in impact during the post-financialization
period. The decline in strategy performance can be attributed to the increased number of
market participants attempting to exploit the potential anomaly since the publication of
Mou’s paper, leading to greater arbitrage capital and investor participation, which in turn
made the market more efficient and reduced the potential for excess returns. Addition-
ally, the shift to electronic trading boosted liquidity in the commodity futures markets,
resulting in lower price impacts surrounding rolling events.

Finally, we discuss certain limitations of this thesis and open the discussion for poten-
tial future research. First, the order sign data had to be estimated rather than directly
observed; while the estimation process was reasonably robust, it may not be fully accurate,
potentially affecting the precision of the results. Additionally, the analysis relied on data
from the full order book of commodity futures, which did not specifically focus on the
trades of institutional investors that regularly roll over their contracts. As a result, the
volume analyzed might include transactions from hedgers or other investors with different
objectives, not necessarily linked to rolling over trades. Furthermore, the trading strate-
gies were entirely focused on the SP-GSCI index, the largest and most liquid commodity
index, where the rolling period is well-known. However, its popularity and liquidity may
have diminished the opportunities for arbitrage over time. There could be other oppor-
tunities in less liquid contracts if it were possible to estimate when institutional investors
might roll them over.

In conclusion, several avenues for future research could build upon the findings of this
thesis. First, while we introduced the potential seasonality in terms of time to the next
roll event, incorporating this seasonality into the modeling of price impact could provide
significant insights. This approach may reveal how price impacts vary when trading flows
are highly directional around these times and whether the expected effects are observed
when flow is indeed directional. Second, based on our understanding of the dynamics of
price impact, optimal trading strategies could be developed to enhance trading execution
on specific days. For example, institutional investors needing to roll over a certain volume
on a particular day could use the estimated price impact to decide how and when to execute
their trades optimally throughout the day, thereby reducing order costs and increasing
efficiency. Finally, a promising area for future research is exploring the cross-impact that
trading one futures contract has on others that are highly correlated. Understanding this
cross-impact could lead to a more comprehensive and accurate representation of price
impact and help clarify the exact effects of trading in commodity futures contracts.
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Appendix A

Additional Tables

This section provides the additional tables that are useful in our analysis. Tables A.1
and A.2 provide descriptive statistics for daily futures prices and daily traded volumes
separated between roll and non-roll days of the SP-GSCI index. Tables A.3, A.4 and
A.5 present the performance of the various price impact models for commodities in the
Agriculture, Metals and Livestock sectors, and Tables A.6 and A.7 present the performance
of Strategies 2 and 3 during the three sub-sample periods.
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Ticker mean std min max contracts

Panel A: Daily Closing Prices

WC 477.080 182.674 233.500 1119.750 174
KW 595.957 179.109 388.250 1181.500 54
CN 448.890 122.076 307.750 786.500 173
SY 880.126 335.281 429.000 1767.500 174
KC 125.879 49.292 43.000 279.550 174
SB 13.365 5.549 5.140 32.580 140
CC 2047.172 1183.847 710.000 10582.000 174
CT 72.908 25.201 32.150 212.060 139
LH 67.275 18.305 32.550 131.825 243
LC 97.747 30.277 58.300 189.850 207
FC 117.745 44.584 53.100 261.225 276
CL 50.660 29.428 10.740 144.410 413
HO 1.540 0.958 0.302 4.610 413
XB 2.150 0.638 0.658 4.263 212
CO 78.274 24.623 29.370 145.200 229
GO 698.573 218.156 241.750 1360.250 175
NG 3.391 1.252 1.629 9.347 377
GC 936.685 585.933 256.500 2366.900 173
SV 1311.369 891.505 364.000 4093.000 173

Panel B: Daily Traded Volumes

WC 19372.963 21879.686 0.000 94819.000 174
KW 11690.713 5307.038 0.000 32920.000 54
CN 96710.035 47294.792 0.000 265502.000 173
SY 34141.292 37838.582 0.000 205432.000 174
KC 4846.990 5649.447 0.000 35461.000 174
SB 16492.314 18336.410 0.000 71035.000 140
CC 2780.106 3891.645 0.000 31812.000 174
CT 4948.788 5717.171 0.000 23168.000 139
LH 6205.520 7226.771 0.000 31804.000 243
LC 7277.889 8673.768 0.000 36432.000 207
FC 1451.900 1972.473 0.000 9554.000 276
CL 152585.057 187849.973 0.000 1164773.000 413
HO 13180.785 13989.126 0.000 123633.000 413
XB 22179.302 7616.352 0.000 52751.000 212
CO 122046.837 70942.267 0.000 475019.000 229
GO 44297.046 13413.481 0.000 137358.000 175
NG 93080.942 32147.198 0.000 257477.000 377
GC 92740.987 102772.867 0.000 580884.000 173
SV 24737.236 33696.572 0.000 337765.000 173

Table A.1: Descripive Statistics of commodity futures during the GR in the SP-GSCI
index.
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Ticker mean std min max contracts

Panel A: Daily Closing Prices

WC 480.300 182.835 230.750 1326.500 174
KW 593.168 176.949 368.250 1340.750 54
CN 361.628 153.479 174.250 831.500 173
SY 880.972 334.227 411.500 1786.250 174
KC 126.132 49.533 42.000 314.000 174
SB 13.439 5.528 4.280 35.280 140
CC 2049.158 1079.744 680.000 12250.000 174
CT 71.478 21.461 28.520 219.700 139
LH 66.544 18.031 27.725 132.350 243
LC 97.705 30.297 54.800 188.500 207
FC 117.734 44.628 47.650 264.400 276
CL 50.735 29.418 1.430 145.320 413
HO 1.546 0.961 0.296 4.944 413
XB 2.158 0.638 0.443 4.308 212
CO 73.384 25.720 19.500 146.610 229
GO 700.390 218.898 193.000 1326.000 175
NG 4.028 2.260 1.300 15.491 377
GC 883.216 580.056 253.800 2441.300 173
SV 1306.165 885.917 351.000 4843.000 173

Panel B: Daily Traded Volumes

WC 11940.641 19300.565 0.000 178753.000 174
KW 7743.032 7592.011 0.000 48243.000 54
CN 28122.403 45794.806 0.000 411359.000 173
SY 21757.684 33926.932 0.000 245468.000 174
KC 3167.407 5873.817 0.000 40899.000 174
SB 10850.745 18279.391 0.000 156111.000 140
CC 2918.721 5708.561 0.000 36913.000 174
CT 3300.587 5790.003 0.000 48494.000 139
LH 3413.893 5756.508 0.000 34239.000 243
LC 4178.102 7158.879 0.000 48038.000 207
FC 874.798 1680.060 0.000 11396.000 276
CL 67264.499 135143.273 0.000 920643.000 413
HO 5103.495 9501.708 0.000 60729.000 413
XB 8481.212 10125.637 0.000 73068.000 212
CO 60173.415 72721.182 0.000 468292.000 229
GO 20941.393 19169.739 0.000 118795.000 175
NG 23439.863 38823.094 0.000 333756.000 377
GC 52244.560 84576.696 0.000 618848.000 173
SV 15685.846 26099.370 0.000 251964.000 173

Table A.2: Descripive Statistics of commodity futures outside of the GR in the SP-GSCI
index.
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impact c Train R2 Test R2 T-Stat

0.10 0.674 0.164 0.108
0.15 0.681 0.148 0.136
0.20 0.683 0.124 0.167
0.25 0.680 0.098 0.203
0.30 0.673 0.075 0.244
0.35 0.661 0.054 0.293
0.40 0.645 0.036 0.353
0.45 0.626 0.020 0.427
0.50 0.605 0.006 0.513
0.55 0.580 -0.009 0.604
0.60 0.555 -0.023 0.695
0.65 0.528 -0.039 0.782
0.70 0.500 -0.055 0.862
0.75 0.472 -0.072 0.931
0.80 0.444 -0.089 0.986
0.85 0.417 -0.106 1.024
0.90 0.391 -0.123 1.045
0.95 0.365 -0.138 1.050
1.00 0.341 -0.155 1.040

Table A.3: Performance of various price impact models for commodities in the agriculture
sector.

impact c Train R2 Test R2 T-Stat

0.10 0.628 0.629 3.477
0.15 0.640 0.641 4.247
0.20 0.649 0.650 5.041
0.25 0.655 0.656 5.445
0.30 0.658 0.658 5.153
0.35 0.658 0.658 4.470
0.40 0.656 0.654 3.792
0.45 0.650 0.648 3.248
0.50 0.642 0.638 2.834
0.55 0.631 0.626 2.521
0.60 0.618 0.611 2.281
0.65 0.603 0.595 2.091
0.70 0.585 0.576 1.938
0.75 0.566 0.554 1.812
0.80 0.545 0.531 1.706
0.85 0.523 0.506 1.614
0.90 0.499 0.480 1.533
0.95 0.475 0.453 1.461
1.00 0.451 0.424 1.396

Table A.4: Performance of various price impact models for commodities in the metal
sector.
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impact c Train R2 Test R2 T-Stat

0.10 0.573 0.545 2.046
0.15 0.577 0.551 2.459
0.20 0.579 0.554 2.675
0.25 0.577 0.552 2.692
0.30 0.572 0.546 2.585
0.35 0.563 0.536 2.425
0.40 0.551 0.521 2.254
0.45 0.537 0.503 2.089
0.50 0.519 0.480 1.938
0.55 0.500 0.454 1.800
0.60 0.479 0.424 1.675
0.65 0.457 0.391 1.560
0.70 0.434 0.355 1.454
0.75 0.411 0.315 1.355
0.80 0.388 0.273 1.263
0.85 0.365 0.228 1.178
0.90 0.343 0.179 1.097
0.95 0.322 0.126 1.021
1.00 0.302 0.067 0.949

Table A.5: Performance of various price impact models for commodities in the livestock
sector.
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Agriculture Livestock Energy Metals Total

Panel A: 1990 - 2000

Mean 0.066 0.080 0.111 -0.002 0.045
T-Stat 4.225 2.291 3.763 -0.444 4.043
Std 0.170 0.382 0.325 0.049 0.120
Skewness 2.624 -0.417 -0.478 -0.604 0.663
Kurtosis 11.554 2.724 4.881 9.510 9.617
Min -0.331 -1.430 -1.368 -0.219 -0.563
Max 1.107 1.016 1.303 1.155 0.567
Sharpe Ratio 0.389 0.209 0.343 -0.041 0.372
Max Drawdown 0.607 2.850 3.271 0.487 0.701
# of obs 118 119 120 119 118

Panel B: 2000 - 2010

Mean 0.034 0.070 0.130 0.007 0.037
T-Stat 2.490 1.928 3.599 1.318 4.286
Std 0.148 0.394 0.396 0.064 0.096
Skewness 0.441 0.487 3.320 7.982 1.478
Kurtosis 4.152 3.773 22.440 77.607 3.829
Min -0.500 -1.244 -0.866 -0.086 -0.217
Max 0.636 1.666 2.986 0.597 0.426
Sharpe Ratio 0.227 0.177 0.327 0.121 0.390
Max Drawdown 1.679 2.998 2.236 0.220 0.403
# of obs 121 121 122 121 121

Panel C: 2010 - 2024

Mean -0.022 -0.031 0.012 0.001 0.005
T-Stat -1.412 -0.836 0.429 0.858 0.504
Std 0.209 0.478 0.360 0.022 0.146
Skewness -2.117 0.066 0.405 3.505 0.848
Kurtosis 19.549 3.419 11.559 32.673 13.502
Min -1.559 -1.884 -1.754 -0.084 -0.749
Max 0.905 1.615 2.174 0.186 0.919
Sharpe Ratio -0.108 -0.064 0.033 0.066 0.039
Max Drawdown 4.423 11.662 3.869 0.206 1.460
# of obs 171 171 170 169 171

Table A.6: Performance of Strategy 2 during the three sub-periods.
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Agriculture Livestock Energy Metals Total

Panel A: 1990 - 2000

Mean 0.012 0.174 0.097 -0.002 0.017
T-Stat 0.902 5.338 2.389 -0.457 1.663
Std 0.149 0.359 0.447 0.048 0.106
Skewness -0.343 1.397 1.857 4.398 1.020
Kurtosis 4.578 2.403 11.935 41.566 3.767
Min -0.610 -0.438 -1.629 -0.144 -0.297
Max 0.485 1.671 2.703 0.396 0.422
Sharpe Ratio 0.083 0.485 0.217 -0.042 0.153
Max Drawdown 0.972 0.563 1.630 0.612 0.902
# of obs 118 119 120 119 118

Panel B: 2000 - 2010

Mean 0.045 0.128 0.124 0.000 0.045
T-Stat 2.252 3.398 4.212 0.066 3.778
Std 0.222 0.409 0.324 0.034 0.132
Skewness 3.104 0.127 0.988 0.308 2.659
Kurtosis 14.926 2.538 5.429 14.493 9.935
Min -0.444 -1.310 -0.971 -0.175 -0.289
Max 1.437 1.467 1.560 0.185 0.764
Sharpe Ratio 0.205 0.311 0.383 0.006 0.343
Max Drawdown 1.020 2.434 1.063 0.423 0.213
# of obs 121 121 122 121 121

Panel C: 2010 - 2024

Mean 0.023 0.018 0.034 0.001 0.010
T-Stat 1.515 0.451 1.080 0.527 0.784
Std 0.201 0.513 0.407 0.016 0.170
Skewness -1.090 -0.543 -0.703 -1.923 -3.367
Kurtosis 19.808 9.011 22.340 22.812 34.740
Min -1.446 -3.013 -2.929 -0.124 -1.453
Max 0.932 1.996 2.220 0.077 0.678
Sharpe Ratio 0.116 0.034 0.083 0.040 0.060
Max Drawdown 1.767 7.110 3.457 0.203 1.547
# of obs 171 171 170 169 171

Table A.7: Performance of Strategy 3 during the three sub-periods.
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Appendix B

Additional Plots

This section provides the additional figures that are useful in our analysis. Figures B.1
to B.6 present the evolution of the model fits over one day for the Agriculture, Metals
and Livestock sectors, as well as the evolution of the fit of the models over the years.
Next, Figures B.7 and B.8 present the average monthly excess returns of the four sector
portfolios with strategies 2 and 3. Finally, Figures B.9 to B.26 present the average trading
volumes as a function of days to roll dates for all commodities.

Figure B.1: Evolution of model fit for the agriculture sector with training start on 2024-
01-01.

57



Figure B.2: Evolution of model fit for the agriculture sector over time.

Figure B.3: Evolution of model fit for the metal sector with training start on 2024-01-01.

Figure B.4: Evolution of model fit for the metal sector over time.
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Figure B.5: Evolution of model fit for the livestock sector with training start on 2024-01-
01.

Figure B.6: Evolution of model fit for the livestock sector over time.

Figure B.7: Average Monthly Excess Returns of the Four Sector Portfolios with Strategy
2
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Figure B.8: Average Monthly Excess Returns of the Four Sector Portfolios with Strategy
3

Figure B.9: Average trading volume as a function of days to roll dates for CC.

Figure B.10: Average trading volume as a function of days to roll dates for CN.
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Figure B.11: Average trading volume as a function of days to roll dates for CO.

Figure B.12: Average trading volume as a function of days to roll dates for CT.

Figure B.13: Average trading volume as a function of days to roll dates for FC.

Figure B.14: Average trading volume as a function of days to roll dates for GC.
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Figure B.15: Average trading volume as a function of days to roll dates for GO.

Figure B.16: Average trading volume as a function of days to roll dates for HO.

Figure B.17: Average trading volume as a function of days to roll dates for KC.

Figure B.18: Average trading volume as a function of days to roll dates for KW.
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Figure B.19: Average trading volume as a function of days to roll dates for LC.

Figure B.20: Average trading volume as a function of days to roll dates for LH.

Figure B.21: Average trading volume as a function of days to roll dates for NG.

Figure B.22: Average trading volume as a function of days to roll dates for SB.
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Figure B.23: Average trading volume as a function of days to roll dates for SV.

Figure B.24: Average trading volume as a function of days to roll dates for SY.

Figure B.25: Average trading volume as a function of days to roll dates for WC.

Figure B.26: Average trading volume as a function of days to roll dates for XB.
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