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Abstract

In this thesis, a generalisation of the rough Bergomi model is proposed (referred to as
the generalised grey Bergomi model) which uses generalised grey Brownian motion, a
special class of H-sssi (H-self-similar-stationary-increments) processes that provide non-
semimartingale variance stochastic models for anomalous diffusion. For β = 1, fractional
Brownian motion is retrieved [31], thus, giving a fresh starting point for constructing rough
volatility models. VIX dynamics under the generalised grey Bergomi model are charac-
terised; alongside this, a numerical scheme is given to price VIX Futures and Options.
General pricing schemes are also provided, showcasing the superiority of the generalised
grey Bergomi model over the rough Bergomi model in terms of implied volatility curve gen-
eration. Most importantly, the discounted stock price process is shown to be a martingale
under this new model, which is essential for derivative pricing.
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Introduction

A decade ago, Gatheral, Jaisson, and Rosenbaum made a case for non-semimartingale
volatility processes in [24], making the case that volatility is “rough” (linked to the Hölder
regularity of the paths from the volatility process). This led to many stochastic volatility
models having a “rough” counterpart developed (for example the rough Heston model [18]
and rough Bergomi model [5]). These new rough models swapped the standard Brownian
motion in place for the fractional counterpart, where the fractional counterpart is defined
as the process for which t ∈ [0, T ] has E[BH

t ] = 0 and covariance function

E[BH
t BH

s ] :=
1

2

(
tH + sH − |t− s|H

)
,

with H ∈ (0, 1) (referred to as the Hurst parameter). For H = 1
2 , one obtains standard

Brownian motion. Meanwhile, for H < 1
2 , the increments of the process are negatively

correlated, and for H > 1
2 , the increments of the process are positively correlated. In other

words, when H < 1
2 , fractional Brownian motion (fBm) has short-term dependencies and

when H > 1
2 , fBm has long-term dependencies.

Returning to [24], it was noted that the volatility process observed through market
prices had Hurst parameter H ≈ 0.1. This observation is the fundamental reason for the
popularity of rough volatility models such as the ones mentioned above.

Since then, one of the open problems in mathematical finance has been to solve the
SPX-VIX joint calibration problem. Due to its importance and difficulty, this problem
has even been referred to as “the holy grail of volatility modeling” [25]. Several attempts
have been made, with the most promising being the Quadratic Rough Heston (qrHeston)
model in [25]. Whilst the qrHeston model is appealing in theory, in practice calibration is
much more time consuming since there are six parameters to calibrate (compared to three
parameters in the rough Bergomi model).

Coincidentally, several years before [24], Mainardi et al. [31, 32] showed that the

marginal density function of the class {Bβ,α
t , t ≥ 0}, referred to as generalised grey Brow-

nian motion (ggBm), is the fundamental solution to the stretched time-fractional diffusion
equation. By construction, this class is made up of self-similar processes with stationary
increments and Hurst parameter H = α/2. Therefore, ggBm is a special class of H-sssi
(H-self-similar-stationary-increments) processes that provide non-semimartingale variance
stochastic models. For β = 1, fBm is retrieved [31], thus, giving a fresh starting point for
the construction of rough volatility models. This ultimately leads to novel dynamics of
the forward variance.

Model-wise, the starting point is the rough Bergomi model, a simple and robust model.
However, like any model, the rough Bergomi model is not perfect. This is mainly due to
the log-normal forward variance causing VIX smiles to be flat, which, is not consistent
with market data. The aim of this thesis is to construct a generalised version of the
rough Bergomi model which resolves this issue and potentially solves the SPX-VIX joint
calibration problem without introducing too many extra parameters to calibrate.

In light of this, the organisation of this thesis is as follows: Chapter 1 gives a general
introduction to ggBm. Chapter 2 follows with the construction of the generalised grey
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Bergomi (ggBergomi) model. In Chapter 3 it is proven that, under certain conditions, the
discounted stock price process is a martingale. Moreover, Chapter 3 is dedicated to an
array of VIX analyses; this includes a discussion of VIX simulation schemes and calibrating
the ggBergomi model to VIX Futures. To conclude, Chapter 4 discusses general simulation
methods for the ggBergomi model. Additionally, calibration to SPX Options under the
ggBergomi model is highlighted.

An important point to mention is that the foundation of this thesis is largely inspired
by the unpublished work in [28].
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Chapter 1

Generalised Grey Brownian
Motion

1.1 Introducing the M-Wright Distribution

For β > 0, the standard Mittag-Leffler function Eβ is defined as an entire function by the
series representation

Eβ(z) :=
∑
n≥0

zn

Γ(βn+ 1)

for all z ∈ C, where Γ denotes the Gamma function. Subsequently, the three-parameter
Mittag-Leffler function Eγ

α,β for any z ∈ C is defined as [22]

Eγ
α,β(z) :=

1

Γ(γ)

∑
n≥0

Γ(γ + n)zn

n!Γ(αn+ β)
, α, β, γ ∈ C, Re(α) > 0. (1.1.1)

Finally, the M-Wright function Mβ for β ∈ (0, 1] is defined as

Mβ(z) :=
∑
n≥0

(−z)n

n!Γ(−βn+ 1− β)
for z ∈ C. (1.1.2)

Note that the choice β = 1
2 reduces the M-Wright function to the Gaussian density. By

using Euler’s reflection formula Γ(z)Γ(1− z) = π
sin(πz) , with z = β(n+ 1), one can write

Mβ(z) =
1

π

∑
n≥0

(−z)n

n!
sin (πβ(n+ 1)) Γ(β(n+ 1)).

Thus, when β = 1
2 ,

M 1
2
(z) =

1

π

∑
n≥0

(−z)n

n!
sin

(
π
n+ 1

2

)
Γ

(
n+ 1

2

)

=
1

π

∑
p≥0

(−z)2p

(2p)!
sin

(
π
2p+ 1

2

)
Γ

(
2p+ 1

2

)

=
1

π

∑
p≥0

(−z)2p

(2p)!
sin

(
π

(
p+

1

2

))
Γ

(
p+

1

2

)

=
1

π

∑
p≥0

(−z)2p

(2p)!
(−1)p

(2p)!

4pp!

√
π

=
1√
π

∑
p≥0

1

p!

(
−z2

4

)p

=
1√
π
exp

{
−z2

4

}
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by using the identities sin
(
π 2p

2

)
= 0, Γ

(
p+ 1

2

)
= (2p)!

4pp!

√
π, and sin

(
π
(
p+ 1

2

))
= (−1)p.

As shown in [31], the Mittag-Leffler function Eβ and the M-Wright function are related
through the Laplace transform∫ ∞

0
e−suMβ(u)du = Eβ(−s),

valid for any s ≥ 0.

To conclude, a random variable Yβ follows the (one-sided) M-Wright distribution if it is
supported on the positive half line and admits the M-Wright function in Equation (1.1.2)
as the probability density function. Furthermore, its moment of order κ > −1 exists [34]
and is given by

E
[
Y κ
β

]
=

Γ(1 + κ)

Γ(1 + βκ)
. (1.1.3)

Remark 1.1.1. Note that most programming languages do not have a built-in package for
M-Wright variate generation (with the sole exception being R [10]). For an introduction
to M-Wright variate generation, the reader is referred to Appendix A.

1.2 Defining Generalised Grey Brownian Motion

Definition 1.2.1 (Generalised grey Brownian motion). Let β ∈ (0, 1] and α ∈ (0, 2). A
generalised grey Brownian motion (ggBm) Bβ,α defined on a complete probability space

(Ω,F ,P) is a one-dimensional continuous stochastic process starting from Bβ,α
0 = 0, P-

almost surely, such that, for any 0 ≤ t1 < t2 < . . . < tn < ∞, the joint characteristic
function is given by

E

[
exp

{
i

n∑
k=1

ukB
β,α
tk

}]
= Eβ

(
−1

2
u⊤Σαu

)
for any u = (u1, . . . , un) ∈ Rn,

where Σα :=
1

2

(
tαk + tαj − |tk − tj |α

)n
k,j=1

denotes the covariance matrix.

Since Σα corresponds precisely to the covariance matrix of a fractional Brownian mo-
tion with Hurst parameter α/2, it is trivially symmetric positive definite.

Remark 1.2.2. As mentioned before, when β = 1, one retrieves fractional Brownian
motion (fBm) [31]. By the same token, taking β = α = 1 reduces ggBm to the classical
Brownian motion. This can be verified quickly by checking the joint characteristic function
defined above.

Remark 1.2.3. Note that within a Physics context, the factor 1/2 is not present in the
expression of Σα. This is due to the convention of normalising the standard Brownian
motion with a variance (at time 1) of 2 as opposed to a normalisation of 1, which is
standard practice in probability theory.

By the inverse Fourier transform, the joint characteristic function above is integrable
and rapidly decreasing; therefore, the distribution is absolutely continuous and the joint

probability density function of
(
Bβ,α

t1
, . . . , Bβ,α

tn

)
is equal to [15]

fβ(u) =
(2π)−

n
2

√
detΣα

∫ ∞

0

[
τ−

n
2 exp

{
− 1

2τ
u⊤Σ−1

α u

}]
Mβ(τ)dτ.
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Further computations show that the moments of Bβ,α
t are given by

E
[(

Bβ,α
t

)2n+1
]
= 0 and E

[(
Bβ,α

t

)2n]
=

(2n)!

2nΓ(βn+ 1)
tnα, t ≥ 0, n ∈ N,

and its covariance function by

E
[
Bβ,α

t Bβ,α
s

]
=

tα + sα − |t− s|α

2Γ(β + 1)
for all t, s ≥ 0.

Furthermore, for each t, s ≥ 0, the characteristic function of the increments reads

E
[
exp

{
iu
(
Bβ,α

t −Bβ,α
s

)}]
= φt−s(u) for all u ∈ R, (1.2.1)

where

φδ(u) := Eβ
(
−u2

2
|δ|α

)
for any δ, u ∈ R. (1.2.2)

Since the Mittag-Leffler function Eβ is not quadratic, it is clear that the marginals of
Bβ,α are not Gaussian and Equation (1.2.1) shows that it is α

2 -self-similar with stationary
increments. As shown in [14], the sample paths of Bβ,α have finite p-variation for any
p > 2

α , therefore, implying that it is not a semimartingale whenever α ∈ (0, 1). Similarly,
when α ∈ (1, 2), [36] shows that Bβ,α cannot be a semimartingale either. The following is
an important property that will be central in the rest of the computations:

Lemma 1.2.4 ([33, Proposition 3]). The generalised grey Brownian motion admits the
representation

Bβ,α
t

(d)
=
√

YβB
α
2
t ,

for all t ≥ 0, where B
α
2 is a standard fractional Brownian motion with Hurst parameter α

2
and Yβ an independent non-negative random variable with density Mβ(·).

To conclude this chapter, consider the characteristic function in Equation (1.2.1) and
Equation (1.2.2) for 0 < s < t, and then the following analytic extension can be obtained
for all u ∈ R:

Mt−s(u) := φt−s (−iu) = E
[
e
u
(
Bβ,α

t −Bβ,α
s

)]
= Eβ

(
u2

2
|t− s|α

)
.

This is well-defined and positive, thus, it fully characterises a moment-generating function.
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Chapter 2

The Generalised Grey Bergomi
Model

Consider the rough Bergomi model originally proposed by Bayer et al. [5] with risk-neutral
dynamics

dXt =

(
r − 1

2
Vt

)
dt+

√
VtdWt, X0 = 0,

Vt = ξ0(t)E♢ (ηBH
t

)
, V0 > 0,

where ξ0(·) > 0 denotes the forward variance curve, η > 0 is a volatility of volatility
parameter, r ∈ R is the risk-free rate, and H ∈ (0, 1) is the Hurst parameter governing
the Hölder regularity of the fractional Brownian motion BH , which is correlated with
the standard Brownian motion W with correlation ρ ∈ [−1, 1]. Both noise processes are
adapted to the same canonical filtration. Here, E♢ denotes the Wick exponential

E♢(Z) := exp

{
Z − 1

2
E
[
|Z|2

]}
,

since the Doléans-Dade exponential

E(Z) := exp

{
Z − 1

2
[Z]

}
,

where [·] denotes the quadratic variation, is in general not well defined for fractional
Brownian motion because the latter is not a semi-martingale for H ̸= 1

2 [36]. The rough
Bergomi model exhibits VIX dynamics that closely resemble the log-normal distribution
[28]. As a result, under the rough Bergomi model, the VIX smile is almost flat, which is not
consistent with upward-sloping smiles in data. Moreover, insofar as the stochastic volatility
framework, the volatility-of-volatility parameter is not deterministic [2, 3, 20]. This leads
one to the conclusion that a stochastic volatility-of-volatility parameter is needed for
solving joint SPX and VIX calibration problems. However, [37] shows that the calibration
problem is largely solvable with two-factor volatility models.

Given the aforementioned points, it is natural to introduce a new factor in the form
of random volatility-of-volatility parameter η̃ : Ω → R+, so that the volatility process in
this new rough Bergomi-inspired model is given by

Vt = ξ0(t)E♦ (η̃BH
t

)
, ξ0(t) > 0, t ∈ [0, T ],

where for any η > 0 the stochastic exponential is defined as

E♦(ηZ) := exp
{
ηZ − logMZ

· (η)
}
, for t ∈ [0, T ],

10



where MZ is the moment-generating function of Z. Thus, whenever well-defined, this
ensures E

[
E♦(ηZ)

]
= 1 and collapses into the standard Wick exponential E♢(ηZ) in the

case where Z is a centred Gaussian process. By definition, the forward variance is defined
as ξs(t) := E[Vt|Fs], for 0 ≤ s ≤ t, so that in particular ξ0(t) := E[Vt], which explains the
requirement E

[
E♦(ηZ)

]
= 1.

Now choose η̃ = η
√
Yβ for η > 0, where Yβ is an independent non-negative random

variable with probability density function Mβ(τ) for τ ≥ 0. Thus, using Lemma 1.2.4, the
model can be viewed as a generalisation of the rough Bergomi model [5] with a random
volatility-of-volatility coefficient.

The risk-neutral dynamics of the generalised grey Bergomi (ggBergomi) are therefore
given by

dXt =
(
r − 1

2Vt

)
dt+

√
Vt

(
ρdBt +

√
1− ρ2dWt

)
, X0 = 0,

Vt = ξ0(t)E♦
(
ηBβ,α

t

)
, V0 > 0,

(2.0.1)

where ξ0(·) > 0 again denotes the forward variance curve, η > 0, r ∈ R is the risk-free rate,
and ρ ∈ [−1, 1] is the correlation parameter between the standard Brownian motions W
and B. Here, Bβ,α with α ∈ (0, 2) and β ∈ (0, 1] is the ggBm from Definition 1.2.1 and is
related to the Brownian motion B through the relation in Lemma 1.2.4.

Remark 2.0.1. Note that in theory any random variable can be chosen in place of the
one-sided M-Wright random variable Yβ. In this case, Yβ is chosen due to the convenient
result in Lemma 1.2.4. Potentially, justification of one’s choice in random variable might
be found on the VVIX front but this is left for further research.

For any t > 0, let FZ
t := σ(Zt) be the sigma algebras for Z ∈ {W,B}, FB

t := σ(Bβ,α
t ),

and Ft := FW
t ∨ FB

t . Using Lemma 1.2.4 yields FB
t = σ(YβB

α
2
t ) and, furthermore, by

Lemma B.0.1 we have that FB
t = σ(Yβ)∨FB

t . Finally, the filtrations generated by W and
Bβ,α are denoted by FW and FBm respectively, and F := FW ∨ FB.

To use this model in the absence of arbitrage opportunities, the discounted stock price
process (St)t≥0 := (exp{Xt − rt})t≥0 must be an F-martingale. It is shown in Chapter 3
that this is indeed the case.
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Chapter 3

VIX in the Generalised Grey
Bergomi Model

Expanding the stochastic exponential in the variance process from Equation (2.0.1), one
can write

Vt = ξ0(t)E♦(ηBβ,α
t ) = ξ0(t) exp

{
ηBβ,α

t − log Eβ
(
η2

2
tα
)}

= ξ0(t)Eβ
(
η2tα

2

)−1

exp
{
ηBβ,α

t

}
,

so that the VIX squared can be expressed as

VIX2
T =

1

∆

∫ T+∆

T
E
[
Vs|FB

T

]
ds =

1

∆

∫ T+∆

T
ξ0(s)Eβ

(
η2sα

2

)−1

E
[
eηB

β,α
s

∣∣∣FB
T

]
ds

=
1

∆

∫ T+∆

T
ξ0(s)Eβ

(
η2sα

2

)−1

E
[
exp

{
η
√
YβB

α/2
s

}∣∣∣FB
T , Yβ

]
ds.

As opposed to the rough Bergomi model where the VIX process is close to log-normal, the
VIX process here is not close to log-normal as long as β ̸= 1.

Note that the conditional expectation E
[
exp
(
η
√

YβB
α/2
s

)∣∣∣FB
T

]
is difficult to evaluate;

to circumvent this, one can redefine ggBm using Riemann-Liouville fBm.

3.1 Generalised Grey Riemann-Liouville Brownian Motion

For an introduction to necessary concepts such as nuclear spaces and Minlos’ Theorem,
the reader is encouraged to first read Appendix C. From [16] it is known that standard
fBm has the spectral representation

B
α
2
t =

√
C(α)

∫
R

1√
π

eitx − 1

ix
|x|

1−α
2 dB̃x, t ≥ 0,

C(α) := Γ(α+ 1) sin
πα

2
,

where (with a slight abuse of notation) dB̃(x) = dB1(x)+idB2(x) with dB1(x) = dB1(−x)
and dB2(x) = −dB2(−x). Moreover, B1 and B2 are independent Brownian motions.
Notice that

1√
π

eitx − 1

ix
= 1̃[0,t)(x),

12



where f̃ is the Fourier transform of the function f . Thus, standard fBm can be written as

B
α
2
t =

√
C(α)

∫
R
1̃[0,t)(x)|x|

1−α
2 dB̃x, t ≥ 0.

The choice in defining standard fBm in this way will become apparent, but with the
last point one can define a generalised stochastic process X such that for a suitable test
function ϕ one has

Xα(ϕ) =
√

C(α)

∫
R
ϕ̃(x)|x|

1−α
2 dB̃x.

As in [32], consider the space of test functions to be

{f ∈ L2(R) | ||f ||2α = C(α)

∫
R
|f̃(x)|2|x|1−αdx < ∞}. (3.1.1)

Thus, B
α
2
t = Xα

(
1[0,t)

)
and

E
[(

B
α
2
t

)2]
= ||1[0,t)||2α = tα,

and auto-covariance

E
[
B

α
2
t B

α
2
s

]
=

1

2
(tα + sα − |t− s|α).

Now consider the Schwarz space S(R) instead of L2(R), and equip it with the scalar
product

(f, g)α = C(α)

∫
R
f̃(x)g̃(x)|x|1−αdx, f, g ∈ S(R), 0 < α < 2.

Notice that the scalar product above generates the α-norm in (3.1.1). Let S(α)
0 (R) denote

the completion of S(R) with respect to (3.1.1). From [32] it is known that S(R) is a
nuclear space with respect to the topology generated by the α-norm and an operator A(α).

By Proposition C.0.4, with the choice of Fβ(t) = Eβ(−t), for t ≥ 0, 0 < β ≤ 1, the
functional Φα,β(ξ) = Fβ(||ξ||2α) defines a characteristic function on S(R). Furthermore, by
Minlos’ Theorem, one can guarantee the existence of a unique probability measure µα,β

defined on (S ′(R),B) such that∫
S′(R)

ei⟨ω,ξ⟩dµα,β(ω) = Eβ
(
1

2
||ξ||2α

)
, ξ ∈ S(R),

where ⟨·, ·⟩ is the natural bilinear pairing between S(R) and S ′(R), and S ′(R) is the dual
of S(R) which is equipped with the weak topology.

Definition 3.1.1 (Definition 3.1 [32]). The generalised stochastic process Xα,β defined
canonically on the ”generalised” grey noise space (S ′(R),B, µα,β) is called ”generalised”
grey noise. Therefore, for each test function ξ ∈ S(R),

Xα,β(ξ)(·) = ⟨·, ξ⟩.

By construction the generalised stochastic process Xα,β in Definition 3.1.1 has the
characteristic function

E[eiηXα,β(ξ)] = Eβ
(
−1

2
η2||ξ||2α

)
.

With this, the notion of generalised grey Riemann-Liouville Brownian motion can be
defined.
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Definition 3.1.2 (Generalised Grey Riemann-Liouville Brownian Motion). Let β ∈ (0, 1],

α ∈ (0, 2). Generalised grey Riemann-Liouville Brownian motion (ggRLBm) Bβ,α
RL defined

on (S ′(R),B, µα,β) is defined as

Bβ,α
RL,t := Xα,β

(
Cα

2
1[0,t)√
α

)
,

where Cα
2
:= 1

Γ( 1
2
(1+α))

.

Furthermore, similarly to ggBm, ggRLBm has the following properties:

1. Bβ,α
RL,0 = 0 a.s.;

2. for each t ≥ 0, the moments are

E
[
Bβ,α

RL,t

]
= 0 and E

[(
Bβ,α

RL,t

)2]
=

C2
α
2

αΓ(β + 1)
tα;

3. the auto-covariance function is

E
[
Bβ,α

RL,tB
β,α
RL,s

]
=

C2
α
2

2αΓ(β + 1)
(tα + sα − |t− s|α);

4. for any t, s ≥ 0, the characteristic function is

E
[
eiu(B

β,α
RL,t−Bβ,α

RL,s)
]
= Eβ

(
−
u2C2

α
2
|t− s|α

2α

)
, u ∈ R. (3.1.2)

Remark 3.1.3. All the properties of ggBm trivially carry over since ϕ is simply being
scaled. Thus, by [32, Proposition 3.2], for 0 < α < 1 and β ∈ (0, 1] with t ≥ 0, the process

Bβ,α
RL,t is self-similar with stationary increments where H = α/2. Note that the subtle

change of using Riemann-Lioville fBm instead of standard fBm in Lemma 1.2.4 implies
that ggRLBm is not the same process as ggBm. Instead, by Definition 3.1.1, ggRLBm is
a separate “generalised” grey noise.

Remark 3.1.4. As before, by considering the characteristic function in Equation (3.1.2)
for 0 < s < t and by analytically extending the characteristic function, one has that for
all u ∈ R,

Mt−s(u) := φt−s (−iu) = E
[
e
u
(
Bβ,α

RL,t−Bβ,α
RL,s

)]
= Eβ

(
u2C2

α
2
|t− s|α

2α

)
.

This is well-defined and positive, thus, it fully characterises a moment-generating function.

Remark 3.1.5. Lemma 1.2.4 yields the decomposition

Bβ,α
RL,t

(d)
=
√
YβCα

2

∫ t

0
(t− s)

1
2
(α−1)dBs.

As mentioned in Chapter 2, to use this model in the absence of arbitrage opportunities,
the discounted stock price process (St)t≥0 must be an F-martingale. The following theorem
summarises when this is the case:
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Theorem 3.1.6. Let K be a kernel such that∫ t

0
K(t, s)dBs

defines a Gaussian process (conditional on a one-sided M-Wright random variable Yβ) with
continuous sample paths, σ : [0,∞)×R → R+ is continuous and bounded on [0, T ]×(−∞, a]
for each T , a > 0. If ρ ≤ 0, then (St)t≥0 defined by the generalised grey Bergomi model is
a true martingale.

A proof of this (building on [23]) is given in Appendix B.

Remark 3.1.7. One could potentially use the ggBm process directly in the ggBergomi
model by using the integral representation from [7, Theorem 6]

Bβ,α
t

(d)
=

cos απ
2

π

∫ ∞

0

√
YβXx(t)

dx

x
1
2
(α+1)

,

where Xx(t) is an Ornstein-Uhlenbeck process with respect to a Brownian motion B.
However, with this integral representation of ggBm, VIX dynamics become considerably
more convoluted to derive and, as such, are left for further study.

3.1.1 VIX Dynamics

Using ggRLBm in the ggBergomi model results in the VIX dynamics from Proposition
3.1.8. Note that the analysis conducted here uses the same ideas as in [27].

Proposition 3.1.8. The VIX dynamics using ggRLBm are given by

∆VIX2
T =

∫ T+∆

T
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)−1

ζT (s) exp

{
η2YβC

2
α
2

(s− T )α

2α

}
ds.

where ζT (s) := exp
{
η
√

YβCα
2
VT
s

}
.

Proof. Let Vt :=
∫ t
0 (t− u)

1
2
(α−1)dBu. By previous arguments,

∆VIX2
T =

∫ T+∆

T
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)−1

E
[
exp

{
η
√

YβCα
2
Vs

}∣∣∣FB
T , Yβ

]
ds

=

∫ T+∆

T
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)−1

E
[
exp

{
η
√

YβCα
2
(Vs,T + VT

s )
}∣∣∣FB

T , Yβ

]
ds,

where

Vt,T :=

∫ t

T
(t− u)

1
2
(α−1)dBu and VT

t :=

∫ T

0
(t− u)

1
2
(α−1)dBu.

Now define the random variable ζT (s) := exp
{
η
√
YβCα

2
VT
s

}
. Since ζT (s) ∈ FB

T , one has

that

∆VIX2
T =

∫ T+∆

T
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)−1

ζT (s)E
[
exp

{
η
√
YβCα

2
Vs,T

}∣∣∣FB
T , Yβ

]
ds.

Moreover, Vs,T is a centered Gaussian process with variance

Var(Vs,T ) =
(s− T )α

α
,
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which is independent of FB
T . Thus,

E
[
exp

{
η
√

YβVs,T

}∣∣∣FB
T , σ(Yβ)

]
= exp

{
η2YβC

2
α
2

(s− T )α

2α

}
.

Therefore,

∆VIX2
T =

∫ T+∆

T
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)−1

ζT (s) exp

{
η2YβC

2
α
2

(s− T )α

2α

}
ds.

3.2 VIX Futures in the Generalised Grey Bergomi Model

The risk-neutral formula for a VIX future BT with maturity T is given by

BT := E
[
VIXT |FB

0

]
= E

√ 1

∆

∫ T+∆

T
E
[
d⟨Xs, Xs⟩|FB

T

]∣∣∣∣∣∣FB
0


= E

√ 1

∆

∫ T+∆

T
ξT (s)ds

∣∣∣∣∣∣FB
0

 . (3.2.1)

Proposition 3.2.1. Using Definition 3.1.2, the forward variance curve ξT in the ggBer-
gomi model admits the representation

ξT (t) = ξ0(t)Eβ

(
η2C2

α
2
tα

2α

)−1

ζT (t) exp

{
η2YβC

2
α
2

(t− T )α

2α

}
, for any t ≥ T.

Proof. Since E[Vt|FB
t ] = ξT (t) by Equation (3.2.1), the result follows from Proposition

3.1.8 and the equality

E[Vt|FB
t ] = ξ0(t)Eβ

(
η2C2

α
2
tα

2α

)−1

ζT (t) exp

{
η2YβC

2
α
2

(t− T )α

2α

}
.

3.2.1 Upper and lower bounds for VIX Futures

Using Definition 3.1.2, one can construct upper and lower bounds for VIX Futures.

Proposition 3.2.2. The following bounds hold for VIX Futures:

1

∆

∫ T+∆

T

√
ξ0(s)Eβ

(
η2C2

α
2
sα

2

)− 1
2

Eβ

(
η2C2

α
2
[sα + (s− T )α]

8α

)
ds

≤ BT ≤

√
1

∆

∫ T+∆

T
ξ0(s)ds.

Proof. The conditional Jensen’s inequality and Fubini’s theorem (since ξT is FB
0 -adapted)

give

BT = E[VIXT |F0] = E

√ 1

∆

∫ T+∆

T
ξT (s)ds

∣∣∣∣∣F0

 ≤

√
1

∆

∫ T+∆

T
E[ξT (s)|F0]ds.
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Then by the martingale property of ξT ,

BT ≤

√
1

∆

∫ T+∆

T
ξ0(s)ds.

For the lower bound, Proposition 3.2.1 and the Cauchy-Schwarz inequality yield

BT = E
[
VIXT

∣∣FB
0

]
= E


√√√√ 1

∆

∫ T+∆

T
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)−1

ζT (s) exp

{
η2YβC

2
α
2

(s− T )α

2α

}
ds

∣∣∣∣∣∣∣FB
0


≥ E

 1

∆

∫ T+∆

T

√√√√ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)−1

ζT (s) exp

{
η2YβC

2
α
2

(s− T )α

4α

}
ds

∣∣∣∣∣∣∣FB
0

 .

Furthermore, by Fubini’s theorem

BT ≥ 1

∆

∫ T+∆

T

√
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)− 1
2

E
[√

ζT (s) exp

{
η2YβC

2
α
2

(s− T )α

4α

}∣∣∣∣FB
0

]
ds

=
1

∆

∫ T+∆

T

√
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)− 1
2

E
[
E
[√

ζT (s) exp

{
η2YβC

2
α
2

(s− T )α

4α

}∣∣∣∣Yβ]∣∣∣∣FB
0

]
ds

=
1

∆

∫ T+∆

T

√
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)− 1
2

E
[
exp

{
η2YβC

2
α
2

(
sα + (s− T )α

8α

)}∣∣∣∣FB
0

]
ds

=
1

∆

∫ T+∆

T

√
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)− 1
2 ∞∑
n=0

1

n!

(
η2C2

α
2
[sα + (s− T )α]

8α

)n

E
[
Y n
β

]
ds

=
1

∆

∫ T+∆

T

√
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)− 1
2

E1
β,1

(
η2C2

α
2
[sα + (s− T )α]

8α

)
ds

=
1

∆

∫ T+∆

T

√
ξ0(s)Eβ

(
η2C2

α
2
sα

2α

)− 1
2

Eβ

(
η2C2

α
2
[sα + (s− T )α]

8α

)
ds,

where in the third equality
√
ζT (s) is log-normal (conditional on Yβ) with mean

exp

{
η2YβC

2
α
2

sα − (s− T )α

8α

}
,

in the third last equality the moments of Yβ are defined in Equation (1.1.3), and in the
second last equality the three-parameter Mittag-Lefler function from Equation (1.1.1) is
used.

To gain some intuition as to how tight these bounds are in comparison to a Monte Carlo
estimate of VIX Futures, consider the parameters

α = 0.14, β = 0.5, η = 1.2287,

with the following three scenarios from [27] for the initial forward variance curve:
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• Scenario 1: ξ0(t) = 0.2352;

• Scenario 2: ξ0(t) = 0.2352(1 + t)2;

• Scenario 3: ξ0(t) = 0.2352
√
1 + t.

Figure 3.1 showcases the upper and lower bounds for the three scenarios described above.

Remark 3.2.3. Figure 3.1 suggests that the bounds in Proposition 3.2.2 are not tight,
except for when β = 1 (when the ggBergomi model collapses to the rough Bergomi model)
[27]. This can be attributed to the added variance of the random variable Yβ.

Figure 3.1: Upper and lower bounds in all three scenarios.

3.3 Numerical Implementation of the VIX Process

In this section, a truncated Cholesky decomposition simulation scheme is presented for
the VIX in the ggBergomi model. This scheme is identical to the one found in [27], the
only difference being the forward variance structure. For analysis of the computational
complexity of the scheme, the reader is referred directly to [27].

The covariance structure of VT on [T, T +∆] is given by

E[VT
t VT

s ] =

∫ T

0
[(t− u)(s− u)]

1
2
(α−1)du (3.3.1)

=
(s− t)

1
2
(α−1)

1
2(α+ 1)

{
t
1
2
(α+1)F

(
−t

s− t

)
− (t− T )

1
2
(α+1)F

(
T − t

s− t

)}
,
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for any t < s, where

F (u) := 2F1

(
−1

2
(α+ 1),

1

2
(α+ 1), 1 +

1

2
(α+ 1), u

)
,

and 2F1 is the hypergeomtric function [1, Chapter 15].

In this scheme the dependence structure is modelled exactly on the first 8 points due to
the same numerical reasons as in [27] and the remaining points are calculated by correlating
and rescaling using Equation (3.3.1). The scheme can be summarised as follows:

Algorithm 3.3.1 (VIX simulation (truncated Cholesky)). Fix a grid T = {τj}j=0,...,N on
[T, T +∆],

1. compute the covariance matrix of (VT
τi)i=1,...,8 using Equation (3.3.1);

2. generate {VT
τj}j=1,...,N by correlating and rescaling using Equation (3.3.1):

VT
τj =

√
V[VT

τj ]

ρ(VT
τj−1

,VT
τj )V

T
τj−1√

V[VT
τj−1

]
+
√

1− ρ(VT
τj−1

,VT
τj )

2N (0, 1)

 , for j = 9, . . . , N ;

3. compute the VIX via numerical integration, for example using a composite trape-
zoidal rule:

VIXT ≈

√√√√ 1

∆

N−1∑
j=0

Q2
T,τj

+Q2
T,τj+1

2
(τj − τj−1),

where Q2
T,τj

:= ξ0(τj)Eβ
(

η2C2
α
2
ταj

2

)−1

exp
{
η
√
YβCα

2
ṼT
τj

}
exp

{
η2YβC

2
α
2

(τj−T )α

2α

}
.

Numerical experiment

As before, using the same parameters used in [5, 6], one has that

ξ0(t) = 0.2352, α = 0.14, β = 0.5, η = 1.2287.

Figure 3.2 shows the results for 105 Monte Carlo Simulations for the Truncated Cholesky
scheme. As a comparison, VIX Futures prices and Monte Carlo standard deviations as a
function of maturity for the rough Bergomi (denoted by rBergomi in the legend) are also
given. Meanwhile, only results for the Monte Carlo standard deviation as a function of
the number of simulations and the computational time in the ggBergomi model are given.
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Figure 3.2: Truncated Cholesky Monte Carlo results.

Remark 3.3.2. In comparison to the rough Bergomi model results from [27] (where
β = 1), the Monte Carlo results (where β = 0.5) have a considerably higher standard
deviation. The reason for this is that as β increases, the variance of the random variable
decreases. An example of this can be seen in Figure A.1. To compensate for this, a higher
number of Monte Carlo simulations are required in the ggBergomi.

Remark 3.3.3. The introduction of the random variable Yβ causes the jumps observed
in the computational time and Monte Carlo standard deviation plots in Figure 3.2. On
the standard deviation front, extreme values of Yβ will skew the Monte Carlo estimate
and, consequently, the Monte Carlo standard deviation.

3.4 VIX Futures Calibration in the Generalised Grey Bergomi
Model

Objective function

To calibrate the ggBergomi model to VIX Futures, define the objective function

LF(α) :=
N∑
i=1

(BTi − Fi)
2,
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which is minimised over (α, β, η). Note that (Fi)i=1,...,N are the observed Futures prices 1

at times T1 < . . . < TN and BTi are the Futures prices obtained in the ggBergomi model.

Remark 3.4.1. Unlike in [5, 27], the forward variance in the ggBergomi model is not log-
normal (unless β = 1). Thus one cannot take advantage of pricing formulae by assuming
that the VIX payoff is log-normal as in the rough Bergomi model. This means that VIX
Futures calibration in the ggBergomi model takes orders of magnitude longer than in the
rough Bergomi model. For this reason, alongside time constraints, VIX Futures calibration
in the ggBergomi model has been omitted and is reserved for future study.

Obtaining the initial forward variance curve

For large maturities, analysing the limiting behaviour of ξ0 is of interest. It is known that
ξ0 can be decomposed using the total implied variance via the relation

ξ0(t) =
d

dt
tσ2

0(t) = σ2
0(t) + t

d

dt
σ2
0(t).

Thus, it suffices to understand limiting behaviour of tσ2
0(t) (the total implied variance).

Due to the abundance of high-quality data, a cubic Hermite spline is fitted on total variance
space 2.

Remark 3.4.2. Note that using a cubic Hermite spline is only feasible when the data has
high fidelity. If there are large jumps between adjacent points, then the spline will fit to
said jumps. A minor example of this can be seen in Figure 3.3 for the month of December.

Remark 3.4.3. Since the at-the-money implied volatility is only observable for a finite
number of maturities, a cubic Hermite spline is used to interpolate/extrapolate the other
maturities.

Remark 3.4.4. Despite the omission of VIX Futures calibration, the initial forward vari-
ance curve ξ0 will still be needed in Chapter 4 for SPX Options calibration, thus, the time
will be taken to compute ξ0 as detailed in Algorithm 3.4.5.

Calibration algorithm

Algorithm 3.4.5 (VIX Futures calibration algorithm in the ggBergomi model).

1. Fit the cubic Hermite spline to SPX Option data;

2. compute the variance swap term structure (σ0(t)
2)t≥0;

3. compute the initial forward variance curve ξ0(t) using

ξ0(t) ≈ σ2
0(t) + t

σ2
0(t+ ϵ)− σ2

0(t− ϵ)

2ϵ
,

with ϵ = 1E − 8;

4. minimise the objective function in Equation 3.4.

1CBOE VIX futures term structure: https://www.cboe.com/tradable_products/vix/term_

structure/.
2CBOE SPX delayed option quotes: https://www.cboe.com/delayed_quotes/spx/quote_table.
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Figure 3.3: Cubic Hermite spline fit on 08/11/2024 using traded SPX Options.
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Chapter 4

Pricing Methods in the
Generalised Grey Bergomi Model

For the pricing scheme, a Cholesky decomposition is used. By definition, Vt has variance
V[Vt] = tα/α and covariance

E[VtVs] =
t
1
2
(α+1)s

1
2
(α−1)

1
2(α+ 1)

2F1

(
−1

2
(α− 1), 1,

1

2
(α+ 3),

t

s

)
, t < s, (4.0.1)

with 2F1 denoting the hypergeometric function. This can be verified via the following
calculation:

E[VtVs] =

∫ t

0
(t− u)

1
2
(α−1)(s− u)

1
2
(α−1)du

= tα−1

∫ t

0

(
1− u

t

) 1
2
(α−1) (s

t
− u

t

) 1
2
(α−1)

du

= tα
∫ 1

0
(1− z)

1
2
(α−1)

(s
t
− z
) 1

2
(α−1)

dz

= tα
(s
t

) 1
2
(α−1)

∫ 1

0
(1− z)

1
2
(α−1)

(
1− t

s
z

) 1
2
(α−1)

dz

=
t
1
2
(α+1)s

1
2
(α−1)

1
2(α+ 1)

2F1

(
−1

2
(α− 1), 1,

1

2
(α+ 3),

t

s

)
.

Algorithm 4.0.1 (Simulation of the ggBergomi model). Consider the grid T := {ti}i=0,...,nT ,
where nT := ⌊nT ⌋, with n being the number of grid points per year and T denoting ma-
turity.

1. Simulate the Volterra process Vt on the grid T using Equation (4.0.1);

2. compute the variance process Vt = ξ0(t)E♦
(
ηBβ,α

t

)
for t ∈ T ;

3. back out the Brownian path from Vt to obtain {Bi}nT−1
i=0 ;

4. compute {B⊥
i }

nT−1
i=0 , where B⊥ (d)

= N (0, 1/nT ) is an independent standard Gaus-
sian sample, and correlate the two Brownian motions via Wti − Wti−1 = ρBi−1 +√
1− ρ2B⊥

i−1;

5. simulate Sti = exp(Xti) using a forward Euler scheme

Xti+1 = Xti +

(
r − 1

2
Vti

)
(ti+1 − ti) +

√
Vti(Wti+1 −Wti), for i = 0, . . . , nT − 1;
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6. compute the expectation by averaging the payoff of each path.

Remark 4.0.2. This is not the most computationally effective way to price under the gg-
Bergomi model since the Cholesky scheme is slow and computationally expensive. Further
discussion on this is provided in Chapter 5.

To gain some intuition as to how the parameter β impacts the implied volatilities
generated in the ggBergomi, let

S0 = 1, ξ0(t) = 0.2352, r = 0, α = 0.14, ρ = 0, η = 1.2287,

and consider the scenarios where 104 Monte Carlo simulations of the ggBergomi model
are conducted on t ∈ [0, 1] with β ∈ {0.25, 0.5, 0.75, 0.95, 0.99}. The implied volatilities of
call options with maturity T = 1 can be observed in Figure 4.1. For curve-by-curve plots,
the reader is referred to Appendix D.

Remark 4.0.3. From Figure 4.1, one can observe that as β decreases, the skew and
curvature around the at-the-money point increases. Moreover, as β decreases, so does the
level of the implied volatility smile. This allows the ggBergomi model to capture more
general smiles in comparison to the rough Bergomi model. As a reminder, the skew and
curvature at time zero are defined as

ST (k) := |∂kIT (k)| and CT (k) :=
∣∣∂2

kIT (k)
∣∣ .

Figure 4.1: Implied Volatility Curves for β ∈ {0.25, 0.5, 0.75, 0.95, 0.99}.

4.1 Calibration of SPX Options via VIX Futures

Following Algorithm 3.4.5, calibrated values for α, β, η, and ξ0 are obtained. The aim is
to minimise the objective function

LC(β, η, ρ) :=

L∑
j=1

N∑
i=1

(CTi,j − Cobs
i,j )

2 (4.1.1)

over (β, η, ρ), where CTi,j is the Call price given by the ggBergomi model computed using

Algorithm 4.0.1 with maturity Ti and strike K(j). Meanwhile, Cobs
i,j is the observed Call

price at time Ti and strike K(j). The calibration algorithm is as follows:
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Algorithm 4.1.1 (Calibration algorithm for SPX options via VIX Futures).

1. Calibrate α, β, η, and ξ0 via Algorithm 3.4.5;

2. compute M paths of the Volterra process {V(u)}Mu=1, extract the Brownian motions
{B(u)}Mu=1, and also compute the independent Brownian motions {B⊥(u)}Mu=1;

3. evaluate the Call prices in each calibration step:

V
(u)
t = ξ0(t)E♦

(
ηBβ,α

t

)
, u = 1, . . . ,M,

W (u) = ρB(u) +
√

1− ρ2B⊥(u), u = 1, . . . ,M,

S
(u)
t+∆ = S

(u)
t + S

(u)
t

√
V

(u)
t

(
W

(u)
t+∆ −W

(u)
t

)
, u = 1, . . . ,M ;

4. compute the Call price for each maturity and each strike

CTi,j =
1

M

M∑
u=1

(
S
(u)
Ti

−K(j)
)+

for i = 1, . . . , N and i = 1, . . . , L;

5. minimise the objective function in Equation (4.1.1).

Remark 4.1.2. As in the rough Bergomi model, the initial forward variance curve ξ0
plays a very important part in the implied volatilities generated by the ggBergomi model
[27]. For an accurate fit to market-observed implied volatilities, the forward variance must
be estimated precisely. A relatively simple way of doing so is provided in Algorithm 3.4.5,
however, there are most certainly better ways of estimating this quantity.

Remark 4.1.3. From a less rigorous standpoint and from more of a philosophical one,
given the role that β plays in determining the shape of the implied volatility curve (for
example, see Figure 4.1), the following questions naturally arise when calibrating β:

1. how greatly does the calibrated parameter β differ between VIX and SPX calibra-
tion?

2. if there is a difference between the two, then what does that mean in a practical
sense? Is there a possible arbitrage opportunity as speculated in [27] when there is
a difference in η?

Remark 4.1.4. Due to VIX Futures calibration being computationally infeasible without
a closed-form formula for Futures prices, no comments can be made on the difference in η
and β between VIX and SPX calibration.

Numerical results

For numerical experiments, the ggBergomi model is calibrated on 08/11/2024 with the
assumption that α = 0.14 since VIX Futures calibration was omitted. Figure 4.2 and
Figure 4.3 show calibrated and non-calibrated results, respectively, where the parameter
values are as in Table 4.1.

β η ρ

Calibrated 0.5 1 0.0412
Non-Calibrated 0.8 2 -0.001

Table 4.1: Calibrated vs Non-Calibrated Parameters.
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Remark 4.1.5. It is worth noting that due to the misspecified parameter α (and poten-
tially ξ0), the ggBergomi model cannot correctly match the SPX Option market prices,
giving rise to the absolute errors observed in Figure 4.2 and Figure 4.3. The magnitude of
these errors eliminates the possibility of comparing the implied volatility curves generated.

Remark 4.1.6. Since there are considerably more quoted options around the at-the-
money mark, solving Equation (4.1.1) without having calibrated first to VIX Futures will
naturally lead to a model which only fits well around the at-the-money point. In the case
of Figure 4.2, one can see that the neighborhood around the at-the-money point where
the error is reasonable is far too small, thus, emphasising the fact that the parameters
calibrated through VIX Futures are crucial to obtain a reasonable fit.

Remark 4.1.7. With an initial guess of (β, η, ρ) = (0.5, 1, 0) the optimisers available
in Python all converge to near the initial guess, thus, suggesting that the loss surface
isn’t steep enough for the optimiser to make any progress. A potential work-around is
to consider a weighted optimisation problem such that Remark 4.1.6 is also addressed.
Furthermore, Figure 4.3 suggests that this optimisation problem is solvable and will lead
to promising implied volatility fits.

Figure 4.2: Calibrated SPX Option prices under the ggBergomi model in comparison to
market data with (β, η, ρ) = (0.5, 1, 0.0412) on 08/11/2024.
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Figure 4.3: Non-calibrated SPX Option prices under the ggBergomi model in comparison
to market data with (β, η, ρ) = (0.8, 2,−0.001) on 08/11/2024.
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Chapter 5

Conclusion and Future Work

After much groundwork such as M-Wright variate generation through fractional Poisson
processes and understanding precisely the concept of ”generalised” grey noise, the ggBer-
gomi model was introduced as a natural generalisation of the rough Bergomi model. Under
the ggBergomi model, the discounted stock price process was shown to be a martingale in
Chapter 3, thus, importantly eliminating arbitrage in derivative prices generated. Chap-
ter 3 also characterised the forward variance under the ggBergomi model whilst providing
upper and lower bounds for VIX Futures prices. Additionally, using a truncated Cholesky
scheme, numerical experiments were conducted to test the upper and lower bounds and
also to compare VIX Futures prices under the ggBergomi model and rough Bergomi model.

Despite the ggBergomi model being far from the finished product in terms of joint
calibration (due to the lack of VIX Future and Option pricing formulae), the superiority of
the ggBergomi model over the rough Bergomi model in terms of flexibility was showcased in
Chapter 3 and Chapter 4 through pricing VIX Futures and Vanilla Options. In particular,
for Vanilla Options, the added degree of freedom with the parameter β allows for direct
control over the level, skew, and curvature of the implied volatility curve (as showcased in
Figure 4.1).

5.1 Future Work

Due to time constraints, all avenues of possible research were not explored, leaving much
for future research. The following subsections outline these problems and potential ways
to solve them.

5.1.1 VIX Futures and Options

In the case of VIX Futures/Options pricing, a significant speed-up can be achieved by
developing closed formulae. This allows for calibration times orders of magnitude smaller
than brute force Monte Carlo simulations, thus, making VIX calibration feasible. The
problem in both cases boils down to determining the distribution of

∆VIX2
T =

∫ T+∆

T
ξT (s)ds,

which is effectively finding the distribution of the sum of forward variances. When β = 1
in the ggBergomi model, one can make use of the fact that asymptotically the sum of
log-normal random variables is also log-normal [17]. The problem isn’t trivial for β ∈
(0, 1). Approximations inspired by the one in [5] might be fruitful. In light of this, a
direct way of tackling the problem is by using an exact/approximated conditioned density
(for reference see [5, 27]) and integrating against the one-sided M-Wright density. Of
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course, the feasibility of evaluating this integral is yet to be determined, but this yields
the approximated joint density for ∆VIX2 from which VIX Futures can be calculated
since VIX is non-negative.

Remark 5.1.1. If an approximation similar in flavour to [5] is obtained then an immediate
approximation to the VVIX process is obtained. One reason this is of benefit is so that
one can test if the empirical relationship between VIX and VVIX (for reference see [8])
is replicated under the ggBergomi model. Moreover, it would lead to a better insight in
relation to Remark 2.0.1.

5.1.2 Pricing under ggBergomi

Hybrid Scheme

Using a Cholesky scheme to simulate the Volterra process is slow and expensive. For an
n × n matrix, the Cholesky decomposition has complexity O(n3). This can be improved
by following [27]. The hybrid scheme from [6] can be used instead, making the pricing
scheme more efficient as the complexity to simulate the Volterra process is reduced to
complexity O(n log n). For reference, the hybrid scheme is provided in Appendix E.

Markovian Approximation

Due to the non-Markovian nature of the variance process in the ggBergomi model, sim-
ulation schemes are computationally expensive and slow. A workaround is to consider a
Markovian approximation to the Volterra process [4, 13].

In the case of the power law kernel K(t) := t
1
2 (α−1)

Γ( 1
2
(α+1))

K(t) =

∫ ∞

0
e−txµ(dx), µ(x) :=

Lαdx

x
1
2
(α+1)

, Lα :=
1

Γ(12(α+ 1))Γ(12(1− α))
.

Hence, from the stochastic Fubini theorem, one obtains∫ t

0
K(t− s)dBs =

∫ ∞

0

∫ t

0
e−(t−s)xdBsµ(dx) =

∫ ∞

0
Y x
t µ(dx),

where Y x
t :=

∫ t
0 e

−(t−s)xdBs. Note that Y x
t is an Ornstein-Uhlenbeck process which is

indeed a Markov process. Approximating the kernel K(t) by finite sums yields

K(t) =

∫ ∞

0
e−txµ(dx) ≈

N∑
i=0

wN
i e−xN

i t,

where (wN
i )Ni=1 are positive weights and (xNi )Ni=1 are mean-reverting speeds. Applying this

to the ggBergomi model results in the Markovian approximations SN and V N ,

SN
t = SN

0 exp

{
−1

2

∫ t

0
V N
s ds+

∫ t

0

√
V N
s (ρdBs +

√
1− ρ2dB⊥

s )

}
,

V N
t = ξ0(t)Eβ

(
η2C2

α
2
tα

2α

)−1

exp

{
η
√

Yβ

∫ t

0

N∑
i=0

wN
i e−xN

i (t−s)dBs

}
,

where SN
0 = S0 = 1 and V N

0 = V0 = 0. Given the positive weights (wN
i )Ni=1 and the mean-

reverting speeds (xNi )Ni=1, one can simulate the Markovian approximation of the ggBergomi
model.
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Carefully choosing weights and mean-reverting speeds can drastically improve the value
of N one needs in order to obtain a given accuracy. An example of this can be seen in
comparing the methodology in [4] and [40], where in [4] one can afford to use a considerably
smaller N , thus, decreasing simulation times.

Remark 5.1.2. The Markovian approximation scheme can potentially be improved by
using the Clenshaw–Curtis quadrature scheme. The Clenshaw–Curtis quadrature scheme
is similar to the Gaussian quadrature scheme where in some cases the spectral accuracy is
the same, however, the grid points and weights take O(N logN) time to evaluate instead
of O(N2) time. Conditions as to when the Clenshaw–Curtis quadrature scheme has the
same spectral accuracy as the Gaussian quadrature scheme are formalised in [39, Theorem
4.5, Theorem 5.1].

It suffices to check that the integrand of interest satisfies the following conditions:

1. f ∈ C([−1, 1]);

2. f, f (1), . . . , f (k−1) are absolutely continuous on [−1, 1];

3. ||f (k)||T =
∣∣∣∣∣∣f (k+1)(x)/

√
1− x2

∣∣∣∣∣∣
1
= K < ∞ for k ≥ 1 where the norm used is the

Chebyshev-weighted 1-norm and is defined via a Stieltjes integral for any function
of bounded variation.

If the three conditions hold, then for all sufficiently large N , the error of the Clen-
shaw–Curtis quadrature scheme is of order O(K/[k(2N − 1 + k)k]).

The scheme will be applied to the compact intervals [υi, υi+1] for i = 0, . . . , n found in
[4] and subsequently the integrals of interest (ignoring scaling factors) are∫

[υi,υi+1]
e−xtx−

1
2
(α+1)dx =

υi+1 − υi
2

exp

(
−υi+1 + υi

2
t

)∫ 1

−1
exp

(
−υi+1 − υi

2
ut

)
(
υi+1 − υi

2
u+

υi+1 + υi
2

)− 1
2
(α+1)

du

=
υi+1 − υi

2
exp

(
−υi+1 + υi

2
t

)∫ 1

−1
f(u)du,

where f(u) := exp
(
−υi+1−υi

2 ut
)(

υi+1−υi
2 u+ υi+1+υi

2

)− 1
2
(α+1)

with g(u) := exp
(
−υi+1−υi

2 ut
)

and h(u) :=
(
υi+1−υi

2 u+ υi+1+υi
2

)− 1
2
(α+1)

. Since υ0 > 0, f satisfies the first and second

conditions. Moreover, f ∈ C∞([−1, 1]). For the third condition, using the general Leibniz
product rule

f (k)(u) =
k∑

j=0

(
k

j

)
g(k−j)(u)h(j)(u),

where for k ≥ 1

g(k)(u) :=

(
−υi+1 − υi

2
t

)k

exp

(
−υi+1 − υi

2
ut

)
,

and

h(k)(u) :=

 k∏
j=1

(
−1

2
(α+ 1)− j + 1

)(υi+1 − υi
2

)k (υi+1 − υi
2

u+
υi+1 + υi

2

)− 1
2
(α+1)−k

.
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Therefore,

||f (k)||T =

∫ 1

−1

∣∣f (k+1)(x)
∣∣

√
1− x2

dx ≤
∫ 1

−1

∑k+1
j=0

(
k
j

) ∣∣g(k−j)(x)
∣∣ ∣∣h(j)(x)∣∣

√
1− x2

dx.

Splitting the integral on the positive and negative part of the interval yields two cases.
For the case where u ∈ [0, 1], one can make use of the fact that(

υi+1 − υi
2

u+
υi+1 + υi

2

)−x

≤
(
υi+1 + υi

2

)−x

, x ∈ R≥0,

and thus,
∣∣h(k)∣∣ is always bounded. For the negative part of the integral one can make use

of the fact that for u ∈ [−1, 0](
υi+1 − υi

2
u+

υi+1 + υi
2

)−x

≤ υ−x
i , x ∈ R≥0.

Again,
∣∣h(k)∣∣ is always bounded. Note that for both cases

∣∣g(k)∣∣ is trivially bounded as
its maximum is achieved on the left of each interval. Therefore, for all k ≥ 1 the third
condition holds, thus, by [39, Theorem 4.5, Theorem 5.1] the Clenshaw–Curtis quadrature
scheme has the same spectral accuracy as the Gaussian quadrature scheme.

Thus, if a result in the same spirit as [4, Lemma A.1] can be proven for the Clen-
shaw–Curtis grid points, then a slightly more efficient scheme is obtained. By [39, Theo-
rem 4.5, Theorem 5.1] it seems natural that [4, Lemma A.1] holds for the Clenshaw-Curtis
grid points, however, this needs to be proved rigorously.

5.1.3 Calibrating with Deep Learning

Inspired by [26, 38], a Deep Learning approach can be taken to drastically improve the
calibration time of the ggBergomi model. Note that this approach is not feasible unless
closed form formulae for VIX Futures and Options are derived, otherwise, a synthetic
dataset cannot be constructed for VIX Futures or Options calibration.

5.1.4 Skew-Stickiness-Ratio (SRR)

Joint calibration is not the only thing a model should be concerned with, other metrics
such as SRR must also be considered. Let [X,Y ][t,s] denote the quadratic covariation
between two Itô processes X and Y on the interval [t, s]. Recall that SRR with time to
maturity τ is defined as [9]

Rt(τ) :=
1

St(τ)

d
ds [logS·, σ·(τ)][t,s]|s=t

d
ds [logS·][t,s]|s=t

,

where σ· and S· denote the at-the-money-forward implied volatility and skew, respectively.
An analysis comparing the market SRR and SRR under the ggBergomi must also be
conducted. This should be relatively straightforward given the two recent publications
[9, 21].
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Appendix A

M-Wright Variate Generation

A.1 Renewal Theory

Summarising [30], let N(t) be a counting process for the number of events up to time t > 0.
Renewal processes are a class of counting processes where the time between successive
events, T1, T2, . . . are i.i.d. random variables. The time between successive events is
referred to as waiting times and renewal times are defined as

t0 = 0, tk =

k∑
j=1

Tj , k ≥ 1.

Suppose that the waiting times are distributed like T , define the cumulative distribution
function (cdf)

Φ(t) := P(T ≤ t),

where Φ is assumed to be absolutely continuous in order to define its probability density
function (pdf)

ϕ(t) := Φ′(t).

For convenience define Ψ(t) := 1 − Φ(t). Now suppose that one is interested in making
conclusions about the renewal times. Let

Fk(t) := P(tk ≤ t), fk(t) := F ′
k(t), k ≥ 1.

In the case of a sum of i.i.d. exponential random variables, the function Fk is the Erlang
cdf and fk is referred to as the Erlang pdf. With this and the assumption that the waiting
times are i.i.d. random variables, one has that the pdf of N(t) is

vk(t) := P(N(t) = k) = P(tk ≤ t, tk+1 > t) =

∫ t

0
fk(s)Ψ(t− s)ds.

Remark A.1.1. A Poisson process (with λ > 0) is the most renowned renewal process
where in the notation given

Φ(t) = e−λt, ϕ(t) = λe−λt, t ≥ 0,

and

vk(t) =
(λt)k

k!
e−λt, t ≥ 0, k ∈ Z≥0.

The Erlang pdf and cdf are

fk(t) = λ
(λt)k−1

(k − 1)!
e−λt, Fk(t) =

∞∑
n=k

(λt)n

n!
e−λt, t ≥ 0, k ∈ Z≥0.
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As in [30] a fractional generalisation of the Poisson process can be constructed. For a
Poisson process, it is known that Ψ satisfies the following ODE:

Ψ′(t) = −λΨ(t), t ≥ 0, Ψ(0+) = 1.

One can generalise the ODE by replacing the derivative by a Caputo fractional derivative
of order β ∈ (0, 1], where a Caputo derivative of order β ∈ (0, 1] of a “well-behaved”
function f is defined as [12]

tD
β
∗ :=


1

Γ(1− β)

∫ t

0

f (1)(τ)

(t− τ)β
dτ, 0 < β < 1,

f ′(t), β = 1.

Remark A.1.2. The Laplace transform of the Caputo derivative of a function f is

L{tDβ
∗ f(t); s} = sβ f̃(s)− sβ−1f(0+),

where f̃ is the Laplace transform of f .

Assuming λ = 1, this results in

tD
β
∗Ψ(t) = −Ψ(t), t ≥ 0, 0 < β ≤ 1, Ψ(0+) = 1.

By Laplace transforms, the solution to the generalised ODE is

Ψ(t) = Eβ(−tβ).

For a generalisation of the quantities in Remark A.1.2, the Laplace transform is given [35,
Equation (1.80)]

L{tβkE(k)
β (−tβ); s} =

k!sβ−1

(1 + sβ)k+1
, β > 0, k = 0, 1, . . . ,

with E(k)
β (z) := dk

dzk
Eβ(z). Thus, after some computations (see [30] for further details), the

Erlang pdf and cdf are

fk(t) = β
(t)βk−1

(k − 1)!
E(k)
β (−tβ), Fk(t) =

∞∑
n=k

tβn

(n)!
E(k)
β (−tβ), t ≥ 0, 0 < β < 1, k ∈ Z≥0.

This results in the pdf of N(t),

vk(t) =
tkβ

k!
E(k)
β (−tβ), t ≥ 0, 0 < β < 1, k ∈ Z≥0,

which is a generalisation of the Poisson distribution (with parameter t), referred to as a
β-fractional Possion (β-fP) distribution.

A.2 Stable Distributions

Definition A.2.1 (Stable Distribution [29]). A random variable X is said to have a stable
distribution if, for any n ≥ 2, there is a positive number cn and a real number dn such
that

n∑
i=1

Xi
(d)
= cnX + dn,

where X1, . . . , Xn are i.i.d random variables.
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Remark A.2.2. From [19, Theorem 1, Chapter 6], the constants from Definition A.2.1
are of the form

cn = n1/β, β ∈ (0, 2].

The parameter β is called the characteristic exponent or the index of stability of the
distribution. Note that in the case of this thesis, the range of β will be limited to (0, 1]
due to the Caputo derivative used to construct the β-fP distribution.

Definition A.2.3 (β-Stable Distribution [29]). A random variable X has a β-stable dis-
tribution if X has a stable probability distribution with characteristic exponent β.

A.3 One-Sided M-Wright Variate Generation

From Chapter 1, the Laplace transform of the M-Wright density is

ϕZ(λ) =

∫ ∞

0
e−λzMβ(−z)dz = Eβ(−λ).

Following the analysis of [11], let Nβ(t) be the number of events that have occurred up
until time t > 0 in the β-fP process with intensity η > 0. Now consider the scaled β-fP
random variable

Zβ =
Nβ(t)

ηtβ
.

It can be shown that ϕZβ
(λ) → ϕZ(λ) as t → ∞, where ϕZβ

is the Laplace transform of
the density of Zβ. Since the Laplace transform of a function is unique, then the limiting
distribution of the scaled β-fP random variable Zβ converges to the M-Wright function as
t → ∞. Furthermore, one can write the limiting distribution of Zβ and Mβ as a one-sided
β-stable density s(β)(ξ) with Laplace transform exp

(
−λβ

)
as

Mβ(−z) = fβ(z) =
z−1−1/β

β
s(β)(z−1/β).

By a change of variables r = z−1/β, one obtains

β

rβ+1
Mβ(−r−β) =

β

rβ+1
fβ(r

−β) = s(β)(r).

This results in

Z
(d)
= R−β,

where Z is a one-side M-wright random variable and R is a random variable from the
one-sided β-stable distribution s(α)(r). Converting the implementation of this in R [10] to
Python allows for the following variate generation in Figure A.1.
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Figure A.1: M-Wright density and 105 M-Wright variates for β = 0.25, 0.5, 0.75, 0.95, 0.99.
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Appendix B

Technical Proofs

Lemma B.0.1. Let X,Y be two random variables on (Ω,F) such that X,Y ̸= 0 a.s..
Then, it holds for the generated sigma-algebra of the product that

σ(X · Y ) ⊆ σ(X) ∨ σ(Y ).

Proof. Let f(x, y) = x·y and B ⊆ F any Borel-measurable set. Then, since any continuous
function is Borel measurable, f−1(B) is a Borel set

{ω : (X · Y )(ω) ∈ B} = {ω : f(X(ω), Y (ω)) ∈ B} =
{
ω : (X(ω), Y (ω)) ∈ f−1(B)

}
.

Therefore, f is σ(X) ∨ σ(Y )-measurable.

B.1 Proof of Thoerem 3.1.6

Proof. Using ggRLBm, the discounted dynamics of (St)
∞
t=0 are

dSt

St
=
√
Vt(ρdBt +

√
1− ρ2dWt) = σ(t, B

α
2
t )(ρdBt +

√
1− ρ2dWt), S0 = 1,

Vt = ξ0(t)E(ηBβ,α
RL,t), V0 > 0.

Furthermore, by Lemma 2, Bβ,α
RL,t

(d)
=
√
YβB

α
2
t , with

B
α
2
t = Cα

2

∫ t

0
(t− s)

1
2
(α−1)dBs,

where Cα
2
:= 1

Γ( 1
2
(1+α))

. Clearly, (St)
∞
t=0 is a non-negative local martingale (hence super-

martingale), it will be a martingale on [0, T ] if and only if E[ST ] = E[E[ST |Yβ]] = S0. Now

define τn := inf{t > 0, B
α
2
t = n} and since σ is bounded on [0, T ]× (−∞, n], one has that

S0 = E[E[ST∧τn |Yβ]] = E[E[ST1{T≤τn}|Yβ]] + E[E[Sτn1{τn≤T}|Yβ]].

Taking n → ∞ yields

S0 − E[E[ST |Yβ]] = lim
n→∞

E[E[Sτn1{τn≤T}|Yβ]].

Using Girsanov’s theorem, one can write

E[E[Sτn1{τn≤T}|Yβ]] = S0E[P̂n(τn ≤ T )],
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where P̂n is a random measure (conditional on Yβ) chosen such that

Ŵ
(n)
t = Wt −

∫ t∧τn

0
σ(t, B

α
2
t )ds,

is a Brownian motion under P̂n. Note that for t ≤ τn, one has

B
α
2
t = Cα

2

∫ t

0
(t− s)

1
2
(α−1)

(
dB̂(n)

s + ρσ(s,B
α
2
s )ds

)
,

= B̂
α
2
t + Cα

2

∫ t

0
(t− s)

1
2
(α−1)ρσ(s,B

α
2
s )ds,

where B̂
(n)
t is a P̂n-Brownian motion and

B̂
α
2
t := Cα

2

∫ t

0
(t− s)

1
2
(α−1)dB̂(n)

s .

In the case that ρ ≤ 0, B
α
2
t ≤ B̂

α
2
t for t ≤ τn; moreover, one has τn ≥ τ0n := inf{t >

0, B̂
α
2
t = n}. In addition, by Dominated Convergence and using the fact that B̂(n) is a

P̂n-Brownian motion

lim
n→∞

E
[
P̂n

(
τ0n ≤ T

)]
= E

[
lim
n→∞

P̂n

(
τ0n ≤ T

)]
= E

[
lim
n→∞

P

(
sup

t∈[0,T ]
B

α
2
t ≥ n

)]
= 0.

Thus, it follows that
S0 − E[E[ST |Yβ]] = 0,

in other words, S is a martingale if ρ ≤ 0.
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Appendix C

Preliminaries for Grey Noises

In this chapter, a summary of introductory concepts from [32] is provided. Let X be a
topological vector space and denote X ′ as the dual space of X. Let ⟨·, ·⟩ be the natural
bilinear pairing between X and X ′, where X ′ is equipped with the weak topology.

Definition C.0.1. A Hilbert-Schmidt operator is a bounded operator A defined on
a Hilbert space such that there exists an orthonormal basis {ei}i∈I of H such that∑

i∈I ||Aei||2 < ∞.

With this, the notion of a nuclear space can be defined. Note that these kinds of
spaces and the upcoming results are central to this thesis and the reason why is apparent
in Chapter 3.

Definition C.0.2. A topological vector space X, with the topology defined by a family
of Hilbert-norms is nuclear if, for any Hilbert norm || · ||p, there exists a larger norm || · ||q
such that the inclusion map Xq ↪−→ Xp is a Hilbert-Schmidt operator.

Theorem C.0.3 (Minlos’ Theorem). Let X be a nuclear space. For any characteristic
functional Φ defined on X there exists a unique probability measure µ defined on the
measurable space (X ′,B), where X ′ is the dual space of X equipped with the weak topology
and B is the Borel σ-algebra generated by the weak topology on X ′ such that∫

X′
ei⟨ω,ξ⟩dµ(ω) = Φ(ξ), ξ ∈ X.

Proposition C.0.4 (Proposition 1.2 [32]). Let F be a completely monotonic function
defined on the positive real line. Then, there exists a unique characteristic functional Φ,
defined on a real separable Hilbert space H, such that

Φ(ξ) = F (||ξ||2), ξ ∈ H.
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Appendix D

ggBergomi Implied Volatilities

Figure D.1: Curve by Curve Implied Volatilities for β ∈ {0.25, 0.5, 0.75, 0.95, 0.99}.
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Appendix E

The Hybrid Scheme

Definition E.0.1. Let W be a standard Brownian motion on a given filtered probability
space (Ω,F , (Ft)t≥0,P). A truncated Brownian semistationary (BSS) process is defined as
B(t) =

∫ t
0 g(t− s)σ(s)dWs, for t ≥ 0, where σ is (Ft)t≥0-predictable with locally bounded

trajectories and finite second, and g : (0,∞) → [0,∞) is Borel measurable and square
integrable. We refer to it as a BSS(α̃,W ) process if, furthermore,

1. there exists α̃\{0}, where α̃ := α
2 − 1

2 , α ∈ (0, 2), such that g(x) = xα̃Lg(x) for all
x ∈ (0, 1], where Lg ∈ C1((0, 1] → [0,∞)), is slowly varying at the origin and bounded
away from zero. Moreover, there exists a constant C > 0 such that |L′

g(x)| ≤
C(1 + x−1) for all x ∈ (0, 1];

2. the function g is differentiable on (0,∞).

Here the hybrid scheme in [6] is recalled. Following the notation in Definition E.0.1,
we consider a (truncated) Brownian semistationary process B(α̃,W ), and introduce the
truncation parameter κ ∈ N. On an equidistant grid T := {ti = i/n}i=0,...,nT with
nT := ⌊nT ⌋, for n ≥ 2, the hybrid scheme for the BSS process B is approximated by
Bn(ti) = B̃n(i) + B̂n(i) with

B̃n(i) =
i∧κ∑
k=1

Lg

(
k

n

)
σ

(
i− k

n

)
W i−k,k and B̂n(i) =

i∑
k=κ+1

g

(
b∗k
n

)
σ

(
i− k

n

)
W i−k,

with Lg as in Definition E.0.1 and where

W i :=

∫ ti+1

ti

dWs, W i,k :=

∫ ti+1

ti

(ti+k−s)α̃dWs, b
∗
k =

(
kα̃+1 − (k − 1)α̃+1

α̃+ 1

) 1
α̃

, for k ≥ κ+1.

For any i, k, the random variables W i and W i,k are centered Gaussian with the following
covariance structure:

E[W i,kW i] =
kα̃+1 − (k − 1)α̃+1

nα̃+1α̃+ 1
, and E[W i,kW j ] = 0, for k ̸= j,

E[W i,kW i,j ] =

∫ 1
n

0

(
k

n
− u

)α̃( j

n
− u

)α̃

du, for k ̸= j,

V[W i,k] =
k2α̃+1 − (k − 1)2α̃+1

n2α̃+1(2α̃+ 1)
, V[W i] =

1

n
.
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