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Abstract

A regime modelling framework can be employed to address the complexities of financial
markets. Under the framework, market periods are grouped into distinct regimes, each
distinguished by similar statistical characteristics. Regimes in financial markets are not
directly observable but are often manifested in market and macroeconomic variables. The
objective of regime modelling is to accurately identify the active regime from these vari-
ables at a point in time, a process known as regime identification.

One way to enhance the accuracy of regime identification is to select features that are
most responsible for statistical differences between regimes, a process known as feature
selection. Feature selection is also capable of both enhancing the interpretability of out-
puts from regime models, and substantially reducing the computational time required to
calibrate regime models.

Models based on the Jump Model framework have recently been developed to address
the joint problem of regime identification and feature selection. In the following work, we
propose a new set of models called Regularised Jump Models that are founded upon the
Jump Model framework.

These models perform feature selection that is more interpretable than that from the
Sparse Jump Model, a model proposed in the literature pertaining to the Jump Model
framework. Through a simulation experiment, we find evidence that these new models
outperform the Standard and Sparse Jump Models, both in terms of regime identification
and feature selection.

Additionally, we show in an empirical study that the new models inform Credit De-
fault Swap (CDS) trading strategies with risk-adjusted returns superior to those that are
informed by existing models.
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Introduction

Financial markets are inherently complex due to characteristics such as its high-
dimensionality, non-stationarity and low signal-to-noise ratio. The adoption of a regime
framework is one approach to addressing such complexities, where a regime is defined as
a period of persistent market conditions. The framework assumes that the dynamics of
financial markets can be grouped into distinct regimes, each marked by similar statistical
properties.

Regimes in financial markets are not directly observable but are often manifested
in variables such as the returns of certain asset classes. For instance, equities tend to
outperform bonds during a bull market, a regime characterised by rising prices and
investor optimism. Conversely, in a bear market, marked by falling prices and investor
pessimism, bonds tend to outperform equities.

This stylised fact of financial markets has subsequently motivated academics and
industry practitioners to develop latent variable models for observable market processes,
where the prevailing market regime is designated the latent variable. These models are
called regime-switching models.

The seminal work in regime-switching models was [15] in which a Hidden Markov
Model (HMM) was developed and applied to identify expansions and recessions in the
US economic cycle. Works such as [15] have demonstrated that financial markets can be
parsimoniously described by regime-switching models and that these models can capture
stylised behaviours of asset returns such as fat tails, volatility clustering, skewness and
time-varying correlations.

The Hidden Markov Model is a popular regime-switching model that relies on specific
assumptions of the observable process/processes and the latent state variable influencing
it/them. Multiple extensions of the HMM have subsequently been proposed that relax
the assumptions of the standard HMM (see [13],[30] and [9] for examples of HMM
extensions). More recently, path signatures have been used to detect market regimes (
[18] and [17]).

[5] introduced the Jump Model framework, the main area of study. The key idea of
the framework is to alternate between minimising a loss function to fit multiple model
parameters, and minimising a discrete loss function to determine which set of model
parameters is active at each point in time. The paper proves the Hidden Markov Model
to be a special case of the Jump Model.

In general, the application of regime-switching models involves the extraction of two
quantities for a given observation sequence Y := (y1,y2, . . . ,yT )

′
∈ RT×p:

State Estimation: The corresponding state sequence S := (s1, s2, . . . , sT ) that best ”ex-
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plains” the observation sequence Y [24].

Parameter Estimation: The parameters of the conditional distribution Y t|st, t =
1, 2, . . . T .

Y is defined as a sequence of T observations, each observation consisting of p features.
When modelling high-dimensional datasets, it is often useful to reduce the number of
features by determining which features are most relevant, a process known as feature
selection. The application of feature selection techniques can be useful for identifying
features that are either redundant or irrelevant, and can thus be removed without
incurring a significant loss of information in the training dataset. It is most common
in supervised learning applications such as regression, where labeled training data is
available to determine the relevance of features.

However, feature selection is also important for unsupervised learning applications
such as clustering and regime-switching models, where the training data is unlabeled
because of the hidden nature of market regimes. Feature selection can yield interpretable
results by establishing which features are most influential in differences between market
regimes. Furthermore, feature selection can also mitigate issues associated with the
application of unsupervised learning algorithms to high-dimensional data, an instance of
what is commonly known as the ”curse of dimensionality”.

In Chapter 1, the Jump Model framework is introduced and elaborated. Chapter 2
outlines existing models within the Jump Model framework and proposes a new set of
models consistent with the framework; these new models are called Regularised Jump
Models. The chapter explains how these models are used for joint feature selection,
parameter estimation and state-sequence estimation. Henceforth, we label models that
are consistent with the Jump Model framework ”Jump Models”.

Chapter 3 investigates the techniques used to fit Jump Models and tests these
techniques in a simulation experiment. In Chapter 4, the Jump Models are backtested in
strategies that trade a Credit Default Swap (CDS) contract.

Our original contributions are as follows:

� Proposal of a new set of Jump Models called Regularised Jump Models.

� Development of a new hyperparameter tuning method for Jump Models based on
clustering stability.

� Addition of a step to the online learning algorithm in [21] that updates the param-
eters of a given Jump Model.

� Calibration of Jump Models onto a dataset containing market and macroeconomic
features.
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Chapter 1

Jump Model Framework

The chapter introduces the Jump Model framework proposed in [5]. Due to the generality
of the framework, a condensed introduction is given by outlining the theory most relevant
to regime-switching models.

1.1 Rationale

Multiple statistical models, both supervised and unsupervised, are applied to observations
with a timestamp, better known as time-series data. However, when calibrating these
models onto time-series datasets, the sequential nature of the dataset is not taken into
account.

A simple example of this is linear regression solved by Ordinary Least Squares (OLS).
In the minimisation problem minβ∈Rp ∥Y −Xβ∥2, where ∥ · ∥ is the L2 norm, X ∈ Rn×p
is the design matrix and Y ∈ Rn is the output vector, each row of X and Y is associ-
ated with a data point, yet the solution θ∗ is invariant to the order of the rows of X and Y .

On the other hand, as noted by [5], there are many applications in which relevant
information is contained not only in data values but also in their temporal order. More
specifically, if a data-point’s corresponding time stamp is taken into account, one can
detect changes in the regime or mode that generated the data. Sample applications
include video segmentation [10] and speech recognition [24]. These applications are
characterised by the dual objectives of fitting multiple models and detecting if any
switches between these models have occurred.

In [5], Jump Models are introduced and used to fit a temporal sequence of data, taking
into account the ordering of the data. The proposed fitting algorithm alternates between
two steps: estimating the parameters of multiple models and estimating the temporal
sequence of model activations.

1.2 Notation and Setup

Denote Y := (y1, y2, . . . , yT ) a training sequence of observations where yt ∈ Y for all
t = 1, 2, . . . , T . The training sequence is used to build a regression model that provides
a prediction ŷt given some exogenous inputs x1, x2, . . . , xt and possibly past observations
y1, y2, . . . , yt−1. We are specifically interested in models where ŷt is not simply a static
function of xt, but those models that exploit the additional information embedded in the
temporal ordering of the data.
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[5] shows that the regression model is implicitly defined by the minimisation of a
loss function J that depends on the inputs x1, x2, . . . xt, past observations y1, y2, . . . yt−1

and other parameters. The chosen configuration of J determines the regression model.
Propositions 1.4.1 and 1.4.2 establish this correspondence.

The quality of the regression model over a time period t = 1, 2, . . . , T is quantified by
the average loss

L =
1

T

T∑
t=1

ℓ (ŷt, yt) , (1.2.1)

where ℓ : Y × Y → R penalises the mismatch between yt and ŷt, with ℓ (y, y) = 0 for
all y ∈ Y.

1.3 Regression Models

1.3.1 Single Model

We introduce a model parameter θ ∈ Rd, a loss function ℓ : X ×Y ×Rd → R∪{+∞} and
a regulariser r : Rd → R ∪ {+∞} that together define the fitting objective

J (X,Y, θ) =

T∑
t=1

ℓ (xt, yt, θ) + r (θ) , (1.3.1)

where X = (x1, x2, . . . , xT ) and Y = (y1, y2, . . . , yT ). Additionally, let xt ∈ X =
Rd, yt ∈ Y = R for t = 1, 2, . . . , T . We define the optimal model parameter θ∗ as

θ∗ = argmin
θ

J (X,Y, θ) . (1.3.2)

By fixing θ = θ∗ and exploiting the separability of the loss J in 1.3.1, we get the
regression model

ŷt = argmin
y∈Y

J (X,Y, θ∗)

= argmin
y∈Y

ℓ (X,Y, θ∗)

=: ψ (xt) (1.3.3)

where ψ : X → Y is the function defining the regression model. For example, when
ℓ (xt, y, θ) = ∥y − θxt∥22, we obtain the OLS linear regression model ψ (xt) = θTxt.

1.3.2 K-Models

We extend the previous model and introduce multiple model parameters θs ∈ Rd, s ∈
{1, 2, . . . ,K} and a latent mode variable st that determines which set of model parameters
is active at time t. Fitting a K-model on a training dataset (X,Y ) entails minimising the
fitting loss function

J (X,Y,Θ, S) =
T∑
t=1

ℓ (xt, yt, θst) +
K∑
k=1

r (θk) , (1.3.4)
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with respect to Θ = (θ1, θ2, . . . , θK) and S = (s1, s2, . . . , sT ). The optimal parameters
Θ∗ = (θ∗1, θ

∗
2, . . . , θ

∗
K) are used to define the K-model

(ŷt, ŝt) = argmin
y,s

ℓ (xt, yt, θ
∗
s) . (1.3.5)

The objective function in (1.3.4) is used to estimate the set of optimal model parameters
Θ∗ using the entire training dataset (X,Y ). 1.3.5 infers the output ŷt and discrete state
st given the input xt and Θ∗.

We note that the notational setup given up to this point is inclined towards supervised
learning problems such as regression, since it includes an input variable xt and output
variable yt. Given that the specific application in this work is market regime modelling,
an unsupervised learning problem, the input variable xt and set X are omitted henceforth.

1.4 Jump Model

The abovementioned models do not take into account the ordering of the data points
(y1, y2, . . . , yT ). To address this, a mode sequence loss, denoted L, is added to the fitting
objective J :

J (Y,Θ, S) =
T∑
t=1

ℓ (yt, θst) +
K∑
k=1

r (θk) + L (S) , (1.4.1)

where S = (s0, s1, . . . sT ) is the mode or state sequence. L : KT+1 → R∪{+∞} is defined as

L (S) = Linit (s0) +
T∑
t=1

Lmode (st) +
T∑
t=1

Ltrans (st, st−1) , (1.4.2)

where K := {1, 2, . . . ,K}, Linit : K → R ∪ {+∞} is the initial mode cost,
Lmode : K → R ∪ {+∞} is the mode cost, and Ltrans : K2 → R ∪ {+∞} is the
mode transition cost.

The choice of Linit,Lmode and Ltrans should strike a balance between fitting the data
and incorporating prior assumptions held about the models parametrised by Θ and the
mode sequence S.

Firstly, L (S) ≡ 0 reduces to the K-model introduced in Subsection 1.3.2. If we
choose Ltrans (i, j) = λ, for all i ̸= j and Lmode (i) = Ltrans (i, i) = 0, mode transitions are
penalised equally by a constant λ ≥ 0.

λ → ∞ leads to regression of a single model since mode transitions from s0 become
prohibitively expensive for the fitting loss function J in (1.4.1). λ→ 0 leads again to the
K-model as there is no associated cost of mode transitions.

[5] noted that the choice of a constant transition cost λ leads to multiple solutions for
S as indexes i, j can be arbitrarily permuted. The mode loss Lmode can then be used to
break such symmetries. For example, smaller values for st will be preferred by making
Lmode (i) < Lmode (j) for i < j. The initial mode cost Linit can be used to incorporate prior
knowledge of the initial mode s0. For example, no prior knowledge can be incorporated
by setting Linit ≡ 0.
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1.4.1 Probabilistic Interpretation

Let Y = (y1, y2, . . . , yT ) , S = (s0, s1, . . . , sT ) and Θ = (θ1, θ2, . . . , θK). A probabilistic
interpretation of the loss function defined in (1.4.1) is provided by using the following
modelling assumptions:

A1. The mode sequence S and the model parameters Θ are independent:

P (S,Θ) = P (S)P (Θ)

A2. The conditional likelihood of Y is given by

P (Y |S,Θ) =

T∏
t=1

P (yt|S,Θ) =

T∏
t=1

P (yt|θst) ,

where P (yt|θst) is the likelihood of the outcome yt given θst .

A3. The priors on the model parameters θ1, θ2, . . . , θK are all equal to P (θ):

P (θ1) = P (θ2) = · · · = P (θK) = P (θ) .

Furthermore, the model parameters are independent i.e.,

P (Θ) =
K∏
k=1

P (θk) .

A4. The probability of being in mode st given s0, s1, . . . , st−1 is P (st|st−1) = πst,st−1

(Markov property):

A5. The initial mode s0 has probability P (s0) = πs0 .

Proposition 1.4.1. Define

ℓ (yt, θst) = − logP (yt|θst)
r (θk) = − logP (θk)

Ltrans (st, st−1) = − log πst,st−1

Linit (s0) = − log πs0

Lmode (s0) = 0.

Then minimising J (Y,Θ, S), as defined in 1.4.1 and 1.4.2, with respect to Θ and S is
equivalent to maximising the joint likelihood P (Y, S,Θ).

Proof. Proof can be found in [5] Proposition 1.

Proposition 1.4.2. Define the probability density functions

P (yt|θst) =
e−ℓ(yt,θst)

ν (θst)
,

P (S,Θ) =
ν (S,Θ) e−L(S)−r(Θ)∑

S̄∈KT+1

∫
Rd×K ν

(
S̄,Θ

)
e−L(S)−r(Θ)dΘ

,
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where

ν (θst) =

∫
Y
e−ℓ(y,θst)dy,

ν (S,Θ) =

T∏
t=1

ν (θst) .

Furthermore, assume that the outputs Y are conditionally independent given (S,Θ) i.e.
P (Y |S,Θ) =

∏T
t=1 P (yt|θst). Then the following identity holds:

argmin
S,Θ

J (Y, S,Θ) = argmax
S,Θ

logP (Y, S,Θ) .

Proof. Proof can be found in [5] Proposition 2.

1.5 Algorithms

1.5.1 Model Calibration

The calibration of the Jump Model onto a training dataset Y = (y1, y2, . . . , yT ) requires
the minimisation of J (Y,Θ, S) with respect to Θ and S. [5] devises a coordinate descent
algorithm that alternates between minimisation with respect to Θ, and minimisation with
respect to S.

In multivariable calculus, coordinate descent is an optimisation algorithm that opti-
mises a multivariable function along one coordinate at a time, while keeping the other
coordinates fixed. More specifically, for a function f : Rn → R, starting with an initial
guess x0 :=

(
x01, x

0
2, . . . , x

0
n

)
, the (k + 1)th iteration of the algorithm is defined recursively

from the kth iteration by solving the single variable optimisation problem

x
(k+1)
i = argmin

x∈R
f
(
x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
i−1 , x, x

(k)
i+1, . . . , x

(k)
n

)
for each variable xi of x := (x1, x2, . . . , xn) from 1 to n.

In the calibration of the Jump Model, the coordinate descent algorithm is performed
by minimising J (Y,Θ, S) with respect to two sets of variables in alternation: the model
parameters Θ and the state sequence S. J (Y,Θ, S) is minimised with respect to Θ while
keeping S fixed, and then J (Y,Θ, S) is minimised with respect to S while keeping Θ fixed.

These two steps are repeated until the state sequence S does not change or the
improvement in the value of the objective function J is smaller than a pre-determined
tolerance level.

If ℓ and r are convex functions, Step (1.1) in Algorithm (1) can be solved globally
using standard convex programming. Step (1.2) can be solved by discrete dynamic
programming. Dynamic programming refers to the technique of determining an optimal
decision by breaking it down into a sequence of decision steps such that the decision steps
hold a recursive relationship.

Dynamic programming for Step (1.2) in Algorithm (1) is achieved by computing a
matrix of costs V ∈ RK×(T+1) and indexes U ∈ K × RT . The below equations establish
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the recursive computations computed backward in time for t = T − 1, T − 2, . . . , 1:

V (s, T ) = Lmode (s) + ℓ (yT , θs) , (1.5.1a)

Us,t = argmin
j
{V (j, t+ 1) + Ltrans (j, s)}, (1.5.1b)

V (s, t) = Lmode (s) + ℓ (yt, θs) + V (Us,t, t+ 1) + Ltrans (Us,t, s) , (1.5.1c)

V (s, 0) = Linit (s) + min
j
{V (j, 1) + Ltrans (j, s)}. (1.5.1d)

Once the two matrices are calculated, the state sequence S is reconstructed forward in
time by setting

s0 = argmin
j

V (j, 0) ,

st = Ust−1,t, t = 1, 2, . . . , T.

Algorithm 1 Coordinate descent algorithm for jump model calibration in [5]

Input: Training dataset Y = (y1, y2, . . . , yT ), number of modes K and initial mode

sequence S(0) :=
(
s
(0)
0 , s

(0)
1 , . . . , s

(0)
T

)
.

Step 1: Iterate for k = 1, 2, . . . ,

Θ(k) ← argmin
Θ

{
T∑
t=1

ℓ
(
yt, θs(k−1)

t

)
+

K∑
k=1

r (θk)

}
; (1.1)

S(k) ← argmin
S

{
T∑
t=1

ℓ
(
yt, θ

(k)
st

)
+ L (S)

}
(1.2)

until S(k) = S(k−1).

Output: Estimated model parameters Θ∗ =
(
θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
K

)
and mode sequence

S∗ =
(
s
(k)
0 , s

(k)
1 , . . . , s

(k)
T

)
.

We first note that, because J (Y,Θ, S) is non-increasing in terms of the number of
iterations and that the number of possible state sequences S is finite, Algorithm (1)
always terminates in a finite number of steps. However, there is no guarantee that the
solution achieved by Algorithm (1) is the global one, as it depends on the initial guess S(0).

[5] suggests running Algorithm (1) multiple times from different random initial se-
quences and selecting the result that produces the lowest value for J (Y,Θ, S).

1.5.2 Inference

One-Step Ahead Prediction

Assume that the model parameters Θ∗ have been estimated using past observations
Ỹ1:t−1 := (ỹ1, ỹ2, . . . , ỹt−1). The same fitting objective (1.4.1) can be used to estimate
yt and Ŝ0:t := (ŝ0, ŝ1, . . . , ŝt):(

ŷt, Ŝ0:t

)
= argmin

y,S0:t

Jt

(
Ỹ1:t−1, y,Θ

∗, S0:t

)
, yt ∈ Yt, (1.5.2)

13



where Yt ⊆ Y is a possible output information set and

Jt

(
Ỹ1:t−1, y,Θ

∗, S0:t

)
= ℓ

(
y, θ∗st

)
+

t−1∑
j=1

ℓ
(
ỹj , θ

∗
sj

)
+ L (S0:t) . (1.5.3)

In (1.5.3), L (S0:t) is the mode sequence loss for the state sequence S0:t and is given by

L (S0:t) = Linit (s0) +
t∑

j=1

Lmode (sj) +
t∑

j=1

Ltrans (sj , sj−1) .

The algorithm for one-step ahead prediction is given in Algorithm 2. Step 2.1 is again
solved by the DP iterations in 1.5.1 over the time span [0, t] with the only difference that
in (1.5.1a), the terminal cost is equal to V (s, t) = Lmode (s)+miny{ℓ (y, θs)} since the last
output is determined in Step 2.2.

Algorithm 2 One-step ahead prediction in [5]

Input: Estimated model parameters Θ∗ and past observations Ỹ1:t−1 := (ỹ1, ỹ2, . . . , ỹt−1).

Step 1: Estimate state sequence S0:t:

Ŝ0:t ← argmin
S0:t

{
L (S0:t) +

t−1∑
j=1

ℓ
(
ỹj , θ

∗
sj

)
+ min
y∈Yt

ℓ
(
y, θ∗st

)}
. (2.1)

Step 2: Predict yt:
ŷt ← argmin

y∈Yt

ℓ
(
y, θ∗ŝt

)
. (2.2)

Output: Estimated output ŷt and mode sequence Ŝ0:t.

Recursive Inference and Online Learning

Algorithm 2 estimates the output yt and the state sequence S0:t := (s0, s1, . . . , st) in one
run. This is an inefficient algorithm as the computation time of the algorithm grows
linearly with the number of time points t. An incremental and more efficient version of
the algorithm is shown in Algorithm 3.

In Algorithm 3, the arrival cost function At : K → R is introduced and defined by the
following recursive relation for s ∈ K:

A0 (s) = Linit (s) ,
At (s) = Lmode (s) + min

s′∈K
{ℓ (ỹt−1, θ

∗
s′) +At−1(s

′) + Ltrans(s, s′)}. (1.5.4)

The concept of the arrival cost is important in online learning, a method in which
data is available in a sequential manner and is used to update the model at each step.
Online learning contrasts with offline learning, also known as batch learning, the method
in which a model is trained on the entire training dataset at once. Algorithms 2 and 3
are instances of offline and online learning respectively.
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The arrival cost is the additional cost associated with the arrival of a new data point
and the subsequent update of the model based on the new data point. In Algorithm 3,
the prior arrival cost At−1 is stored in memory as a vector of size |K|. The arrival cost is
updated using Step 3.1 and the updated arrival cost is then used in Step 3.2 to estimate
(yt, st).

We can see that, after replacing s and s′ with st and st−1 respectively, and expanding
the right-hand side of the recursive relation in (1.5.4), we have that

At (st) = min
S0:t−1


t−1∑
j=1

ℓ
(
ỹj , θ

∗
sj

)
+ L (S0:t)

 . (1.5.5)

,
The term minimised in (1.5.5) is very similar to the right-hand side of (1.5.3); the

only difference between the two equations is ℓ
(
y, θ∗st

)
in (1.5.3). If we inspect Step

3.2 and use the identity in (1.5.5), we can see that Algorithm 2 and Algorithm 3
produce the same outputs. The difference between the two algorithms are their compu-
tational times: the computational time of Algorithm 2 isO (t) while for Algorithm 3, O (1).

Algorithm 3 Recursive inference in [5]

Input: Estimated model parameters Θ∗, past output ỹt−1 and past arrival cost function
At−1.

Step 1: Update arrival cost function At : K → R for each st ∈ K:

At (st)← Lmode (st) + min
st−1

{ℓ
(
ỹt−1, θst−1

)
+At−1 (st−1) + Ltrans (st, st−1)}. (3.1)

Step 2: Estimate (yt, st):

(ŷt, ŝt)← argmin
y∈Yt,s

{ℓ (y, θs) +At (s)}. (3.2)

Output: Estimated output yt and mode st, and updated arrival cost function At.

In case we have access to the output yt and are only interested in estimating the mode
st given y1, y2, . . . , yt, Step 3.2 in Algorithm 3 can be replaced with

ŝt = argmin
s
{ℓ (yt, θs) +At (s)}. (1.5.6)
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Chapter 2

Jump Models for Regime
Modelling and Feature Selection

The chapter outlines and examines the constituent models of the Jump Model framework.
A new set of models called Regularised Jump Models are then introduced and compared
to the existing models. Before presenting the constituent models, an introduction to the
unsupervised learning technique of clustering is given to show its similarities with the
estimation of state sequences under the Jump Model framework.

2.1 Introduction to Clustering

Clustering is the task of partitioning a dataset such that data points belonging to the
same group or cluster are more similar (normally quantified by some pre-specified metric)
to each other that to those in other groups. This task is very similar to the estimation of
state sequences; one difference is that the temporal nature of the data is accounted for in
state sequence estimation. In normal clustering applications, the data is assumed to be
independent and identically distributed (IID).

Clustering comprises multiple algorithms that differ in terms of what defines a
cluster and how they are found. In this work, we limit the scope of the introduction to
centroid models, models that represent each cluster by the mean vector of the data points
conditional on those points belonging to the same cluster. The mean vector of a cluster
is sometimes known as the cluster centroid.

One of the most ubiquitous centroid models is the K-means clustering algorithm
introduced in [19]. In the algorithm, data points are divided into K clusters in which each
point belongs to the cluster with the closest centroid in terms of Euclidean distance. The
algorithm achieves this through the minimisation of the total squared Euclidean distance
between the data points and their corresponding cluster centroids, known shorthand as
the within-cluster sum of squares (WCSS).

Before mathematically defining the WCSS, some clustering notation is introduced.
Denote Y := (y1,y2, . . . ,yT ) a sequence of T observations where each yt ∈ Rp for
t = 1, 2, . . . , T . p represents the number of features and for a high-dimensional dataset
Y , we have that p >> 1. We assume that the columns of Y are standardised i.e. each
feature has mean zero and variance one.

Assuming the number of clusters to be K, let C = {C1, C2, . . . , CK} be a collection
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of K disjoint sets of cluster indices satisfying ∪Kk=1Ck = {1, 2, . . . , T}. The corresponding

matrix of cluster means is given by
¯
µ := (µ1,µ2, . . . ,µK)

′
∈ RK×p. The within-cluster

sum of squares (WCSS) is defined as

WCSS =
K∑
k=1

∑
t∈Ck

∥yt − µk∥2, (2.1.1)

where ∥ · ∥ is the L2 norm. The K-means clustering algorithm minimises the WCSS
with respect to the clusters C1, C2, . . . , CK and their corresponding means µ1,µ2, . . . ,µK .

The difference between the total sum of squares (TSS), defined as the total squared
Euclidean distance between the data points and the unconditional mean vector µ̄ (equal
to the zero vector under the assumption of standardised data), and the WCSS is known
as the between-cluster sum of squares (BCSS):

T∑
t=1

∥yt − µ̄∥2︸ ︷︷ ︸
TSS

=
K∑
k=1

∑
t∈Ck

∥yt − µk∥2︸ ︷︷ ︸
WCSS

+
K∑
k=1

|Ck|∥µk − µ̄∥2︸ ︷︷ ︸
BCSS

, (2.1.2)

where |Ck| is the number of data points in the kth cluster. The BCSS measures the
dispersion of the clusters: a high BCSS indicates that the clusters are spread out, while a
small value indicates that the clusters are close together. The TSS is a fixed quantity and
so from the decomposition given in (2.1.2), the minimisation of the WCSS (the objective
of K-means clustering) is equivalent to the maximisation of the BCSS.

Using an initial cluster assignment, the K-means clustering algorithm solves the
minimisation of (2.1.1) by alternating between minimising (2.1.1) with respect to the
cluster centres µ1,µ2, . . . ,µK while holding the clusters C1, C2, . . . , CK fixed, and min-
imising (2.1.1) with respect to the clusters C1, C2, . . . , CK while holding the cluster centres
fixed. These two steps are repeated until the clusters remain unchanged after one iteration.

This is very similar to the coordinate descent algorithm introduced in 1 for Jump
Models. The K-means clustering algorithm is given in Algorithm 4.

2.2 Standard Jump Model

Before introducing the Standard Jump Model, some notation is given in addition to that
in Section 2.1. The state or mode sequence associated with the sequence of observations
Y is represented by (s1, s2, . . . , sT ) where each st ∈ {1, 2, . . . ,K} for t = 1, 2, . . . , T .

K is the number of states and is assumed to be known. The K model parameters are
given by µ1,µ2, . . . ,µK where each µk ∈ Rp for k = 1, 2, . . . ,K. The model parameters
are the conditional means of the features assigned to each of the K states, hence the
notational choice µk, k = 1, 2, . . . ,K.

Definition 2.2.1 (Standard Jump Model). The Standard Jump Model with K states is
defined by the minimisation of the objective function

T−1∑
t=1

[
∥yt − µst∥

2 + λ11{st ̸=st+1}

]
+ ∥yT − µsT ∥

2 (2.2.1)
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Algorithm 4 K-means clustering algorithm in [19]

Input: Training dataset Y = (y1,y2, . . . ,yT ), assumed number of clusters K and initial

clusters C(0) :=
(
C

(0)
1 , C

(0)
2 . . . , C

(0)
K

)
Step 1: Iterate for j = 1, 2, . . . ,

¯
µ(j) ← argmin

¯
µ

K∑
k=1

∑
t∈C(j−1)

k

∥yt − µk∥2, (4.1)

C(j) ← argmin
C

K∑
k=1

∑
t∈Ck

∥yt − µ
(j)
k ∥

2, (4.2)

until C(j) = C(j−1).

Output: Estimated cluster centres
¯
µ∗ :=

(
µ
(j)
1 ,µ

(j)
2 , . . . ,µ

(j)
K

)′

and clusters

{C(j)
1 , C

(j)
2 , . . . , C

(j)
K }.

over the model parameters µ1,µ2, . . . ,µK and state sequence (s1, s2, . . . , sT ). The
term ∥yt − µst∥

2 represents the squared L2-distance between the vectors yt and µst and
λ ≥ 0 is a hyperparameter.

The Standard Jump Model is a specific case of the general framework outlined in
Chapter 1. Comparing the equations in (1.4.1), (1.4.2) and (2.2.1), the regularisation
function term r (θk) is set to zero for all k ∈ {1, 2, . . . ,K} and L (S) = λ

∑T−1
t=1 11{st ̸=st+1}

is the number of ”jumps”, or state transitions in the sequence S, multiplied by λ.

The objective function in (1.4.1) can be interpreted as a tradeoff between model
fitting and prior assumptions about the tendency of the sequence S to ”jump”, or change
states. This tendency is controlled by the hyperparameter λ. When λ = 0, the model
reduces to splitting the dataset in at most K states and fitting one model per state,
thereby generalising the K-means algorithm ([20]).

Furthermore, the objective function in (2.2.1) reduces to that of K-means clustering
when λ = 0. This can be seen by rewriting the first and third summands in 2.2.1 as

T∑
t=1

∥yt − µst∥
2 =

K∑
k=1

∑
t∈Ck

∥yt − µk∥2 (2.2.2)

which is equal to the right-hand side of (2.1.1). Finally, for λ→∞, the Standard Jump
Model results in a single-state model since the cost of changing states becomes prohibitive.

2.3 Sparse Jump Model

The Sparse Jump Model is an extension of the Standard Jump Model in its incorporation
of feature selection. Let w := (w1, w2, . . . , wp)

′
∈ Rp denote a vector of feature weights

that are assumed to be the same across all states.
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Feature selection is incorporated in the Sparse Jump Model by employing the
optimisation programme in [29]. The programme is given by

max w
′

(
K∑
k=1

|Ck| (µk − µ̄)2
)
,

such that ∥w∥2 ≤ 1, ∥w∥1 ≤ κ,
wp ≥ 0 ∀p,

(2.3.1)

with respect to the parameters µ1,µ2, . . . ,µK , state sequence (s1, s2, . . . , sT ) and
feature weights w1, w2, . . . , wp. The term |Ck| (µk − µ̄)2 in (2.3.1) is a vector of size p
whose entries are the contributions of each feature to the BCSS in the kth cluster.

If we consider the clusters C1, C2, . . . , CK fixed, then the feature weights will be
assigned to features based on their individual BCSS contributions: features with larger
BCSS contributions will be given larger weights which, in turn, optimises the overall
spread between the clusters.

κ ∈ [1,
√
p] in (2.3.1) is a hyperparameter that controls the degree of sparsity in the

feature weights. The squared L2 penalty in (2.3.1) serves an important role since without
it, at most one element of w would be non-zero in general when features are correlated
(see [31] for more details). If w1 = w2 = · · · = wp, then 2.3.1 reduces to the maximisation
of the BCSS (minimisation of the WCSS) which is the objective of the K-means clustering
algorithm.

Combining 2.3.1 with a jump penalty, we give the below definition for the Sparse Jump
Model:

Definition 2.3.1 (Sparse Jump Model). The Sparse Jump Model with K states is defined
by the optimisation programme

max w
′

(
K∑
k=1

|Ck| (µk − µ̄)2
)
− λ

T∑
t=1

11{st ̸=st+1}

such that ∥w∥2 ≤ 1, ∥w∥1 ≤ κ,
wp ≥ 0 ∀p,

(2.3.2)

,
with respect to the parameters µ1,µ2, . . . ,µK , state sequence (s1, s2, . . . , sT ) and fea-

ture weights w1, w2, . . . , wp. κ ∈ [1,
√
p] in (2.3.1) is a hyperparameter that controls the

degree of sparsity in the feature weights.

If w1 = w2 = . . . , wp, then Definition 2.3.1 reduces to the Standard Jump Model in
Definition 2.2.1.

2.4 Continuous Jump Model

In the Standard and Sparse Jump Models, the hidden state variable is discrete-valued
since st ∈ {1, 2, . . . ,K}. [4] extends the Standard Jump Model by generalising the
discrete state variable to be a probability vector over all regimes; these authors call this
extension the Continuous Jump Model.

In mathematical terms, they extend the state space from the discrete set {1, 2, . . . ,K}
to the probability simplex ∆K :=

{
s = (s1, s2, . . . , sK)

′
∈ RK :

∑K
k=1 sk = 1, sk ≥ 0

}
.
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Each state vector st is then a probability vector over all the states and the hidden vector
sequence is now represented by S := [s1, s2, . . . , sT ]

′ ∈ RT×K , which should satisfy S ≥ 0
and S1K = 1T , where 1n is a vector comprising n ones.

Definition 2.4.1 (Continuous Jump Model). The Continuous Jump Model with K states
is defined by the minimisation problem

argmin

¯
µ,S

T∑
t=1

L
(
yt,

¯
µ, st

)
+
λ

4

T−1∑
t=0

∥st − st+1∥21, (2.4.1)

where
¯
µ are the model parameters, S is the hidden state vector sequence, and the loss

function L is defined as a weighted average of the Euclidean distance between yt and each
cluster centre. The loss function is written as

L
(
yt,

¯
µ, st

)
=

K∑
k=1

st,k∥yt − µk∥2,

where st,k is the kth element of the vector st.

[3] proposed a version of the Continuous Jump Model that incorporates feature selec-
tion, analogous to the relation between the Standard and Sparse Jump Models introduced
in Sections 2.2 and 2.3 respectively. Since this work is dedicated primarily to Jump Models
that assume the hidden state variable to be discrete-valued, we leave readers to consult
[3] and [4] for details on the theory and calibration of the Continuous Jump Model.

2.5 Regularised Jump Models

In this section, a new approach to feature selection in the Jump Model framework is in-
troduced. The approach is an adaptation of the Regularised K-means algorithm proposed
in [25] to the Jump Model framework. Therefore, we call the models constituting this
approach Regularised Jump Models.

2.5.1 Regularised K-Means

Definition 2.5.1. The Regularised K-means algorithm is defined by the minimisation of

K∑
k=1

∑
t∈Ck

∥yt − µk∥2
+ γP

(
¯
µ
)
, (2.5.1)

with respect to the clusters C1, C2, . . . , CK and matrix of cluster centres
¯
µ ∈ RK×p. γ ≥ 0

is a tuning parameter that controls the amount of regularisation applied to the cluster
centres. P : RK×p → R is a penalty function that depends on

¯
µ. The first term is the

standard K-means clustering objective function defined in (2.1.1).

From [25], below are several penalty function options which are named after their
counterparts from regularised regression:
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L0 : P0
(
¯
µ
)
=

p∑
j=1

11{∥µ.,j∥>0} (2.5.2a)

Lasso : P1
(
¯
µ
)
=

p∑
j=1

∥µ.,j∥1 (2.5.2b)

Ridge : P2
(
¯
µ
)
=

p∑
j=1

∥µ.,j∥2 (2.5.2c)

Group-Lasso : P3
(
¯
µ
)
=

p∑
j=1

∥µ.,j∥ (2.5.2d)

where µ.,j is the jth column of
¯
µ. The penalty on

¯
µ balances the size of the cluster

centres and their contribution to the objective function in (2.5.1).

The intuition for penalising the size of the cluster centres lies in the fact that when a
variable does not contribute to the partitioning of the data, its estimated cluster centres
will be close to the overall mean of the data (which is equal to the zero vector in the case
of standardised data).

A proposition in [25] is given here to establish this fact. Let (Σ,F ,Q) be a probability
space where Q is the cumulative distribution function of a random vector Y ∈ Rm. In
this setting, m < p and each cluster corresponds to a region in Rm; let these regions be
denoted R1, R2, . . . , RK . Consider the optimal value of the standard K-means clustering
objective function:

V =

∫
min

k∈{1,2,...,K}
∥y − µk∥2Q (dy) .

Now suppose a variable Z is added to obtain a (m+ 1)-dimensional random vector Y ∗ :=
(Y, Z) with corresponding measure Q∗. We have the following proposition:

Proposition 2.5.2. Let V and V ∗ be the optimal values of the K-means objective func-
tion on Q and Q∗ respectively. Assume that the added variable Z is uninformative and
independent from the original vector Y . More specifically, assume that:

1. R∗
k := Rk × R for all k = 1, 2, . . . ,K. This effectively assumes that the value of the

uninformative variable Z doesn’t affect the cluster assignment.

2. Q (dy|z) = Q (dy) (Y and Z are independent).

Then the following holds:

R.1 V ∗ = 1 + V

R.2 The optimal centre of the added variable Z is 0 for every cluster k = 1, 2, . . . ,K.

Proof. Proof can be found in Section A.1 of the Appendix in [25].

Remark 2.5.3. Result R.1 shows that the addition of an uninformative variable increases
the value of the objective function, thereby worsening the model fit. This, in turn, offers
a basis for feature selection. Result R.2 justifies the penalisation of the size of the cluster
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centres as a feature selection approach.

[25] notes that the above argument in Proposition 2.5.2 is simplified as it assumes
that the cluster assignments do not change when adding the uninformative variable Z.
The asymptotic assignments might change if the added variable dominates the clustering
structure but this is rather unlikely under the assumption that at least a few informative
variables are already present and that the variables are standardised.

2.5.2 Regularised Jump Model Equation

Combining (2.5.1) with a jump penalty, we propose the following definition for the Regu-
larised Jump Model.

Definition 2.5.4 (Regularised Jump Model). The Regularised Jump Model with K states
is defined by the minimisation of the objective function

T−1∑
t=1

{
∥yt − µst∥

2 + λ11{st ̸=st+1}
}
+ ∥yT − µsT ∥

2 + γP
(
¯
µ
)
, (2.5.3)

with respect to
¯
µ and the state sequence (s1, s2, . . . , sT ). λ, γ ≥ 0 are hyperparameters

and the penalty function P : RK×p → R can be chosen from those listed in (2.5.2).

γ = 0 reduces Definition 2.5.4 to the Standard Jump Model in Definition 2.2.1. λ = 0
reduces Definition 2.5.4 to the Regularised K-Means model in Definition 2.5.1.

2.5.3 Comparison with Sparse Jump Models

Both the Regularised and Sparse Jump Models employ feature selection. However, their
feature selection approaches are different. In the calibration of the Sparse Jump Model
(shown in Algorithm 6), a feature weight vector w ∈ Rp is introduced and the observation

sequence Y = (y1,y2, . . . ,yT )
′
∈ RT×p is multiplied row-wise by w.

The row-wise multiplication transforms the data to a new coordinate system, a
transformation similar to that in Principal Component Analysis (PCA). In the PCA
method, data is transformed such that the greatest variance by some scalar projection of
the data comes to lie on the first coordinate, the second greatest variance on the second
coordinate, and so forth. In both PCA and the Sparse Jump Model, the features lose
their original interpretation.

In the calibration of the Sparse Jump Model, feature weights are assigned based on
their contribution to the BCSS. For an appropriate choice of the tuning parameter κ
in Definition 2.3.1, features with lower BCSS contributions are given zero weight, thus
indirectly inducing sparsity in the features.

In the Regularised Jump Model, feature selection is performed by direct regularisation
on the cluster centres. The calibration algorithm for the Regularised Jump Models
(Algorithm 8) alternates between learning the most informative set of features in a
subspace of Rp based on their corresponding cluster centres’ reduction of the objective
function in (2.5.3), and then projecting the cluster centres onto this subspace at each
iteration.

The Regularised Jump Model selects informative variables in the original coordinate
system, thus allowing them to retain their original interpretations. This is the main
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appeal of the Regularised Jump Model over the Sparse Jump Model: the Regularised
Jump Model performs direct and interpretable feature selection, in contrast to the Sparse
Jump Model which promotes feature selection by proxy and may not always yield sparse
solutions.

Additionally, whilst not explored in this work, the asymptotic properties proved in
[25] for the Regularised K-means model could be leveraged to prove similar ones for the
Regularised Jump Model. One of these properties is consistency and strong consistency in
terms of the Hausdorff distance (see [25] Theorem 6 and the proof in Appendix A. A.3).
No similar properties have been proved for the Sparse K-Means model introduced in [29],
the clustering analogue to the Sparse Jump Model.
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Chapter 3

Calibration of Jump Models

The chapter details the algorithms that perform calibration of the Jump Models outlined
in the previous chapter. The models are then tested in a simulation experiment.

3.1 Standard Jump Model Calibration

Denote
¯
µ := (µ1,µ2, . . . ,µK)

′
∈ RK×p the matrix of model parameters and the state

sequence S := (s1, s2, . . . , sT ).

Using Algorithm 1 as a template, the calibration algorithm for the Standard Jump
Model was proposed in [22] and is shown in Algorithm 5. The model is calibrated using
a coordinate descent algorithm that alternates between finding the model parameters
µ1,µ2, . . . ,µK that minimise the objective function (2.2.1) with a fixed state sequence
(Step 1.1) and finding the state sequence (s1, s2, . . . , sT ) that minimise the objective
function (2.2.1) with fixed µ1,µ2, . . . ,µK (Step 1.2).

Following the algorithm proposed in [22], the process is repeated ten times at the
most or until the state sequence does not change after one iteration. However, there is no
guarantee that the solution reached is the global solution since the solution depends on
the initial state sequence.

Therefore, we adopt the initialisation method in [22]: the coordinate descent algorithm
is run from ten different state sequences in parallel and the model that achieves the
lowest objective function value is chosen. These initial state sequences are generated by
the K-means++ seeding technique introduced in [2] which has been shown to improve
both the speed and accuracy of standard K-means clustering.

We note that the objective function in Step 5.1 of Algorithm 5 is convex in
¯
µ and

can be solved in closed-form. If state k appears in S(j−1) ((j − 1)th iteration of the state
sequence) at least once, µk ∈ Rp has the below optimal solution at the jth iteration:

µ
(j)
k =

∑T
t=1 yt11{s(j−1)

t =k}∑T
t=1 11{s(j−1)

t =k}

, k = 1, 2, . . . ,K.

S(j) in Step 5.2 is obtained using the dynamic programming template in (1.5.1). Define
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V (T, s) = ∥yT − µs∥2, (3.1.1a)

V (t, s) = ∥yt − µs∥2 +min
j

{
V (t+ 1, j) + λ11{s ̸=j}

}
, (3.1.1b)

for t = T − 1, . . . , 2, 1. The most likely state sequence is then given by

s1 = argmin
j

V (1, j) , (3.1.2a)

st = argmin
j

{
V (t, j) + λ11{st−1 ̸=j}

}
, t = 2, . . . , T. (3.1.2b)

Algorithm 5 Calibration of Standard Jump Model in [22]

Input: Standardised training dataset Y = (y1,y2, . . . ,yT ), assumed number of states
K, and jump penalty λ.

Step 1: Initialise state sequence S(0) :=
(
s
(0)
1 , s

(0)
2 , . . . , s

(0)
T

)
.

Step 2: Iterate for j = 1, 2, . . . , 10:

Fit model parameters µ(j):

¯
µ(j) ← argmin

¯
µ

T∑
t=1

∥yt − µ
s
(j−1)
t
∥2. (5.1)

Fit state sequence S(j):

S(j) ← argmin
S

{
T−1∑
t=1

{
∥yt − µ(j)

st ∥
2 + λ11{st ̸=st+1}

}
+ ∥yT − µ(j)

sT
∥2
}
. (5.2)

Break if S(j−1) = S(j).

Output: Estimated model parameters
¯
µ∗ and state sequence S∗.

3.2 Sparse Jump Model Calibration

The calibration of the Sparse Jump Model can be performed using an extension of the
coordinate descent algorithm in Algorithm 5. Holding the feature weight vector w fixed,
(2.3.2) is optimised in terms of

¯
µ and S. Secondly, holding

¯
µ and S fixed, (2.3.2) is

optimised in terms of w.

[20] comments that this iterative approach is not guaranteed to generate a global
optimum because the problem is non-convex. Additionally, the first optimisation involves
applying the fitting algorithm of the Standard Jump Model to a weighted version of the
data, which by itself is not guaranteed to find a global optimum.

In Step 2(d), solving (2.3.2) with respect to w, while keeping
¯
µ and S fixed, can be

done using soft-thresholding, a technique used in signal processing to compress signals.
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A soft-thresholding operator takes as inputs an array of values and a threshold value.
The operator applies shrinkage whereby values below the threshold are set to zero, and
values above the threshold are reduced by the threshold value.

The operation effectively denoises the input array by shrinking or eliminating small
components while preserving larger components. The soft-threholding operator S is given
by S (x, c) = sgn (x) ⊙ (|x| − c)+, where x+ denotes the positive part of the elements in
x and ⊙ denotes element-wise multiplication.

The solution to the convex problem (2.3.2), which follows from the Karush-

Kuhn-Tucker conditions (more details can be found in [7]), is w = S(x,∆)
∥S(x,∆)∥ where

x =
∑K

k=1 |Ck| (µk − µ̄)2 is a vector comprising the between-cluster sum of squares
(BCSS) contributions of each feature.

Here, ∆ = 0 if that results in ∥w∥1 ≤ κ; otherwise, we choose ∆ > 0 to yield ∥w∥1 = κ.
This assumes that there is a unique maximal element of x and that 1 ≤ κ ≤ √p [29].

3.3 Regularised Jump Model Calibration

We propose calibrating the Regularised Jump Models using a coordinate descent al-
gorithm similar to Algorithm 5 for Standard Jump Models. The coordinate descent
algorithm alternates between minimising (2.5.3) with respect to the state sequence

¯
µ

while keeping S fixed, and minimising (2.5.3) with respect to S while keeping
¯
µ fixed.

These two steps are repeated for ten iterations at the most or until S does not change
after two consecutive iterations.

Firstly, seven initial state sequences are generated using the strategy proposed in
[25] which the authors show to be the most optimal for the Regularised K-Means model
after benchmarking it against popular initialisation strategies. The initialisation strategy
incorporates potential sparsity in the initial cluster centres in light of the feature selection
aspect of the Regularised Jump Model. The initialisation strategy is given in Algorithm 7.

Each initial state sequence outputted from Algorithm 7 is used as an input in Algorithm
8. The algorithm is run in parallel using these seven initial cluster assignments and the
run which ultimately yield the lowest objective function value, is chosen as the final result.

Once a initial state sequence has been generated, the model parameters
¯
µ are updated

(Step 8.1). In particular, assuming a fixed state sequence S = (s1, s2, . . . , sT ), the
following problem is solved:

argmin

¯
µ

T∑
t=1

||yt − µst ||
2 + γP

(
¯
µ
)
. (3.3.1)
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Algorithm 6 Calibration of Sparse Jump Model in [20]

Input: Standardised training dataset Y = (y1,y2, . . . ,yT ), assumed number of states K,
and hyperparameters λ, κ.

Step 1: Initialise feature weights w as w(0) =
(

1√
p ,

1√
p , . . . ,

1√
p

)
.

Step 2: Iterate for i = 1, 2, . . . , until ∥w(i) −w(i−1)∥1/∥w(i−1)∥1 < 10−4:

(a) Compute sequence of weighted features

zt = yt ⊙
√

w(i−1), t = 1, 2, . . . , T,

where
√
w(i) is the element-wise square root of w(i).

(b) Initialise state sequence S(0) :=
(
s
(0)
1 , s

(0)
2 , . . . , s

(0)
T

)
.

(c) Iterate for j = 1, 2, . . . , 10:

i. Fit model parameters:

¯
µ(j) ← argmin

¯
µ

T∑
t=1

∥zt − µ
s
(j−1)
t
∥2.

ii. Fit state sequence:

S(j) ← argmin
S

{
T∑
t=1

{
∥zt − µ(j)

st ∥
2 + λ11{st ̸=st+1}

}
+ ∥zT − µ(j)

sT
∥2
}
.

Break if S(j−1) = S(j).

(d) Update weights w(i), while holding the model parameters
¯
µ(j) and S(j)

fixed, by solving (2.3.2) using soft thresholding.

Output: Estimated model parameters
¯
µ∗, state sequence S∗ and feature weights w∗.

Algorithm 7 Initialisation of state sequences for calibration of Regularised Jump Model
in [25]

Step 1 Cluster Y = (y1,y2, . . . ,yT ) using standard K-means (shown in Algorithm 4), ob-

taining a matrix of initial cluster centres
¯
µ = (µ1,µ2, . . . ,µK)

′
.

Step 2 Compute the Euclidean norm for each cluster centre dj = ∥µ.,j∥ for j = 1, 2, . . . , p
and order them in descending order.

Step 3 Execute K-means on the subset of variables corresponding to the 1, 2, 5, 10, 25, 50
and 100% largest dj .

Output: Seven initial state sequences
(
s11, s

1
2, . . . , s

1
T

)
,
(
s21, s

2
2, . . . , s

2
T

)
, . . . ,(

s71, s
7
2, . . . , s

7
T

)
.
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The solutions to (3.3.1) for each penalty function in (2.5.2), is given in A.1.3. Once
¯
µ

is updated, the state sequence S is updated.

Since Steps 8.2 and 5.2 are identical, the state sequence is updated using the same
dynamic programming equations in (3.1.1) and (3.1.2).

Algorithm 8 Coordinate descent algorithm for calibration of Regularised Jump Model

Input: Standardised training dataset Y = (y1,y2, . . . ,yT ), assumed number of
states K, penalty function P, hyperparameters λ, γ, and initial state sequence

S(0) :=
(
s
(0)
1 , s

(0)
2 , . . . , s

(0)
T

)
generated using Algorithm 7.

Step 1: Iterate for k = 1, 2, . . . , 10:

¯
µ(k) ← argmin

¯
µ

{
T∑
t=1

||yt − µ
s
(k−1)
t
||2 + γP

(
¯
µ
)}

, (8.1)

S(k) ← argmin
S

{
T−1∑
t=1

{
∥yt − µ(k)

st ∥
2 + λ11{st ̸=st+1}

}
+ ∥yT − µ(k)

sT
∥2
}
. (8.2)

Break if S(k) = S(k−1).

Output: Estimated matrix of cluster centres (or model parameters)
¯
µ∗ and state sequence

S∗.

3.4 Hyperparameter Tuning

Table 3.1 shows the hyperparameters of each Jump Model.

Model λ κ γ

Standard Jump ✓

Sparse Jump ✓ ✓

Regularised Jump ✓ ✓

Table 3.1: Jump Model hyperparameters.

The literature on the hyperparameter tuning of Jump Models is limited. [11] suggests
tuning based on a grid search of potential hyperparmeter values and picking which
combination produces the lowest Fang-Tang Information Criterion (FTIC) value, a
criterion introduced in [12].

In [11], the FTIC equation is an approximation and applies only to the Standard
and Sparse Jump Models. Approximating information criteria such as the FTIC would
require knowledge of the likelihood function of the various Jump Models which, for the
Regularised Jump Models, is unavailable.

Instead, we opt for a non-parametric criterion that is applicable to all Jump Models.
We propose hyperparameter tuning based on a criterion pertaining to clustering stability.
The key idea of clustering stability is that if we repeatedly draw samples from the
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same distribution as that of the original dataset, and apply the Jump Model calibration
algorithms, a good algorithm should produce state sequences that are similar from one
sample to another.

Denote Z = {X1, X2, . . . , XT } a random sample of size T from some unknown
distribution function F : Rp → R. Let θ denotes the vector of active hyperparameters
for a given Jump Model which can be referenced in Table 3.1. A clustering assignment
ψ is defined as a mapping ψ : Rp → {1, 2, . . . ,K} and a given Jump Model generates T
clustering assignments Ψ (.,θ) when applied to a sample Z.

Definition 3.4.1 (Clustering Distance). The clustering distance between any two clus-
tering assignments ψ1 and ψ2 is defined as

d (ψ1, ψ2) = EX,Y∼F {11{ψ1(X)=ψ1(Y )} − 11{ψ2(X)=ψ2(Y )}},

where X,Y ∈ Rp are realisations sampled from F .

The distance between ψ1 and ψ2 measures the probability of their disagreement. The
clustering instability of a given Jump Model is given in the following definition:

Definition 3.4.2 (Clustering Instability). The clustering instability of a clustering algo-
rithm Ψ is given by

S (Ψ;θ, T ) = E[d (Ψ (Z1;θ) ,Ψ(Z2;θ))], (3.4.1)

where Ψ (Z1;θ) and Ψ (Z2;θ) are two clustering assignments obtained by applying
Ψ (.;θ) to Z1 and Z2 which are two independent samples from F of size T .

Hyperparameter tuning is thus performed by finding a set of hyperparameter values
that minimise (3.4.1). Various methods of estimating (3.4.1) for hyperparameter tuning
in clustering problems have been proposed ([26], [16] and [6]).

We opt for a simple method of estimating (3.4.1) that is similar to the one proposed
in [16]; ten bootstrapped samples of the dataset Y are generated, each of which are size
T . For a fixed combination of hyperparameter values and a given Jump Model, ten
clustering assignments (or state sequences) are estimated once the model is fitted onto
each bootstrapped sample. The number of times any two state sequences are not equal,
are then counted and averaged across all

(
10
2

)
= 45 comparisons. This estimate can be

expressed mathematically as

Ŝ (Ψ;θ, T ) =

(
10

2

)−1 10∑
i=1

10∑
j=i+1

( T∑
t=1

11{ŝit ̸=ŝ
j
t}

)
, (3.4.2)

where ŝit is the estimated state at time t for the ith boostrapped sample.

3.5 Simulation Study

We conduct a simulation study to compare the accuracy of the Standard, Sparse and
Regularised Jump Models, with respect to both state estimation and feature selection.
In the simulation study, the true state sequence and array of relevant features are both
known, which makes it possible to evaluate the ability of each model to correctly identify
the state sequence and array of relevant features.
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We adopt the same data generating process as in [20]. In their simulation study,
the authors test the Standard and Sparse Jump Models against several popular regime-
switching models such as the Hidden Markov Model (HMM) and its various extensions,
and determine that these two Jump Models deliver superior performance.

Instead of duplicating the simulation study by testing the same regime-switching mod-
els, we test the proposed Regularised Jump Models and compare their performances with
the Standard and Sparse Jump Models.

3.5.1 Setup

Data is simulated from a three-state multivariate Gaussian Hidden Markov Model (HMM)
(an introduction to the HMM can be found in [24]).

yt|st ∼ N
(
µst , IP

)
,

where IP is an identity matrix of order P and st is a first-order Markov chain, with
parameters

(µ1)p = µ11{p≤15}, µ2 = 0P , (µ3)p = −µ11{p≤15},

Π =


0.9903 0.0047 0.0050

0.0157 0.9666 0.0177

0.0284 0.0300 0.9416

 ,

where (µ)p is the pth element of the vector µ and 0P is a vector containing P zeros.
Π is the transition probability matrix of the state sequence and the values of Π come
from an empirical application of the HMM onto weekly stock returns in [22]. Since the
covariance matrix in all states is the identity matrix, all information separating the states
is contained in the conditional mean vector µst .

The data is simulated by first generating a sequence of states according to Π, starting
from its stationary distribution (we set P (s0 = k) = 1

3 for k = 1, 2, 3). Secondly, at time
t, observations are sampled from multivariate Gaussian distributions with mean vector
µst and covariance matrix IP .

In state one, the first fifteen features have mean value µ and in state three, they have
mean value −µ. All other features have mean zero in all states. Hence, features beyond
the first fifteen are white noise and are irrelevant. Under the second state, the mean value
of the relevant and irrelevant features are equal, thereby raising the importance of feature
selection in improving the state estimation accuracy of the models.

3.5.2 Model Tuning and Fitting

Once the data is simulated, the hyperparameters for each Jump Model are tuned based
on the minimisation of the clustering instability estimate in (3.4.2). The time-series
bootstrapping is performed using the Stationary Bootstrap method introduced in [23].
The hyperparameter tuning is performed using the Optuna library in Python (see [1] for
more details). In our implementation of the Standard and Sparse Jump Models, we used
and adapted the supplementary Python code provided in [20].
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The jump and regularisation penalties, λ and γ respectively, were chosen over seven
logarithmically spaced values between 10−1 and 102. κ for the Sparse Jump Model was
chosen over seven equally spaced values between 1 and

√
P . Once the hyperparameters

are tuned, the Jump Models were fit using the algorithms outlined in the chapter.

3.5.3 Evaluation of Model Accuracy

To evaluate model accuracy of each Jump Model with respect to state estimation, we use
the Balanced Accuracy (BAC) metric introduced in [8]. BAC can be written as

BAC =
1

K

K∑
k=1

tpk
tpk + fnk

, (3.5.1)

which is the average of accuracy per observed state to avoid inflated performance
estimates on imbalanced datasets ([20]). tpk is the number of true positives and fnk is
the number of false negatives in state k.

BAC is also used to measure model accuracy of the models with respect to feature
selection. Firstly, because the Standard and Regularised P2 Jump Models do not induce
sparsity in the features (see Proposition A.1.3 for more details on the Regularised P2 Jump
Model), they are excluded. The estimated array of relevant features (ωj) ∈ RP has entries

ωj = 11{∥µ̂.,j∥>0}, j = 1, 2, . . . , P, (3.5.2)

where µ̂.,j is the j
th column of the estimated matrix of cluster centres ˆ

¯
µ. The true array

of relevant features is defined as(
1, 1, . . . , 1︸ ︷︷ ︸

Relevant features

, 0, 0, . . . , 0︸ ︷︷ ︸
Irrelevant features

)
. (3.5.3)

In (3.5.3), the first fifteen entries are ones, indicating that the first fifteen features are
relevant. The remaining P − 15 entries are zeros, indicating that the last P − 15 features
are irrelevant. Using the estimated and true sequences defined above, the BAC is then
calculated to evaluate the accuracy of the model in terms of feature selection.

3.5.4 Results

Figure 3.1 shows the BAC of the Regularised Jump Models as a function of the regu-
larisation parameter γ, for different numbers of observations of T and different jump
penalties λ, using the same simulation setup laid out in Subsection 3.5.1 (setting µ = 0.5
and P = 60). The BAC was averaged over 100 simulations.

Table 3.2 compare the state estimation performances of the Standard Jump Model
(Standard), Sparse Jump Model (Sparse) and Regularised Jump Model with Pk Penalty
Function (Regularised Pk) for k ∈ {0, 1, 2, 3}, for different values of µ and for different
numbers of features P . Table 3.3 compare the feature selection performances of the
Sparse, Regularised P0,P1 and P3 Jump Models for different values of µ and for different
numbers of features P .

The reported values of Tables 3.2 and 3.3 are the mean (and standard deviation)
of the BAC of the estimated state sequence and of (3.5.2) respectively; the means and
standard deviations are calculated over 100 simulations of T = 500 observations for each
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combination of µ and P .

Similar to [20], we use the Wilcoxon signed-rank test to determine whether the differ-
ences between the BACs in the Regularised Jump Models and those in the Sparse Jump
Model are statistically significant. Bold entries in Tables 3.2 and 3.3 denote BACs of
a Regularised Jump Model that are higher than that of the Sparse Jump Model with
statistical significance α = 0.05.

Figure 3.1: Average BAC of Regularised Jump Models as a function of the jump penalty
λ, for various combinations of time lengths T and regularisation parameter values γ.

3.5.5 Observations of Results

Differences in BAC based on hyperparameter and time length: Figure 3.1
shows marginal differences in BACs based on hyperparameter values and time
length, for the Regularised Jump models. For the Regularised P1,P2 and P3
models, the optimal values for γ and λ are 0.1 and ≈ 10 respectively. The BAC
decreases past λ = 25. In most cases, a higher time length leads to marginally
higher BACs.

BAC Dependence on µ, T and P : In addition to the feature means µ and the
number of total features P , the BACs in Tables 3.2 and 3.3 are also a function of
the number of relevant features and the time length of the series T .
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Increasing either of the latter would generally lead to higher BACs. This can be
intuited from Table 3.2 in which the BACs generally decrease as the number of total
features P increases, which is equivalent to the ratio of irrelevant to relevant features
increasing.

Importance of feature selection: Comparing Standard and the remaining models in
Table 3.2, it is evident that feature selection improves accuracy of state estimation
when the number of features P is increased. In Table 3.2, the BAC of the Standard
Jump Model, a model that does not perform feature selection, generally decreases
when P is increased. On the other hand, the BAC of the Sparse and Regularised
Jump Models stay approximately level compared to the case of there being no
irrelevant features (when P = 15).

The feature selection is more efficient for higher values of µ since for higher values of
µ, the relevance of the first fifteen features becomes more apparent and hence easier
for the model to identify. This logic is reinforced by the results in Table 3.3; the
feature selection performance of the models improves for higher values of µ.

Correspondence between state estimation and feature selection: When com-
paring the relative performances of the Sparse, Regularised P0,P1 and P3 Jump
Models in Tables 3.2 and 3.3, we can see a correspondence between classification
accuracy in terms of state estimation, and classification accuracy in terms of feature
selection: models that are more accurate in terms of feature selection, are also more
accurate in terms of state estimation. This further highlights the importance of
feature selection in accurately estimating the true state sequence.

If we unbundle the BACs in Tables 3.2 and 3.3 in terms of µ, model and number of
features P , and calculate the Spearman rank correlation coefficient between these
two unbundled series of BAC values, we compute an estimate of 91% with a p-value
of O

(
10−24

)
. This leads us to reject the null hypothesis of there being no monotonic

relationship between state estimation accuracy and feature selection accuracy.

Evidence of Regularised Jump Model Outperformance: Tables 3.2 and 3.3
demonstrate outperformance of the Regularised P1,P2 and P3 Models compared to
both the Standard and Sparse Jump Models. The Regularised P0 model performs
roughly in line with, or slight worse than, the Sparse Jump Model in terms of state
estimation and feature selection.

In Table 3.2, the outperformance of the Regularised P1,P2 and P3 is most evident
for the cases µ ≥ 0.5 and P < 300. For µ = 0.25 and P = 300, all models produce
roughly the same BACs that range between 0.334 and 0.344.

Similar results can be observed in Table 3.3. All models perform at approximately
the same level for µ = 0.25 and for µ ≥ 0.5, the Regularised P1 and P3 outperform
both the Sparse and Regularised P0 models. The outperformance of the Regularised
P1,P2 and P3 over the Sparse Jump Model is statistically significant for some cases,
as shown by the bold entries in Tables 3.2 and 3.3.

33



P 15 30 60 150 300

µ Model

0.25 Standard 0.351
(0.06)

0.338
(0.05)

0.332
(0.05)

0.343
(0.04)

0.334
(0.03)

Sparse 0.349
(0.06)

0.343
(0.05)

0.343
(0.05)

0.337
(0.04)

0.336
(0.03)

Regularised P0 0.354
(0.06)

0.345
(0.05)

0.336
(0.05)

0.341
(0.05)

0.334
(0.05)

Regularised P1 0.359
(0.08)

0.345
(0.06)

0.341
(0.06)

0.335
(0.04)

0.344
(0.04)

Regularised P2 0.343
(0.07)

0.342
(0.06)

0.340
(0.05)

0.335
(0.05)

0.344
(0.04)

Regularised P3 0.348
(0.07)

0.343
(0.06)

0.339
(0.05)

0.342
(0.05)

0.334
(0.04)

0.50 Standard 0.362
(0.10)

0.368
(0.08)

0.341
(0.07)

0.341
(0.05)

0.336
(0.04)

Sparse 0.376
(0.08)

0.356
(0.08)

0.345
(0.06)

0.345
(0.05)

0.344
(0.04)

Regularised P0 0.358
(0.09)

0.374
(0.09)

0.365
(0.09)

0.349
(0.07)

0.339
(0.06)

Regularised P1 0.362
(0.11)

0.393
(0.13)

0.387
(0.12)

0.350
(0.09)

0.349
(0.05)

Regularised P2 0.380
(0.14)

0.382
(0.14)

0.389
(0.13)

0.344
(0.07)

0.360
(0.07)

Regularised P3 0.383
(0.14)

0.382
(0.14)

0.374
(0.13)

0.358
(0.08)

0.354
(0.06)

0.75 Standard 0.385
(0.15)

0.401
(0.13)

0.366
(0.10)

0.353
(0.06)

0.355
(0.06)

Sparse 0.380
(0.12)

0.363
(0.11)

0.364
(0.09)

0.347
(0.07)

0.335
(0.06)

Regularised P0 0.418
(0.14)

0.386
(0.14)

0.389
(0.14)

0.387
(0.13)

0.408
(0.14)

Regularised P1 0.418
(0.18)

0.406
(0.18)

0.432
(0.18)

0.394
(0.17)

0.458
(0.18)

Regularised P2 0.400
(0.18)

0.420
(0.16)

0.447
(0.18)

0.399
(0.18)

0.447
(0.18)

Regularised P3 0.407
(0.18)

0.435
(0.19)

0.391
(0.17)

0.403
(0.15)

0.468
(0.17)

1.00 Standard 0.448
(0.20)

0.423
(0.15)

0.391
(0.13)

0.357
(0.09)

0.347
(0.08)

Sparse 0.408
(0.15)

0.393
(0.14)

0.363
(0.12)

0.374
(0.11)

0.347
(0.08)

Regularised P0 0.423
(0.19)

0.409
(0.18)

0.464
(0.19)

0.411
(0.16)

0.494
(0.20)

Regularised P1 0.483
(0.22)

0.446
(0.24)

0.524
(0.25)

0.499
(0.24)

0.564
(0.22)

Regularised P2 0.495
(0.23)

0.465
(0.24)

0.523
(0.23)

0.462
(0.23)

0.498
(0.23)

Regularised P3 0.444
(0.22)

0.447
(0.24)

0.507
(0.24)

0.492
(0.22)

0.597
(0.23)

Table 3.2: Average BAC of state sequence (3 d.p.) for each Jump Model, across different
values of µ and number of features P . Values in brackets are standard deviations (2 d.p.).
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P 30 60 150 300

µ Model

0.25 Sparse 0.499
(0.08)

0.502
(0.05)

0.502
(0.03)

0.506
(0.03)

Regularised P0 0.507
(0.04)

0.498
(0.02)

0.502
(0.01)

0.501
(0.02)

Regularised P1 0.511
(0.05)

0.505
(0.03)

0.496
(0.02)

0.504
(0.03)

Regularised P3 0.503
(0.05)

0.506
(0.03)

0.499
(0.03)

0.498
(0.04)

0.5 Sparse 0.509
(0.07)

0.507
(0.05)

0.509
(0.04)

0.505
(0.04)

Regularised P0 0.530
(0.05)

0.529
(0.04)

0.513
(0.03)

0.511
(0.03)

Regularised P1 0.560
(0.10)

0.573
(0.10)

0.535
(0.08)

0.509
(0.04)

Regularised P3 0.582
(0.10)

0.588
(0.11)

0.528
(0.06)

0.513
(0.05)

0.75 Sparse 0.538
(0.07)

0.539
(0.08)

0.531
(0.07)

0.522
(0.06)

Regularised P0 0.540
(0.07)

0.538
(0.05)

0.544
(0.07)

0.568
(0.05)

Regularised P1 0.594
(0.13)

0.608
(0.14)

0.621
(0.15)

0.650
(0.13)

Regularised P3 0.621
(0.15)

0.603
(0.13)

0.631
(0.16)

0.665
(0.14)

1.00 Sparse 0.574
(0.11)

0.602
(0.12)

0.587
(0.12)

0.563
(0.10)

Regularised P0 0.557
(0.10)

0.549
(0.09)

0.548
(0.08)

0.624
(0.10)

Regularised P1 0.622
(0.16)

0.660
(0.18)

0.695
(0.18)

0.743
(0.17)

Regularised P3 0.603
(0.14)

0.629
(0.15)

0.637
(0.16)

0.782
(0.17)

Table 3.3: Average BAC of relevant features (3 d.p.) for each Jump Model, across different
values of µ and number of features P . Values in brackets are standard deviations (2 d.p.).

35



Chapter 4

Empirical Study

The chapter presents the empirical calibration of Jump Models onto a dataset comprising
market and macroeconomic variables. To the best of our knowledge, this is the first
empirical Jump Model calibration whose features include macroeconomic variables. In
[20] and [11] for instance, Jump Models are fitted onto features pertaining to the returns
of equities and cryptocurrencies respectively. In our study, we calibrate Jump Models
onto a dataset containing a broad and diverse collection of features which are believed to
influence market regime dynamics.

In the calibration, we assume K = 2 number of states or regimes (the terms ”regime”
and ”state” are used interchangeably henceforth). We label the first regime a normal/bull
market which is marked by characteristics such as stable economic conditions, normal to
strong levels of business profitability and positive investor sentiment. The second regime
is labelled a bear market and is marked by characteristics opposite to that of a bull market.

Once the Jump Models were calibrated, the model outputs were used to backtest
strategies that trade the Euro iTraxx Main five-year contract, a Index CDS contract. A
short introduction to Credit Default Swaps is given in A.2.

4.1 Data Pre-Processing

The twenty-two data series listed in Table A.3 were used in the empirical calibration
of the Jump Models. The series cover a broad range of factors relevant to financial
markets; these factors have been labelled Commodites, Credit Valuation and Momentum,
Currency, Macro Indicators, Risk-Free Rates and Sentiment.

Before calibrating the Jump Models, each series was differenced to make it more
stationary. The differencing type was based on the data type of the series: for series with
a data type of Price, a percentage difference was applied. For the remaining data series, a
simple difference was applied. Each series was differenced using one-week, four-week and
twelve-week lags. Therefore, there were p = 22 × 3 = 66 features used in the empirical
calibration. We call the resulting dataset with 66 columns the Features Dataset.

The data series shown in Table A.3 differ in term of their date of inception. As a result,
a start date of 31st December 2002 was chosen to strike a balance between maximising
the length and coverage of the Features Dataset. Missing entries were imputed using the
Multivariate Imputation by Chained Equations method ([27]).
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4.2 Backtest Methodology

4.2.1 CDS Data and Return Estimation

We used Euro iTraxx Main 5Y spreads from the 12th of October 2011 to the 5th of
August 2024. The spreads of this Index CDS contract are given in Figure 4.1. We refer
to the specifc CDS contract as ”the CDS contract” henceforth.

We convert the spreads shown in Figure 4.1 into a daily return approximation to be
used for the backtest. Let st denote the CDS spread at time t. Assuming 252 business
days in a year, the approximated daily return at time t is calculated as

Figure 4.1: EUR iTraxx Main 5Y Spreads between October 2011 and August 2024.

r̂t = −
1

252
st−1︸ ︷︷ ︸

Carry

+SD (st − st−1)︸ ︷︷ ︸
Spread Change

, (4.2.1)

where SD denotes the spread duration of the CDS contract. Spread duration is the
price sensitivity of a credit instrument to changes in credit spreads. Since the term of the
studied contract is five years, we assume SD = 4.5.

Assuming the normal case of credit spreads being strictly positive, the Carry term in
(4.2.1) shows that a CDS protection buyer pays a rate proportional to st−1. The negative
carry incurred is offset when the Spread Change is positive i.e when credit spreads widen.
The converse holds for a CDS protection seller: the seller earns a rate proportional to st−1

but suffers losses when credit spreads widen.

4.2.2 Model Training and Online Learning of Market Regimes

The Jump Models tested were tuned and fitted onto the Features Dataset on the last day
of every month covered by the dataset, using a rolling ten-year window. Each rolling-
window sub-sample of the Features Dataset was standardised using the sub-sample’s
mean and standard deviation.
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Once the Jump Models were tuned (using the methodology laid out in Section 3.4) and
fitted, states for the following month were estimated using the online learning framework
introduced in Algorithm 3.

The online learning algorithm is given in [21]. Let
¯
µ ∈ R2×66 be the estimated model

parameter values on day t (assuming 30 days in a month, t = 1, 2, . . . , 29). Let ŝ0 be
the estimated state on the last day of the previous month. Finally, let λ be the tuned
hyperparameter value. By time t, we assume knowledge of the standardised data point
zt ∈ R66 and the prior arrival cost function At−1.

As hinted in [21], the model parameters
¯
µ can be updated once the arrival cost

function is updated and the state is estimated at time t; this parameter update can affect
state estimates in later days of the month. This can be a useful feature since, under our
backtest methodology, the Jump Models are fitted on the last day of the month and so,
without updating, the model parameters do not change intra-month.

Parameter updating of a given Jump Model would help the model adapt better
to incoming daily data and navigate sharp movements in financial markets such as an
equities sell-off and/or a volatility spike. This work proposes an averaging method to
update the model parameters

¯
µ. Under our approach, the ŝtht row of

¯
µ is updated, where

ŝt is the estimated state at time t.

In mathematical terms, we firstly add a time superscript to
¯
µ and denote it

¯
µt ∈ R2×66.

Furthermore, let µtŝt ∈ R66 be the ŝtht row of
¯
µt. µtŝt is updated by the averaging equation

µtŝt = µt−1
ŝt

+ αt−1

(
zt − µt−1

ŝt

)
, (4.2.2)

where αt ∈ [0, 1] is the step size at time t. If αt = 1/t, then (4.2.2) is a simple
moving-average (SMA) of the model parameters. If αt ≡ α, then (4.2.2) is an exponential
moving-average (EMA) with smoothing factor α.

The SMA assigns equal weight to all past values of µtŝt while the EMA assigns weights
that decrease exponentially over time. For α close to one, the EMA assigns more weight
to recent observations which makes the EMA more quickly respond to changes in the
incoming data. For α close to zero, the converse holds: there is less weight given to
recent observations which makes the EMA less responsive to changes in the incoming data.

The model training and state estimation process is visualised in Figure 4.2. The
proposed online learning algorithm is given in Algorithm 9.
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1. Model Tuning and Training

Tune and train Jump Model

Dec 02 Dec 12 Aug 24

2. Regime Estimation

Tune and train Jump Model

Estimate states daily

Dec 02 Dec 12

Jan 13

Aug 24

3. Tuning and Training of Next Sub-Sample

Tune and train Jump Model

Jan 03 Jan 13 Aug 24

Figure 4.2: Process for training of Features Dataset.

Algorithm 9 Online learning of state sequence

Input: Initial estimates of model parameters and state (ˆ
¯
µ0 and ŝ0 respectively), tuned

jump penalty λ, standardised observation zt, prior arrival cost function At−1, and step
size parameter αt:

Iterate for t = 1, 2, . . . , 29,

At (st)← min
st−1

{∥zt − µ̂t−1
st−1
∥2 +At−1 (st−1) + λ11{st−1 ̸=st}}, (9.1)

ŝt ← argmin
s
{∥zt − µ̂t−1

s ∥2 +At (s)}, (9.2)

µ̂tŝt ← µ̂t−1
ŝt

+ αt−1

(
zt − µ̂t−1

ŝt

)
. (9.3)

Output: Sequence of arrival functions (A1,A2, . . . ,A29), estimated states (ŝ1, ŝ2, . . . , ŝ29)
and parameters

(
ˆ
¯
µ1, ˆ

¯
µ2, . . . , ˆ

¯
µ29
)
.

4.2.3 Trading Strategies

The states estimated from Algorithm 9 are then used to trade the CDS contract. The
trading strategies considered are based on the stylised fact of financial markets that bear
markets are generally characterised by a sharp rise in corporate credit spreads, reflecting
heightened credit risk in corporate borrowers. This can be visualised by Figure 4.3, in
which we have the same spreads shown in Figure 4.1 shaded with the regime estimates of
the Regularised P3 Jump Model.

We can see from Figure 4.3 that time periods shaded with red coincide most of

39



the time with a sharp rise in the spread of the CDS contract. Therefore, buying CDS
protection during these time periods would generate positive profits. Conversely, during
time periods shaded green, credit spreads are generally at lower levels and are relatively
stable. In those periods, it is more likely that selling CDS protection would generate
positive profits.

Therefore, we’ve devised two simple trading strategies based on the above trading
logic. Let ŝt ∈ {1, 2} be the estimated state at time t, where st = 1 denotes a normal/bull
market and st = 2 denotes a bear market. Additionally, let wt be the weight on the CDS
contract. The two trading strategies are expressed mathematically as

Strategy 1 (Buying 100% Protection): wt = ŝt − 1,

Strategy 2 (Buying or Selling 100% Protection): wt = 2ŝt − 3,

where wt ∈ {0, 1} in Strategy 1 and wt ∈ {−1, 1} in Strategy 2. Assuming zero trading
costs, the daily return of the strategy is calculated as wt−1r̂t, where r̂t is the CDS return
approximation in (4.2.1).

Figure 4.3: EUR iTraxx Main 5Y Spreads shaded with state estimates from the Regu-
larised P3 Jump Model. The states were estimated using the methodology visualised in
Figure 4.2.

4.3 Backtest Results

The six Jump Models were backtested using the methodology outlined in Section 4.2.
Jump Models that employ parameter updating (Step 9.3) were also tested. More
specifically, we tested all six Jump Models with a SMA parameter update, and EMA
parameter updates with smoothing factors α = 0.25, 0.5, 0.75.

We found that the state estimates of the Jump Models with these parameter update
configurations were identical to those without them. Therefore, the strategy performances
of Jump Models with parameter updates were excluded.
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4.3.1 Strategy Performance and Benchmarking

Figures 4.4 and 4.5 depict the total returns and drawdowns of Strategies 1 and 2
respectively, for each Jump Model tested. Tables 4.4 and 4.5 provide some performance
metrics of Strategy 1 and 2 respectively; an overview of the calculations behind each
performance metric is given in A.4.

Furthermore, Figures 4.6 and 4.7 show the same total returns of Strategies 1 and 2
respectively as that in Figures 4.4 and 4.5, compared to the total returns of a benchmark.
The benchmark return was calculated as the return of the CDS contract multiplied by
the average weight of the strategy being benchmarked. The average weights for both
strategies and all Jump Models are shown in Table 4.3.

Denoting the average weight of the strategy as w̄ := 1
T

∑T
t=1wt, the daily return of

the benchmark at time t was calculated as w̄r̂t, where r̂t was calculated using (4.2.1).
Figures 4.6 and 4.7 therefore compare dynamic CDS strategies, whose weights change
according to the state estimates of a given Jump Model, with static CDS strategies such
that their average exposures are equivalent.

Referring to the state estimates from each Jump Model in Figure A.2, the state
estimates from the Regularised P1,P2 and P3 Jump Models can be described as a nor-
mal/bull market interspersed with short-lived bear market periods. The state estimates
from the Standard, Sparse and Regularised P0 Jump Models, on the other hand, switch
more often between normal/bull and bear markets.

These descriptions can be quantified by the empirical transition probability matrices
in Figure A.3 where the probabilities of staying in a normal/bull market estimated by the
Regularised P1,P2 and P3 Jump Models proved to be higher than those estimated by the
other models.

Figures 4.4 and 4.5 show that the Regularised P1,P2 and P3 Jump Models outperform
the other three Jump Models in both Strategies 1 and 2. One period of outperformance
from the three models was in March 2020: the strategies corresponding to the Regularised
P1,P2 and P3 Jump Models timed the purchase of CDS protection better than the other
models when corporate credit spreads rose sharply in response to the events surrounding
the COVID-19 pandemic.

In Strategy 1, all Jump Models generate a negative average return (shown by the
AAGR and CAGR in Table 4.1). This is characteristic of strategies that buy CDS
protection. Buying CDS protection is an example of a positively skewed strategy that
incurs regular, small losses, represented by the CDS premiums paid to the protection
seller, but has the potential of generating substantial profits during rare events, as
empirically shown by the market events of March 2020.

Furthermore, Figure 4.6 shows that all strategies underperform their benchmarks
except the Regularised P3 Jump Model. This provides evidence that dynamically buying
CDS protection based on the Regularised P3 Jump Model can outperform a static
strategy that buys a fixed amount of CDS protection, and thereby reduce the negative
carry associated with buying CDS protection.

In Strategy 2, Table 4.2 shows that the Regularised Jump Models generate a positive
average return, as opposed to the Standard and Sparse Jump Models. Referring to
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Table 4.3, the negative weights for the Strategy 2 row indicate that all strategies are
benchmarked against a strategy that sells CDS protection.

The relative performance of the Regularised P3 Jump Model in Figure 4.7 provides
evidence that a dynamic strategy that buys and sells CDS protection based on the model’s
state estimates, outperforms a strategy that sells a fixed amount of CDS protection.

Figure 4.4: Total returns and drawdowns of Strategy 1.

Standard Sparse Regularised
P0

Regularised
P1

Regularised
P2

Regularised
P3

AAGR (%) -0.79 -0.53 -0.35 -0.27 -0.17 -0.07

CAGR (%) -0.80 -0.50 -0.36 -0.28 -0.18 -0.08

Volatility (%) 1.12 1.02 0.86 0.97 0.94 0.95

Maximum Drawdown (%) 9.63 6.38 5.35 5.59 4.03 3.78

Sharpe Ratio -0.69 -0.52 -0.41 -0.28 -0.18 -0.07

Calmar Ratio -0.08 -0.09 -0.07 -0.05 -0.04 -0.02

Table 4.1: Strategy 1 Performance Metrics (2.d.p.).
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Figure 4.5: Total returns and drawdowns of Strategy 2.

Standard Sparse Regularised
P0

Regularised
P1

Regularised
P2

Regularised
P3

AAGR (%) -0.65 -0.16 0.20 0.35 0.55 0.75

CAGR (%) -0.69 -0.18 0.19 0.35 0.56 0.77

Volatility (%) 1.73 1.73 1.73 1.73 1.73 1.73

Maximum Drawdown (%) 9.81 6.27 6.35 6.21 4.01 4.39

Sharpe Ratio -0.38 -0.09 0.11 0.20 0.32 0.43

Calmar Ratio -0.07 -0.03 0.03 0.06 0.14 0.17

Table 4.2: Strategy 2 Performance Metrics (2.d.p.).

Standard Sparse Regularised P0 Regularised P1 Regularised P2 Regularised P3

Strategy 1 (%) 47.2 36.4 28.9 16.4 15.6 15.5

Strategy 2 (%) -5.7 -27.2 -42.2 -67.3 -68.8 -69.1

Table 4.3: Average weights (1.d.p.) for both strategies and all Jump Models.

43



Figure 4.6: Total returns and drawdowns of Strategy 1 and its benchmark.

Figure 4.7: Total returns and drawdowns of Strategy 2 and its benchmark.

4.3.2 Feature Selection

The various Jump Models were calibrated onto the Features Dataset on the last day of
every month covered by the dataset. Therefore, in the Sparse Jump Model, a monthly
series of estimated feature weights w ∈ R66 is generated. Similarly, the monthly
calibration of the Regularised Jump Models produces a series of estimates of

¯
µ ∈ R2×66.

The time-series interpretation of p = 66 feature parameters was a difficult task and so
we simplified the task by summing the feature parameters according to the six categories
that the features were assigned to (see Table A.3 for reference).
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The feature weights estimated by the Sparse Jump Model were summed according to
the categories to which the features were assigned, and then normalised such that the
sum of the weights equalled 100%.The blue lines in Figure 4.8 show the feature category
weights estimated by the Sparse Jump Model.

Similarly, in the monthly calibrations of the Regularised P0,P1 and P3 Jump Models,
we used (3.5.2) by assigning a value of one to each feature whose corresponding column
had a strictly positive Euclidean distance, and a value of zero otherwise.

The array of active features (ωj) was divided by the array’s sum and then summed
according to the feature’s category. The blue lines in Figures 4.9, 4.10 and 4.11 show the
feature category weights of the Regularised P0,P1 and P3 Jump Models respectively. Due
to the oscillations in the feature category weights, we added a orange line which depicts
the rolling two-year average of the feature category weights.

Comparing the four figures, the feature category weights from the Sparse Jump Model
are more dispersed than those from the Regularised Jump Models. The feature category
weights from the Regularised P0 Jump Model are the least dispersed over time.

This is because the parameter update equation for the Regularised P0 adopts
hard-thresholding. The cluster centres of features whose contribution to the model fit
falls below a certain threshold, are set to zero while those that exceed the threshold
remain unchanged (see Proposition A.1.3 for more details). The feature category weights
from the Regularised P1 and P3 Jump Models are similar to each other and are more
dispersed than those from the Regularised P0 Jump Model.

A common characteristic of the four figures is the high weight given to features in
the Credit Valuation and Momentum category. This characteristic suggests that metrics
pertaining to US and European corporate bonds are strongly associated with market
regime dynamics. Furthermore, the high relative weight given to the category provides
evidence that the information contained in the underlying metrics is shared with metrics
from the other five categories.

Many empirical studies have attested to the high informational content of metrics
pertaining to corporate bonds. For instance, [14] construct a credit spread index based
on an extensive micro-level dataset of secondary market prices of corporate bonds and
determine that the index is a robust predictor of economic activity across a variety of
economic indicators.
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Figure 4.8: Feature category weights from the Sparse Jump Model.

Figure 4.9: Feature category weights from the Regularised P0 Jump Model.

Figure 4.10: Feature category weights from the Regularised P1 Jump Model.
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Figure 4.11: Feature category weights from the Regularised P3 Jump Model.
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Conclusion

In this work, we’ve made the following original contributions.

Proposal of a new class of Jump Models: In the new class of models called Reg-
ularised Jump Models, the regularised K-means model proposed in [25] has been
adapted to the Jump Model Framework. These models perform state and parameter
estimation, and feature selection jointly. The feature selection process performed
by the Regularised Jump Models is more direct and interpretable than that from
the Sparse Jump Model, which performs feature selection by proxy.

These models were tested in a simulation experiment and demonstrate evidence of
outperformance over existing Jump Models. In a backtest of CDS trading strate-
gies, we found that strategies based on the Regularised Jump Models produced
risk-adjusted returns superior to those of the Standard and Sparse Jump Models.

One avenue of future research is adapting the asymptotic properties of the Reg-
ularised K-Means model proven in [25] to the Regularised Jump Models. Some of
these properties include consistency and strong consistency in terms of the Hausdorff
distance (see [25] Theorem 6 and the proof in Appendix A. A.3).

Hyperparameter tuning: We’ve proposed a new hyperparameter tuning method for
Jump Models, based on the idea of clustering stability. There is scope for future
research on developing and testing alternative hyperparameter tuning methods for
Jump Models.

Extension of online learning algorithm for Jump Models: We’ve extended the
online learning algorithm in [20] by adding a step that recursively updates the pa-
rameters of a given Jump Model. We suggest testing this extension in a simulation
experiment similar to the one conducted in [20].

Empirical calibration onto dataset containing macroeconomic factors: To the
best of our knowledge, our work is first in calibrating Jump Models onto a dataset
containing both market and macroeconomic features.

The empirical calibration has overall determined that features related to corporate
bonds have the highest influence in transitions between market regimes. We suggest
further work on the calibration of Jump Models onto macroeconomic and market
features to empirically assess this finding.
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Appendix A

Technical Proofs and
Supplementary Material

A.1 Parameter Update Equations for Regularised Jump
Model Calibration

Before giving the proposition on the parameter update equations for the Regularised Jump
Models, we prove the following useful lemma:

Lemma A.1.1. Let Y := (y1,y2, . . . ,yT ) be a T × p data matrix and M be a T × K
cluster assignment matrix with elements mt,k = 11{yt∈Ck}. (2.1.1) can be rewritten as

K∑
k=1

∑
t∈Ck

∥yt − µk∥2 =
p∑
j=1

||Y .,j −Mµ.,j ||,

where Y .,j and µ.,j are the jth columns of Y and
¯
µ respectively.

Proof. A.1.1 follows from the following equality:

K∑
k=1

∑
t∈Ck

∥yt − µk∥2 =
K∑
k=1

∑
t∈Ck

p∑
j=1

(yt,j − µk,j)2

=

p∑
j=1

(
Y .,j −Mµ.,j

)T (
Y .,j −Mµ.,j

)

Remark A.1.2. The result in A.1.1 shows that the WCSS can be decomposed additively
across the features in Y . The contribution to the WCSS from the jth feature is ∥Y .,j −
Mµ.,j∥.

Proposition A.1.3. Suppose that we have an assignment of the elements of Y into K
clusters C1, C2, . . . , CK . Let |Ck| denote the number of elements in cluster k. Furthermore,
let M be a T ×K cluster assignment matrix with elements mt,k = 11{yt∈Ck}.

Let
¯
µ∗ be the corresponding K×p matrix of cluster centres and

¯
µ∗k,j be the (k, j) element

of
¯
µ∗ (kth cluster centre along the jth dimension). Keeping the cluster assignment matrix

M fixed, solving (3.3.1) gives the following expressions for each penalty function P
(
¯
µ
)
:
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P0
(
¯
µ
)
:
¯
µk,j =

{
¯
µ∗k,j if ∥y.,j∥2 > ∥y.,j −M

¯
µ∗
.,j
∥+ Tγ

0 otherwise
(A.1.1a)

P1
(
¯
µ
)
:
¯
µk,j = max

(
0, 1− Tγ

2|Ck||
¯
µ∗k,j |

)
¯
µ∗k,j (A.1.1b)

P2
(
¯
µ
)
:
¯
µk,j =

1

1 + Tγ
|Ck| ¯

µ∗k,j (A.1.1c)

P3
(
¯
µ
)
:
¯
µk,j =

1

1 + Tγ
2|Ck|∥

¯
µ

.,j
∥ ¯
µ∗k,j if

¯
µ
.,j
̸= 0K , (A.1.1d)

where y.,j is the jth column of Y and 0K is a zero vector of size K.

Proof. Proof can be found in A.2. of the Appendix in [25].

Remark A.1.4. The update equations in (A.1.1) lend insight into the effects of each
penalty function. Firstly, to understand the update in (A.1.1a), we use the result in A.1.1
and the associated Remark A.1.2. The term ∥y.,j −M

¯
µ∗
.,j
∥ is the WCSS contribution

fron the jth feature.

P0 leads to hard-thresholding, the process of setting to zero the elements of an input
vector whose absolute values are lower than an input threshold value; elements whose
absolute values exceed the threhold are left unchanged. The threshold value in (A.1.1a)
is the sum of Tγ and the WCSS contribution from each feature. The interpretation of
(A.1.1a) is that variables are included in the clustering if it sufficiently contributes to a
decrease of the WCSS.

P1 leads to soft-thresholding, whereby some elements are set to zero and the rest are
shrunk towards zero. This resembles the solution of L1-regularised (or Lasso) regression
with orthonormal covariates. P2 is a ridge-type penalty that scales down each element
of the array uniformly. P2 is the only penalty function that does not directly induce
sparsity.

P3 does not have an explicit updating equation since the right-hand side of (A.1.1d)
includes the L2 norm of ∥µ.,j∥. The solution is thus found through an iterative algorithm.

A.2 Introduction to Credit Default Swaps

A Credit Default Swap (CDS) is a swap agreement between two parties in which one
party (Protection Seller) agrees to compensate another party (Protection Buyer) in the
event of a debt default during the term of the agreement. In other words, the Protection
Seller agrees to insure the Protection Buyer against a reference asset (Reference Entity)
defaulting. In exchange, the Protection Buyer makes a series of regular payments.

The price of a CDS contract is typically quoted in terms of the CDS ”break-even”
spread or simply CDS spread; this metric reflects the annualised payment that the Pro-
tection Buyer would make per unit of CDS protection. For instance, if the CDS spread of
the Reference Entity is 50 basis points (0.05%), then an investor buying a CDS contract
insuring 10 million Sterling would make annual payments worth 50,000 Sterling. Payments
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are usually on a quarterly basis and continue until either the CDS contract expires or the
Reference Entity defaults.

Protection Buyer Protection Seller
Periodic Premium Payments

Compensation on De-
fault of Reference Entity

Figure A.1: Payoff structure of a standard CDS contract.

A.2.1 Index CDS

The example depicted in A.1 is called a single-name CDS because the borrower is a single
entity. A second type of CDS, an index CDS, involves a combination of borrowers. This
type of CDS allows participants to take positions on the credit risk of a combination of
borrowers, in much the same way that investors can trade exchange-traded funds (ETFs)
that are combinations of equities of various companies.

IHS Markit is the major provider of CDS indexes. The Markit indexes are classified by
region as well as by credit quality. North American indexes are identified by the symbol
CDX, and European, Asian, and Australian indexes are identified as iTraxx. Within each
geographic category are investment-grade and high-yield indexes. The former are identified
as CDX IG and iTraxx Main, each comprising 125 entities. The latter are identified as
CDX HY, consisting of 100 entities, and iTraxx Crossover, consisting of up to 50 high-yield
entities.
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A.3 Data Series for Empirical Calibration

Series Name Series Category Series Data Type

Oil Commodities Price

Gold Commodities Price

US IG Credit Total Return Credit Valuation/Momentum Price

EUR IG Credit Total Return Credit Valuation/Momentum Price

US IG Credit OAS Credit Valuation/Momentum Percentage

EUR IG Credit OAS Credit Valuation/Momentum Percentage

US HY Credit OAS Credit Valuation/Momentum Percentage

EUR HY Credit OAS Credit Valuation/Momentum Percentage

US Dollar Index Currency Index

Trade-Weighted US Dollar Index Currency Index

Citi US Policy Uncertainty Macro Indicators Index

Citi US Economic Surprises Macro Indicators Index

Citi EUR Economic Surprises Macro Indicators Index

Citi Emerging Markets Economic Sur-
prises

Macro Indicators Index

Citi Global Economic Surprises Macro Indicators Index

US 10Y Government Bond Yield Risk-Free Rate Percentage

US 2Y Government Bond Yield Risk-Free Rate Percentage

US Government Bond Curve (10 Yield mi-
nus 2 Yield)

Risk-Free Rate Percentage

VIX Index Sentiment Index

MOVE Index Sentiment Index

SKEW Index Sentiment Index

CBOE US Equity Put/Call Ratio Sentiment Index
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A.4 Calculation of Performance Metrics

Let (r1, r2, . . . , rT ) be a sequence of daily returns of size T . Assume there are 252 business
days and that the risk-free rate rf is equal to zero.

AAGR: The Average Annual Growth Rate (AAGR) is defined as

AAGR =
252

T

T∑
t=1

rt.

CAGR: The Compound Annual Growth Rate (CAGR) is defined as

CAGR =
( T∏
t=1

(1 + rt)
) 252

T
.

Volatility: The annualised volatility is

Volatility =

√√√√ 252

T − 1

T∑
t=1

(rt − r̄t)2.

Maximum Drawdown: The total return at time t, denoted Pt, can be written as

Pt =
t∏
i=1

(1 + ri) . (A.4.1)

We also define the High Watermark (HWM) at time t as HWMt := max1≤t Pt. The
Maximum Drawdown can then be written as

Maximum Drawdown =
Pt −HWMt

HWMt
.

Sharpe Ratio : The Sharpe Ratio is defined as

Sharpe Ratio =
AAGR

Volatility
.

Calmar Ratio : The Calmar Ratio is defined as

Calmar Ratio =
CAGR

Maximum Drawdown
.
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A.5 Jump Model State Estimates

Figure A.2: EUR iTraxx Main 5Y Spreads shaded with empirical state estimates from
each Jump Model.
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A.6 Empirical Transition Probability Matrices

Let (ŝ1, ŝ2, . . . , ŝT ) denote the sequence of state estimates, where ŝt ∈ {1, 2}, t =
, 1, 2, . . . , T . The estimated transition probability matrix Π̂ := (π̂i,j) ∈ R2×2 has entries

π̂i,j =

∑T−1
t=1 11{st+1=j|st=i}∑T

t=1 11{st=i}
.

Figure A.3: Empirical transition probability matrices of states estimated from the Jump
Models (matrix entries in 1.d.p.).
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