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Abstract

Efficient resource allocation is crucial across diverse sectors, from finance and public policy
to industrial management. Despite advances in financial economics, exemplified by the
foundational work of Markowitz [74], Miller, and Sharpe [96], practical applications of these
models have often failed to yield significant productivity gains, contributing to the ongoing
”productivity paradox.” This thesis addresses the limitations of traditional resource allo-
cation methods within a finance-related context and explores innovative solutions using
Online Learning techniques, specifically within the Multi-Armed Bandit (MAB) frame-
work, a branch of Reinforcement Learning (RL).

We propose a novel algorithm that improves the MAB framework of Upper Confi-
dence Bound (UCB) algorithms which optimizes the Sharpe ratio and discuss a potential
extension to dynamic, non-stationary environments by incorporating changepoint detec-
tion techniques, improving mean estimation, and maintaining logarithmic regret bounds.
Our method adapts to shifts in data, addressing key vulnerabilities in existing MAB algo-
rithms and outperforming classical models in portfolio selection tasks. Through extensive
theoretical analysis and empirical validation, this work demonstrates the potential of our
enhanced MAB framework to improve resource allocation in complex, real-world scenarios.

Furthermore, we analyse the performance of various stochastic and adversarial bandit
algorithms and suggest an expert selection specific for a finance-related context.
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Introduction

Efficient resource allocation is a critical concern that extends far beyond the realm of
portfolio management. It is a fundamental challenge faced by individuals, charities, cor-
porations, governments at all levels, and international organisations. Their success, and
sometimes even their survival, depends on how effectively they can allocate their resources.

During the Cold War (1947–1991), the Arms Race and Space Race were emblematic of
the broader struggle between market economies and centrally planned economies, centered
around differing methods of resource allocation. Market economies relied on decentralized
decision-making, while planned economies were characterized by centralized control.

Ultimately, the world has moved toward various mixtures of market and centrally
planned economies. The foundational work of Harry M. Markowitz, Merton H. Miller, and
William F. Sharpe, for which they were awarded the Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel in 1990, has become universally acknowledged in
both economic systems. Their pioneering contributions to financial economics have been
extensively utilized for allocating resources, not exclusively financial, to achieve an optimal
risk-return profile.

However, the consequences of inefficient resource allocation can be severe, leading to
artificial scarcity and unmet needs, which contribute to poverty. This in turn hampers pro-
ductivity, not just through psychological impacts, but also by limiting access to essential
resources, including advanced tools and technology [32].

Despite the transformative insights from Markowitz, Miller, and Sharpe, there has
not been a dramatic increase in productivity. As Robert Merton Solow, another Nobel
laureate, famously observed in 1987, ”You can see the computer age everywhere but in the
productivity statistics.” This observation, known as the ”productivity paradox,” continues
today as ”productivity paradox 2.0,” spanning from the 1970s through to the present
day [20].

This productivity shortfall is concerning, as socio-economic challenges are key drivers
of conflict. What are often perceived as ethnic conflicts are frequently struggles over
power and economic resources [102]. Enhancing productivity could reduce the likelihood
of such conflicts, whereas failing to address these inefficiencies could exacerbate tensions
and contribute to future disputes.

While there are numerous non-mathematical and non-scientific reasons for suboptimal
resource allocation (such as when optimal allocation conflicts with the incentives of indi-
vidual decision-makers or implementers) this work will not focus on these issues. Instead,
we will examine the classical Markowitz-Miller-Sharpe framework, identify its deficiencies
and vulnerabilities, and explore ways to address these issues using recent advances in
applied mathematics.

Among these avenues of research, we will focus our attention on Multi-Armed Bandits
(MAB), a branch of Reinforcement Learning (RL). The subject has attracted a lot of
attention due to the recent emergence of large scale applications such as online web ad-
vertisement placement, online topic-detection in social communities, online web ranking,
finding shortest path for internet packet routing, email spam filtering, portfolio selection
and many more. In recent years, tools from an even broader subject, convex optimization,
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have influenced the design of many online learning algorithms. As a result, Online Convex
Optimization (OCO) [34, 33, 67] has emerged as a unified abstraction, which helps in
solving problems efficiently and reliably and also facilitates the theoretical analysis.

Reinforcement Learning is a powerful framework for developing intelligent agents ca-
pable of learning complex behaviors. Despite its challenges, RL continues to be a vibrant
area of research and development, with the potential to revolutionize numerous industries
and applications. The research of this field is paramount, as the real-world applications
are countless and, as opposed to Deep Learning designs, one can analyze and explain how
a certain method work (or doesn’t) through rigorous analysis.

Among the many useful applications of RL, some of the more notable ones reside
in large industries, such as healthcare, energy management, industrial automation and
finance. Multi-armed bandits were introduced by William R. Thompson in an article
published in 1933 in Biometrika [104]. Thompson was interested in medical trials and the
cruelty of running a trial blindly, without adapting the treatment allocations on the fly as
the drug appears more or less effective.

In this thesis, we aim to analyse the portfolio choice problem within a MAB setting
and propose several extensions to the current frameworks. In Chapter 1 we formulate our
problem and discuss the first developments towards solving it, transitioning thereafter to
Chapter 2 where we introduce the bandit framework. We present a variety of algorithms
and discuss their limitations, followed by a novel improvement with theoretical guarantees
which maintains logarithmic regret for the returns’ suboptimal gaps. In Chapter 3 we take
a look at changepoint detection and address the mean estimation problem of incremental
returns, tackling the non-stationarity issues and further extending the proposed framework
from Chapter 2. We conduct extensive experiments on all algorithms in the final chapter,
putting everything together and performing stress tests to discuss the limits of the bandit
framework within the portfolio choice problem.

We will model our matter at hand and compare our Multi-Armed Bandit portfolio
based on benchmark models against classical methods of resource allocation. At the end,
we conclude with proposing new approaches towards this issue and explain why it’s an
improvement of the current setting.
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Chapter 1

Optimal Resource Allocation

Portfolio choice problems have had a significant impact on the finance industry, influ-
encing everything from pension funds and mutual funds to insurance and corporate risk
management [4]. Modern portfolio theory and analysis are grounded in the pioneering
work of Markowitz [74]. However, due to the disappointing performance of these models
in out-of-sample scenarios [19], researchers have continually sought innovative approaches
to address portfolio choice challenges. This has led to the development of numerous ex-
tensions of the Markowitz framework [36], the exploration of the optimal growth portfolio
based on the Kelly criterion [105], and the adoption of linear programming techniques for
portfolio optimization [63].

In this chapter we aim to formulate the portfolio choice problem in depth and discuss
the limits of classical methods. In section 1.1 we introduce the core notions we will use
throughout the paper, whereas in section 1.2 we take a look at the Markowitz framework
and its limitations, while 1.3 covers an estimation method for the well-known Sharpe ratio.
The purpose of this chapter, though less technical, is crucial as it lays the groundwork for
the problem at hand, creating a natural transition to Chapter 2.

1.1 Literature Review and Problem Formulation

Optimal allocation of resources has been and it sill is a heavily debated topic, as it can
be noticed everywhere. The most noticeable field in which this subject is directly applied
represents transportation logistics in heavy industries, as the costs of shipping are con-
siderable when it comes to enormous quantities. A demand for good allocation comes in
all transportation industries, as getting from point A to point B with the lowest cost is
something everybody desires.

Simultaneously, globalization and the rapid integration of markets have generated vast
amounts of data in the finance industry, necessitating the use of advanced data analysis
tools. Among these, machine learning algorithms stand out for their ability to construct,
update, and apply models in real-time, efficiently processing large datasets. In response,
machine learning researchers have dedicated significant effort to designing trading strate-
gies based on real-time data streams [49, 56, 18, 5, 47]. The Kelly criterion [105], which
aims to maximize long-term growth, has emerged as a particularly popular choice. For
instance, one notable study utilizes the moving average reversion phenomenon in the stock
market to optimize return growth [68]. For a comprehensive overview of online portfolio
strategies, we refer to the survey by Li and Hoi [67] and the extensive references therein.

To address these challenges in applying conventional bandit algorithms to portfolio
choice, many academics and practitioners researched and developed this topic and sought
out to improve the framework and adapt their methods to the problem at hand. Notable
work in this direction, which we will use as benchmarks against our proposal, is represented
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by a selection of bandit algorithms tailored to a portfolio choice problem.

In a Portfolio Selection Problem (PSP) [44], an investor’s goal is to develop a strategy
for distributing a limited amount of wealth among various assets. Each asset provides a
distinct investment opportunity, and the combined result of these allocations forms the
overall portfolio. Assets are deemed risky when their prices are uncertain, necessitating
careful consideration of this risk when making allocation decisions. The interval between
consecutive portfolio allocation decisions is called a period. When only one allocation
decision is made for the entire investment horizon, it is known as a Single-Period PSP.
Conversely, in a Multi-Period PSP, the investor continuously makes sequential decisions
over multiple periods, transforming it into an online decision-making challenge. Through-
out this process, the investor’s objective is to optimize a specific function, which could
involve maximizing returns, minimizing risk, or finding an optimal balance between the
two.

We can think at the problem in the following way: suppose we are in charge of N
traders, each one of them having his/her own trading strategy. Our concern is not how
they managed to produce it or how they aim to improve it, as we are interested only in
their Profit and Loss (PnL) evolution. We will reduce their results to equity curves, so
we are left with k such curves that signify each trader’s performance. The results may be
correlated, combinations between others or black-box algorithms that even their creators
cannot explain how they work.

Our job is now to choose from all those N trading strategies only the best ones that
will perform well in the future. Because humans are liable to many biases we’ll need an
algorithm to make that choice for us. Data snooping bias is the main concern [70, 52], as
many strategies that seem to good to be true on previous data tend to be flukes and will
start loosing money shortly after going in production.

This is why we try to eliminate human judgment completely and try to formulate the
problem clearly such that we know how to approach this selection method. As mentioned
earlier, we will have an online learning approach, and define the equity curves as

M ∈Mn×k(R), (1.1.1)

where n is the number of curves and k is the number of time increments we have at our
disposal. At each step t, we will assign weights Wt = (wt1, wt2, ..., wtk) to each strategy
that will determine our choices for the next time interval, where we will compute the
aggregate PnL of our allocation, representing the incremental reward that we will count
towards making the next decision.

The computational cost of considering every asset combination grows exponentially
as the number of assets increases, thus posing a great challenge on finding an optimal
solution. Ito [55] discussed about the ”Full-Feedback” algorithm in his work, proving that
the issue at hand can become NP-complete.

Now, weight allocation is the central task of the thesis and we need to define how a
portfolio is valued. While there is the option of using log returns and take the cumulative
wealth as multiplicative, we will instead consider incremental returns, so that the PnL
contribution after each round is represented by

∆t =

k∑
i=1

wt−1,i(Mt,i −Mt−1,i).

The reasoning behind this decision is that we can manage the returns within a bandit
framework more easily if they are just increments of the PnL curves, instead of dividing
every round by the previous entry in the array. We want to avoid numerical errors as much
as possible and emphasize on the inherent features of the MAB algorithms. Moreover,
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there is good cause for considering incremental returns, as they have real life applications,
especially in commodity trading simply because there are extreme cases where the prices
can go negative [42].

1.2 The Markowitz Framework

The Markowitz-Miller-Sharpe framework is widely known among practitioners in eco-
nomics, finance, and management, though it is not without significant issues. One of
the key components of this framework, the Sharpe ratio, was introduced by Sharpe in
1966 [96] as a measure of risk-adjusted returns. Since its introduction, the Sharpe ratio
and its variants have become popular objective functions in resource allocation optimiza-
tion, as first proposed by Markowitz in 1952 [74], and further discussed in subsequent
literature [97, 29].

Given a time series of returns, or risk premia, denoted as Rt, which are independent
and identically distributed (i.i.d.), Rt ∼ N (µ, σ2) (where N (µ, σ2) denotes a normal dis-
tribution with mean µ and variance σ2), the Sharpe ratio is defined as:

SR =
µ

σ
.

Since µ and σ are typically unknown, the true value of the Sharpe ratio cannot be precisely
determined, making its calculation subject to significant estimation errors.

Consider an asset whose price follows the geometric Brownian motion, described by
the stochastic differential equation [15]:

dSt = µSt dt+ σSt dWt,

where µ is the percentage drift and σ is the percentage volatility. Suppose we sample
St over a time interval 0 ≤ t ≤ T , divided into N equal segments of length δt = T

N . Let
the observed price at time ti be Si. The return over the period [ti, ti+1] is defined as:

Ri =
Si+1 − Si

Si
.

We propose a set of estimators for µ and σ characterised by the following lemma:

Lemma 1.2.1. Let (St)0≤t≤T be a Geometric Brownian Motion process with drift µ and
volatility σ, described by the following stochastic differential equation:

dSt = µSt dt+ σSt dWt,

where St is sampled over a time interval 0 ≤ t ≤ T divided into N equal segments of length
δt = T

N . Then, the estimators µ̂ and σ̂2 defined as

µ̂ =
1

Nδt

N−1∑
i=0

Ri, σ̂2 =
1

(N − 1)δt

N−1∑
i=0

(Ri − µ̂δt)2 (1.2.1)

are unbiased as δt −→ 0.

We prove in Appendix A.1 that the estimators are unbiased and, moreover, we provide
a characterisation regarding the accuracy for estimating the parameters.

Lemma 1.2.2. Let µ̂ and σ̂2 be the estimators defined in Lemma 1.2.1. Then, the fol-
lowing properties hold:

Var(µ̂− µ) = O
(
1

T

)
, Var

(
σ̂2

σ2

)
= O

(
1

N

)
. (1.2.2)
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Thus, the accuracy of the estimate for µ depends only on T and not on N , indicating
that more frequent sampling does not improve the accuracy; only a longer time interval
does. Conversely, the accuracy of the estimate for σ depends solely on N and not on T .
However, increasing T poses practical challenges due to potential nonstationarity in the
process, while increasing N may be limited by microstructure noise [11].

These issues in estimating the Sharpe ratio have long been recognized, as noted by
Robert C. Merton [77], and are not limited to geometric Brownian motion but extend
to more realistic asset price models. They underscore fundamental challenges inherent in
time series datasets [37].

Moreover, financial returns exhibit nonstationarity [59], leptokurtosis [78], and other
stylized facts [95]. Nonstationarity implies that resource allocation must be dynamic rather
than static, requiring periodic adjustments. The leptokurtic nature of returns necessitates
robust statistical procedures for model calibration.

1.3 The Probabilistic Sharpe Ratio

Modern economies largely operate within the Markowitz framework [74], focusing on op-
timizing the Sharpe ratio or similar metrics. This framework emphasizes optimization
processes, assuming known values for µ and σ, and often overlooks the significant chal-
lenges in estimating these parameters. Furthermore, it treats µ and σ as fixed, ignoring
the inherent nonstationarity in financial markets. Addressing these limitations is crucial
for both static and dynamic portfolio allocation, calling for a re-evaluation of traditional
approaches.

In [13], Bailey and de Prado ask the question, what is the probability that an estimated
Sharpe ratio exceeds a given threshold in the presence of non-normal returns. They show
that this new uncertainty-adjusted investment skill metric, called probabilistic Sharpe
ratio (PSR), has a number of important applications. For example, it allows to establish
the track record length needed for rejecting the hypothesis that a measured Sharpe ratio
is below a certain threshold with a given confidence level.

Let γ3 =
E[R−µ]3

σ3 be skewness and γ4 =
E[R−µ]4

σ4 be kurtosis. Let SR be the true Sharpe

ratio and ŜR the empirically observed, estimated Sharpe ratio. Even without normality
and under mild assumptions of returns, Mertens [76] concludes that, the estimated Sharpe
ratio will follow a normal distribution with parameters

√
n(ŜR− SR)

D→ N
(
0, 1− γ3SR+

γ4 − 1

4
SR2

)
.

The proof for the above claim is realised using the Delta method (see Appendix A.2),
a standard technique when working with asymptotically efficient estimators.

The authors of [13] use this result to derive some confidence bands for the estimate
ŜR. In particular, they deduce that the estimated standard deviation of ŜR is

σ̂ŜR =

√
1− γ3ŜR+ γ̂4−1

4 ŜR
2

n− 1
,

where n− 1 is due to Bessel’s correction. The true value SR is bounded by the estimate
ŜR with a significance level α

P[SR ∈ (ŜR− Zα/2σ̂ŜR/
√
n, ŜR+ Zα/2σ̂ŜR/

√
n)] = 1− α. (1.3.1)

While the authors of the paper didn’t introduce the
√
n term in the confidence interval,

that quantity is crucial as it is a direct consequence of estimators derived from the Delta
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method. To be more specific, Bessel’s correction term is for estimating the standard
deviation. The additional

√
n comes from the scaling via the Delta method. If the Sharpe

ratio estimator was normally distributed then the removal of the additional factor would
be indeed the natural progression of deriving a confidence interval, but scaling is necessary
to validate the asymptotic properties of ŜR.

The consideration of the skewness and kurtosis adds more information to estimating
the true Sharpe ratio. However, there are some drawbacks. In accordance with the
authors’ opinion who previously studied this estimator, a negative ratio may impact the
calibration process. We shall discuss this issue when we introduce the PSR-UCB method in
the following chapter.
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Chapter 2

Multi-Armed Bandits

The multi-armed bandit problem, a key concept for developing online sequential decision-
making strategies, has been explored since the early 1930s by Thompson [104]. Later on,
Robbins [87] and Bush and Mosteller [22] popularised the concept and conducted further
analysis on the subject. The core principle of bandit learning revolves around balancing
the acquisition of new information with optimizing rewards based on current knowledge.
This principle, known as the exploration-exploitation trade-off in reinforcement learning,
naturally relates to the sequential decision-making process involved in portfolio selection.
Hoffman utilized a multi-armed bandit approach to construct a portfolio of acquisition
functions within the context of Bayesian optimization [51].

There are many reasons to care about bandit problems. Lattimore and Szepesvári [65]
talk about the importance of decision-making with uncertainty and how that is a challenge
we all face, with bandits providing a simple model of this dilemma. Bandit problems also
have practical applications. Major tech companies use bandit algorithms for configuring
web interfaces, where applications include news recommendation, dynamic pricing and ad
placement. A bandit algorithm plays a role in Monte Carlo Tree Search, an algorithm
made famous by the recent success of AlphaGo [86, 94, 101].

However, traditional multi-armed bandit models have very restrictive assumptions re-
garding the environment that limit the performance of the algorithms through generalisa-
tions. Most bandit problems assume stationarity and no correlation between the rewards,
although in the finance context that is rarely the case.

We organise this chapter as follows: in Section 2.1 we provide a general overview of
bandit algorithms and the evolution of research in their field. In Sections 2.2 and 2.3
introduce the core notions of a multi-armed bandit setting that set the foundations of
all further developments. They are essential to understanding portfolio selection from
a bandit perspective. In Section 2.4 we discuss the leap from a single-action per round
setting to weighted bandits and analyse how the reward estimators change to the new
conditions. Lastly, Section 2.5 explores a benchmark bandit model that takes advantage
of collinearity.
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2.1 Overview of Bandit Algorithms

A bandit algorithm model situations where a decision-maker must choose between multiple
options (or ”arms”) with uncertain rewards. The goal is to maximize cumulative rewards
over time while balancing the trade-off between exploring new options and exploiting
known ones. We distinguish two core models of bandits:

• Stochastic: In a stochastic bandit setting, each arm is associated with a fixed but
unknown probability distribution of rewards. The challenge lies in identifying the
arms with the highest expected rewards while minimizing the loss due to suboptimal
choices. The stationary stochastic bandit problem has been thoroughly studied since
the pioneering work of Lai and Robbins [64], which laid the foundation for many
subsequent algorithms. Their novel method at the time is still used as the main
framework for stochastic bandits, namely the UCB algorithms. They are deterministic
algorithms aimed to achieve logarithmic regret, and thus they suffer from choosing
sub-optimal arms especially in a non-stationary scenario.

• Adversarial: These bandits assume that the reward distributions can change in
arbitrary ways, possibly in response to the player’s actions. This model is more
appropriate for scenarios where the environment is dynamic or controlled by an
adversary. Algorithms like Exp3 and Exp4 [10] and its variants are designed to
perform well under these conditions, providing robust performance even when the
reward structure is unpredictable. Very recent results improved the regret bounds
of this category of bandits [24].

The performance of such algorithm is called regret, which measures the deficit suffered
by the learner relative to the optimal policy and it often has different definitions relative to
the method used. A policy dictates how we choose our actions at each step and represents
the conditional probability of selection given the current state

P(At = a) = πt(a|A1, X1, ..., At−1, Xt−1). (2.1.1)

There are several types of regret and their names heavily vary in literature. Thus, we
need to be very specific about what kind of regret achieves a certain bound. A good survey
is done in [72], although it doesn’t cover all the algorithms we present in this study. We
shall explore the definitions of regret as we go through presenting the general framework.

This measure is also dependent on how much information (feedback) we choose to
receive from the environment. Thus, we identify three different types of feedback:

• Full-Bandit: Only information about the selected arm is available.

• Semi-Bandit: The knowledge is limited to a subset of selected arms.

• Full-Information: All rewards are known at each time step.

Portfolio selection is a natural application of bandit algorithms, particularly in the
financial markets where the goal is to allocate capital across different assets to maximize
returns while managing risk. Before describing what kind of bandit algorithms already
exist and are adapted for a Portfolio Optimisation setting, we first enumerate the main
issues which separate classical bandits and a finance-related scenario:

1. We can diversify by choosing multiple actions at time t: {a1, . . . , akt} ⊆ A.

2. There may be significant correlations among the actions.
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3. The data we work with is usually a non-stationary time series.

Notice that the way we choose to tackle this problem sits on a boundary between
bandits and online learning. We will analyse problems 1 and 2 in this chapter, leaving the
final point 3 for the subsequent one, where we discuss about changepoint detection.

The main direction to follow when adapting bandit algorithms to a portfolio choice
problem is to take into account performance metrics, such as the Sharpe ratio we introduce
in Chapter 1. Moreover, this ratio is not the only information one can have about financial
data. In fact, there are many metrics to look at such as the Calmar, Sterling or Sortino
ratios. Thus, we have a context here we can exploit and we will discuss further on this
issue in the following sections.

2.2 Stochastic Bandits

We now proceed with the necessary definitions of the bandit framework, inspired from
Lattimore and Szepesvári’s reference work [65].

Definition 2.2.1 (Section 4.1 [65]). A stochastic bandit is a collection of distributions
ν = (Pa : a ∈ A), where A = {1, 2, ..., k} is the available set of actions.

We (the learner) interact with the environment (the market) sequentially, selecting at
each round (time step) t ∈ {1, 2, 3..., n} an action At ∈ A. Each action generates a reward
Xt ∈ R from distribution PAt . Thus, we generate a sequence of rewards and actions
A1, X1, A2, X2, ..., An, Xn. The keyword in this scenario in this setting is online learning
which allows the learner to improve the selection using information only up to the current
round to select an action for the next.

We can see immediately the challenges of single-action selection and how one may
inaccurately provide a strategy using the wrong assumptions. One example is the fact
that in a canonical bandit setting, one does not observe the rewards of the dismissed
actions, whereas in our portfolio choice problem we have all the PnLs from all the equity
curves. However, the computational cost to consider all asset combinations at every time
can become exponential [55].

For the first two sections we will consider the classic bandit scheme where we select
only one action and we take into account the information only from the observed selection
(full-bandit feedback), thus our weight vector is determined by Wt, for which there is
exactly one j ∈ {1, 2, ..., k} such that wtj = 1 and wti = 0 for all i ∈ {1, 2, ..., k} − {j}.
The reward Xt at round t is then described, according to the notation at (1.1.1), by

Xt =
k∑

i=1

wt−1,j(Mtj −Mt−1,j) =
k∑

i=1

1{At−1=j}(Mtj −Mt−1,j)

This definition of reward is consistent because we don’t consider transaction costs or
market impact so we can focus solely on maximising the rewards. So we can treat every
round as exiting the previous position and taking the PnL. As mentioned earlier, our
objective is to maximise the total reward

Sn =
n∑

t=1

Xt

We define the regret for stochastic bandits as

Rn(π, ν) := nµ∗(ν)− E
[ n∑

t=1

Xt

]
, (2.2.1)
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for which µa(ν) :=
∫∞
−∞ xdPa(x) and µ∗(ν) := max

a∈A
µa(ν).

A major assumption regarding stochastic bandits lies on the behaviour of the distribu-
tion of rewards, as it’s very hard to control the bounds of the expected value for variables
which are not subgaussian, a notion which we will introduce now.

Definition 2.2.2. (Subgaussian random variable) A random variable X is called sub-
gaussian if

E[exp(λX)] ≤ exp

(
λ2σ2

2

)
, for any λ ∈ R.

Corollary 2.2.3. (Example 5.6 [65]) A normal random variable with mean 0 and variance
σ2 is σ-subgaussian.

As Definition (2.2.1) is purely theoretical, we can’t use it to analyze convergence,
since we don’t have any information about the rewards, aside from the subgaussianity
assumption. Thus, using the Regret Decomposition Lemma (Lemma 4.5 [65]), we can
break it down into parts as

Rn :=
∑
a

∆aE[Ta(n)], (2.2.2)

where Ta(n) is the random variable that governs how many times we choose action a in
the first n rounds and ∆a := µ∗ − µa(n) is called the suboptimality gap for the same
arm.

2.2.1 Upper Confidence Bound

The nature of the stochastic bandit problem can be interpreted from a hypothesis testing
perspective. Given an estimation of the mean reward, what is the probability that we’re the
true optimal value by some margin U? The quantity U is called the Upper Confidence
Bound (UCB) and the first bandit algorithm we aim to explore shares the name with
the method itself. This technique was first analysed by Lai and Robbins [64] and most
of the modifications and adaptations for a specific task are closely related to the same
framework. Auer [9] popularised this concept with what is now called the UCB1 algorithm.
This method is grounded in the principle of optimism under uncertainty, which suggests
selecting actions under the assumption that the environment behaves in the most favorable
way within the bounds of plausibility.

If we consider µ̂ = 1
n

∑n
t=1Xt to be the mean estimator for our rewards, we can denote

Ti(t−1) as the number of times action i was selected until time t−1. Actions are selected
based on minimising this upper theoretical limit to achieve optimal regret.

Then, the Upper Confidence Bound is defined as

UCBi(t− 1, δ) =

{
∞ , Ti(t− 1) = 0

µ̂i(t− 1) +
√

2 log(1/δ)
Ti(t−1) , otherwise

The infinite value of overlooked arms can be easily avoided by a delayed start, with
an initial pure exploration phase where we observe each arm at least once and then we
can start the actual implementation of the algorithm. However, if we delay the start
we may hinder (or boost) the algorithm’s performance. Due to its deterministic nature,
determining how much we can explore before starting the exploitation phase may force
the algorithm to commit to another arm. This problem wouldn’t pose at an asymptotic
level, due to the regret bound theorems we shall uncover, so a problem wouldn’t exist for
very large values of n. However, in a finance-related context we cannot have the data for
millions of trading days and, as we shall see in Chapter 3, increasing the sample frequency
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Algorithm 1: Phased Upper Confidence Bound (UCB)

Input : k, γ and δ

1 for t ∈ 1, 2, ..., ⌊γ⌋ · n do
2 Choose action At = tmod k
3 Observe reward Xt and update UCBt

4 for t ∈ ⌊γ⌋ · n+ 1, ⌊γ⌋ · n+ 2, ..., n do
5 Choose action At = argmaxiUCBi(t− 1, δ)
6 Observe reward Xt and update UCBs

will not improve parameter estimation. This is what we aim to fix in this section by
proposing a new algorithm.

The following theorem describes the regret of the UCB algorithm:

Theorem 2.2.4. (Theorem 7.2 [65]) If δ = 1
n2 , then the regret of Algorithm 1 is bounded

by

Rn ≤ 8
√
nk log(n) + 3

k∑
i=1

∆i

Algorithm 1 can be extended to be asymptotically optimal and achieve a better regret
([65], Theorem 8.1), by replacing the function under the logarithm in the confidence bound.
Among the more notable and relevant improvements we find MOSS [8] and Thompson
Sampling [104]. The latter, originally designed to solve the stochastic bandit problem,
was later deemed more flexible and suitable for a wider range of settings [91], although
the asymptotic optimality was guaranteed only for the stochastic problem. However, for
a financial context where we need to maximise returns we can take advantage of more
information to make more informed decisions.

2.2.2 PSR-UCB

We propose a novel UCB algorithm that outperforms the known benchmarks. The key idea
comes from replacing the reward estimation within the UCB definition with the Sharpe
ratio. This idea was discussed in earlier works, but within different settings.

Shen first offered intuition on this matter by constructing the ”Orthogonal Bandit
Portfolios” (OBPs) [99], which use the UCB for selecting the best performing portfolio
from a set designed by the authors. His work was further continued in [83] by implementing
the PSR in the OBP framework. Even though the empirical results are promising, they
don’t capture full-bandit feedback, because the learner can still see all returns from the
arms. Moreover, all previously mentioned paper in this section present only empirical
results, with no theoretical guarantees. The closest improvements on single-action selection
with full-bandit feedback was achieved recently in [61, 23] with theoretical guarantees
on regret for optimising the Sharpe ratio. Even though the results are promising, the
authors provide regret bounds for the specific measures that used in their definition of the
upper confidence bound. More specifically, the rewards used in the regret analysis are the
measures themselves (Sharpe ratio, variance), whereas the rewards should still be kept as
being the returns. We propose a different approach while studying the regret where the
rewards represent the returns and not the ratios themselves.

If we take µ(a) := Et[Xt |At = a], we then require

µ(a) ≤ µ̂t(a) + Ut(a)
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with high probability, where Ut(a) is the upper bound. Put differently, we need

P[µ(a) > µ̂t(a) + Ut(a)] ≤ p

for some p ∈ [0, 1]. In our case, we pick µ(a) = SR(a), µ̂t(a) = ŜRt(a). In order to
determine Ut(a), we solve the equation

P[µ(a) > µ̂t(a) + Ut(a)] = p

for Ut(a) in terms of p. But

P[µ(a) > µ̂t(a) + Ut(a)] = P[SR(a) > ŜRt(a) + Ut(a)]

and from (1.3.1) we have

P[SR(a) > ŜRt(a) + Zp

σ̂ŜRt(a)√
Ta(t)

] = p, (2.2.3)

and hence

Ut(a) = Zp

σ̂ŜRt(a)√
Ta(t)

,

where Zp = Φ−1(1 − p), Φ(·) is the quantile function (probit) of the standard normal
distribution, and

σ̂ŜRt(a)
=

√
1− γ̂3(a)ŜRt(a) +

γ̂4(a)−1
4 ŜR

2
t (a)

Ta(t)− 1
,

where ŜRt(a) is the estimated Sharpe ratio based on the observed rewards on arm a at
time t.

Thus, we define the PSR bound as

Definition 2.2.5. (PSR-UCB bound)

UCBPSR
i (t− 1, p) =

{ ∞ , Ti(t− 1) = 0

ŜRi(t− 1) + Zp
σ̂ŜRt(a)√
Ti(t−1)

, otherwise
(2.2.4)

Notice that in the actual confidence bound term there is the Sharpe ratio estimator for
the observed rewards on each arm instead of deriving a quantity from a Chernoff-Cramer
inequality (Theorem 5.3 [65]). In fact, we get both the lower and upper bounds for our
algorithm since the Sharpe ratio estimator is a normal random variable.

Remark 2.2.6. The returns do not have to be normally distributed in order for the
algorithm to perform well [13].

As the SR estimator follows a normal distribution, it is naturally a subgaussian random
variable, and thus a regret bound can instantly be derived if we also use the ratios as
rewards. For considering the returns, we provide the following result.

Theorem 2.2.7. (Regret) If the Sharpe ratios of the arms of a σ-subgaussian stochastic
bandit which follows Algorithm 2 are positive and if the optimal arm has the highest ratio,
then the regret is upper bounded by

R(n) ≤ 2max
i∈[k]

σ4
SRi

∑
∆i>0

log(n)

∆i
+ 3

k∑
i=1

∆i, for large values of n.
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Algorithm 2: PSR-UCB

Input: k, n, γ
Parameters: Ti(0), ŜRi(0), γ̂3

i(0), γ̂4
i(0)

1 for i = 1, 2, . . . , ⌊γ⌋ · n do
2 Play arm imod k

3 Update Ti(t), ŜRi(t), γ̂3
i(t), γ̂4

i(t)

4 Calculate UCBPSR
i (⌊γ⌋ · n) for each i = 1, 2, . . . , k from (2.2.4)

5 for t = ⌊γ⌋ · n+ 1, ⌊γ⌋ · n+ 2, . . . , n do

6 Play arm ai = argmaxiUCB
PSR
i (t)

7 Update Ti(t), ŜRi(t), γ̂3
i(t), γ̂4

i(t)

8 Calculate UCBPSR
i (t) as in (2.2.4)

Remark 2.2.8. The regret guarantee lies on a few assumptions which may not reflect
the true quality of the PSR-UCB algorithm. Bailey and de Prado talk about the ŜR
estimator issues, namely regarding the skewness and kurtosis values [13]. More specifically,
the probability that ŜR is greater than the true Sharpe ratio will increase with positive
skewness, but will decrease with thicker tails.

The proof of Theorem (2.2.7) can be found in Appendix A.3. To the best of our
knowledge, the only result which provided theoretical guarantees for using the Sharpe
ratio in an UCB-type setting comes from [61]. However, the authors provide a regret
bound for which the suboptimality gaps (and implicitly the rewards) are the actual ratios
themselves, whereas we provide a regret bound for the actual returns of the equity curves.

While the optimism principle is often effective, it becomes unreliable in more complex
scenarios. For instance, the whole framework depends on uncertainty, whereas in a real-
world trading situation one has all the information available in the present, as opposed
to the classical bandit setting. Thus, in the canonical setting, it wouldn’t be feasible to
apply an UCB-type algorithm to a full-information feedback setting. However, we shall
see in the following sections that we can change this perspective by removing the one-
to-one relationship between the arms and the rewards (actions). More specifically, we
will analyse a continuous space of rewards, represented by a weighting scheme, while still
having a discrete set of arms. Thus, it becomes virtually impossible to look at all rewards
and uncertainty emerges again.
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2.3 Adversarial Bandits

A key difference between classical bandits and our portfolio choice problem lies within the
reward distribution, which is assumed to be fixed throughout the whole interaction with the
environment. Adversarial Bandits are more clever, on the basis that the environment
will respond to the chosen actions by selecting an unfavourable distribution for rewards
such that the learner is at a constant disadvantage. Thus, if one uses a predictable tactic,
such as UCB, a clever adversary (that is, in our case, another market participant) will
exploit this knowledge and counteract it. This essentially translates to a non-stationary
distribution of rewards, which the stochastic bandits’ asymptotic optimality cannot handle.

Definition 2.3.1. (Section 11.1 [65]). A k-armed adversarial bandit is an arbitrary
sequence of reward vectors (xt)0≤t≤n, for which xt ∈Mk×1(R).

The performance of such a policy is measured by worst-case regret, represented by
the incurred loss by pulling the worst arm at each available step along the time horizon.
First, if we take the expected regret as

Rn(π, x) = max
1≤i≤k

n∑
t=1

xti − E
[ n∑

t=1

xtAt

]
,

then the worst-case regret is

R∗
n(x) = sup

x
Rn(π, x),

where the worst-case scenario isn’t represented by the maximum mean one can achieve
by committing to a certain arm, but instead it gives the worst reward for each selection.
Lattimore and Szepesvári argue that deterministic policies, such as UCB, will not achieve
a sub-linear worst case regret (Section 11.1 [65]).

They argue that the best way to avoid suboptimal choices is to randomise the policy,
since that would imply our adversary has less information about our decision. They
conclude that good randomised policies can be found, thus our adversary cannot avoid
the inevitable.

There is extensive literature on bandits within an adversarial scenario. The starting
point is the Exp3 algorithm, introduced by Auer, Cesa-Bianchi, Freund and Schapire [10]
which achieves O(

√
n) regret. The main idea is to map the decision set to a probability

measure which is then updated via an importance sampling estimator, discussed in the
next section. The framework was gradually improved in the following years [8, 21]. The
main framework for adversarial saw more connections with online convex optimisation, as
these algorithms share similarities with the Mirror Descent method, introduced in 1983 by
Nemirovsky and Yudin [80]. Thus, the same authors who developed Exp3 also introduced
Exp4, which stands for ”exponential-weight algorithm for exploration and exploitation with
experts’. We will discuss about the relationship between Exp3 and Exp4 and continue by
describing the latter, as it is closer to solving our problem at hand.
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2.3.1 Reward Estimation

The main concept of the exponentially-weighted bandits are importance weighted es-
timators, defined as

X̂ti =
11{At=i}Xt

Pti
(2.3.1)

If we take Et[·] to be the conditional expectation given the history up to time t, these
estimators are unbiased for the rewards (Page 151 of [65]) , i.e.

Et−1[X̂ti] = xti

Let Ŝti =
∑t

s=1 X̂si be the total estimated reward up to time t, according to (2.3.1).
Then, we consider that higher-reward arms should be played more often, and thus we map
Ŝti to probabilities using exponential weighting in the following way

Pti =
exp(ηŜt−1,i)∑k
j=1 exp(ηŜt−1,j)

.

We take η as the learning rate, which governs how often we commit to the largest
estimated reward. If the rate is smaller, the probabilities are more uniform, allowing for
more exploration. These notions are important because in the later sections we will extend
the one-action per round scenario to multiple weights at each stage.

An equivalent estimator for the rewards, which we will use for the prediction with
experts algorithm is defined by

X̂ti = 1−
11{At=i}(1−Xt)

Pti
.

2.3.2 Expert advice

The key improvement of Exp4 is the use of expert advice, which is represented by a set of
possible policies to sample an action from. Suppose we have L experts available to sample

an action. Then, we define E
(t)
Lt

as the probability distribution of selecting an action taking
using expert’s Lt advice. The way we choose our expert at round t is governed by the
probability distribution Qt, which is initially a discrete uniform taking values between 1
and L.

Remark 2.3.2. If we consider Qt = (Qt1, Qt2, ..., QtL) and E(t) ∈ML×k(R), notice that

Pt = QtE
(t) ∈M1×k(R),

for which each row vector has the sum equal to 1.

After an action is chosen, a reward is estimated using an importance-weighted esti-
mator. The distribution of choosing an expert is then adjusted using those estimates via
exponential weighting.

The following theorem characterizes the regret of the Exp4 algorithm:

Theorem 2.3.3. (Theorem 11.1 [65]) Let γ = 0 and η =
√
2 log(M)/(nk) and Rn the

expected regret of Exp4 defined in Algorithm 3. Then,

Rn ≤
√

2nk log(M) (2.3.2)
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Algorithm 3: Exp4 [10]

Input : n, k, M, η, γ

1 Set Q1 = (1/M, ..., 1/M)

2 for t ∈ 1, 2, ..., n do

3 Receive advice E(t)

4 Choose action At ∼ Pt, where Pt = QtE
(t)

5 Receive reward Xt = xtAt

6 Estimate action rewards: X̂ti = 1− 11{At=i}
Pti+γ (1−Xt)

7 Propagate rewards to experts: X̃t = E(t)X̂t

8 Update distribution Qt using exponential weighting:
9

Qt+1,i =
exp(ηX̃ti)Qti∑
j exp(ηX̃tj)Qtj

Due to the randomised nature of the policies, there are still open questions regarding
the regret bounds that could be achieved. The upper bound was later improved [57], al-
though it still doesn’t match with the lower bound, which saw more attention in literature.
The most recent improvement was developed by Cesa-Bianchi [24] based on the results
of Chen, He, and Zhang [26] on a restricted expert setting using feedback graphs. The
authors conjecture the bound can be extended to any kind of expert feedback, although
this remains an open topic.

2.4 Adapting Bandits to the Portfolio Choice Problem

While standard bandit learning focuses on identifying the single best option, portfolio
selection often involves choosing a combination of multiple assets. From the more general
setting of adversaries, another branch of this class was developed, namely contextual
bandits [28, 30], which have context-adapted policies and so one can improve regret by
narrowing down the available options when making a selection. Another sub-category of
bandits is represented by the combinatorial algorithms, which have been developed to
handle the finite selection of multiple arms [25].

Several new concepts arose as a result of researching contextual and combinatorial
bandits, such as linear bandits (linUCB algorithm [1, 58]), which represented one of the
first attempts to separate the arm and the decision to allow for more flexibility. Usually,
a linear function is assigned to describe each reward possible using a set of feature as
arguments. Both combinatorial and contextual bandits typically make binary decisions
regarding which arms to choose and allocate investments equally among them [27]. In
contrast, the fundamental challenge in portfolio selection lies in determining the optimal
distribution of weights amongst all the proposed assets.

A classic bandit algorithm will map each arm with its rewards and nothing more. If
we remove this restriction and consider a weighting scheme , we allow for full flexibility of
improving our PnL and not limit ourselves to picking one action at a time.

In fact, using the definition of weights presented in the previous sections we can dis-
tinguish between each type of feedback based on the constraints of W . Thus, we can take
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the weight vector [38] at time t to be

Wt ∈ D :=

{
(wti)i∈1,k |wti ∈ [0, 1], for any 0 ≤ i ≤ k,

k∑
i=1

wti = 1

}
(2.4.1)

The flexibility of considering arms and actions separately with the previous definition
of weights is evident, and one can characterize the algorithm used only by restricting the
class of weights used.

The main challenge of the total reward quantity comes from the limited amount of
information regarding the reward distributions. In general, one may look for improving the
selection algorithm looking elsewhere and adjusting the existing framework to a finance-
related scenario. For instance, we know our data is a time series and, furthermore, we
know the rewards of different equity curves are correlated. In addition to this, we shouldn’t
resort only to choosing only one action per round. We will instead assign weights for each
arm and try to maximise the reward

Sn =

n∑
t=1

k∑
j=1

wtjXtj , (2.4.2)

If we take W ∗ to be the optimal weights matrix and µtj = E[Xtj ], then we can define
our expected regret as

Rn :=
n∑

t=1

k∑
j=1

(w∗
tjµtj − wtjµtj) =

n∑
t=1

k∑
j=1

(w∗
tj − wtj)µtj .

Remark 2.4.1. The optimal weights matrix consists of only unit vectors from the canon-
ical base of the coordinate vector space Rk because in the best case scenario we allocate
a full measure to the highest mean achieved at every round.

The previous remark points out that the expected regret is only marginally different
than the one defined at (2.2.1). If we take µ∗

t = max
0≤j≤k

µtj and a∗t = argmax
0≤j≤k

µtj we can

provide a better representation of the expected regret as

Rn =
n∑

t=1

(
(1− wta∗t

)µ∗
t −

k∑
j=1

11{j ̸=a∗t }wtjµtj

)

2.5 Semi-Bandit and Full-Information Algorithms

In this section we discuss how to improve upon using more information from the envi-
ronment and try to give some insight on the different approach we take as opposed to
Full-Bandit feedback. Furthermore, we extend the PSR framework described in 1.3 and
propose an expert selection scheme for portfolio management.

2.5.1 UCB in continuous space

It’s a good improvement to have adjusted for multiple choices, although a problem still per-
sists. In the previous definition of regret there is no correlation term, although the returns
are usually correlated. On this topic there are a few results that focus on combinatorial
bandits with covariance [85, 35], which inspired the more recent paper on ”Continuous
mean-covariance bandits” [38] to introduce several new algorithms with novel regret guar-
antees. Taking the mean vector of the rewards at time t as θt ∈Mk×1(R) and the positive
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semi-definite covariance matrix Σt with Σii
t ≤ 1, for any i ∈ 1, k, the authors define a

reward-risk function as

f(Wt) = W T
t x∗ − ρW T

t Σ∗Wt. (2.5.1)

The optimal action at round t is then defined as W ∗
t = argmax

Wt∈D
f(Wt).

Accounting for covariance is essential as it translates to managing the risk, and this
issue within a bandit framework was tackled multiple times. The intuition is quite elemen-
tary, as one adjust the mean estimators using a covariance matrix of the returns and thus
re-adjusting the Sharpe ratio. This is how the ”Orthogonal Bandits” technique, which we
mentioned in Section 2.2 was developed [99], and then the weights were regularised in [61],
although a slightly different approach was taken, where the authors split the portfolio in
two parts and compute the UCB values sepparately, optimising the balance of the split
afterwards.

There is, however, a key factor to consider here. If one has access to all rewards
(full-information feedback), then there is no sense to look at an UCB algorithm, simply
because there is no uncertainty left to explore, since all information is available. While
it is true that the authors built a different decision space than the one represented by
the arms, full-feedback was still available. Nevertheless, besides the orthogonal bandit
approach there are several other works which mention UCB algorithms that account for
covariance ([53, 98]). Why is that the case? Well, mainly because there is a proxy used
for the reward. It could be the Sharpe ratio, or it could be a different quantity that aims
to create order amongst the arms.

If we consider a weighting scheme on the final PnL, then the whole reward space
is continuous, making it virtually impossible for someone to ever have full-information
feedback. It’s a matter of perspective, which is heavily discussed in [38], but to the best
of our knowledge it wasn’t articulated in a manner that would justify why an UCB-type
algorithm would suffice, because confidence bound algorithms work best with a finite set
of decisions. Thus, a finite decision space can be created, which will reduce the accuracy
of a fully continuous model, but it will, on the other hand, reduce computational time.

The results of [38] are most promising in this regard, as the covariance is taken to
minimising the regret and new estimators are proposed for the equity curve means. The
authors of the mentioned paper propose an algorithm for each type of feedback, each with
its own slight modifications and improve the theoretical regret bounds, initially developed
in [85].

We will showcase in this paper the algorithm proposed in [99], where the authors
present the previously mentioned Orthogonal Bandit approach which takes into account
correlation between rewards and further improve that to more realistic model, although
the authors don’t provide a theoretical guarantee.

Their main idea is to decompose the covariance matrix and build orthogonal portfolios
based on its eigenvalues. The respective values are ordered, where the highest one are
considered the most significant. Then, a split is made between each bandit portfolio (one
per eigenvalue) and only one value is selected from each subset via UCB.

For Algorithm 5, we have the following 2 equations for steps 8 and 9, respectively:

θ∗k = argmin
θk

=
λ̃k,i∗k

λ̃k,i∗k
+ λ̃k,j∗k

ωk = (1− θ∗k)H̃k,i∗k
+ θ∗kH̃k,j∗k

,

where the λ̃k parameters come from the diagonal matrix Λ̃k.
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2.5.2 Predicting with Expert Advice

Since in a real-world trading environment we usually face a full-information scenario, we
will look at a tailored Exp4-variant that has access to all information and it has expert
advice suited for a finance context, making it a combination between Exp4 and Hedge [43].

Thus, for the first issue we aim to choose conventional weighting schemes for our
experts. The resulting weights are then clipped, filtering only the positive values and then
normalised to turn them into probabilities. Amongst our selection, we’ve picked several
weighting schemes such as Sharpe ratio, Calmar ratio and Clever weights, which we will
showcase below.

Firstly, if we have a set of returns X1, . . . , Xn with mean µi, we define the Calmar
ratio at time t as

CRt :=
µt

DRt
,

where DR is the drawdown, i.e. maxi∈[t](Xi)−Xt.
For the second issue we know that the Exp4 algorithm starts with selecting only one

action, and we’ve mentioned that for a combinatorial setting it’s computationally infeasible
to consider all possible asset combinations since that would scale exponentially.

The algorithm is more closely aligned with the philosphy behind the Hedge method
[43, 69], which is suited for predictions with expert advice.

Algorithm 4: Clever Weighted Equity Curve (ClW)

Input: Equity curves matrix M , mean adjustment factor αmean, standard
deviation adjustment factor αstd

Output: Adjusted weights
1 k, n← shape of M ;
2 diffs← Calculate the increments of M on axis 1;
3 drawdowns← Calculate the drawdowns of M ;
4 mean diffs← Calculate the mean of diffs;
5 std diffs← Calculate the standard deviation of diffs;
6 weights← mean diffs

(1+drawdowns)·(1+std diffs) ;

7 weights← max(weights, 0);
8 weights← round(weights, 4);
9 sum of weights← sum(weights);

10 mean weights← (1− αmean) · weights+ αmean ·mean(weights);
11 std weights← (1− αstd) · weights+ αstd · std(weights);
12 weights← mean weights

1+std weights
;

13 return weights;
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Algorithm 5: Orthogonal Bandit Portfolio (OBP) [99]

Input : m,n, l,∆t,Rk, τ

1 for k = 1 to m do
2 Estimate the average return E[Rk] and covariance matrix of asset returns Σk

using {R−τ+k, . . . ,Rk−1}.
3 Implement the principal component decomposition: Σk = HkΛkH

⊤
k .

4 Compute the renormalised similarity matrices and eigenvalues:

Σ̃k = H̃kΣkH̃
⊤
k = Λ̃k.

5 Compute the Sharpe ratio of each arm. Compute the adjusted reward
function of each arm.

6 Select the optimal arms according to the adjusted reward function from the
first l and the next n− l orthogonal portfolios, respectively.

7 Compute the optimal mixture weight θ∗k.
8 Compute the optimal portfolio weight ωk.

Output: The portfolio weight vectors ωk and the portfolio returns µk for
k = 1, . . . ,m.
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Chapter 3

Statistical Change Point Analysis

So far, we have addressed the potential issues of the classical bandit frameworks such
as collinearity and multiple-action selection, but one challenge is still left unaddressed:
non-stationarity.

Changepoints are defined loosely as “moments of abrupt change in the behaviour
of a time series,” which “may signal a significant alteration to the data generating pro-
cess” [106]. The literature on changepoint detection (CPD) is concerned with accurately
detecting these events in time series data, as well as with modelling time series in which
such events occur (ibid.). Methods for CPD can be roughly categorised into (1) online/of-
fline, (2) univariate/multivariate, (3) model-based/nonparametric, (4) Bayesian/frequen-
tist, (5) in nonparametric methods: divergence estimation/heuristics (ibid.).

3.1 Background

Change Point Detection (CPD) analysis is not new and the first publications on the subject
appeared in the 1950s [31], [84] and 1960s [79, 100, 45, 103], with some publications in
the 1970s gaining significant traction [50]. A recent survey of the subject has appeared
in [106]. Changepoints have also been considered specifically in the context of finance and
economics [66].

The fact that our data is a time series is a crucial aspect of analysis and there is ex-
tensive literature on Change Point Detection to signal whenever a significant modification
occurred in our data. This extra edge when constructing a portfolio may help re-balance
the weights if they over (or under) commit on certain actions, preventing further decline
in the total cumulative rewards.

The first results on changepoint detection were made by Page who described the CUM-
SUM (Cumulative Sum) method [84] by which a cumulative sum is used to identify shifts
and/or changes in the distribution of a sample set if the respective quantity exceeds a
predefined threshold. The technique was later rigorously analysed by Lorden [71] within
a solid theoretical framework. Later on, maximum likelihood methods [50] as well as
multiple linear regression estimates [12] were researched

As for nonparametric models, they heavily rely on explicit hypothesis testing where
the detection is being done with test statistics, such as Student’s T. Of course, many other
functions could be used, which is what inspired the research of kernel changepoint analysis
[48] and even divergence measures or histograms were used for such testing [75, 17].

The method we will use in Chapter 4 is known as Bayesian online point detection,
simultaneously proposed by Fearnhead and Liu [40] and Adams and MacKay [2]. These
models learn a probability distribution over the “run length”, which is the time since
the most recent change point. In their analysis, Adams and MacKay looked at shifts
in a time series using the Dow Jones Industrial Average performance during the 1970s
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close to the Watergate incident and they noticed spikes in the probability of the posterior
distribution of returns very close to key events that occurred, such as the resignation of
former President Richard Nixon. Nevertheless, the formulation of Adams and MacKay
has been extended in several works to include Gaussian Process segment models ([82],
[92]).

It is common knowledge [107, 46] that financial time series are usually nonstation-
ary. Moreover, they are nonstationary in particular ways, usually considered as stylized
facts [41]: for example, volatility clustering : “large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small changes” [73].
Moreover, changes in market parameters often happen abruptly and multiple parameters
change all at once, as in market crashes [7], although abrupt market dislocations happen
far more frequently on a smaller scale [66]. This suggests that changepoint analysis could
be used to study such phenomena.

The estimation and/or forecasting of the mean function of a financial stochastic pro-
cess is at the core of finance including, but not limited to, alpha generation and portfolio
selection. We will focus on estimation rather than forecasting. However, even the esti-
mation of the mean of a financial time series is a difficult problem, as acknowledged by
Merton [77].

3.2 Incremental Mean Estimation

The standard way to estimate the mean of a distribution is via the sample mean. Suppose
that X1, . . . , XN are realizations of a random variable X, so X1, . . . , XN are independent
and identically distributed (i.i.d.). Then the sample mean is defined as

X =
1

N
[X1 + . . .+XN ] =

1

N

N∑
i

Xi.

We can show that, irrespective of the distribution of X, the sample mean is an unbiased
estimator:

E[X] = E
[
1

N
[X1 + . . .+XN ]

]
=

1

N

N∑
i

E [Xi]

by the linearity of the expectation operator E[·] and, if the true mean of X is µ, using the
assumption that X1, . . . , XN have the same finite mean µ,

E[X] =
1

N

N∑
i

µ =
1

N
·Nµ = µ.

Since the mean squared error (MSE) of an estimator can be represented as the sum
of the estimator’s variance and squared bias, the MSE of the sample mean is equal to the
sample mean’s variance:

V ar[X] =
1

N2
V ar[

N∑
i

Xi].

If we use the assumption that X1, . . . , XN are independent, we can rewrite this further as

V ar[X] =
1

N2

N∑
i

V ar[Xi].

Furthermore, if we assume that the variance of X is finite and is equal to σ2, we can
rewrite this further as

V ar[X] =
1

N2
·Nσ2 =

σ2

N
.
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The square root of this quantity is known as the standard error of the mean,

SEX =
σ√
N
∝ 1√

N
. (3.2.1)

Thus to halve the standard error, we need four times as many samples; to reduce the
standard error by a factor of ten, we need one hundred times as many samples; and so on.

So far our assumptions on the distribution of X have been mild: we assumed that
X1, . . . , XN were i.i.d. samples drawn from the distribution of X; that that distribution
has a constant mean µ; and that that distribution has a finite variance of σ2. Apart from
these mild assumptions, we didn’t say anything about the distribution of X. In particular,
we did not require that X be normally distributed. It is difficult to say more about the
sample mean estimator without introducing stronger distributional assumptions.

3.3 A different Estimator

There is a strong result proven by Bondesson [16] that the sample mean of observations
taken from a location-scale parameter family of distributions is BLUE (best linear unbiased
estimator) of the location parameter for all sample sizes if and only if the distribution is
normal with mean zero or gamma translated to have mean zero.

In some respect, this is good news. For example, if, for t ∈ [0, T ], T ∈ R+, the price
process is

dSt = µdt+ σ dWt,

i.e., a scaled Wiener process with drift µ and volatility σ, then the increments of this
process are normally distributed:

∆St = St − St−∆t ∼ N
(
µ∆t, σ2∆t

)
.

But a caveat lurks here. Suppose that we have a time series, X1, X2, . . . , XN . When
estimating its mean increment via the sample mean estimator, we end up with a telescoping
sum:

∆X =
1

N − 1
[(X2 −X1) + (X3 −X2) + . . .+ (XN −XN−1)]

=
1

N − 1
[−X1 + (X2 −X2) + (X3 −X3) + . . .+ (XN−1 −XN−1) +XN ]

=
1

N − 1
[XN −X1] .

Thus only the first (X1) and last (XN ) terms contribute to the sample mean. There is no
point in increasing the sampling frequency.

In our case, if we sample the stochastic process at equally spaced times, 0 = t0, t1 =
∆t+ t0, t2 = ∆t+ t1 = 2∆t+ t0, . . . , tN = T = N∆t+ t0, so that T = N∆t, then

∆S =
1

N
[StN − St0 ] ,

and E[∆S] = µ∆t, so an unbiased estimator of the location parameter µ is given by

∆S

∆t
=

1

T
[ST − S0] .

The variance of this estimator will then be given by

V ar

[
∆S

∆t

]
=

σ2∆t

N∆t2
=

σ2

T
. (3.3.1)
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Notice that only T affects the variance of this estimator; ∆t andN , and, by implication,
the sampling frequency, does not affect this variance.

Trivially, the standard error of this estimator is the square root of the above variance,
namely SE∆S

∆t

= σ√
T
. Thus to halve the standard error, we need the dataset to span four

times as much time; to reduce the standard error by a factor of ten, we need the dataset
to span one hundred times as much time. (An order of magnitude improvement in the
accuracy in the estimation of the location parameter µ requires a two orders of magnitude
increase in the duration of the dataset, which is difficult in practice.)

It is more common to model the price of an asset as a geometric Brownian motion,

dSt = µSt dt+ σSt dWt, (3.3.2)

since then the model price St is always nonnegative. In this case the increments ∆St =
St−St−∆t are no longer normally distributed. The stochastic differential equation (3.3.2)
has a closed form solution

St = So exp

[(
µ− σ2

2

)
t+ σWt

]
,

whence the log-price Xt := log(St) follows the scaled Wiener process with drift

Xt = ln(S0) +

(
µ− σ2

2

)
t+ σWt.

Therefore the increments are, as before, normally distributed

∆Xt = Xt −Xt−∆t ∼ N
((

µ− σ2

2

)
∆t, σ2∆t

)
.

The sample mean estimator can be used to estimate the location parameter of the above

normal distribution, namely
(
µ− σ2

2

)
∆t. One of the numerous estimators of the variance

can then be used to estimate the scale parameter, or σ2∆t. But we are back to the same
problem: only the endpoints and the length (in units of time) of the time series feature in
the calculation of the sample mean.

3.4 Bandits with Changepoints

The current literature on implementing a framework for changepoints within a bandit set-
ting is scarce, as the main focus is traditionally directed towards improving the theoretical
regret bounds and adjusting for the covariance between different arms. Since our problem
is greatly concerned with practical results in an online setting, it is worth taking a look
at how could a changepoint framework can help in a bandit setting.

First of all, we recall that one of the three main issues with using classical bandits
for a portfolio choice problem is the nonstationarity of rewards. The main approach is to
consider piece-wise stationary bandits [14]. More specifically, we assume that in a sequence
of rewards X1, X2, ..., Xn the sample is not independent and identically distributed (iid)
anymore and in fact we assume that there exists a set of changepoints c0 < c1 < ... < cτ
such that each sub-sample Xck+1, Xck+2, ..., Xck+1

is stationary.

With this simple idea in mind, it’s only natural to develop a sub-routine for any bandit
framework that uses a mean estimator for the rewards. In such a setting, the mean can
be estimated using the results of Section 3.3 in the following way:
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Lemma 3.4.1. (Changepoint mean estimator) Let S1, S2, ..., Sn be a sequence of random
variables. Let τ ≤ n be the number of changepoints of the sequence, i.e. there exists an
increasing array 0 = c0 ≤ c1 < c2 < ... < cτ−1 ≤ cτ = n such that the sub-sequence
Xck+1, Xck+2, ..., Xck+1

is stationary. Then, the following estimators for the mean incre-
ments are unbiased:

µ̂k :=
1

ck − ck−1
[Sck − Sck−1

], for any 1 ≤ k ≤ τ.

The results from [6] provide a framework for bandits in this scenario by restarting the
selected arm count once a changepoint is detected in an UCB framework. This forces the
algorithm to learn again what are the best context-dependent arms, adjusted to a new
mean. We shall see in the next chapter how changepoints can influence a dataset.

3.4.1 PSRCP-UCB

We can apply the current changepoint framework to our PSR-UCB algorithm, defined in 2.4.
Restarting the observation count and consequently the Sharpe estimators will essentially
form a dynamic moving average which will maintain relevance for the most recent step to
be updated. For the actual changepoint detection method we would need to resort to an
online method to match the dynamic of the UCB framework.

Algorithm 6: PSRCP-UCB

1 [H]
Input: k, n, γ, p
Parameters: Ti(0), ŜRi(0), γ̂3

i(0), γ̂4
i(0)

2 Set γ = ⌊γ⌋ · n
3 for i = 1, 2, . . . , γ do
4 Play arm i

5 Update Ti(t), ŜRi(t), γ̂3
i(t), γ̂4

i(t)

6 end for

7 Calculate UCBPSR
i (γ) for each i = 1, 2, . . . , k from 2.2.5

8 for t = γ + 1, γ + 2, . . . , n do

9 Play arm ai = argmaxi∈{1,2,...,k}UCB
PSR
i (k) Update Ti(t), ŜRi(t), γ̂3

i(t), γ̂4
i(t)

10 Calculate UCBPSR
i (t) from (2.2.5)

11 If t is a changepoint for a specific arm (strategy) with probability ≥ p, then
reset all parameters for the specific action.

12 end for

The tuning of parameter p is paramount, as depending on the dataset the number
may vary. For example, for clear generated sets with artificially introduced changepoints
the probabilities will be very high (over 0.9), whereas for a real time-series for which the
data has a high correlation, we may need to reduce the threshold. There is a fine balance
of choosing this parameter, as lower values will imply detecting more changepoints, thus
loosing the accuracy of the UCB algorithms, which are known to be asymptotically optimal
and require a lot of arm pulls. In fact, we may expect a lower performance than the
conventional UCB methods. However, this idea remains notable as the PSR-UCB bound
and the idea of estimating the Sharpe ratio even in the absence of normal-distributed
returns signify a key starting point for future research.

The actual changepoint detection method we use is, as stated during the introduction,
Bayesian Online Detection, based on [3] and using the Python library sdt-python. For
more information, the reader may consult Appendix B.
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Chapter 4

Evaluation

In this final chapter we propose several experiments to analyse all discussed methods and
compare them on several sets of data to assess the performance of our proposed work on
both synthetic and real-world datasets. For the synthetic dataset, we selected Brownian
Motion simulations with various values for drift and volatility and a small adjustment
which we will explain in the next section. Our analysis will consist of three experiments:

• PCR-UCB performance: We will showcase the advantages and limits of Algorithm 2
by comparing it with the known benchmark UCB-RSSR, which also uses Sharpe ratio
in the confidence bound estimation.

• Changepoint estimation: We will test the changepoint framework for the UCB-type
algorithms and discuss the key ideas of arm restarts.

• Predictions with expert advice: We showcase the performance of an Exp4 algorithm,
more closely aligned with Hedge [43] within a full-information feedback scenario.

4.1 Data

First, we have generated synthetic equity curves based on a drifting Brownian Motion
Process based on certain parameters, such as mean and volatility. A key addition is that
we have introduced an additional parameter which represents informed curves, which
have reduced variance and therefore will decrease to a lesser extent. A good bandit
algorithm will pick those curves and take advantage. However, it is interesting to see what
kind of feedback will be best in this scenario. Furthermore, to account for nonstationarity
we have split the synthetic data in two categories:

• Constant mean: The theoretical drift parameter is constant throughout the whole
equity curve generation.

• Shifting mean: For each curve, we pick a random number of changepoints where the
drift will shift, thus generating nonstationary equity curves.

Secondly, we have also looked at real-world data and picked two datasets:

• Financial markets stocks: Using yfinance Python library, we have taken 10 stocks
from the Dow Jones Index to analyze the performance of adversarial bandits.

• Alternative Data: Using Ray, we downloaded Google Trends data for signal detection
purposes, with the hope of identifying good PnL curves that resemble stock market
activity.
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4.2 Experiment 1: PSR-UCB

For the first experiment, we aim to test the performance of the PSR-UCB algorithm we
defined in 2. Since we want to analyse finance-related scenarios, we generate equity curves,
which can be interpreted as PnL curves, using a Brownian Motion process with different
parameters. Moreover, we will ’boost’ some of the curves and we will name them informed
curves. More specifically, we incrementally add a fractional drift to a random number
of already generated curves and thus we can emulate an effective trading strategy or
profitable portfolio. We implement this adjustment to the curves because we want to see
if the algorithms will find true value within a large range of options, amongst many of
which are actually random. Furthermore, it’s also much more practical to directly analyze
the PnL generated by the respective algorithms. The methods used in this experiment
are described in Table 4.1, where SW represents the Sharpe Weighted portfolio, where we
weigh each arm by the most recent empirical Sharpe ratio.

Strategy γ δ / p

SW N/A N/A
UCB 0.01 dynamic (1/n2)
UCB-RSSR 0.01 dynamic (1/n2)
PSR-UCB 0.01 0.999

Table 4.1: Parameter Settings for Different Strategies

Figure 4.1 showcases the PnL of the four strategies employed for a full-bandit feedback
setting for different numbers of both informed and regular arms among 20, 000 time steps
averaged over 30 iterations. The drift and volatility are set to 0.1 at the start of the curve
generation process. The informed strategies will have higher incremental means.

Figure 4.2 aims to replicate the exact case study conducted in [61], more specifically
we will test the algorithms against an uniform distribution with mean and variance vectors
µ = [0.05, 0.07, 0.055, 0.07, 0.06], σ2 = [0.1, 0.1, 0.1, 0.1, 0.1], picking the first values in their
respective order if the action count is smaller than 5. We immediately notice that PSR-UCB
outperforms all other methods in both scenarios.

We notice that in this scenarios PSR-UCB outperforms all benchmarks.Furthermore we
make the following two remarks:

• The PSR-UCB is derived from a confidence interval inequality, and so we may treat it
as a statistical test. More specifically, we can say that the proposed framework will
detect inherently good strategies that produce good overall results with a certain
confidence level. The intuition behind such a good performance could be justified
by the fact that we use the skewness and the kurtosis to estimate the Sharpe ratio,
two additional moments that provide more information to our context.

• The other UCB algorithms loose performance as the number of arms increases,
whereas PSR-UCB maintains the same rate of growth (it even increases in some cases)
throughout all simulations. This is because the asymptotic guarantees of the Sharpe
ratio estimator provide much tighter regret bounds, thereby increasing overall profits.
Notice, however, that the performance for the early stages is actually worse for
PSR-UCB when using 10 arms, suggesting that we need a broad time horizon for a
good analysis. We will see how this impacts changepoint analysis in Experiment 2.

In addition to the synthetic data, we analyse the Google Trends dataset and we build
PnLs based on 2 different sets. Set 1 describes the actual trends on various industries,
such as gas, oil, airport, casino, bitcoin, totalling to 20 curves in total. Set 2 describes
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transformations on the first set, such as moving averages and rolling window increments
bundled together with the contents of Set 1, amounting to 60 curves.

The reasoning for using Google Trends is the following: because the PSR-UCB is built
to extract the most value provided value can be found, then a good enough performance
will indicate the presence of signals based on alternative data. Due to the more sporadic
behaviour of trends data, we need to adjust the exploration parameter γ which controls
how many actions we explore at the beginning of the algorithms. Judging from 4.3, we
conclude that a γ ≈ 0.02 is most adequate for our setting. Of course, we could explore
more, but that would defeat the purpose of exploitation.

In Figure 4.4 we see the outputs based on Sets 1 and 2 with the settings given from
Table 4.1 with the modification of the γ parameter to 0.02. We notice that the PSR-UCB

is consistent amongst the two datasets, whereas UCB-RSSR struggles with mixed data and
more arms altogether, but still outranking the classical UCB with the exception of one
case. What is more curious is that the Sharpe ratio UCB methods offer an advantage
compared to the classical weighting scheme of SW, which has full-information feedback. In
that regard, we can affirm that indeed less is more.
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Figure 4.1: Experiment 1 – Synthetic Data
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Figure 4.2: Experiment 1 – Uniform Data
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Figure 4.3: Experiment 1 – γ parameter optimisation; PSR-UCB

Figure 4.4: Experiment 1 – Google Trends Data

4.3 Experiment 2: Changepoint UCB

In this second experiment, we aim to implement the changepoint algorithms first on syn-
thetic data, which has randomly assigned changepoints during generation. More specif-
ically, we randomly select their position within the time series and increase the drift
parameter for the remainder of the generation. The tuning of parameter p, which sets the
threshold for detecting changepoints is crucial, as that is what determines the added value
of these methods.

For synthetic data, the algorithms detected all artificially added changepoints with a
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threshold of 0.85, since the shift of the distribution was evident. Figure 4.5 showcases this.
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Figure 4.5: Experiment 2 – Synthetic Data with artificially added changepoints

Again, for Google Trends we maintain the same data set as in Section 4.2. The settings
for the experiment are described in Table 4.2.

Strategy γ δ / p Probability Threshold

PSR-UCB 0.02 0.999 0.85
CP-UCB 0.02 dynamic (1/n2) 0.85
UCBCP-RSSR 0.02 dynamic (1/n2) 0.85
PSRCP-UCB 0.02 0.999 0.85

Table 4.2: Parameter Settings for Changepoint Strategies

A big drawback of using changepoint analysis within the full-bandit setting is that we
don’t have access to all data points to correctly detect unusual behaviour, so we can expect
a drop in performance and also an increase in computational cost. The UCB algorithms
have asymptotic optimality, and thus the number of arms explored needs to increase in
order to reach convergence, whereas if we keep restarting the analysis for every partial
observation made, we may in fact hinder our strategy.

Assuming we have contextual information regarding the changepoints, i.e. we know
where every changepoint is and restarting based on this assumption, we can look at Figure
4.5 to notice that we have actually value within this framework. This situation would
relate to a scenario where the changepoint information is extracted from another source
than the actual equity curve. Moreover, the additional increase in the drift parameter is
significant, as setting it to be to high will cause the overall Sharpe ratios to decrease, since
variance will increase due to the large gap. To showcase the key aspects of the changepoint
analysis, we have picked a limit value, namely for an initial drift parameter of µ = 0.1, we
add increments of 0.5 at every changepoint.
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Figure 4.6: Experiment 2 – Google Trends Data

We conclude this experiment with the following observations:

• The PSRCP-UCB algorithm will underperform in its current form. A possible expla-
nation is that we don’t rely on the asymptotic optimality of the regret bounds, but
also on the asymptotic behaviour of the Sharpe ratio estimator. A large number of
samples is required to achieve the properties of a normal distribution for the confi-
dence bounds to hold. As we saw from Experiment 1, for the first few thousand of
rounds the performance of all methods is marginal and we can’t determine if we have
found true value until a later period is reached. Thus, the changepoint algorithm as
it is now may work only for a limited number of restarts for the PSR methods.

• On the other hand, the UCB and UCBCP-RSSR algorithms are reacting very well to this
dataset. The explanation, which also justifies the poor performance of the PSR-UCB
framework, is that the upper confidence term does not relate to the Sharpe ratio
for the former methods. For the PSR model, the mentioned term is precisely the
estimator for the quantity that hinders the whole progression, which is also confirmed
by the low values of the SW results.
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4.4 Experiment 3: Adversarial Bandits

For adversarial bandits, we maintain the same datasets as in Experiment 1. In addition,
we will also analyse the Dow Jones Stocks taken from the yfinance and listed in Table
4.4 from 2012/01/01 to 2023/01/01.

Stock Indices

MMM, AXP, AMGN, AAPL, BA, CAT, CVX, CSCO, KO, DIS

Table 4.3: List of Stocks used for Experiment 3

For this scenario, we use Exp4-prediction, a combination between Exp4 and Hedge

using Sharpe Weighted (SW), Calmar Weighted (CW) and Clever Weighted (ClW) ex-
perts. We denote it as a combination because we utilise the Exp4 code, but the experts
have access to full-information feedback. Moreover, we will analyse the OBP [99], the
MC-empirical [38] and the SW-CP algorithms. The latter is only a modification of SW

in which we implement the changepoint detection sub-routine. As for the MC-empirical

method, the authors use the mean-variance reward function defined in (2.5.1) and thus
risk is managed very well. We can expect a lower, but much more stable PnL.

Figure 4.7 displays the results of the synthetic data simulations with a time horizon
of 4, 000 time steps over 20 iterations. We notice that the Exp4-prediction algorithm
handles well the limited expert advice it has, namely the SW, CW and ClW weighting
schemes. Because a probability distribution is used to sample an arm, constrained by the
expert advice, which is at its turn represented by a set of probabilities, we can affirm the
overall performance of the method maintaining a fairly stable evolution of PnL.

Figure 4.8 showcases the results of the Google Trends dataset PnLs. We notice the
increased volatility of applying change point detection to a full-feedback method that aims
to optimise the Sharpe ratio, thus proving again a poor performance when it comes to
resetting the sample space at the discovery of a new change in the distribution of our data.
Moreover, we also remark a volatile, although effective curve produced by our proposed
expert selection scheme, especially on Set 1, where the cutoff point at around timestep
3000 is managed very well. Furthermore, the evolution of OBP is stable and doesn’t yet
exploit the value of the dataset. We suspect the algorithm is only effective on very long
windows of time, as the original analysis conducted in [99] is made based on data ranging
from the 1970s to the present day (2015 at the time of the article). There isn’t a large
discussion regarding what sliding window should be used nor additional results on different
time horizon settings to achieve the optimal parameter selection.
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Figure 4.7: Experiment 3 – Synthetic Data
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Figure 4.8: Experiment 3 – Google Trends Data
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Figure 4.9: Experiment 3 – Stock Data
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Conclusion

We have introduced PSR-UCB, a multi-armed bandit algorithm designed to maximise re-
turns using the Probabilistic Sharpe ratio as a proxy for constructing confidence bounds
for which a logarithmic regret is achieved. Furthermore, we empirically showed the greater
advantage when compared with the current benchmark UCB-RSSR that aims to maximise
the Sharpe ratio to build the confidence bounds. We have achieved theoretical guaran-
tees on the asymptotic regret bounds and conjecture that they can be further improved,
judging from the empirical results.

Furthermore, we extended the framework to changepoint detection tests to account
for nonstationarity in the time series of rewards, which could be a promising avenue to
pursue for future research, as the asymptotic nature of the estimator used in 2 requires a
large dataset to achieve logarithmic regret and, as a result, repeated restarts of the arm
counters currently hinder the algorithm’s capabilities.

The reasoning behind choosing the Sharpe ratio is the extensive study towards it, being
one of, if not the most, important metrics in portfolio management. Less is known about,
for example, the different variants of the Calmar ratio, although even if the estimator’s
distribution is analytically intractable, it should be straightforward to come up with a
polynomial approximation, which could contribute an upper bound.

Regarding the adversarial setting, we have analysed how multi-collinearity can impact
the overall portfolio and proposed a tractable expert selection scheme. While our proposal
doesn’t account for risk and it provides volatile results, it still performs very well against
the MC-Empirical [38] and OBP [99] benchmarks.

40



Appendix A

Technical Proofs

A.1 Mean and Variance Estimators

In Section 1.2 we introduced the following two estimators:

µ̂ =
1

Nδt

N−1∑
i=0

Ri, σ̂2 =
1

(N − 1)δt

N−1∑
i=0

(Ri − µ̂δt)2,

for which we also stated two lemmas, which we prove here.

A.1.1 Proof of Lemma 1.2.1

Proof. We start with the mean estimator. Given that we considered Ri =
Si+1−Si

Si
, where

Si follows a GBM process, we have the closed-form solution for the stock price at any
given time (insert reference) to be:

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
(A.1.1)

Using the closed-form solution in the definition of Ri, which corresponds to the return at
time ti, we obtain

Ri =
Si+1 − Si

Si
=

Si+1

Si
− 1

=

S0 exp

((
µ− σ2

2

)
ti+1 + σWti+1

)
S0 exp

((
µ− σ2

2

)
ti + σWti

) − 1

= exp

((
µ− σ2

2

)
δt+ σ

√
δtZti

)
− 1.

In the last equality we have used the fact that ti+1 − ti = δt, as mentioned in Section
1.2. Moreover, note the Zti term, which is a standard normal random variable, derived
from the well-known property of Brownian Motion increments:

Wti+1 −Wti ∼ N (0, δt2)

We can now compute the mean of the returns as
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E[Ri] = E
[
exp

((
µ− σ2

2

)
δt+ σ

√
δtZti

)
− 1

]
= E

[
exp

((
µ− σ2

2

)
δt

)
· exp

(
σ
√
δtZti

)]
− 1

= exp

((
µ− σ2

2

)
δt

)
E
[
exp

(
σ
√
δtZti

)]
− 1

= exp

((
µ− σ2

2

)
δt

)
exp

(
σ2

2
δt

)
− 1

= exp(µδt)− 1. (A.1.2)

For the first 3 equalities we have used the linearity and homogenity of expectation,
whereas for the fourth one we have used the definition of the moment generating function
for standard random normal variables, giving us the final result. Now we proceed to show
that µ̂ is unbiased.

E[µ̂] = E
[

1

Nδt

N−1∑
i=0

Ri

]

=
1

Nδt

N−1∑
i=0

E[Ri]

A.1.2
=

1

Nδt

N−1∑
i=0

(
exp(µδt)− 1

)
=

Nexp(µδt)−N

Nδt

= µ · exp(µδt)− 1

µδt
−→
δt→0

µ · 1 = µ.

For the last line of the equality we have used the well-known limit

lim
x→0

exp(x)− 1

x
= 1.

Now, for the volatility estimator we have

E[σ̂2] =
1

(N − 1)δt
E
[N−1∑

i=0

(Ri − µ̂δt)2
]

=
1

(N − 1)δt
E
[N−1∑

i=0

R2
i − 2µ̂δt ·

N−1∑
i=0

Ri +N · µ̂2δt2
]

=
1

(N − 1)δt
E
[N−1∑

i=0

R2
i − 2Nµ̂δt2 · 1

Nδt

N−1∑
i=0

Ri +N · µ̂2δt2
]

=
1

(N − 1)δt
E
[N−1∑

i=0

R2
i −Nµ̂2δt2

]

=
1

(N − 1)δt

(N−1∑
i=0

E[R2
i ]−Nδt2E[µ̂2]

)
. (A.1.3)

The first term inside the brackets is computed as
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E
[
R2

i

]
= E

[(
Si+1

Si
− 1

)2]
= E

[(
Si+1

Si

)2

− 2 · Si+1

Si
+ 1

]
(A.1.1)
= E

[
exp

(
2(µ− σ2

2
)δt+ 2σ

√
δtZti

)]
− 2E[Ri]− 1

(A.1.2)
= exp(2µδt+ σ2δt)− 2exp(µδt) + 1. (A.1.4)

The second expectation term is expressed as

E[µ̂2] =
1

N2δt2
E
[N−1∑

i=0

R2
i + 2

∑
0≤i<j≤N−1

RiRj

]

=
1

N2δt2

(N−1∑
i=0

E[R2
i ] +N(N − 1)E[Ri]

2

)
=

1

N2δt2

(
N
(
exp(2µδt+ σ2δt)− 2 exp(µδt) + 1

)
+N(N − 1)

(
exp(µδt)− 1)

)2)
=

1

N2δt2

(
N exp(2µδt+ σ2δt)− 2N2 exp(µδt) +N2 +N(N − 1)exp(2µδt)

)
.

(A.1.5)

Now, combining the equalities from (A.1.4) and (A.1.5) into (A.1.3), we get

E
[
σ̂2

]
=

1

(N − 1)δt

(N−1∑
i=0

E[R2
i ]−Nδt2E[µ̂2]

)
=

1

(N − 1)δt

(
N(exp(2µδt+ σ2δt)− 2exp(µδt) + 1)

− exp(2µδt+ σ2δt) + 2N exp(µδt)−N − (N − 1)exp(2µδt)

)
=

1

(N − 1)δt

(
(N − 1)exp(2µδt+ σ2δt)− (N − 1)exp(2µδt)

)
=

1

δt

(
exp(2µδt+ σ2δt)− exp(2µδt)

)
= σ2exp(2µδt) · exp(σ

2δt)− 1

σ2δt
−→
δt→0

σ2 · 1 · 1 = σ2.

Now we proceed to show the bounds of these estimators in the following lemma.

A.1.2 Proof of Lemma 1.2.2

Proof. We start with the mean estimator. As the variance is invariant at additive opera-
tions with constants, and thus we have
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Var(µ̂− µ) = Var(µ̂)

= E[µ̂2]− E[µ̂]2

=
1

Nδt2

(
exp(2µδt+ σ2δt)− 2Nexp(µδt) +N + (N − 1)exp(2µδt)

)
−
(
exp(µδt)− 1

δt

)2

=
1

δt2

(
1

N
exp(2µδt+ σ2δt)− 2exp(µδt) + 1 +

N − 1

N
exp(2µδt)

)
− exp(2µδt)− 2exp(µδt) + 1

δt2

=
1

δt2

(
1

N
exp(2µδt+ σ2δt)− 1

N
exp(2µδt)

)
=

1

Nδt
·
exp(2µδt)

(
exp(σ2δt)− 1

)
δt

=
σ2

T
· exp(2µδt)exp(σ

2δt)− 1

σ2δt
−→
δt→0

σ2

T

Now, for the variance estimator we can use the results from [81] to conclude that

Var(σ̂2) =

(
κ− N − 3

N − 1

)
σ4

N
,

where κ is the kurtosis of the returns.

A.2 The Delta Method

The Delta method is a classic technique used in statistic to analyse the asymptotic be-
haviour of estimators.

Theorem A.2.1. (Delta method) Let X1, X2, . . . Xn be a sequence of random variables
satisfying √

n(Xn − θ)
D−→ N (0, σ2),

where
D−→ denotes convergence in distribution.

Then, for any function g for which g′(θ) exists and it’s finite, we have

√
n(g(Xn)− g(θ))

D−→ N (0, σ2 · [g′(θ)]2).

Now, suppose we have an estimator θ̂n for parameter θ and that we also have the
consistent estimator for the variance σ̂2

n, i.e. σ̂2
n −→ σ2 at least in probability. If the

following condition holds

√
n(θ̂n − θ)

D−→ N (0, σ2),

then we can construct a confidence interval by firstly considering the fact that

√
n(θ̂n − θ)

σ̂n
=

√
n(θ̂n − θ)

σ
· σ
σ̂n

D−→ N (0, 1),

where the first fraction converges to the normal distribution via the Delta method and the
second fraction converges to 1 because σ̂2

n is consistent. Thus, it is now clear where that
the n− 1 term that is due to Bessel’s correction is already contained withing the variance
estimator and the additional

√
n factor is added such that the estimator is asymptotically

normally distributed.
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A.3 Proof of Theorem 2.2.7

Proof. The proof for the theorem will have a similar structure to the one used in [65] for
Theorem 7.2.

First, we need to make some notations. We take SRi := µi

σi
be the true Sharpe

ratio with its respective true mean and standard deviation for arm i. Similarly, we take

ŜRiui :=
µ̂iui
σ̂iui

to be the estimated Sharpe ratio for selecting arm i after ui observations.

Without loss of generality we assume arm 1 to be the optimal one, i.e. µ∗ = µ1 (and
assume the highest Sharpe is correspondent to arm 1 as well).

Define in similar fashion (First unlabeled equation at page 106 from [65]) the sets

Gi :=

{
SR1 < min

t∈[n]
UCBPSR

i (t, p)

}
∩
{
ŜRiuI + Zpσ̂ŜRiui

√
1

ui
< SR1

}
.

Then, we will bound each term of the regret as

E[Ti(n)] = E[11{Gi}Ti(n)] + E[11{Gc
i}Ti(n)] ≤ ui + P(Gc

i )n. (A.3.1)

The bound on the first term follows the same reasoning as in the reference. For the
second term, we need to take a look at the complement of Gi:

Gc
i =

{
SR1 ≥ min

t∈[n]
UCBPSR

i (t, p)

}
∪
{
ŜRiuI + Zpσ̂ŜRiui

√
1

ui
≥ SR1

}
.

For the first set of the two, an union bound argument is used to prove that

P(SR1 ≥ min
t∈[n]

UCBPSR
i (t, p)) ≤

n∑
s=1

P
(
SR1 ≥ ˆSR1s + Zpσ̂ŜR1s

√
1

s

)
(2.2.3)

≤ np. (A.3.2)

Now, for the second term we need to bound

P
(
ŜRiui + Zpσ̂ŜRiui

√
1

ui
≥ SR1

)
. (A.3.3)

Now, the sub-optimal gap is ∆i = µ1 − µi and the Sharpe ratios are µi

σi
. Thus,

SR1 =
∆i + µi

σ1
(A.3.4)

This follows through as

P
(
ŜRiui −

µ1

σ1
≥ −Zpσ̂ŜRiui

√
1

ui

)
= P

(
ŜRiui −

µi +∆i

σ1
≥ −Zpσ̂ŜRiui

√
1

ui

)
= P

(
ŜRiui −

SRiσi
σ1

≥ ∆i

σ1
− Zpσ̂ŜRiui

√
1

ui

)
= P

(
ŜRiui − SRi +

(
1− σi

σ1

)
SRi ≥

∆i

σ1
− Zpσ̂ŜRiui

√
1

ui

)
= P

(
ŜRiui − SRi ≥

∆i

σ1
−
(
1− σi

σ1

)
SRi − Zpσ̂ŜRiui

√
1

ui

)
= P

(
√
ui
ŜRiui − SRi

σ̂ŜRiui

≥
∆i
√
ui

σ1σ̂ŜRiui

−
(
1− σi

σ1

)SRi
√
ui

σ̂ŜRiui

− Zp

)
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To simplify the computations (and potentially limit the bounds), we need to make a
few remarks and assumptions. Firstly, we need the bound to hold for a high confidence
level, so p will need to be very low. Thus, Zp = Φ−1(1− p) will be a positive value almost
surely. Secondly, since we assumed that arm 1 is the optimal arm, we’ll also assume that
it has the highest Sharpe ratio, i.e. 1 − σi

σ1
≥ 0. Lastly, we will assume that the true

Sharpe ratios of all arms are positive. With these considerations, we can further simplify
the previous expression. We have

P
(
√
ui
ŜRiui − SRi

σ̂ŜRiui

≥
∆i
√
ui

σ1σ̂ŜRiui

−
(
1− σi

σ1

)SRi
√
ui

σ̂ŜRiui

− Zp

)

≤ P
(
√
ui
ŜRiui − SRi

σ̂ŜRiui

≥
∆i
√
ui

σ1σ̂ŜRiui

)
.

We denote the right hand side term of the probability as Qi. Because the Sharpe ratio
estimator is asymptotically normal via the delta method, if we take an ui (and implicitly
an n) large enough, then the left hand quantity will become a standard normal random
variable Z. Thus, we can approximate the resulted quantity as

P(Z ≥ Qi) =

∫ ∞

Qi

1√
2π

exp

(
− x2

2

)
dx

≤ 1

Qi

√
2π

∫ ∞

Qi

x exp

(
− x2

2

)
dx

≤ 1

Qi

√
2π

exp

(
− Q2

i

2

)
. (A.3.5)

Thus, we managed to bound the probability defined at (A.3.3) by the quantity derived
in (A.3.5). We must now choose an ui such that is very low relative to n, preferrably to
a logarithmic or lesser scale. Note that the Qi term is very similar to the one derived in
the proof from [65], although now we have an additional term, which tightens the bound.
To be more specific, the bound derived from literature scales by

exp

(
− ui∆

2
i

2

)
up to some constants, whereas this bound is scaled by approximatively

1

∆i
√
ui
exp

(
− ui∆

2
i

2

)
.

As ui increases, our bound decreases faster, so our intuition tells us the overall PSR-derived
algorithm should perform better. This is further discussed in Chapter 4.

Putting (A.3.5) and (A.3.2) into (A.3.1), we get

E[Ti(n)] ≤ ui + n

(
np+

σ1σ̂ŜRiui

∆i
√
ui

exp

(
− ∆2

iui
2σ2

1σ̂
2
ŜRiui

))
. (A.3.6)

Notice that similarly, when ui gets large enough, then

σ̂ŜRiui
−→ σSRi .

The previous convergence will surely happen in this context, since otherwise our estimator
wouldn’t converge to a normal distribution if ui wasn’t large enough, so we can take
equality between the variance estimator and the true variance.

46



Using the previous expression, we can choose ui =

⌈
log(n2)σ2

1σ
2
SRi

∆2
i

⌉
, p = 1

n2 and if we

substitute it in (A.3.6) and get

E[Ti(n)] ≤ ui + n

(
np+

σ1σ̂ŜRiui

∆i
√
ui

exp

(
− ∆2

iui
2σ2

1σ̂
2
ŜRiui

))

≤

⌈
log(n2)σ2

1σ
2
SRi

∆2
i

⌉
+ 1 +

n√
2πlog(n2)

exp

(
− log(n2)

2

)
≤

log(n2)σ2
1σ

2
SRi

∆2
i

+ 2 +
1√

2πlog(n2)

≤
2log(n)σ2

1σ
2
SRi

∆2
i

+ 3

Thus,

Rn =

k∑
i=1

∆iE[Ti(n)]

≤
k∑

i=1

∆i

(
log(n)σ2

1σ
2
SRi

∆2
i

+ 3

)

≤
∑
∆i>0

2σ2
1σ

2
SRi

log(n)

∆i
+ 3

k∑
i=1

∆i

≤ 2σ4
1

∑
∆i>0

log(n)

∆i
+ 3

k∑
i=1

∆i

Remark A.3.1. Even though we use a very similar method (Theorem 7.2 [65]) of proving
Theorem 2.2.7, there are 2 key differences:

• The asymptotic normality of the Sharpe ratio estimator even in the absence of
normal returns tightens the bound because we use a Gaussian random variable in
the concentration inequalities.

• We bound the returns sub-optimal gaps, showcased by equation (A.3.4).
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Appendix B

Changepoint Detection libraries

B.1 CDP Libraries

Several software packages implement some of the CPD methods. Some of these software
packages are listed below:

• changepoint online: A Collection of Methods for Online Changepoint Detection

– Description: The changepoint online package provides efficient algorithms for
detecting changes in data streams based on the Focus algorithm. The Focus
algorithm solves the CUSUM likelihood-ratio test exactly in O(ln(n)) time per
iteration, where n represents the current iteration. The method is equivalent
to running a rolling window (MOSUM) simultaneously for all sizes of windows
or the Page-CUSUM for all possible values of the size of change (an infinitely
dense grid).

– Author: Gaetano Romano, Daniel Grose

– URL: https://pypi.org/project/changepoint-online/

– Citation: [89]

• ocpdet: A Python package for online changepoint detection, implementing state-of-
the-art algorithms and a novel approach.

– Description: OCPDet is an open-source Python package for online changepoint
detection, implementing state-of-the-art algorithms and a novel approach, using
a scikit-learn style API. Algorithms implemented in ocpdet are:

∗ CUSUM: Cumulative Sum algorithm ([84]);

∗ EWMA: Exponentially Weighted Moving Average algorithm ([88]);

∗ Two Sample tests: Nonparametric hypothesis testing for changepoint de-
tection ([90]);

∗ Neural Networks: Novel approach based on sequentially learning neural
networks proposed in [54] and extended to online context in [60]

– Author: Victor Khamesi

– URL: https://pypi.org/project/ocpdet/

– Citation: [60]

• sdt.changepoint: A changepoint detection module of sdt-python

– Description: The sdt.changepoint module provides algorithms for changepoin
detection, i.e., for finding changepoints in a time series. There are several
algorithms available:
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∗ PELT: a fast offline detection algorithm ([62]);

∗ Offline Bayesian changepoint detection ([39]);

∗ Online Bayesian changepoint detection ([3])

– Author: Lukas Schrangl

– URL: https://schuetzgroup.github.io/sdt-python/changepoint.html

– Citation: [93]
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