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Abstract

Stochastic local volatility (SLV) models are an industry standard for pricing exotic options
in foreign exchange and equity markets; they are able to match the prices of liquidly traded
vanilla options in the market while also producing realistic implied volatility dynamics,
allowing us to be able to price exotic options accurately. However, calibration and pricing
under SLV models are computationally expensive due to their complexity. In this thesis,
we examine Mixed Local Volatility (MLV) models, a simplified version of SLV models
where instead of modelling the stochastic volatility process as being driven by a Brownian
motion, we simplify it to a discrete set of volatility states. If we model one underlying and
one volatility process, this simplification reduces our calibration and pricing problems from
solving two-dimensional partial differential equations to solving several one-dimensional
partial differential equations, resulting in a very significant reduction in computation time.
It has been argued that SLV models are in fact too complex for pricing a range of first-
generation exotic options, including continuous barrier options, and that MLV models are
the model of choice for these options. In this study, we investigate the prices of continuous
barrier options generated by the MLV model, as well as the forward implied volatility smile
dynamics of the model. The SLV model will serve as our main point of comparison, and
our goal is to determine whether the MLV model can produce similar behaviour to that
of an SLV model.
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Introduction

Black and Scholes revolutionised the field of option pricing in their 1973 paper [1], in which
they introduced the Black-Scholes model for valuing European options. This model, how-
ever, does not reflect realistic market dynamics, and consequently, is not sufficient for
accurately pricing financial derivatives. In particular, the model assumes that the volatil-
ity in the market is constant, which is highly unrealistic. Consequently, the Black-Scholes
model cannot reproduce the market prices of European options, one of the simplest types
of financial derivatives, for all strikes and maturities. A model that is not at all consistent
with market prices of European options is not suitable for pricing and hedging other types
of financial derivatives.

Since the introduction of the Black-Scholes model, there has been an extensive amount of
research done to develop more realistic models which can better capture market dynam-
ics. Bruno Dupire in [2] introduced a local volatility model, in which volatility is modelled
as a deterministic function that is dependent on both the value of the underlying and
time. Dupire’s local volatility model has the advantage that it can exactly reproduce the
market prices of European options. However, the implied volatility dynamics of this local
volatility model do not reflect realistic market behaviour, and because of this, they are
not the most suitable model for pricing and hedging exotic derivatives which have much
more dependency on how the price of the underlying changes over the life of the contract.

Stochastic volatility models are a class of models in which the volatility is modelled as
a stochastic process, to better reflect empirical observations of volatility in the market.
The advantage is that the implied volatility dynamics of these models are more realistic
than the local volatility model. The issue is that, unlike Dupire’s local volatility model,
stochastic volatility models cannot reproduce the market prices of European options ex-
actly.

The class of stochastic local volatility models, introduced by Jex et al. in [3], are a com-
bination of both types of models; they are able to reproduce market prices of European
options exactly, while exhibiting realistic implied volatility dynamics. In foreign exchange
and equity markets, stochastic local volatility models have become an industry standard
for pricing exotic derivatives. These models, however, come at a cost; due to their com-
plexity, calibration of the models and using them to price are computationally expensive.
However, for a subset of exotic derivatives, stochastic local volatility models may be too
complex. In this thesis, we explore Mixed Local Volatility (MLV) models, a heavily simpli-
fied version of stochastic local volatility models which can be calibrated and used to price
derivatives with a significant reduction in computation time. As we will see, in the case of
modelling one underlying and one volatility process, the simplification reduces calibration
and pricing from solving a two-dimensional partial differential equation to instead solving
several one-dimensional partial differential equations. We focus specifically on assessing
the MLV model’s capability in accurately pricing continuous barrier options, as well as
analysing its forward implied volatility dynamics, relative to a stochastic local volatility
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model and a local volatility model.

The thesis is structured as follows: in Chapter 1, we briefly introduce the Black-Scholes
model and the concept of implied volatility, before introducing Dupire’s local volatility
model and discussing its main limitations. In Chapter 2, we then give a brief overview
of stochastic volatility models and introduce some simplified models to contrast with the
MLV model that will be discussed in Chapter 4. In Chapter 3, we move on to the class
of stochastic local volatility models, and here we go into more detail about the process of
calibrating such models. The main results of this thesis are found in Chapter 4, where we
delve into the topic of MLV models. Here, we start by introducing the model, presenting
a general framework for calibration, and discussing the parameters which characterise this
model. We then investigate the prices of continuous barrier options generated by this
model, as well as the forward implied volatility dynamics that the model exhibits; we
use Dupire’s local volatility model and a stochastic local volatility model for points of
comparison. We make conclusions about the applicability of the model, and present a
theoretical framework for an extended version of the model.
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Chapter 1

Black-Scholes and Local Volatility
Models

1.1 The Black-Scholes Model

Black and Scholes introduced the Black-Scholes model for valuing European options in
their 1973 paper [1], in which they defined the risk-neutral dynamics for an asset price
process (St)t≥0 of a non-dividend paying asset to be given by the stochastic differential
equation (SDE)

dSt = rStdt+ σStdWt, S0 > 0, (1.1.1)

where r is a constant instantaneous risk-free interest rate, σ is a constant instantaneous
volatility, and (Wt)t≥0 is a standard Brownian motion defined on the filtered probability
space (Ω,F , (Ft)t≥0,Q) with Q denoting the risk-neutral probability measure.

Black and Scholes presented closed-form solutions for the price of European options under
the Black-Scholes model, which are known as the Black-Scholes formulas. Let VBS denote
the value of a European option under the Black-Scholes model. Then, the time t ≥ 0 value
of a European option under this model is given by

VBS(St, t,K, T, ϕ, σ) := ϕ

[
StN (ϕd+)−Ke−r(T−t)N (ϕd−)

]
, (1.1.2)

where

d+ :=
1

σ
√
T − t

[
log

(
St

K

)
+

(
r +

σ2

2

)
(T − t)

]
,

d− := d+ − σ
√
T − t,

and N is the standard normal cumulative distribution function, K ≥ 0 is the strike of
the option, T > t is the maturity of the option, and ϕ takes value +1 for a European
call option and −1 for a European put option. In the original paper, Black and Scholes
obtained this formula by solving the Black-Scholes partial differential equation (PDE),
which is given by

∂V

∂t
(t, s) + rs

∂V

∂s
(t, s) +

1

2
σ2s2

∂2V

∂s2
(t, s)− rV (t, s) = 0, (1.1.3)

subject to boundary conditions imposed by the type of option being priced, where V (t, s)
denotes the time t value of the option when the asset price takes value s. The PDE (1.1.3)
is known as a backward pricing PDE associated with the model, as it is solved backward
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in time.

This model can be generalised to take into account a more general, time-dependent drift
coefficient. The risk-neutral dynamics for the asset price here are given by,

dSt = (rt − qt)Stdt+ σStdWt, S0 > 0, (1.1.4)

where r, q are deterministic processes. In equity markets, r, q represent the risk-free
rate and the (continuous) dividend yield of the asset, and in FX markets, they represent
the domestic and foreign risk-free rates, respectively. The backward pricing PDE then
becomes

∂V

∂t
(t, s) + (rt − qt)s

∂V

∂s
(t, s) +

1

2
σ2s2

∂2V

∂s2
(t, s)− rV (t, s) = 0, (1.1.5)

a derivation of which can be found in [4, Section 2.3, page 15]. This generalised Black-
Scholes model also admits closed-form solutions for the value of European options; here
we re-define the time t value of a European option VBS to be given by

VBS(St, t,K, T, ϕ, σ) := ϕ

[
Ste

−
∫ T
t quduN (ϕd+)−Ke−

∫ T
t ruduN (ϕd−)

]
, (1.1.6)

where

d+ :=
1

σ
√
T − t

[
log

(
St

K

)
+

∫ T

t

(
ru − qu +

σ2

2

)
du

]
,

d− := d+ − σ
√
T − t.

1.2 Implied Volatility

It is often useful to express European option prices in terms of their implied volatility
instead of their raw price. Expressing option prices in terms of implied volatility allows
for a useful way of comparing prices of options written on different assets, and options
with different strikes and maturities. The implied volatility of a European option is the
unique volatility which recovers the price of the option when passed into the Black-Scholes
formulas given by (1.1.6). Let V (t,K, T, ϕ) be the time t value of a European option with
strike K and maturity T . We define the implied volatility of the option as the unique
value σimp(t;K,T ) which is such that

V (t,K, T, ϕ) = VBS(St, t,K, T, ϕ, σimp(t;K,T )). (1.2.1)

The implied volatility surface is defined by σimp : (K,T ) 7→ σimp(t;K,T ), which expresses
the prices of European options for a range of strikes and maturities.

This model was later extended to allow for a term-structure of volatility, which we will call
the Black-Scholes term-structure model, the risk-neutral dynamics for which are given by

dSt = (rt − qt)Stdt+ σtStdWt, S0 > 0. (1.2.2)

where σ is now a time-dependent, deterministic function. The shortcomings of the Black-
Scholes model and the Black-Scholes term-structure model are well known. In particular,
an important consequence of the Black-Scholes model is that for a European option with a
fixed maturity, the corresponding implied volatility is constant for all values of strike. This
behaviour is not reflected in market implied volatilities for European options; in reality,
we see that, for a given maturity, the implied volatilities of European options depend on
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strike, and implied volatilities tend to be higher as the strike moves away from the at-the-
money strike level. This results in a smile or a smirk shaped implied volatility curve. It is
crucial that a model for an asset price can reproduce such behaviour, in order to be useful
for pricing and hedging other types of derivatives, and for this reason, the Black-Scholes
model is not sufficient.

1.3 Local Volatility Model and Dupire’s Formula

A desirable property of a model for an asset price used to price and hedge derivatives is
that it can be calibrated to liquid vanilla (European) option market data in such a way
that the model can closely reprice these vanilla options with minimal error. Clearly the
Black-Scholes model does not have this capability.

Dupire in [2] showed that is it possible to construct a state-dependent (and time-dependent)
instantaneous volatility σlocal which is such that if the asset price process (St)t≥0 follows
the SDE

dSt = (rt − qt)Stdt+ σlocal(t, St)StdWt, S0 > 0, (1.3.1)

then, the implied volatility surface produced by this model matches exactly the market
implied volatility surface. In other words, there exists a state-dependent diffusion coeffi-
cient σlocal which allows us to match the prices of European options in the market exactly.
This state-dependent diffusion, known as Dupire’s formula, is unique, and is given by

σ2
local(K,T ) =

∂C
∂T + qTC + (rT − qT )K

∂C
∂K

1
2K

2 ∂2C
∂K2

. (1.3.2)

Two proofs of Dupire’s formula can be found in [5, Chapter 1, pages 5-11]. We will refer
to the model (1.3.1) as the local volatility model.

As vanilla option prices are quoted in the market in terms of implied volatility, it is more
useful to express Dupire’s local volatility in terms of derivatives with respect to the implied
volatility surface. Here we state the equivalent formulation of Dupire’s formula in terms
of implied volatility from [6, Equation 16, page 11]:

σ2
local(K,T ) =

2
∂σimp

∂T +
σimp

T + 2K[rT − qT ]
∂σimp

∂K

K2
[∂2σimp

∂K2 − d1
√
T
(∂σimp

∂K

)2
+ 1

σimp

(
1

K
√
T
+ d1

∂σimp

∂K

)2] , (1.3.3)

where

d1 =
1

σimp

√
T

[
log

(
S0

K

)
+

∫ T

0

(
ru − qu +

σ2
imp

2

)
du

]
, (1.3.4)

and σimp = σimp(K,T ). Note that in order to use this formula, one must have a continuous
implied volatility surface. However, vanilla options listed on an exchange are only quoted
for a discrete set of strikes and maturities, and so we need to build a continuous implied
volatility surface from this in such a way that we do not introduce arbitrage. One can
build the implied volatility surface using a global parameterisation in strike and time,
or build implied volatility smiles slice by slice for each maturity and interpolate between
the slices in time. Popular methods for slice by slice parameterisation include the SABR
stochastic volatility model parameterisation (see [7]) and SVI/SSVI parameterisation (see
[8]). The topic of implied volatility smile interpolation and extrapolation is a very rich
and broad subject by itself, so in this thesis we will not discuss it further.
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1.4 Forward Implied Volatility in Local Volatility Models

Although the local volatility model is able to match all vanilla option prices in the market
exactly, this does not necessarily mean that the exotic option prices generated by the
model are accurate. Baker et al. in [9] state that prices of vanilla options are dependent
on the transition probabilities from the current market state to all future market states,
whereas prices of exotic options depend also on the transition probabilities between future
states. The transition probabilities between future states are not embedded in the prices
of vanilla options, and hence the requirement that a model is consistent with the vanilla
implied volatility surface is not necessarily sufficient for accurate pricing and hedging of
exotic derivatives. Moreover, in FX markets for example, there are some exotic options
that are liquidly traded, and so a model that is flexible enough to also match the prices
of these contracts is desirable. The local volatility model does not possess this flexibility;
the local volatility is determined purely by the vanilla implied volatility surface at initial
time. One major issue with this model is that the forward implied volatility dynamics of
the local volatility model do not reflect empirically observed behaviour.

Forward implied volatilities can be obtained by pricing forward-starting vanilla options
and converting the price to implied volatility. Forward-starting vanilla options are a type
of second-generation exotic option, in which the strike price of the option is not fixed at
inception, but is instead determined at some pre-specified future date called the forward-
start date. Let t = 0 be the time of inception, T0 be the forward-start date, and T1 be the
expiry date, with 0 < T0 < T1. The price of a forward-starting call option is given by

D(0, T1) E
[(

ST1

ST0

−K

)+]
, (1.4.1)

where D(0, t) = e−
∫ t
0 rudu represents the discount factor over the period between time 0

and t. By pricing forward-starting call options for a range of strikes and a given forward-
start date and maturity, we can obtain the corresponding forward implied volatility curve
by backing out the implied volatilities of the prices. As forward-starting options are path-
dependent contracts, they are heavily influenced by the dynamics of the model being used
to price them, and hence we can examine the forward implied volatility curves produced
by a model to gauge how suitable it is for pricing exotic options.

It is well-known that the local volatility model has the issue that the forward implied
volatility smiles flatten in time. This type of behaviour is not seen empirically, and con-
sequently, the local volatility model is not sufficient for pricing path-dependent options.
To analyse the forward volatility dynamics of the local volatility (LV) model, we can
use the model to price forward-starting call options with a fixed expiry, for a range of
forward-starting dates, and observe how the forward implied volatility smiles change as
the forward-starting date increases. In Figure 1.1(a), we plot the implied volatilities of
forward-starting call options written on SPX expiring 6 months after the forward-starting
dates 0Y, 6M, 2Y, 3Y, 6Y. In Figure 1.1(b), we plot the implied volatilities of forward-
starting call options expiring 1 year after the same forward-starting dates. We see clearly
that as the forward-starting date moves further away, the forward implied volatility smiles
become increasingly flat. In the next chapter, we will introduce stochastic volatility mod-
els, a class of models which model the instantaneous volatility as a stochastic process,
as opposed to a deterministic process, which will alleviate this issue suffered by the local
volatility model.
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Figure 1.1: Forward implied volatility smiles under the local volatility model, obtained by
pricing SPX forward-starting call options with forward-starting dates T0 = 0Y, 6M, 2Y,
3Y, 6Y.
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Chapter 2

Stochastic Volatility Models

For a model to be able to accurately price path-dependent options, it is important that
it is able to produce realistic implied volatility smile dynamics that reflect empirical be-
haviour. As we have just seen, the local volatility model has the advantage of being able to
perfectly reproduce exactly the market implied volatility surface, but exhibits unrealistic
implied volatility smile dynamics.

Another way for a model to produce an implied volatility smile is to model the instan-
taneous volatility as a stochastic process. By modelling the instantaneous volatility as a
stochastic process driven by a Brownian motion, one can introduce correlation between
the asset price and the instantaneous volatility to produce a skewed smile. This class of
models tends to produce more desirable implied volatility smile dynamics.

2.1 Standard Stochastic Volatility Models

The risk-neutral dynamics for general one-factor standard stochastic volatility models are
given by

dSt = (rt − qt)Stdt+ σtStdW
(1)
t , S0 > 0,

dσt = α(σt, t)dt+ β(σt, t)dW
(2)
t , σ0 ≥ 0,

(2.1.1)

where (W
(1)
t )t≥0, (W

(2)
t )t≥0 are correlated Brownian motions such that d⟨W (1),W (2)⟩t =

ρ dt, with correlation ρ ∈ [−1, 1], and α, β are deterministic functions. Here we use the
term standard to highlight the fact that the volatility is modelled as a stochastic process
driven by a Brownian motion. This is to be contrasted with regime-switching models
that we introduce later in this chapter, in which the volatility process is not driven by a
Brownian motion, but is still stochastic.

The backward pricing PDE for a standard stochastic volatility model is given by

∂V

∂t
+ (rt − qt)s

∂V

∂s
+ α(σ, t)

∂V

∂σ

+
1

2
σ2s2

∂2V

∂s2
+

1

2
β(σ, t)2

∂2V

∂σ2
+ ρβ(σ, t)σs

∂2V

∂s∂σ
− rtV = 0, (2.1.2)

subject to boundary conditions imposed by the type of option being priced, where V =
V (s, σ, t) is the value of the option.

One of the most well-known stochastic volatility models is the Heston model, introduced
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by Heston in [10]. The risk-neutral dynamics for the Heston model are given by

dSt = (rt − qt)Stdt+
√
vtStdW

(1)
t , S0 > 0,

dvt = κ(m− vt)dt+ α
√
vtdW

(2)
t , v0 ≥ 0,

(2.1.3)

where v0 is the initial variance, ρ is the spot-variance correlation, α is the volatility-of-
variance, κ is the mean-reversion rate and m the mean-reversion level. Note that the
model is formulated in terms of instantaneous variance here, modelled by a CIR pro-
cess, as opposed to instantaneous volatility. Increasing the volatility-of-variance term α
increases the convexity of the implied volatility smile produced by the model. The cor-
relation ρ between the Brownian motions allows us to adjust the skewness of the implied
volatility smile generated. One of the main advantages of the Heston model is that there
is a semi-analytic solution for the price of vanilla options, meaning that calibration of this
model to the market implied volatility surface can be done faster.

Calibration of a stochastic volatility model to market vanilla option data generally involves
using an optimisation technique to choose the parameters of the model which minimise
the difference between the market vanilla implied volatilities and the implied volatilities
produced by the model (or another suitably chosen objective function). As stochastic
volatility models have a limited number of parameters, naturally they cannot fit the im-
plied volatility surface exactly like a local volatility model can. However, the advantage
of stochastic volatility models over local volatility models is that their implied volatility
dynamics better reflect empirical behaviour, and this can have significant implications on
the prices of path-dependent options implied by the model. Baker at al. in [9] illustrate
the importance of realistic forward smile dynamics of a model for pricing path-dependent
options by looking at a comparison of the prices of barrier options under a local volatil-
ity model and a stochastic volatility model. This will also be illustrated in Chapter 4 of
this thesis when we compare local volatility, stochastic local volatility and mixed local
volatility models in the context of continuous barrier options and forward-starting vanilla
options; we will calibrate all three models exactly to vanilla market data, and look at the
differences in the option prices generated by each of the models.

2.2 Lognormal Mixture Models

One of the simplest models one can define for an asset price is one in which the volatility
process driving the asset price is comprised of a discrete set of deterministic volatility
states, and the state is determined at initial time. This is not exactly a stochastic volatility
model, as the volatility is not a stochastic process, but it is still random. The SDE for
this model can be written as

dSt = (rt − qt)Stdt+ σZ0(t)StdWt, S0 > 0, (2.2.1)

where Z0 : Ω → Z is an F0-measurable random variable independent of (Wt)t≥0, taking
values on a discrete finite set Z = {1, . . . , n} with associated probabilities λi := P(Z0 = i)
that the asset price will follow indefinitely the SDE

dSt = (rt − qt)Stdt+ σi(t)StdWt, S0 > 0, (2.2.2)

with σi(·) a deterministic volatility process. In other words, the randomness of the volatil-
ity process σZ0 exists only at initial time, and

P
(
{σZ0(t) = σi(t), ∀t}

)
= λi, i = 1, . . . , n. (2.2.3)
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The probability density of the asset price under volatility state i is given by,

pit(x) =
1

xVi(t)
√
2π

exp

{
− 1

2V 2
i (t)

[
log(x/S0)−

∫ t

0
(ru − qu)du+

1

2
V 2
i (t)

]2}
, (2.2.4)

V 2
i (t) :=

∫ t

0
σ2
i (u)du,

and the marginal density of the asset price is given by

pt(x) =
n∑

i=1

λip
i
t(x). (2.2.5)

Mixing lognormal distributions results in a distribution that has heavier tails than the
non-mixed lognormal counterparts, meaning the model can produce an implied volatility
smile. However, there is no correlation between spot and volatility, meaning that it cannot
generate a skewed implied volatility smile. European option prices under the lognormal
mixture model are analytical, and are simply a probability weighted average of European
option prices under Black-Scholes term-structure models. The corresponding price of a
European call option is given by,

C(K,T ) = D(0, T )E[(ST −K)+]

= D(0, T )

∫ ∞

0
(x−K)+pT (x) dx

=

n∑
i=1

λiD(0, T )

∫ ∞

0
(x−K)+piT (x) dx

=

n∑
i=1

λiC(K,T ;σi), (2.2.6)

where C(K,T ;σi) represents the price of a call option under volatility state σi, which is
simply the price of a call option under the Black-Scholes term structure model 1.2.2.

One may be tempted to use a formula similar to (2.2.6) to price exotic options, i.e. using a
probability weighted average of prices under Black-Scholes term-structure models. Piter-
barg explains in [11] that this is wrong, and that the formula is only valid for European
options, as they depend only on the terminal distribution of the underlying. The only
valid approach would be to define a local volatility model consistent with the assumption
of lognormal mixture dynamics and use this to price exotic options. This approach was
taken by Brigo et al. in [12]. Brigo et al. defined a local volatility model with a closed-
form local volatility function, such that the marginal density of the asset price under this
local volatility model is a mixture of lognormals. They showed that under some basic
conditions on the volatility states, if we define

ν2(t, x) =

∑n
i=1 λi

σ2
i (t)

Vi(t)
exp

{
− 1

2V 2
i (t)

[
log(x/S0)−

∫ t
0 (ru − qu)du+ 1

2V
2
i (t)

]2}
∑n

i=1 λi
1

Vi(t)
exp

{
− 1

2V 2
i (t)

[
log(x/S0)−

∫ t
0 (ru − qu)du+ 1

2V
2
i (t)

]2} , (2.2.7)

then the SDE
dSt = (rt − qt)Stdt+ ν(t, St)StdWt (2.2.8)

has a unique strong solution whose marginal density is given by (2.2.5).
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In Chapter 4, we will revisit this idea of a volatility process driven by an F0−measurable
random variable, and see if we can find a potential exception to the arguments of Piterbarg
following the ideas of Austing [13] and Wystup [14] in the context of continuous barrier
options and forward-starting options.

2.3 Regime-Switching Models

Naik in [15] introduced a regime-switching model for pricing European options. Similar to
the lognormal mixture models, here we again consider a discrete set of n volatility states,
except now we allow for the volatility process to transition between volatility states as the
asset price evolves. This is a heavily simplified version of a standard stochastic volatility
model, but the computations can be done much faster; if we use a PDE approach to price
options, then a regime-switching model requires us to solve n coupled one-dimensional
PDEs, as opposed to a 2-dimensional PDE (in the case of a one-factor stochastic volatility
model).

Let (Zt)t≥0 be a Markov chain taking values in a discrete finite set Z = {1, . . . , n}, which
indexes the set of volatility states {σ1, . . . , σn}, and is characterised by transition-rate
matrix Q = (qij)1≤i,j≤n, where qij ≥ 0 for i ̸= j and qii = −

∑
j ̸=i qij . For i ̸= j, qij is the

transition rate from state i to state j. The transition rates satisfy the following:

P
(
Zt+dt = j|Zt = i

)
= qijdt, i ̸= j, (2.3.1)

P
(
Zt+dt = i|Zt = i

)
= 1 + qiidt, i = j. (2.3.2)

We define the SDE describing the dynamics of the asset price process as

dSt = (rt − qt)Stdt+ σZt(t)StdWt, S0 > 0. (2.3.3)

One can price options under a regime-switching model via a backward pricing system of
coupled PDEs. Di Masi et al. first used this PDE approach to price European options in
a two-state regime switching model in [16]. The backward pricing PDE corresponding to
the volatility state i in this regime-switching model is given by

∂Vi

∂t
+ (rt − qt)

∂Vi

∂s
+

1

2
σ2
i s

2∂
2Vi

∂s2
− rtVi +

n∑
i=1

qijVj = 0, (2.3.4)

where Vi(t, s) = V (t, s;σi) is the value of the option under volatility state i at time t and
spot s, for i = 1, . . . , n, subject to boundary conditions imposed by the type of option
being priced. In matrix form, this can be written as

∂V

∂t
+ (rt − qt)

∂V

∂s
+

1

2
s2Σ2∂

2V

∂s2
− rtV +QV = 0, (2.3.5)

where Σ = diag(σ2
1, . . . , σ

2
n). A scheme for solving this system of coupled PDEs in the

context of pricing exotic options can be found in [17]. In the case of a two-state regime-
switching model with constant volatilities, Naik in [15] derived a semi-analytic formula for
pricing vanilla options.
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Chapter 3

Stochastic Local Volatility Models

Local volatility models are able to reprice the vanilla market exactly, but tend to produce
unrealistic implied volatility dynamics. Stochastic volatility models can produce more
desirable implied volatility dynamics, but can have trouble repricing all vanilla market
prices. When pricing an exotic derivative in FX and equity markets, one of the models
will tend to underprice the option while the other will tend to overprice it. Even with per-
fect calibration of a stochastic volatility model to the vanilla market, the prices of exotic
options obtained under this model will be different to the price obtained under the local
volatility model.

Stochastic local volatility (SLV) models allow us to combine the two types of models and
produce an implied volatility smile which is explained partly by a stochastic volatility
component, and then ’corrected’ by a local volatility component. The proportions of the
smile that are explained by the stochastic volatility component and by the local volatility
component are determined by a mixing weight. The mixing of stochastic and local volatil-
ity allows us to have flexibility with the prices of exotic options produced by the model
while retaining the ability to reprice the vanilla market. In this way, one can also calibrate
an SLV model to match the prices of both vanilla options and liquid exotic options in the
market, to then be able to accurately price non-liquid exotic options.

3.1 Stochastic Local Volatility Models

The class of SLV models were first introduced by Jex et al. in [3] and developed by Lipton
and McGhee in [18], [19]. The risk-neutral dynamics describing the SDE of a general
one-factor SLV model are given by

dSt = (rt − qt)Stdt+ σtL(St, t)StdW
(1)
t , S0 > 0,

dσt = α(σt, t)dt+ β(σt, t)dW
(2)
t , σ0 > 0.

(3.1.1)

where (W
(1)
t )t≥0, (W

(2)
t )t≥0 are correlated Brownian motions such that d⟨W (1),W (2)⟩t =

ρ dt, with correlation ρ ∈ [−1, 1], and α, β, L are deterministic functions. L is known
as the leverage function or local volatility correction, which must be calibrated to market
data; calibration of this function will be discussed in the next section.

The backward pricing PDE for a general SLV model is given by

∂V

∂t
+ (rt − qt)s

∂V

∂s
+ α(σ, t)

∂V

∂σ

+
1

2
σ2L(s, t)2s2

∂2V

∂s2
+

1

2
β(σ, t)2

∂2V

∂σ2
+ ρβ(σ, t)σL(s, t)s

∂2V

∂s∂σ
− rtV = 0. (3.1.2)
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A popular type of SLV model is the extended version of the Heston stochastic volatil-
ity model introduced in the previous chapter, the Heston-SLV model. The risk-neutral
dynamics for this model are given by

dSt = (rt − qt)Stdt+
√
vtL(St, t)StdW

(1)
t , S0 > 0,

dσt = κ(m− vt)dt+ α
√
vtdW

(2)
t , v0 > 0.

(3.1.3)

See [20], [21], [22] for detailed discussions of calibration, pricing, and simulation of the
Heston-SLV model.

3.2 Calibration of SLV Models

3.2.1 SLV Leverage Function Calibration

Theorem 3.2.1 (Gyöngy’s Mimicking Theorem [23]). Let (ξt)t≥0 be a stochastic process
satisfying

dξt = βtdt+ δtdWt, (3.2.1)

where (Wt)t≥0 is a standard one-dimensional Brownian motion with filtration Ft, and βt, δt
are bounded stochastic processes adapted to Ft. Then, there exists a stochastic differential
equation,

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, (3.2.2)

with non-random coefficients, with a solution Xt which is such that its marginal probability
distribution is the same as ξt, for all t. Moreover, the coefficients b and σ are given by,

σ(x, t)2 = E
[
δ2t |ξt = x

]
, (3.2.3)

b(x, t) = E [βt|ξt = x] . (3.2.4)

Definition 3.2.2 (Fokker-Planck equation [24]). Let (Xt)t≥0 be an n-dimensional stochas-
tic process governed by the SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, (3.2.5)

with drift µ = (µ1, . . . , µ2) and diffusion matrix σ = (σij)1≤i≤N,1≤j≤M , driven by an
M -dimensional Brownian motion Wt. Then, the probability density p of Xt satisfies the
Fokker-Planck equation (also known as the Forward Kolmogorov equation), given by:

∂p(x, t)

∂t
= −

N∑
i=1

∂
[
µi(x, t)p(x, t)

]
∂xi

+
1

2

N∑
i=1

N∑
j=1

∂2
[
Dij(x, t)p(x, t)

]
∂xi∂xj

, (3.2.6)

with initial condition

p(x, 0) = δ{x−X0},

where diffusion tensor D = (Dij)1≤i,j≤N is defined by

Dij(x, t) =
1

2

M∑
k=1

σik(x, t)σjk(x, t),

and δ is the Dirac delta function.

Consider a general SLV model introduced previously in (3.1.1). Suppose that this model is
calibrated to market data such that the model reprices the vanilla options for all maturities
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and strikes. As the Dupire local volatility function is the unique diffusion that reprices
the vanilla market everywhere, it follows from Theorem 3.2.1 that

σ2
local(K, t) = E

[
σ2
tL

2(K, t)|St = K
]

= L2(K, t)E
[
σ2
t |St = K

]
,

for all strikes K and maturities t, where σlocal is the Dupire local volatility function
introduced previously. We can rearrange this to obtain

L2(K, t) =
σ2
local(K, t)

E
[
σ2
t |St = K

]
= σ2

local(K, t)
E
[
δ{St−K}

]
E
[
σ2
t δ{St−K}

]
= σ2

local(K, t)

∫
R+

p(K,σ, t) dσ∫
R+

σ2 · p(K,σ, t) dσ
, (3.2.7)

where p is the joint probability density function of spot and variance. Note that the SDE
of a general SLV model is an example of a McKean SDE; the two-dimensional process
Xt = (St, σt) is dependent on the probability distribution of Xt through the conditional
expectation E

[
σ2
t |St = K

]
.

We want to build the surface L(K, t) for all K and t, but the difficulty is that the con-
ditional expectation E

[
σ2
t |St = K

]
depends itself on the leverage function L. There are

several methods that can be used for this calibration process. As we are considering only
a one-factor SLV model, we will describe calibration of the leverage function via the asso-
ciated Fokker-Planck PDE. For multi-factor SLV models, this approach becomes too slow
due to the curse of dimensionality, and one must instead use probabilistic methods. Exam-
ples of such methods include Markovian projection methods first introduced by Piterbarg
in [25], and the particle method introduced by Guyon and Henry-Labordère in [26].

Calibration of the leverage function using this Fokker-Planck equation is done by solving
the above PDE forward in time and ”boostrapping” the leverage function L after each time
step. The two-dimensional Fokker-Planck equation for the transition probability density
p(·, ·, ·) of the spot and volatility for a general one-factor SLV model can be obtained by
applying Definition 3.2.2, and is given by,

∂p

∂t
(s, σ, t) =− ∂

∂s
[(rt − qt)sp(s, σ, t)]−

∂

∂v
[αp(s, σ, t)]

+
1

2

∂

∂s2
[
σ2L(s, t)2s2p(s, σ, t)

]
+

1

2

∂

∂σ2

[
α2p(s, σ, t)

]
+ ρ

∂2

∂s∂σ
[βσL(s, t)sp(s, σ, t)] . (3.2.8)

Suppose we have a sequence of time grid points 0 = t0 < t1 < · · · < tN = T , and assume
we have L computed from time t0 up to tn, for some n < N and for all strikes K. We
approximate L(K, t) with L(K, tn) for t ∈ (tn, tn+1), and use this to solve the PDE forward
one time step and obtain the joint probability density function p(K,σ, tn+1). This allows
us to then compute L(K, tn+1) using equation (3.2.7).

The leverage function calibration can be summarised by the following steps:

1. Set n = 0 and, for all K, set the initial leverage function to

L(K, tn) = 1 (3.2.9)
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and initial joint probability density to

p(K,σ, tn) = δ{K−S0} · δ{σ−σ0}, (3.2.10)

where S0, σ0 are the initial spot and initial volatility respectively.

2. Use L(K, tn) to solve the-Fokker Planck equation (3.2.8) forward to time tn+1 to
obtain p(K,σ, tn+1).

3. Use numerical integration to compute the leverage function at time tn+1 using the
formula

L(K, tn+1) = σlocal(K, tn+1)

√√√√ ∫
R+

p(K,σ, tn+1) dσ∫
R+

σ2 · p(K,σ, tn+1) dσ
. (3.2.11)

4. Increment n and repeat steps 2 and 3 until reaching the final time tN = T .

To solve the Fokker-Planck equation in step 2, there are several methods that can be
used, namely finite-difference methods (see [27], [28]), finite-volume methods (see [29],
[30]), and finite-element methods (see [31]). We will not describe schemes for solving
two-dimensional Fokker-Planck equations in this thesis, but we direct the reader to the
aforementioned references for some detailed discussions of efficient numerical schemes.

There are several issues that arise during this calibration process when solving the Fokker-
Planck equation. One issue is potential numerical instability due to the highly singular
initial condition of the Fokker-Planck equation. One way to help improve stability is to use
non-uniform spatial and time grids with a higher density of points around initial spot S0

and initial volatility σ0 around the initial time t0 [4, page 124]. One may also approximate
the Dirac delta distribution using a bivariate normal distribution evaluated at a very short
time after the initial time t0 + ϵ, where ϵ > 0 is small, described in [32, pages 63-64].

Another consideration when solving the Fokker-Planck equation with finite-difference is
the boundary conditions; as it is important that the transition density integrates to 1 at
any time, it is crucial we do not lose probability mass at the boundaries when solving the
PDE forward in time. Lucic describes zero-flux boundary conditions in [33] in the context
of a Heston-SLV model to ensure this condition. A detailed application of non-uniform
grids and zero-flux boundary conditions applied to calibration of the Heston-SLV model
can be found in [21].

3.2.2 General SLV Calibration

Now that we have described the calibration of the leverage function, we can summarise
the entire SLV model calibration process:

1. (Calibrate the stochastic volatility). Calibrate the stochastic volatility model under-
lying the SLV model, i.e. the model without the leverage function, to the market
implied volatility smiles with reduced convexity. The reduced convexity can be
achieved by using a mixing weight η ∈ [0, 1] and multiplying the term controlling
the volatility-of-volatility of the stochastic volatility model by it; this has the effect
of reducing the convexity of the implied volatility smile generated by the model. In
FX, one can instead multiply the butterfly and risk reversal market quotes by the
mixing weight.
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2. (Calibrate the leverage function). Then use the forward induction method described
above to calibrate the leverage function. This will make corrections at each time
step to ensure that the model exactly fits the vanilla implied volatility surface.

To ensure that the calibration has been successful, we can price vanilla options at different
strikes and maturities and check that they match the vanilla option prices in the market.
This can be done either by integrating the joint probability density function of the spot
and volatility at maturity time T using

V (K,T, ϕ) = e−
∫ T
0 rsds

∫ ∞

0

∫ ∞

0
(ϕ(x−K))+p(x, y, T ) dxdy, (3.2.12)

or by solving the corresponding backward pricing PDE (3.1.2) via finite-difference.

Note that the time grid and spatial grids used in the finite difference schemes for calibrating
the SLV model will in general be different to the grids used to solve the backward pricing
PDE. This means that in order to solve the backward pricing PDE, we need to interpolate
the leverage function in time and space. Tian in [32, page 76] suggests interpolating the
leverage function using cubic splines in the spatial dimension, and linearly in the time
dimension. This interpolation is also necessary to be able to price using Monte Carlo.

3.2.3 Impact of the Mixing Weight

The mixing parameter η allows the SLV model to have flexibility on the prices of exotic
options that it produces, while still correctly pricing the vanilla options in the market. If
we set η = 0, then there is no stochastic volatility component to the model; the model will
simply degenerate to a Dupire local volatility model. If we set η = 1, the corresponding
SLV model is close to a purely stochastic volatility model. Hence, the mixing weight
can be seen as a tuning parameter allowing us to control how much of the smile is to be
explained by stochastic volatility and by local volatility. Wystup in [14] mentions that the
mixing weight in FX markets can be chosen such that the SLV model matches the prices
of liquid first-generation exotic options, such as one-touch or double no-touch options, or
alternatively, one can estimate the mixing weight by looking at the historical correlation
between spot and risk reversals. Clark in [4, page 124] and Austing in [13, page 141]
mention that the mixing weight is typically around 60% in FX markets.
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Chapter 4

Mixed Local Volatility Models

SLV models are a powerful class of models which combine stochastic volatility and local
volatility models, integrating the strengths of both types of models without suffering from
their individual limitations. However, due to the complexity of these models, calibrating
an SLV model and using it to price can be very slow computationally. Mixed local volatility
(MLV) models are a heavily simplified version of SLV models, the major difference being
that the volatility process is comprised of a discrete finite set of deterministic volatility
states, and the stochastic nature of the volatility process exists only at the initial time, as
opposed to the volatility process being driven by a Brownian motion. This simplification
results in a significantly reduced computation time for calibration and pricing. This type
of random volatility was seen in lognormal mixture models in Section 2.2, but now we
combine it with a local volatility correction. One consequence of the simplified volatility
process, however, is that there is no correlation between spot and volatility. The MLV
model can be extended to a regime-switching model, in which the volatility process can
switch between different volatility states beyond the initial time, to allow for more flexi-
bility.

To our knowledge, the only discussions of the MLV model in the literature have been
first by Peter Austing ([13], 2014), and then Uwe Wystup ([14], 2021). As mentioned in
Section 2.2, Piterbarg in [11] showed that trying to price path-dependent options under
a lognormal mixture model using a probability weighted average formula akin to (2.2.6)
is wrong. Peter Austing argues in [13, pages 138, 148] that pricing continuous barrier
options using a lognormal mixture model to underlie an SLV model may be an exception
to the issues pointed out by Piterbarg. He compares the price of a one-touch option under
a λ-SABR SLV model to a three-state MLV model with constant volatilities, and shows
that the prices are very similar for all barrier levels [13, Figure 9.1, page 142].

More recently, Uwe Wystup in [14] discusses the MLV model in more detail, arguing that
the SLV model is overkill in terms of complexity for pricing a range of first-generation
exotic options, and that the MLV model is the model of choice here, as it can price these
options with similar accuracy to the SLV model but with a computation time reduction
by a factor of over 10. He mentions that the MLV model in its simplest form is not
adequate for pricing second-generation exotics, and instead needs to be extended to a
regime-switching model.

In this section, we start by introducing the MLV model and a framework for calibrating
the model to market data. Next, we investigate the prices of continuous barrier options
generated by this model and compare them to the LV model and an SLV model, to see
what kind of flexibility we can achieve with the variable parameters of the model. We
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then examine the forward smile dynamics of the model and see if it has the capability of
accurately pricing forward-starting options. Finally, we introduce a theoretical framework
for an extended version of the MLV model.

4.1 The MLV Model

The SDE describing the risk-neutral dynamics of the asset price process (St)t≥0 is given
by:

dSt = (rt − qt)Stdt+ σZ0(t)L(St, t)StdWt, S0 > 0, (4.1.1)

where Z0 : Ω → Z is an F0-measurable random variable independent of (Wt)t≥0, taking
values on a discrete finite set Z = {1, . . . , n} with associated probabilities λi := P(Z0 = i)
that the asset price will follow indefinitely the SDE

dSt = (rt − qt)Stdt+ σi(t)L(St, t)StdWt, S0 > 0, (4.1.2)

with σi(·) a deterministic volatility process. Note that σZ0 in the MLV model is defined
in the same way as in the lognormal mixture model 2.2.1, except now we introduce the
leverage function L to allow us to calibrate the model exactly to the vanilla options in the
market.

4.2 Calibration of MLV Models

4.2.1 MLV Leverage Function Calibration

Following the same idea from the previous chapter, we arrive at the following formula for
the leverage function:

L2(K, t) =
σ2
local(K, t)

E
[
σ2
Z0
(t)|St = K

] .
As our volatility process is now a discrete process taking n states with randomness only
at initial time, we can rewrite this as

L2(K, t) = σ2
local(K, t)

∑n
i=1 p(K, t;σi) · λi∑n

i=1 σ
2
i (t) · p(K, t;σi) · λi

, (4.2.1)

where p(·, ·;σi) represents the probability density of the spot conditional on being in volatil-
ity state i. We will write p(K, t;σi) = pi(K, t) for notational convenience.

As in the previous chapter, to obtain the leverage function at all strikes and times, one
way to proceed is by considering the associated Fokker-Planck equations describing the
transition probability densities under each volatility state; in this simplified model, we now
have to solve n one-dimensional Fokker-Planck equations, as opposed to a two-dimensional
Fokker-Planck equation, which is much less computationally expensive. The associated
Fokker-Planck equation for the MLV model is given by:

∂p

∂t
(s, t) =

1

2

∂2

∂s2
[
σ(t)2L2(s, t)s2p(s, t)

]
− 1

2

∂

∂s

[
(rt − qt)sp(s, t)

]
=

n∑
i=1

λi

[
1

2

∂2

∂s2
[
σi(t)

2L2(s, t)s2pi(s, t)
]
− 1

2

∂

∂s

[
(rt − qt)spi(s, t)

]]
, (4.2.2)

subject to the initial conditions

pi(s, 0) = δ{s−S0}, i = 1, . . . , n.
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The idea behind solving this Fokker-Planck equation via finite-difference by approximat-
ing the leverage function on intervals is analogous to what was described in the previous
chapter. In Appendix A.1.2, we provide a finite-difference scheme for calibrating the
leverage function for the MLV model. Alternatively, a finite-volume approach for solving
general Fokker-Planck equations in one-dimension can be found in [30, pages 6-11], which
can adapted here. We take a slightly different approach to the overall calibration process
compared to the SLV case. Instead of calibrating the stochastic volatility component first
before calibrating the leverage function, we instead consider the volatility states as free
parameters, as we are interested in seeing what effect they have on the model.

Figure 4.1 shows two examples of a calibrated leverage surface under a two-state MLV
model with constant volatility states σ = [0.2, 1], using vanilla option data written on
AAPL. Figure 4.1(a) and 4.1(b) differ by their level of stochasticity; Figure 4.1(a) repre-
sents a fully stochastic MLV model while 4.1(b) represents a 50% stochastic MLV model.
Because of this, both figures show similar general shapes, but Figure 4.1(a) has a larger
peak around the at-the-money logspot level. This is because the 50% stochastic MLV
model is closer to a local volatility model, meaning less ”correction” is required to reprice
the vanilla option prices that the model is being calibrated to. Note that here we did
not apply any smoothing to the leverage surfaces, however one may want to incorporate
this; an example of a smoothing scheme is presented in [29, page 13] in the context of a
Heston-SLV model.

As before, to check that the calibration process has been successful, we can reprice the
vanilla options for all strikes and maturities and check that they match the vanilla option
prices in the market. Here the price of a European option is simply a probability weighted
average of the prices under each of the n volatility states. Once the leverage function
has been calibrated for all strikes and maturities, we can price path-dependent options by
solving the backward pricing PDE’s associated with this MLV model using finite-difference.
As our model gives rise to n SDE’s of the form

dSt = (rt − qt)Stdt+ σi(t)L(St, t)StdWt, i = 1, ..., n, (4.2.3)

this means we have to solve n one-dimensional backward pricing PDE’s and take a prob-
ability weighted average of the prices (as opposed to solving a two-dimensional backward
pricing PDE as in SLV models). The backward pricing PDE under volatility state σi is
given by

∂V

∂t
+ (rt − qt)s

∂V

∂s
+

1

2
σ2
i (t)L

2(s, t)s2
∂2V

∂s2
− rtV = 0. (4.2.4)

4.2.2 MLV Mixing Parameters

In SLV models, the mixing of stochastic volatility and local volatility is controlled by a
mixing weight η ∈ [0, 1]. In MLV models, we will control the mixing by adjusting the levels
of the volatility states, {σi}ni=1, as well as the associated probabilities, {λi}ni=1, of entering
each volatility state at initial time. In this study, we will focus on MLV models with two
constant volatility states. For convenience, we will write σZ0(·) = σ(·), and hence

P
(
{σ(t) = σi(t), ∀t}

)
= λi, i = 1, 2. (4.2.5)

and λ1 + λ2 = 1. The probabilities of the two-state model can be parameterised by one
of the probabilities, which gives us one degree of freedom for calibrating the MLV model.
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Figure 4.1: Two-state MLV leverage surfaces calibrated to AAPL vanilla options using
two sets of model parameters (constant volatility states).
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We can define the level of stochasticity of the MLV model by

1− |λ1 − λ2| = 1− |2λ1 − 1|, λ1 ∈ [0, 1] (4.2.6)

=: η1. (4.2.7)

A 100% stochastic MLV model corresponds to the case where the two volatility states are
equiprobable. A 0% stochastic MLV model corresponds to the case where one volatility
state has probability 1, and here the model simply degenerates to the local volatility model.
The choice of volatility states also gives us one more degree of freedom for calibrating the
MLV model: this is because the effect of the volatility states on the model is invariant to
scaling. That is, the effect that the volatility states have on the model does not depend
directly on the absolute value of the volatility states, but instead on a relative difference
between them. This means we can choose one of the states arbitrarily, and use the level of
the other state to adjust the relative difference. Without loss of generality, we set σ2(t) = 1
for all t. If we define the relative difference by

−η2 :=
|σ1(t)− σ2(t)|
σ1(t) + σ2(t)

, (4.2.8)

then, by setting σ2(t) = 1 for all t and choosing σ1(t) < σ2(t), we can write that

σ1(t) =
1− η2
1 + η2

, η2 ∈ [0, 1], (4.2.9)

since σ1(t) ≥ 0, and consequently, we can simply consider σ1(t) ∈ (0, 1] for all t and
λ1 ∈ [0, 1]. This gives us two mixing parameters for the two-state MLV model. Setting
the volatility states to be equal to each other, or equivalently η2 = 0, degenerates the
model to the local volatility model. Note that for a given set of volatility states, the
model does depend on whether there is a smaller or larger probability weighting on the
volatility state with value 1, and so we must consider both cases. For the rest of the thesis,
when describing the mixing parameters of the MLV model, we will quote the values of the
volatility states as opposed to the corresponding value of the parameter η2.

4.3 MLV Barrier Option Pricing

Uwe Wystup in [14] describes the MLV model as the model of choice for pricing barrier
options. With our calibrated MLV model, we will look at the corresponding prices of
continuous barrier options and compare them to the LV model and an SLV model.

4.3.1 Barrier Options

Barrier options are a type of first-generation exotic option whose payoffs are contingent on
the price of the underlying asset reaching a barrier or barriers over the life of the option.
A knock-in barrier option is such that the option only becomes active if the asset price
reaches the barrier(s); otherwise, the option is worthless. A knock-out barrier option is
such that the option is active unless the asset price reaches the barrier(s), after which the
option becomes worthless.

For the purposes of this thesis, we will briefly describe the four types of single barrier
options with European exercise style (down-and-out, down-and-in, up-and-out, up-and-in
barrier options), as well as one-touch options, all with continuously monitored barriers.
Denote the running infimum and supremum of the underlying asset price process by

St := inf
0≤u≤t

St,

St := sup
0≤u≤t

St.
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The payoff of each of the barrier options are given by:

Down-and-out: (ϕ(ST −K))+11{ST≥B}

Down-and-in: (ϕ(ST −K))+11{ST≤B}

Up-and-out: (ϕ(ST −K))+11{ST≤B}

Up-and-in: (ϕ(ST −K))+11{ST≥B}

One-touch (upper barrier): 11{S̄T≥B}

One-touch (lower barrier): 11{ST≤B}

where T is the maturity of the option, K ≥ 0 is the strike, B is the barrier level, and ϕ
takes value +1 for a European call option style payoff and −1 for a European put option
style payoff at maturity.

4.3.2 MLV Barrier Option Price Comparisons

It is not obvious why such a huge simplification of the stochastic volatility process under-
lying an SLV model could still lead to accurate prices of continuous barrier options, which
are path-dependent contracts. Peter Austing in [13] argues that most of the characteristics
of the stochastic volatility process underlying an SLV model do not make much of a dif-
ference in the corresponding prices of continuous barrier options generated. He illustrates
this by first making a heuristic argument with a simple example for why spot-volatility
correlation can be somewhat reproduced by the local volatility correction term, and that it
can explain why modelling correlation in SLV models does not have a significant effect on
continuous barrier option prices [13, pages 131-133]. He uses this and an approximation
argument to argue that for a stochastic volatility model with no spot-volatility correlation,
continuous barrier option prices depend mostly on the probability distribution of the total
variance over the lifetime of the contract [13, pages 134-138]. He shows that for an SLV
model with no spot-volatility correlation, the price of a continuous barrier option can be
approximated well by a weighted sum of Black-Scholes prices with different volatilities.
Although the arguments are not rigorous, they give us some insight in to why MLV models
may be sufficient for pricing these options accurately.

To price a continuous knock-out barrier option under the MLV model, we solve the corre-
sponding backward pricing PDE, with the necessary boundary conditions, for each of the
volatility states, and take a probability weighted average of each price. For i = 1, . . . n,
the backward pricing PDE and boundary conditions satisfied by the value of a continuous
knock-out barrier option under volatility state i is given by

∂V
∂t + (rt − qt)s

∂V
∂s + 1

2σ
2
i (t)L

2(s, t)s2 ∂
2V
∂s2

− rtV = 0, t < T,

V (t, B) = 0, t < T,

V (t, s) = g(s), t = T,

where V = V (s, t) is the value of the option, B is the barrier level, and g represents
the boundary condition specific to the type of barrier option. For example, to price an
up-and-out barrier call option, we would set g(s) = (s − K)+11{s<B}. To then price the
corresponding knock-in barrier option, we can use the ”in-out” parity; to price an up-and-
in European barrier option, the ”in-out” parity says that

(ϕ(ST −K))+ = (ϕ(ST −K))+11{ST≤B} + (ϕ(ST −K))+11{ST>B}. (4.3.1)

Pricing of the one-touch options is analogous. Now we will compare the LV, SLV, and
MLV model prices for knock-out barrier call options and one-touch options with 1 year
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expiry for a range of barrier levels. For a knock-out barrier call option, we suspect that, for
all barrier levels, the LV price will be lower than the SLV price, and that the MLV model
will be able to achieve a range of prices bounded from below by the LV price. We suspect
the opposite for one-touch options. This is due to the way in which the implied volatility
dynamics of each model impacts the price of barrier options generated. In the context of
a continuous barrier one-touch option with an upper barrier, Peter Austing in [13, pages
143-147] uses a heuristic approximate static hedging argument to show that, in general,
the price of a one-touch option generated by an LV model is higher than the price under a
stochastic volatility model. He does this by showing that the price of the one-touch option
depends mainly on the forward implied volatility skew, and that the forward skew at a
random future barrier touch time will be higher under an LV model, resulting in a higher
price. This argument can be extended to continuous knock-in barrier options to show that
they are generally priced higher by an LV model. By using the ”in-out” parity (4.3.1),
it follows that the opposite relation holds for continuous knock-out barrier options. A
similar argument is made by Gatheral in [34, pages 114-116].

In figures 4.2, 4.3, 4.4, we look at a comparison of the prices (normalised by initial spot) of
up-and-out and down-and-out barrier call options written on SPX with 80% strike for each
of the models, while varying the mixing parameters of the MLV model. We are interested
in what effect the mixing parameters have on the prices generated by the model, and
how they compare to the SLV model, relative to the LV model. In Figure 4.2, we fix
the volatility state of the MLV model to σ = [1, 0.3], and look at the prices generated by
the model for probabilities λ ∈ {[0.125, 0.875], [0.25, 0.75], [0.375, 0.625]} corresponding to
25%, 50% and 75% stochasticity. We also look at the price differences with the LV model.
In figures 4.3 and 4.4, we fix the level of stochasticity of the MLV model to 50%, and
look at the prices generated by the model for volatility states σ ∈ {[1, 0.3], [1, 0.4], [1, 0.5]}.
Note that the parameters of the MLV model here were chosen arbitrarily to illustrate
the effect of the mixing parameters on the prices, and were not specifically chosen to
closely match the SLV price. In Figure 4.5, we plot price differences with the LV model
for both types of one-touch options written on USD-JPY. For these options, we have
chosen the mixing parameters of the MLV model with more intention of achieving a price
close to the SLV model. We considered 90% stochastic MLV models with volatility states
σ ∈ {[1, 0.55], [1, 0.6], [1, 0.65]}.

We indeed see in figures 4.2, 4.3, 4.4 that the SLV and MLV models price knock-out barrier
options higher than the LV model, and that we are able to get a lot of flexibility on the
prices generated by the MLV model by controlling the two mixing parameters. However,
one immediate problem we see by comparing Figure 4.3(b) and Figure 4.4(b) is that the
parameters for which the MLV model can closely match the up-and-out barrier call option
prices of the SLV model are not the same as for the down-and-out call option. In Figure
4.5, where we chose the mixing parameters with more intention of matching the SLV model
one-touch prices, we see something similar. For the upper barrier one-touch option, the
prices generated by the 90% stochastic MLV model with σ = [0.6, 1] are close to SLV for
all barrier levels, and are extremely close beyond the 110% barrier level. However, this
is not reflected in the lower barrier one-touch case, and significant deviations are present
here particularly around the 90-100% barrier level. With this in mind, the applicability
of this model may depend on what barrier levels are being considered, and to what extent
one is willing to trade off accuracy for speed of pricing. The MLV model was able to
price the barrier options with a computation time reduction of 1-2 orders of magnitude
compared to the SLV model.
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stochasticity.
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Figure 4.2: 1Y up-and-out barrier call option prices with 80% strike written on SPX;
comparison between LV, SLV, and MLV with volatility states σ = [1, 0.30] and varying
stochasticity.
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Figure 4.3: 1Y up-and-out barrier call option prices with 80% strike written on SPX;
comparison between LV, SLV, and MLV with 50% stochasticity and varying volatility
states.
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Figure 4.4: 1Y down-and-out barrier call option prices with 80% strike written on SPX;
comparison between LV, SLV, and MLV with 50% stochasticity and varying volatility
states.
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Figure 4.5: 1Y one-touch option price differences written on USD-JPY; comparison be-
tween LV, SLV, and MLV with 90% stochasticity and varying volatility states.
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4.4 MLV Forward Implied Volatility Dynamics

It is important that a model used for pricing path-dependent options exhibits realistic for-
ward implied volatility dynamics, otherwise it will not be pricing these options correctly.
As mentioned in Chapter 2, the local volatility model has the undesirable property that
the forward implied volatility smiles flatten in time. Given that the volatility process of
the MLV model is as simple of a random process as we can possibly make it, we want to
investigate whether this volatility process has enough randomness to sufficiently reduce
the flattening of the forward implied volatility smiles, and if it can produce behaviour that
resembles that of an SLV model. We will investigate this by looking at the implied volatili-
ties obtained from prices of forward-starting contracts generated by the MLV model. Peter
Austing in [13, page 139] suggests that in order for a model to accurately price forward-
starting contracts, consistency of the model with the vanilla implied volatility surface and
with barrier options is potentially sufficient, as consistency with these products imposes
significant constraints on the prices of forward-starting contracts generated by the model.

In this section, we will compare the forward implied volatility smiles of the MLV model
to the LV model and an SLV model, and look at how the smiles change as we adjust the
mixing parameters. We would like to see if there exists a set of mixing parameters for
which the skew and convexity of the smile are similar to that of the SLV model. We use
SPX as the underlying, and the forward implied volatilities are obtained by calibrating the
given model to vanilla SPX option market data, computing the prices of forward-starting
call options using a finite-difference methods, and then backing out the forward implied
volatility. We use an SLV model with a mixing weight of 80% for our comparisons. In all
of the examples in this section, the MLV models are calibrated using constant volatility
states over the entire period to maturity, i.e. there is no term structure for the volatility
states.

We start by plotting the forward smiles obtained from forward-starting call options with
forward-starting dates 0Y, 6M, 2Y, 3Y, 6Y, and 6-month time to expiry from the forward-
start date; these can be compared with Figure 1.1(a) seen earlier in Chapter 2, where we
looked at the equivalent plot for the local volatility model. Figure 4.6 shows the corre-
sponding forward smiles for the SLV model which exhibits the behaviour which we would
ideally like to match with the MLV model. We see that the forward smiles do not suffer
from the same flattening issue as the local volatility model, and produces forward smiles
with much more convexity and skew.

Figure 4.7 shows the forward smiles under the MLV model with σ = [0.2, 1] for three
different levels of stochasticity; we consider λ ∈

{
[0.5, 0.5], [0.75, 0.25], [0.25, 0.75]

}
which

correspond to 100%, 50% and 50% stochasticity respectively. Recall that the model with
λ = [0.75, 0.25] has the same stochasticity as the model with λ = [0.25, 0.75], but it puts
less probability weight on the volatility state with value one, which results in a different
model. We indeed see that the MLV model does not exhibit a flattening forward smile
as the forward-starting date increases. The three plots seem to have fairly similar shapes
between 0.9 and 1.1 moneyness but differing by vertical shifts. The behaviour at the
wings is quite different, particularly at the left wing. In Figure 4.7(a), forward smiles for
forward-starting dates 2Y and 3Y seem to be flattening quite quickly at the left wing.
This effect is slightly less pronounced in Figure 4.7(b), and not shown at all in 4.7(c).
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Figure 4.6: Forward implied volatility smiles under the SLV model, obtained using SPX
forward-start call options for a range of forward-starting dates and 6-month time to expiry
from the forward-starting date.

4.4.1 Effect of Mixing Parameters on Forward Smiles

Recall that for a two-state MLV model, we effectively have two mixing parameters that
we can control, one for the level of the volatility states and one for the probabilities of
entering each of the states at initial time (i.e. the stochasticity of the model). We are in-
terested in looking at the effect of each of these mixing parameters. We start by fixing the
stochasticity of the MLV model, and plotting the corresponding forward smiles for a range
of volatility states σ ∈

{
[0.1, 1], [0.2, 1], [0.3, 1], [0.4, 1]

}
. We also plot the forward smiles

for the LV and SLV model for comparison. Figure 4.8 shows three examples where the for-
ward smiles have been obtained from forward-starting call options with forward-start date
T0 = 2Y and maturity T1 = 3Y. Each of the plots, figures 4.8(a), 4.8(b), 4.8(c), have fixed
levels of stochasticity, 50% (λ = [0.25, 0.75]), 100% and 50% (λ = [0.75, 0.25]) respectively.

Again we see that the MLV model is able to produce a forward implied volatility smile
which is much less flat than the LV model. However, the MLV model is not able to achieve
a level of skew/convexity that closely matches the SLV model for all levels of strike. One
immediate issue we see is the large deviations between MLV and SLV occurring at the
right wing of the volatility smile in all of the examples. This could be due to the fact
that we do not model spot-volatility correlation in an MLV model. The smile of the MLV
model with λ = [0.25, 0.75], which puts more weight on the volatility state with value 1,
exhibits the least amount of convexity. The MLV model with λ = [0.75, 0.25] produces the
most convexity at the left wing of the smile, whereas the MLV model with λ = [0.5, 0.5]
produces the most convexity at the right wing. For a given level of stochasticity, increasing
the difference between the volatility states increases the convexity of the smile in all cases.

Next, we fix the level of the volatility states, and plot the corresponding forward smiles
for a range of probabilities. Figure 4.9 shows two examples for two sets of volatility states,
σ = [0.1, 1] and σ = [0.3, 1], plotting the forward smiles for λ ∈

{
[0.5, 0.5], [0.625, 0.375],

[0.75, 0.25], [0.875, 0.125]
}
corresponding to 100%, 75%, 50% and 25% stochasticity. Figure

4.10 is similar, but instead with λ ∈
{
[0.5, 0.5], [0.375, 0.625], [0.25, 0.75], [0.125, 0.875]

}
, i.e.

more probability weighting on the volatility state with value 1.
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(a) 50% stochasticity MLV model with larger probability weighting on volatility state 1; λ =
(0.25, 0.75).
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(b) 100% stochasticity MLV model; λ = (0.5, 0.5).
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(c) 50% stochasticity MLV model with smaller probability weighting on volatility state 1; λ =
(0.75, 0.25).

Figure 4.7: Forward implied volatility smiles under the MLV model, obtained using SPX
forward-start call options for a range of forward-starting dates and 6-month time to expiry
from the forward-starting date, using σ = [0.2, 1] for all forward-starting dates.
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Figure 4.9 shows quite strange and less predictable behaviour for varying levels of stochas-
ticity. The change in the smiles is much less clear for σ = [0.3, 1] where the relative
difference between the states is smaller. Here, varying the level of stochasticity has a
fairly insignificant effect on the smiles between 0.9 and 1.1 strike. When σ = [0.1, 1], the
effect becomes more apparent, especially at the wings. The plots in Figure 4.10 show a
pattern much more similar to what was seen in Figure 4.8. We see that for a fixed set
of volatility states, increasing the level of stochasticity results in increased convexity. We
also see that there is no set of parameters that is able to alleviate the issue of the large
deviation of the MLV smiles from the SLV smiles at the right wing (without causing large
deviations elsewhere), which is problematic.

Note that another set of examples using forward-start date T0 = 6Y and maturity T1 = 7Y
can be found in Appendix B. We questioned if the undesirable behaviour at the right wing
of the MLV forward smiles was because the MLV model cannot not handle the amount
of skew present in the implied volatility curves of equity markets, and whether the MLV
model would have more applicability to FX markets with currency pairs which exhibit
more symmetric implied volatility curves. We tested on a range of currency pairs and
found that this did not alleviate these issues. In Figure 4.11, we show one example of the
forward smiles for GBP/USD, with T0 = 2Y and T1 = 3Y, which illustrates this. Based
on the results, it seems that the two-state MLV model is not sufficiently complex for
handling forward-starting options, and consequently, not sufficiently complex for handling
other options with strong path-dependence.

4.4.2 Forward Smiles of Multi-State MLV Models

So far we have only considered two-state MLV models, but to get some more flexibility, one
can consider adding more volatility states. In our testing, we looked briefly at the forward
smiles of three-state and four-state MLV models. We found, however, that increasing the
number of volatility states did not have a significant enough effect for it to be worth going
into detail about in this thesis. We found that increasing the number of states did not
necessarily alleviate some of the main issues seen previously, in particular the inability of
the MLV forward smiles to match the SLV forward smiles at the right wing. Our conclusion
is that, for derivatives with strong path-dependence, MLV models in the current form are
not sufficient, and instead we should consider looking to extend the model. One way to
do so would be to allow the volatility to transition between states beyond the initial time.
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(b) 100% stochasticity MLV model: equal probability weighting on each volatility state.
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(c) 50% stochasticity MLV model with smaller probability weighting on volatility state 1.

Figure 4.8: Forward smile comparison of two-state MLV model with probabilities λ =
[0.25, 0.75], λ = [0.5, 0.5] and λ = [0.75, 0.25], over a range of volatility state combinations.
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Figure 4.9: Forward smile comparison of two-state MLV models with volatility states
σ = [0.1, 1] and σ = [0.3, 1], with 100%, 75%, 50%, 25% stochasticities but a smaller
probability weighting on the volatility state with value 1.
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Figure 4.10: Forward smile comparison of two-state MLV models with volatility states
σ = [0.1, 1] and σ = [0.3, 1], with 100%, 75%, 50%, 25% stochasticities but a larger
probability weighting on the volatility state with value 1.
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Figure 4.11: Forward smile comparison of two-state MLV using GBP/USD as the under-
lying, with 50% stochasticity and a smaller probability weighting on the volatility state
with value 1, for a range of volatility states.

4.5 Regime-Switching MLV Model

The MLV model in its current form does not seem to possess the capability to price
strongly-path dependent options. One of the big simplifications of the model is that the
stochasticity of the volatility is concentrated purely at initial time. To achieve a more
flexible model while still being significantly less computationally expensive than an SLV
model, we can extend the MLV model by allowing for transitions between the volatility
states beyond initial time. Here we briefly introduce a theoretical framework for this
regime-switching MLV model.

4.5.1 General RS-MLV Model

The SDE describing the risk-neutral dynamics of the asset price process in a general
regime-switching MLV (RS-MLV) model is given by,

dSt = (rt − qt)Stdt+ σZt(t)L(St, t)StdWt, S0 > 0, (4.5.1)

where Z0 : Ω → Z = {1, . . . , n} is an F0-measurable random variable with associated
probabilities

λi := P(Z0 = i), i = 1, . . . , n, (4.5.2)

and the process Z evolves in time following

P
(
Zt+dt = j|Ft

)
= qZtj(St)dt, (4.5.3)

where Ft is the σ-algebra generated by {(Su, Yu)}0≤u≤t, (S0, Z0) and (Wt)t≥0 are inde-
pendent, Q(x) = (qij(x))1≤i,j≤n is a transition-rate matrix with qij ≥ 0 and bounded for
i ̸= j, and qii = −

∑
j ̸=i qij .

By the usual application of Gyöngy’s theorem, we get the following expression for the
leverage function:

L2(S, t) = σ2
local(S, t)

∑n
i=1 p(S, t;Z0 = i) · λi∑n

i=1 σ
2
i · p(S, t;Z0 = i) · λi

, (4.5.4)
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where p(·, ·;Z0 = i) = pi(·, ·) denotes the probability density of the asset price process
conditional on {Z0 = i}. The SDE given by 4.5.1 gives rise to a system of n coupled
Fokker-Planck equations describing the marginal density of the asset price process, where,
for i = 1, . . . , n,

∂pi
∂t

=
1

2

∂2

∂s2
[
σ2
i L

2(s, t)s2λipi
]
− 1

2

∂

∂s

[
(rt − qt)sλipi

]
+

n∑
i=1

qjipj , (4.5.5)

pi(·, 0) = δ{s−S0}. (4.5.6)

Jourdain and Zhou proved the existence of this general regime-switching MLV model,
under some conditions and assumptions, the details of which can be found in [35].
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Conclusion

In this thesis, we explored mixed local volatility models, a heavily simplified version of
stochastic local volatility models. We provided a framework for calibrating the MLV model
to vanilla option market data, and compared the models ability to accurately price con-
tinuous barrier options by comparing it to a local volatility model and a stochastic local
volatility model. We saw that one can find mixing parameters for which the MLV model
can price continuous barrier options quite similarly to an SLV model. These parameters,
however, are not necessarily the same for pricing all types of continuous barrier options
simultaneously, for all barrier levels, meaning the applicability of the MLV model here
may depend on the context in which it is to be used. We then did the same thing in the
context of forward-starting options in order to understand the forward implied volatility
smile dynamics of the model. We saw that the MLV model does not exhibit the well-
known flattening issue suffered by the local volatility model, but it cannot seem to match
the forward implied volatility smiles of an SLV model for all levels of moneyness. This
suggests that the MLV model may not be complex enough to handle options with strong
path-dependency, and may require a more sophisticated volatility process to be able to
price these types of options. The two-state MLV model was able to price with a compu-
tation time reduction of 1-2 orders of magnitude relative to the SLV model.

There are several ways in which the results of this thesis can be extended. Firstly, we
only investigated the capability of the MLV model to price continuous barrier options and
forward-starting options. However, Uwe Wystup in [14] suggests that MLV models are the
model of choice for a range of first-generation exotics, and hence it would be interesting to
look at how well the model can price other types of exotic options. The most interesting
extension would be to explore a regime-switching MLV model, or even a regime-switching
jump diffusion model. This may provide the flexibility needed to better match the forward
implied volatility smiles of the SLV model, and to achieve the capability to price more
complex and strongly path-dependent products, whilst still being able to price significantly
faster than an SLV model.
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Appendix A

Technical Details

A.1 MLV Calibration Finite-Difference Scheme

Here we will briefly describe a finite-difference scheme for solving the Fokker-Planck equa-
tion associated with calibrating the MLV model. We will not discuss a finite-difference
scheme for solving the Fokker-Planck associated with calibrating the RS-MLV model.

A.1.1 Finite-difference with Non Uniform Grids in One Dimension

When solving the Fokker-Planck equation and the backward pricing PDE, it is useful to
use non-uniform spatial grids with a concentration of points around the initial spot and/or
around values of interest. Here we write down the corresponding approximations of first
and second order derivatives on such grids.

Let f be a smooth function and consider a non-uniform grid of points x0 < · · · < xn.
Define hi := xi+1 − xi. Let fi represent the value of the function f evaluated at the point
xi. The approximations of the first and second derivative of f on the non-uniform grid
are given by

∂fi
∂x

≈ − hi−1

hi(hi−1 + hi)
fi−1 +

hi − hi−1

hi−1hi
fi +

hi−1

hi(hi−1 + hi)
fi+1, (A.1.1)

∂2fi
∂x2

≈ 2

hi−1(hi−1 + hi)
fi−1 −

2

hi−1hi
fi +

2

hi(hi−1 + hi)
fi+1. (A.1.2)

A.1.2 Fokker-Planck Discretisation in One Dimension

Recall the Fokker-Planck equation associated with the MLV model given by (4.2.2). We
start by transforming the Fokker-Planck equation for the MLV model to log coordinates:

∂p(x, t)

∂t
=

n∑
i=1

λi

[
1

2
σ2
i

∂2

∂x2
[
L2(x, t)pi(x, t)

]
+

∂

∂x

[
(
1

2
σ2
i L

2(x, t)− (rt − qt))pi(x, t)
]]
.

There are n one-dimensional Fokker-Planck equations associated with the MLV model
that we need to solve, i.e. one for each state. The Fokker-Planck equation associated with
the probability density under volatility state i is given by

∂pi(x, t)

∂t
=

1

2
σ2
i

∂2

∂x2
[
L2(x, t)pi(x, t)

]
+

∂

∂x

[
(
1

2
σ2
i L

2(x, t)− (rt − qt))pi(x, t)
]
.

For notational convenience, we will discretise a general form of this equation. Define
ai(x, t) := 1

2σ
2
i (t)L

2(x, t) and bi(x, t) := 1
2σ

2
i (t)L

2(x, t) − (rt − qt). This equation then
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becomes
∂pi(x, t)

∂t
=

∂2

∂x2
[
ai(x, t)pi(x, t)

]
+

∂

∂x

[
bi(x, t)pi(x, t)

]
. (A.1.3)

We will describe a fully implicit finite-difference scheme for solving this PDE. Define the
time grid {t0, t1, . . . , tN} and spatial grid {x0, x1, . . . , xM}. Let ∆ti := ti − ti−1 and let
(pi)

l
k := pi(xk, tl), (ai)

l
k := ai(xk, tl), (bi)

l
k := bi(xk, tl) denote functions pi, ai, bi, ci

evaluated at the coordinate (xk, tl). For a fully implicit scheme, we approximate the time
derivative using a backward difference. Following (A.1.1) and (A.1.2), we approximate the
first and second spatial derivatives by

∂[bi(x, t)pi]

∂x
≈

hk−1(bi)
l
k−1

hk(hk−1 + hk)
(pi)

l
k−1 +

(hk − hk−1)(bi)
l
k

hkhk−1
(pi)

l
k +

hk−1(bi)
l
k+1

hk(hk−1 + hk)
(pi)

l
k+1,

∂2[ai(x, t)pi]

∂x2
≈

2(ai)
l
k−1

hk(hk−1 + hk)
(pi)

l
k−1 −

2(ai)
l
k

hk−1hk
(pi)

l
k +

2(ai)
l
k+1

hk(hk−1 + hk)
(pi)

l
k+1.

This leads to the following PDE discretisation:

(pi)
l
k − (pi)

l−1
k

∆tl
=

2(ai)
l
k−1 + hk−1(bi)

l
k−1

hk(hk−1 + hk)
(pi)

l
k−1 +

−2(ai)
l
k + (hk − hk−1)(bi)

l
k

hkhk−1
(pi)

l
k

+
2(ai)

l
k+1 + hk−1(bi)

l
k+1

hk(hk−1 + hk)
(pi)

l
k+1

=: (αi)
l
k (pi)

l
k−1 + (βi)

l
k (pi)

l
k + (γi)

l
k (pi)

l
k+1,

where

(αi)
l
k :=

2(ai)
l
k−1 + hk−1(bi)

l
k−1

hk(hk−1 + hk)
,

(βi)
l
k :=

−2(ai)
l
k + (hk − hk−1)(bi)

l
k

hkhk−1
,

(γi)
l
k :=

2(ai)
l
k+1 + hk−1(bi)

l
k+1

hk(hk−1 + hk)
,

which holds for k = 1, . . . ,M−1 and l = 1, . . . , N . For simplicity, if we define the boundary
conditions by

∂pi(x, t)

∂x

∣∣
x=x0

= 0,
∂pi(x, t)

∂x

∣∣
x=xM

= 0,

then by setting (βi)
l
0 = 0, (γi)

l
0 = 1

∆tl
, (αi)

l
M = 1

∆tl
, (βi)

l
M = 0, we obtain the following

recursive equation in vector notation:

(pi)
l =

(
I−∆tlA

l
i

)−1
(p̃i)

l−1,

where {Al
i}ni=1 is a sequence of tridiagonal matrices defined by

Al
i =



(βi)
l
0 (γi)

l
0 0 . . . . . . 0

(αi)
l
1 (βi)

l
1 (γi)

l
1 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . (αi)

l
M−1 (βi)

l
M−1 (γi)

l
M−1

0 . . . . . . 0 (αi)
l
M (βi)

l
M


,

and (p̃i)
l
k =


0 if k = 0,

(pi)
l
k if k = 1 . . .M − 1,

0 if k = M.
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Appendix B

Additional Figures

B.1 MLV Forward Implied Volatility Dynamics

Here we provide another example of comparing forward smiles for LV, SLV and MLV,
using a T0 = 6Y forward-start and T1 = 7Y maturity, which can be seen in figures B.1,
B.2, B.3

44



0.7 0.8 0.9 1.0 1.1 1.2 1.3
Strike, K

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Im
pl
ie
d 
Vo
la
til
ity

Forward Smiles (T0=6Y, T1=7Y, λ= [0.25, 0.75])
LV
SLV
MLV: σ= [0.1, 1]
MLV: σ= [0.2, 1]
MLV: σ= [0.3, 1]
MLV: σ= [0.4, 1]

(a) 50% stochasticity MLV model with larger probability weighting on volatility state 1.
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(b) 100% stochasticity MLV model: equal probability weighting on each volatility state.
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(c) 50% stochasticity MLV model with smaller probability weighting on volatility state 1.

Figure B.1: Forward smile comparison of two-state MLV model with probabilities λ =
[0.25, 0.75], λ = [0.5, 0.5] and λ = [0.75, 0.25], over a range of volatility state combinations.
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Figure B.2: Forward smile comparison of two-state MLV models with volatility states
σ = [0.1, 1] and σ = [0.3, 1], with 100%, 75%, 50%, 25% stochasticities but a smaller
probability weighting on the volatility state with value 1.
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Figure B.3: Forward smile comparison of two-state MLV models with volatility states
σ = [0.1, 1] and σ = [0.3, 1], with 100%, 75%, 50%, 25% stochasticities but a larger
probability weighting on the volatility state with value 1.
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